Merge tag 'parisc-for-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/delle...
[linux-2.6-microblaze.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         u64 uid;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         u64 uid;
187
188         /* Expected to always be successfull, but better safe then sorry */
189         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /*
205  * BSW PWM1 is used for backlight control by the i915 driver
206  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
207  * touch controls on some models. These touch-controls have specialized
208  * drivers which know they need the "pwm_soc_lpss_2" con-id.
209  */
210 static struct pwm_lookup bsw_pwm_lookup[] = {
211         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
212                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
213                                "pwm-lpss-platform"),
214         PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
215                                "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
216                                "pwm-lpss-platform"),
217 };
218
219 static void bsw_pwm_setup(struct lpss_private_data *pdata)
220 {
221         u64 uid;
222
223         /* Only call pwm_add_table for the first PWM controller */
224         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
225                 return;
226
227         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
228 }
229
230 static const struct property_entry lpt_spi_properties[] = {
231         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
232         { }
233 };
234
235 static const struct lpss_device_desc lpt_spi_dev_desc = {
236         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
237                         | LPSS_SAVE_CTX,
238         .prv_offset = 0x800,
239         .properties = lpt_spi_properties,
240 };
241
242 static const struct lpss_device_desc lpt_i2c_dev_desc = {
243         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
244         .prv_offset = 0x800,
245 };
246
247 static struct property_entry uart_properties[] = {
248         PROPERTY_ENTRY_U32("reg-io-width", 4),
249         PROPERTY_ENTRY_U32("reg-shift", 2),
250         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
251         { },
252 };
253
254 static const struct lpss_device_desc lpt_uart_dev_desc = {
255         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
256                         | LPSS_SAVE_CTX,
257         .clk_con_id = "baudclk",
258         .prv_offset = 0x800,
259         .setup = lpss_uart_setup,
260         .properties = uart_properties,
261 };
262
263 static const struct lpss_device_desc lpt_sdio_dev_desc = {
264         .flags = LPSS_LTR,
265         .prv_offset = 0x1000,
266         .prv_size_override = 0x1018,
267 };
268
269 static const struct lpss_device_desc byt_pwm_dev_desc = {
270         .flags = LPSS_SAVE_CTX,
271         .prv_offset = 0x800,
272         .setup = byt_pwm_setup,
273 };
274
275 static const struct lpss_device_desc bsw_pwm_dev_desc = {
276         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
277         .prv_offset = 0x800,
278         .setup = bsw_pwm_setup,
279         .resume_from_noirq = true,
280 };
281
282 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
283         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
284         .prv_offset = 0x800,
285         .resume_from_noirq = true,
286 };
287
288 static const struct lpss_device_desc byt_uart_dev_desc = {
289         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
290         .clk_con_id = "baudclk",
291         .prv_offset = 0x800,
292         .setup = lpss_uart_setup,
293         .properties = uart_properties,
294 };
295
296 static const struct lpss_device_desc bsw_uart_dev_desc = {
297         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
298                         | LPSS_NO_D3_DELAY,
299         .clk_con_id = "baudclk",
300         .prv_offset = 0x800,
301         .setup = lpss_uart_setup,
302         .properties = uart_properties,
303 };
304
305 static const struct property_entry byt_spi_properties[] = {
306         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
307         { }
308 };
309
310 static const struct lpss_device_desc byt_spi_dev_desc = {
311         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
312         .prv_offset = 0x400,
313         .properties = byt_spi_properties,
314 };
315
316 static const struct lpss_device_desc byt_sdio_dev_desc = {
317         .flags = LPSS_CLK,
318 };
319
320 static const struct lpss_device_desc byt_i2c_dev_desc = {
321         .flags = LPSS_CLK | LPSS_SAVE_CTX,
322         .prv_offset = 0x800,
323         .setup = byt_i2c_setup,
324         .resume_from_noirq = true,
325 };
326
327 static const struct lpss_device_desc bsw_i2c_dev_desc = {
328         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
329         .prv_offset = 0x800,
330         .setup = byt_i2c_setup,
331         .resume_from_noirq = true,
332 };
333
334 static const struct property_entry bsw_spi_properties[] = {
335         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
336         { }
337 };
338
339 static const struct lpss_device_desc bsw_spi_dev_desc = {
340         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
341                         | LPSS_NO_D3_DELAY,
342         .prv_offset = 0x400,
343         .setup = lpss_deassert_reset,
344         .properties = bsw_spi_properties,
345 };
346
347 static const struct x86_cpu_id lpss_cpu_ids[] = {
348         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
349         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
350         {}
351 };
352
353 #else
354
355 #define LPSS_ADDR(desc) (0UL)
356
357 #endif /* CONFIG_X86_INTEL_LPSS */
358
359 static const struct acpi_device_id acpi_lpss_device_ids[] = {
360         /* Generic LPSS devices */
361         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
362
363         /* Lynxpoint LPSS devices */
364         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
365         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
366         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
367         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
368         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
369         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
370         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
371
372         /* BayTrail LPSS devices */
373         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
374         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
375         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
376         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
377         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
378
379         /* Braswell LPSS devices */
380         { "80862286", LPSS_ADDR(lpss_dma_desc) },
381         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
382         { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
383         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
384         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
385         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
386         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
387
388         /* Broadwell LPSS devices */
389         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
390         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
391         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
392         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
393         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
394         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
395         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
396
397         /* Wildcat Point LPSS devices */
398         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
399
400         { }
401 };
402
403 #ifdef CONFIG_X86_INTEL_LPSS
404
405 /* LPSS main clock device. */
406 static struct platform_device *lpss_clk_dev;
407
408 static inline void lpt_register_clock_device(void)
409 {
410         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
411                                                        PLATFORM_DEVID_NONE,
412                                                        NULL, 0);
413 }
414
415 static int register_device_clock(struct acpi_device *adev,
416                                  struct lpss_private_data *pdata)
417 {
418         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
419         const char *devname = dev_name(&adev->dev);
420         struct clk *clk;
421         struct lpss_clk_data *clk_data;
422         const char *parent, *clk_name;
423         void __iomem *prv_base;
424
425         if (!lpss_clk_dev)
426                 lpt_register_clock_device();
427
428         if (IS_ERR(lpss_clk_dev))
429                 return PTR_ERR(lpss_clk_dev);
430
431         clk_data = platform_get_drvdata(lpss_clk_dev);
432         if (!clk_data)
433                 return -ENODEV;
434         clk = clk_data->clk;
435
436         if (!pdata->mmio_base
437             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
438                 return -ENODATA;
439
440         parent = clk_data->name;
441         prv_base = pdata->mmio_base + dev_desc->prv_offset;
442
443         if (pdata->fixed_clk_rate) {
444                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
445                                               pdata->fixed_clk_rate);
446                 goto out;
447         }
448
449         if (dev_desc->flags & LPSS_CLK_GATE) {
450                 clk = clk_register_gate(NULL, devname, parent, 0,
451                                         prv_base, 0, 0, NULL);
452                 parent = devname;
453         }
454
455         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
456                 /* Prevent division by zero */
457                 if (!readl(prv_base))
458                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
459
460                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
461                 if (!clk_name)
462                         return -ENOMEM;
463                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
464                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
465                                                       prv_base, 1, 15, 16, 15, 0, NULL);
466                 parent = clk_name;
467
468                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
469                 if (!clk_name) {
470                         kfree(parent);
471                         return -ENOMEM;
472                 }
473                 clk = clk_register_gate(NULL, clk_name, parent,
474                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
475                                         prv_base, 31, 0, NULL);
476                 kfree(parent);
477                 kfree(clk_name);
478         }
479 out:
480         if (IS_ERR(clk))
481                 return PTR_ERR(clk);
482
483         pdata->clk = clk;
484         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
485         return 0;
486 }
487
488 struct lpss_device_links {
489         const char *supplier_hid;
490         const char *supplier_uid;
491         const char *consumer_hid;
492         const char *consumer_uid;
493         u32 flags;
494         const struct dmi_system_id *dep_missing_ids;
495 };
496
497 /* Please keep this list sorted alphabetically by vendor and model */
498 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
499         {
500                 .matches = {
501                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
502                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
503                 },
504         },
505         {}
506 };
507
508 /*
509  * The _DEP method is used to identify dependencies but instead of creating
510  * device links for every handle in _DEP, only links in the following list are
511  * created. That is necessary because, in the general case, _DEP can refer to
512  * devices that might not have drivers, or that are on different buses, or where
513  * the supplier is not enumerated until after the consumer is probed.
514  */
515 static const struct lpss_device_links lpss_device_links[] = {
516         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
517         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
518         /* CHT iGPU depends on PMIC I2C controller */
519         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
521         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
522          i2c1_dep_missing_dmi_ids},
523         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
524         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
525         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
526         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
527 };
528
529 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
530                                   const struct lpss_device_links *link)
531 {
532         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
533 }
534
535 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
536                                   const struct lpss_device_links *link)
537 {
538         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
539 }
540
541 struct hid_uid {
542         const char *hid;
543         const char *uid;
544 };
545
546 static int match_hid_uid(struct device *dev, const void *data)
547 {
548         struct acpi_device *adev = ACPI_COMPANION(dev);
549         const struct hid_uid *id = data;
550
551         if (!adev)
552                 return 0;
553
554         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
555 }
556
557 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
558 {
559         struct device *dev;
560
561         struct hid_uid data = {
562                 .hid = hid,
563                 .uid = uid,
564         };
565
566         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
567         if (dev)
568                 return dev;
569
570         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
571 }
572
573 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
574 {
575         struct acpi_handle_list dep_devices;
576         acpi_status status;
577         bool ret = false;
578         int i;
579
580         if (!acpi_has_method(adev->handle, "_DEP"))
581                 return false;
582
583         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
584                                          &dep_devices);
585         if (ACPI_FAILURE(status)) {
586                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
587                 return false;
588         }
589
590         for (i = 0; i < dep_devices.count; i++) {
591                 if (dep_devices.handles[i] == handle) {
592                         ret = true;
593                         break;
594                 }
595         }
596
597         acpi_handle_list_free(&dep_devices);
598         return ret;
599 }
600
601 static void acpi_lpss_link_consumer(struct device *dev1,
602                                     const struct lpss_device_links *link)
603 {
604         struct device *dev2;
605
606         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
607         if (!dev2)
608                 return;
609
610         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
611             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
612                 device_link_add(dev2, dev1, link->flags);
613
614         put_device(dev2);
615 }
616
617 static void acpi_lpss_link_supplier(struct device *dev1,
618                                     const struct lpss_device_links *link)
619 {
620         struct device *dev2;
621
622         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
623         if (!dev2)
624                 return;
625
626         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
627             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
628                 device_link_add(dev1, dev2, link->flags);
629
630         put_device(dev2);
631 }
632
633 static void acpi_lpss_create_device_links(struct acpi_device *adev,
634                                           struct platform_device *pdev)
635 {
636         int i;
637
638         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
639                 const struct lpss_device_links *link = &lpss_device_links[i];
640
641                 if (acpi_lpss_is_supplier(adev, link))
642                         acpi_lpss_link_consumer(&pdev->dev, link);
643
644                 if (acpi_lpss_is_consumer(adev, link))
645                         acpi_lpss_link_supplier(&pdev->dev, link);
646         }
647 }
648
649 static int acpi_lpss_create_device(struct acpi_device *adev,
650                                    const struct acpi_device_id *id)
651 {
652         const struct lpss_device_desc *dev_desc;
653         struct lpss_private_data *pdata;
654         struct resource_entry *rentry;
655         struct list_head resource_list;
656         struct platform_device *pdev;
657         int ret;
658
659         dev_desc = (const struct lpss_device_desc *)id->driver_data;
660         if (!dev_desc)
661                 return -EINVAL;
662
663         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
664         if (!pdata)
665                 return -ENOMEM;
666
667         INIT_LIST_HEAD(&resource_list);
668         ret = acpi_dev_get_memory_resources(adev, &resource_list);
669         if (ret < 0)
670                 goto err_out;
671
672         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
673         if (rentry) {
674                 if (dev_desc->prv_size_override)
675                         pdata->mmio_size = dev_desc->prv_size_override;
676                 else
677                         pdata->mmio_size = resource_size(rentry->res);
678                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
679         }
680
681         acpi_dev_free_resource_list(&resource_list);
682
683         if (!pdata->mmio_base) {
684                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
685                 adev->pnp.type.platform_id = 0;
686                 goto out_free;
687         }
688
689         pdata->adev = adev;
690         pdata->dev_desc = dev_desc;
691
692         if (dev_desc->setup)
693                 dev_desc->setup(pdata);
694
695         if (dev_desc->flags & LPSS_CLK) {
696                 ret = register_device_clock(adev, pdata);
697                 if (ret)
698                         goto out_free;
699         }
700
701         /*
702          * This works around a known issue in ACPI tables where LPSS devices
703          * have _PS0 and _PS3 without _PSC (and no power resources), so
704          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
705          */
706         acpi_device_fix_up_power(adev);
707
708         adev->driver_data = pdata;
709         pdev = acpi_create_platform_device(adev, dev_desc->properties);
710         if (IS_ERR_OR_NULL(pdev)) {
711                 adev->driver_data = NULL;
712                 ret = PTR_ERR(pdev);
713                 goto err_out;
714         }
715
716         acpi_lpss_create_device_links(adev, pdev);
717         return 1;
718
719 out_free:
720         /* Skip the device, but continue the namespace scan */
721         ret = 0;
722 err_out:
723         kfree(pdata);
724         return ret;
725 }
726
727 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
728 {
729         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
730 }
731
732 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
733                              unsigned int reg)
734 {
735         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
736 }
737
738 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
739 {
740         struct acpi_device *adev = ACPI_COMPANION(dev);
741         struct lpss_private_data *pdata;
742         unsigned long flags;
743         int ret;
744
745         if (WARN_ON(!adev))
746                 return -ENODEV;
747
748         spin_lock_irqsave(&dev->power.lock, flags);
749         if (pm_runtime_suspended(dev)) {
750                 ret = -EAGAIN;
751                 goto out;
752         }
753         pdata = acpi_driver_data(adev);
754         if (WARN_ON(!pdata || !pdata->mmio_base)) {
755                 ret = -ENODEV;
756                 goto out;
757         }
758         *val = __lpss_reg_read(pdata, reg);
759         ret = 0;
760
761  out:
762         spin_unlock_irqrestore(&dev->power.lock, flags);
763         return ret;
764 }
765
766 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
767                              char *buf)
768 {
769         u32 ltr_value = 0;
770         unsigned int reg;
771         int ret;
772
773         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
774         ret = lpss_reg_read(dev, reg, &ltr_value);
775         if (ret)
776                 return ret;
777
778         return sysfs_emit(buf, "%08x\n", ltr_value);
779 }
780
781 static ssize_t lpss_ltr_mode_show(struct device *dev,
782                                   struct device_attribute *attr, char *buf)
783 {
784         u32 ltr_mode = 0;
785         char *outstr;
786         int ret;
787
788         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
789         if (ret)
790                 return ret;
791
792         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
793         return sprintf(buf, "%s\n", outstr);
794 }
795
796 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
797 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
798 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
799
800 static struct attribute *lpss_attrs[] = {
801         &dev_attr_auto_ltr.attr,
802         &dev_attr_sw_ltr.attr,
803         &dev_attr_ltr_mode.attr,
804         NULL,
805 };
806
807 static const struct attribute_group lpss_attr_group = {
808         .attrs = lpss_attrs,
809         .name = "lpss_ltr",
810 };
811
812 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
813 {
814         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
815         u32 ltr_mode, ltr_val;
816
817         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
818         if (val < 0) {
819                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
820                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
821                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
822                 }
823                 return;
824         }
825         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
826         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
827                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
828                 val = LPSS_LTR_MAX_VAL;
829         } else if (val > LPSS_LTR_MAX_VAL) {
830                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
831                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
832         } else {
833                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
834         }
835         ltr_val |= val;
836         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
837         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
838                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
839                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
840         }
841 }
842
843 #ifdef CONFIG_PM
844 /**
845  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
846  * @dev: LPSS device
847  * @pdata: pointer to the private data of the LPSS device
848  *
849  * Most LPSS devices have private registers which may loose their context when
850  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
851  * prv_reg_ctx array.
852  */
853 static void acpi_lpss_save_ctx(struct device *dev,
854                                struct lpss_private_data *pdata)
855 {
856         unsigned int i;
857
858         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
859                 unsigned long offset = i * sizeof(u32);
860
861                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
862                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
863                         pdata->prv_reg_ctx[i], offset);
864         }
865 }
866
867 /**
868  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
869  * @dev: LPSS device
870  * @pdata: pointer to the private data of the LPSS device
871  *
872  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
873  */
874 static void acpi_lpss_restore_ctx(struct device *dev,
875                                   struct lpss_private_data *pdata)
876 {
877         unsigned int i;
878
879         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
880                 unsigned long offset = i * sizeof(u32);
881
882                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
883                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
884                         pdata->prv_reg_ctx[i], offset);
885         }
886 }
887
888 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
889 {
890         /*
891          * The following delay is needed or the subsequent write operations may
892          * fail. The LPSS devices are actually PCI devices and the PCI spec
893          * expects 10ms delay before the device can be accessed after D3 to D0
894          * transition. However some platforms like BSW does not need this delay.
895          */
896         unsigned int delay = 10;        /* default 10ms delay */
897
898         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
899                 delay = 0;
900
901         msleep(delay);
902 }
903
904 static int acpi_lpss_activate(struct device *dev)
905 {
906         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
907         int ret;
908
909         ret = acpi_dev_resume(dev);
910         if (ret)
911                 return ret;
912
913         acpi_lpss_d3_to_d0_delay(pdata);
914
915         /*
916          * This is called only on ->probe() stage where a device is either in
917          * known state defined by BIOS or most likely powered off. Due to this
918          * we have to deassert reset line to be sure that ->probe() will
919          * recognize the device.
920          */
921         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
922                 lpss_deassert_reset(pdata);
923
924 #ifdef CONFIG_PM
925         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
926                 acpi_lpss_save_ctx(dev, pdata);
927 #endif
928
929         return 0;
930 }
931
932 static void acpi_lpss_dismiss(struct device *dev)
933 {
934         acpi_dev_suspend(dev, false);
935 }
936
937 /* IOSF SB for LPSS island */
938 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
939 #define LPSS_IOSF_UNIT_LPIO1            0xAB
940 #define LPSS_IOSF_UNIT_LPIO2            0xAC
941
942 #define LPSS_IOSF_PMCSR                 0x84
943 #define LPSS_PMCSR_D0                   0
944 #define LPSS_PMCSR_D3hot                3
945 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
946
947 #define LPSS_IOSF_GPIODEF0              0x154
948 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
949 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
950 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
951 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
952
953 static DEFINE_MUTEX(lpss_iosf_mutex);
954 static bool lpss_iosf_d3_entered = true;
955
956 static void lpss_iosf_enter_d3_state(void)
957 {
958         u32 value1 = 0;
959         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
960         u32 value2 = LPSS_PMCSR_D3hot;
961         u32 mask2 = LPSS_PMCSR_Dx_MASK;
962         /*
963          * PMC provides an information about actual status of the LPSS devices.
964          * Here we read the values related to LPSS power island, i.e. LPSS
965          * devices, excluding both LPSS DMA controllers, along with SCC domain.
966          */
967         u32 func_dis, d3_sts_0, pmc_status;
968         int ret;
969
970         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
971         if (ret)
972                 return;
973
974         mutex_lock(&lpss_iosf_mutex);
975
976         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
977         if (ret)
978                 goto exit;
979
980         /*
981          * Get the status of entire LPSS power island per device basis.
982          * Shutdown both LPSS DMA controllers if and only if all other devices
983          * are already in D3hot.
984          */
985         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
986         if (pmc_status)
987                 goto exit;
988
989         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
990                         LPSS_IOSF_PMCSR, value2, mask2);
991
992         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
993                         LPSS_IOSF_PMCSR, value2, mask2);
994
995         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
996                         LPSS_IOSF_GPIODEF0, value1, mask1);
997
998         lpss_iosf_d3_entered = true;
999
1000 exit:
1001         mutex_unlock(&lpss_iosf_mutex);
1002 }
1003
1004 static void lpss_iosf_exit_d3_state(void)
1005 {
1006         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1007                      LPSS_GPIODEF0_DMA_LLP;
1008         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1009         u32 value2 = LPSS_PMCSR_D0;
1010         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1011
1012         mutex_lock(&lpss_iosf_mutex);
1013
1014         if (!lpss_iosf_d3_entered)
1015                 goto exit;
1016
1017         lpss_iosf_d3_entered = false;
1018
1019         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1020                         LPSS_IOSF_GPIODEF0, value1, mask1);
1021
1022         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1023                         LPSS_IOSF_PMCSR, value2, mask2);
1024
1025         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1026                         LPSS_IOSF_PMCSR, value2, mask2);
1027
1028 exit:
1029         mutex_unlock(&lpss_iosf_mutex);
1030 }
1031
1032 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1033 {
1034         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1035         int ret;
1036
1037         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1038                 acpi_lpss_save_ctx(dev, pdata);
1039
1040         ret = acpi_dev_suspend(dev, wakeup);
1041
1042         /*
1043          * This call must be last in the sequence, otherwise PMC will return
1044          * wrong status for devices being about to be powered off. See
1045          * lpss_iosf_enter_d3_state() for further information.
1046          */
1047         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1048             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1049                 lpss_iosf_enter_d3_state();
1050
1051         return ret;
1052 }
1053
1054 static int acpi_lpss_resume(struct device *dev)
1055 {
1056         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1057         int ret;
1058
1059         /*
1060          * This call is kept first to be in symmetry with
1061          * acpi_lpss_runtime_suspend() one.
1062          */
1063         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1064                 lpss_iosf_exit_d3_state();
1065
1066         ret = acpi_dev_resume(dev);
1067         if (ret)
1068                 return ret;
1069
1070         acpi_lpss_d3_to_d0_delay(pdata);
1071
1072         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1073                 acpi_lpss_restore_ctx(dev, pdata);
1074
1075         return 0;
1076 }
1077
1078 #ifdef CONFIG_PM_SLEEP
1079 static int acpi_lpss_do_suspend_late(struct device *dev)
1080 {
1081         int ret;
1082
1083         if (dev_pm_skip_suspend(dev))
1084                 return 0;
1085
1086         ret = pm_generic_suspend_late(dev);
1087         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1088 }
1089
1090 static int acpi_lpss_suspend_late(struct device *dev)
1091 {
1092         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1093
1094         if (pdata->dev_desc->resume_from_noirq)
1095                 return 0;
1096
1097         return acpi_lpss_do_suspend_late(dev);
1098 }
1099
1100 static int acpi_lpss_suspend_noirq(struct device *dev)
1101 {
1102         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1103         int ret;
1104
1105         if (pdata->dev_desc->resume_from_noirq) {
1106                 /*
1107                  * The driver's ->suspend_late callback will be invoked by
1108                  * acpi_lpss_do_suspend_late(), with the assumption that the
1109                  * driver really wanted to run that code in ->suspend_noirq, but
1110                  * it could not run after acpi_dev_suspend() and the driver
1111                  * expected the latter to be called in the "late" phase.
1112                  */
1113                 ret = acpi_lpss_do_suspend_late(dev);
1114                 if (ret)
1115                         return ret;
1116         }
1117
1118         return acpi_subsys_suspend_noirq(dev);
1119 }
1120
1121 static int acpi_lpss_do_resume_early(struct device *dev)
1122 {
1123         int ret = acpi_lpss_resume(dev);
1124
1125         return ret ? ret : pm_generic_resume_early(dev);
1126 }
1127
1128 static int acpi_lpss_resume_early(struct device *dev)
1129 {
1130         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1131
1132         if (pdata->dev_desc->resume_from_noirq)
1133                 return 0;
1134
1135         if (dev_pm_skip_resume(dev))
1136                 return 0;
1137
1138         return acpi_lpss_do_resume_early(dev);
1139 }
1140
1141 static int acpi_lpss_resume_noirq(struct device *dev)
1142 {
1143         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1144         int ret;
1145
1146         /* Follow acpi_subsys_resume_noirq(). */
1147         if (dev_pm_skip_resume(dev))
1148                 return 0;
1149
1150         ret = pm_generic_resume_noirq(dev);
1151         if (ret)
1152                 return ret;
1153
1154         if (!pdata->dev_desc->resume_from_noirq)
1155                 return 0;
1156
1157         /*
1158          * The driver's ->resume_early callback will be invoked by
1159          * acpi_lpss_do_resume_early(), with the assumption that the driver
1160          * really wanted to run that code in ->resume_noirq, but it could not
1161          * run before acpi_dev_resume() and the driver expected the latter to be
1162          * called in the "early" phase.
1163          */
1164         return acpi_lpss_do_resume_early(dev);
1165 }
1166
1167 static int acpi_lpss_do_restore_early(struct device *dev)
1168 {
1169         int ret = acpi_lpss_resume(dev);
1170
1171         return ret ? ret : pm_generic_restore_early(dev);
1172 }
1173
1174 static int acpi_lpss_restore_early(struct device *dev)
1175 {
1176         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1177
1178         if (pdata->dev_desc->resume_from_noirq)
1179                 return 0;
1180
1181         return acpi_lpss_do_restore_early(dev);
1182 }
1183
1184 static int acpi_lpss_restore_noirq(struct device *dev)
1185 {
1186         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1187         int ret;
1188
1189         ret = pm_generic_restore_noirq(dev);
1190         if (ret)
1191                 return ret;
1192
1193         if (!pdata->dev_desc->resume_from_noirq)
1194                 return 0;
1195
1196         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1197         return acpi_lpss_do_restore_early(dev);
1198 }
1199
1200 static int acpi_lpss_do_poweroff_late(struct device *dev)
1201 {
1202         int ret = pm_generic_poweroff_late(dev);
1203
1204         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1205 }
1206
1207 static int acpi_lpss_poweroff_late(struct device *dev)
1208 {
1209         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1210
1211         if (dev_pm_skip_suspend(dev))
1212                 return 0;
1213
1214         if (pdata->dev_desc->resume_from_noirq)
1215                 return 0;
1216
1217         return acpi_lpss_do_poweroff_late(dev);
1218 }
1219
1220 static int acpi_lpss_poweroff_noirq(struct device *dev)
1221 {
1222         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1223
1224         if (dev_pm_skip_suspend(dev))
1225                 return 0;
1226
1227         if (pdata->dev_desc->resume_from_noirq) {
1228                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1229                 int ret = acpi_lpss_do_poweroff_late(dev);
1230
1231                 if (ret)
1232                         return ret;
1233         }
1234
1235         return pm_generic_poweroff_noirq(dev);
1236 }
1237 #endif /* CONFIG_PM_SLEEP */
1238
1239 static int acpi_lpss_runtime_suspend(struct device *dev)
1240 {
1241         int ret = pm_generic_runtime_suspend(dev);
1242
1243         return ret ? ret : acpi_lpss_suspend(dev, true);
1244 }
1245
1246 static int acpi_lpss_runtime_resume(struct device *dev)
1247 {
1248         int ret = acpi_lpss_resume(dev);
1249
1250         return ret ? ret : pm_generic_runtime_resume(dev);
1251 }
1252 #endif /* CONFIG_PM */
1253
1254 static struct dev_pm_domain acpi_lpss_pm_domain = {
1255 #ifdef CONFIG_PM
1256         .activate = acpi_lpss_activate,
1257         .dismiss = acpi_lpss_dismiss,
1258 #endif
1259         .ops = {
1260 #ifdef CONFIG_PM
1261 #ifdef CONFIG_PM_SLEEP
1262                 .prepare = acpi_subsys_prepare,
1263                 .complete = acpi_subsys_complete,
1264                 .suspend = acpi_subsys_suspend,
1265                 .suspend_late = acpi_lpss_suspend_late,
1266                 .suspend_noirq = acpi_lpss_suspend_noirq,
1267                 .resume_noirq = acpi_lpss_resume_noirq,
1268                 .resume_early = acpi_lpss_resume_early,
1269                 .freeze = acpi_subsys_freeze,
1270                 .poweroff = acpi_subsys_poweroff,
1271                 .poweroff_late = acpi_lpss_poweroff_late,
1272                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1273                 .restore_noirq = acpi_lpss_restore_noirq,
1274                 .restore_early = acpi_lpss_restore_early,
1275 #endif
1276                 .runtime_suspend = acpi_lpss_runtime_suspend,
1277                 .runtime_resume = acpi_lpss_runtime_resume,
1278 #endif
1279         },
1280 };
1281
1282 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1283                                      unsigned long action, void *data)
1284 {
1285         struct platform_device *pdev = to_platform_device(data);
1286         struct lpss_private_data *pdata;
1287         struct acpi_device *adev;
1288         const struct acpi_device_id *id;
1289
1290         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1291         if (!id || !id->driver_data)
1292                 return 0;
1293
1294         adev = ACPI_COMPANION(&pdev->dev);
1295         if (!adev)
1296                 return 0;
1297
1298         pdata = acpi_driver_data(adev);
1299         if (!pdata)
1300                 return 0;
1301
1302         if (pdata->mmio_base &&
1303             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1304                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1305                 return 0;
1306         }
1307
1308         switch (action) {
1309         case BUS_NOTIFY_BIND_DRIVER:
1310                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1311                 break;
1312         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1313         case BUS_NOTIFY_UNBOUND_DRIVER:
1314                 dev_pm_domain_set(&pdev->dev, NULL);
1315                 break;
1316         case BUS_NOTIFY_ADD_DEVICE:
1317                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1318                 if (pdata->dev_desc->flags & LPSS_LTR)
1319                         return sysfs_create_group(&pdev->dev.kobj,
1320                                                   &lpss_attr_group);
1321                 break;
1322         case BUS_NOTIFY_DEL_DEVICE:
1323                 if (pdata->dev_desc->flags & LPSS_LTR)
1324                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1325                 dev_pm_domain_set(&pdev->dev, NULL);
1326                 break;
1327         default:
1328                 break;
1329         }
1330
1331         return 0;
1332 }
1333
1334 static struct notifier_block acpi_lpss_nb = {
1335         .notifier_call = acpi_lpss_platform_notify,
1336 };
1337
1338 static void acpi_lpss_bind(struct device *dev)
1339 {
1340         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1341
1342         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1343                 return;
1344
1345         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1346                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1347         else
1348                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1349 }
1350
1351 static void acpi_lpss_unbind(struct device *dev)
1352 {
1353         dev->power.set_latency_tolerance = NULL;
1354 }
1355
1356 static struct acpi_scan_handler lpss_handler = {
1357         .ids = acpi_lpss_device_ids,
1358         .attach = acpi_lpss_create_device,
1359         .bind = acpi_lpss_bind,
1360         .unbind = acpi_lpss_unbind,
1361 };
1362
1363 void __init acpi_lpss_init(void)
1364 {
1365         const struct x86_cpu_id *id;
1366         int ret;
1367
1368         ret = lpss_atom_clk_init();
1369         if (ret)
1370                 return;
1371
1372         id = x86_match_cpu(lpss_cpu_ids);
1373         if (id)
1374                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1375
1376         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1377         acpi_scan_add_handler(&lpss_handler);
1378 }
1379
1380 #else
1381
1382 static struct acpi_scan_handler lpss_handler = {
1383         .ids = acpi_lpss_device_ids,
1384 };
1385
1386 void __init acpi_lpss_init(void)
1387 {
1388         acpi_scan_add_handler(&lpss_handler);
1389 }
1390
1391 #endif /* CONFIG_X86_INTEL_LPSS */