Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         /* Only call pwm_add_table for the first PWM controller */
171         if (acpi_dev_uid_match(pdata->adev, 1))
172                 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173 }
174
175 #define LPSS_I2C_ENABLE                 0x6c
176
177 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 {
179         acpi_handle handle = pdata->adev->handle;
180         unsigned long long shared_host = 0;
181         acpi_status status;
182         u64 uid;
183
184         /* Expected to always be successfull, but better safe then sorry */
185         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
187                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188                 if (ACPI_SUCCESS(status) && shared_host)
189                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190         }
191
192         lpss_deassert_reset(pdata);
193
194         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195                 pdata->fixed_clk_rate = 133000000;
196
197         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198 }
199
200 /*
201  * BSW PWM1 is used for backlight control by the i915 driver
202  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203  * touch controls on some models. These touch-controls have specialized
204  * drivers which know they need the "pwm_soc_lpss_2" con-id.
205  */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209                                "pwm-lpss-platform"),
210         PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211                                "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212                                "pwm-lpss-platform"),
213 };
214
215 static void bsw_pwm_setup(struct lpss_private_data *pdata)
216 {
217         /* Only call pwm_add_table for the first PWM controller */
218         if (acpi_dev_uid_match(pdata->adev, 1))
219                 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct property_entry lpt_spi_properties[] = {
223         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224         { }
225 };
226
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229                         | LPSS_SAVE_CTX,
230         .prv_offset = 0x800,
231         .properties = lpt_spi_properties,
232 };
233
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236         .prv_offset = 0x800,
237 };
238
239 static struct property_entry uart_properties[] = {
240         PROPERTY_ENTRY_U32("reg-io-width", 4),
241         PROPERTY_ENTRY_U32("reg-shift", 2),
242         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243         { },
244 };
245
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248                         | LPSS_SAVE_CTX,
249         .clk_con_id = "baudclk",
250         .prv_offset = 0x800,
251         .setup = lpss_uart_setup,
252         .properties = uart_properties,
253 };
254
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256         .flags = LPSS_LTR,
257         .prv_offset = 0x1000,
258         .prv_size_override = 0x1018,
259 };
260
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262         .flags = LPSS_SAVE_CTX,
263         .prv_offset = 0x800,
264         .setup = byt_pwm_setup,
265 };
266
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269         .prv_offset = 0x800,
270         .setup = bsw_pwm_setup,
271         .resume_from_noirq = true,
272 };
273
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276         .prv_offset = 0x800,
277         .resume_from_noirq = true,
278 };
279
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282         .clk_con_id = "baudclk",
283         .prv_offset = 0x800,
284         .setup = lpss_uart_setup,
285         .properties = uart_properties,
286 };
287
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290                         | LPSS_NO_D3_DELAY,
291         .clk_con_id = "baudclk",
292         .prv_offset = 0x800,
293         .setup = lpss_uart_setup,
294         .properties = uart_properties,
295 };
296
297 static const struct property_entry byt_spi_properties[] = {
298         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299         { }
300 };
301
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304         .prv_offset = 0x400,
305         .properties = byt_spi_properties,
306 };
307
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309         .flags = LPSS_CLK,
310 };
311
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313         .flags = LPSS_CLK | LPSS_SAVE_CTX,
314         .prv_offset = 0x800,
315         .setup = byt_i2c_setup,
316         .resume_from_noirq = true,
317 };
318
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321         .prv_offset = 0x800,
322         .setup = byt_i2c_setup,
323         .resume_from_noirq = true,
324 };
325
326 static const struct property_entry bsw_spi_properties[] = {
327         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328         { }
329 };
330
331 static const struct lpss_device_desc bsw_spi_dev_desc = {
332         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333                         | LPSS_NO_D3_DELAY,
334         .prv_offset = 0x400,
335         .setup = lpss_deassert_reset,
336         .properties = bsw_spi_properties,
337 };
338
339 static const struct x86_cpu_id lpss_cpu_ids[] = {
340         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
341         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
342         {}
343 };
344
345 #else
346
347 #define LPSS_ADDR(desc) (0UL)
348
349 #endif /* CONFIG_X86_INTEL_LPSS */
350
351 static const struct acpi_device_id acpi_lpss_device_ids[] = {
352         /* Generic LPSS devices */
353         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354
355         /* Lynxpoint LPSS devices */
356         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363
364         /* BayTrail LPSS devices */
365         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
366         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
367         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
368         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
369         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
370
371         /* Braswell LPSS devices */
372         { "80862286", LPSS_ADDR(lpss_dma_desc) },
373         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
374         { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
375         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
376         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
377         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
378         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
379
380         /* Broadwell LPSS devices */
381         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
382         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
383         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
384         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
385         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
386         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
387         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
388
389         /* Wildcat Point LPSS devices */
390         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
391
392         { }
393 };
394
395 #ifdef CONFIG_X86_INTEL_LPSS
396
397 /* LPSS main clock device. */
398 static struct platform_device *lpss_clk_dev;
399
400 static inline void lpt_register_clock_device(void)
401 {
402         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
403                                                        PLATFORM_DEVID_NONE,
404                                                        NULL, 0);
405 }
406
407 static int register_device_clock(struct acpi_device *adev,
408                                  struct lpss_private_data *pdata)
409 {
410         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
411         const char *devname = dev_name(&adev->dev);
412         struct clk *clk;
413         struct lpss_clk_data *clk_data;
414         const char *parent, *clk_name;
415         void __iomem *prv_base;
416
417         if (!lpss_clk_dev)
418                 lpt_register_clock_device();
419
420         if (IS_ERR(lpss_clk_dev))
421                 return PTR_ERR(lpss_clk_dev);
422
423         clk_data = platform_get_drvdata(lpss_clk_dev);
424         if (!clk_data)
425                 return -ENODEV;
426         clk = clk_data->clk;
427
428         if (!pdata->mmio_base
429             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
430                 return -ENODATA;
431
432         parent = clk_data->name;
433         prv_base = pdata->mmio_base + dev_desc->prv_offset;
434
435         if (pdata->fixed_clk_rate) {
436                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
437                                               pdata->fixed_clk_rate);
438                 goto out;
439         }
440
441         if (dev_desc->flags & LPSS_CLK_GATE) {
442                 clk = clk_register_gate(NULL, devname, parent, 0,
443                                         prv_base, 0, 0, NULL);
444                 parent = devname;
445         }
446
447         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
448                 /* Prevent division by zero */
449                 if (!readl(prv_base))
450                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
451
452                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
453                 if (!clk_name)
454                         return -ENOMEM;
455                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
456                                                       0, prv_base, 1, 15, 16, 15,
457                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
458                                                       NULL);
459                 parent = clk_name;
460
461                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462                 if (!clk_name) {
463                         kfree(parent);
464                         return -ENOMEM;
465                 }
466                 clk = clk_register_gate(NULL, clk_name, parent,
467                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
468                                         prv_base, 31, 0, NULL);
469                 kfree(parent);
470                 kfree(clk_name);
471         }
472 out:
473         if (IS_ERR(clk))
474                 return PTR_ERR(clk);
475
476         pdata->clk = clk;
477         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
478         return 0;
479 }
480
481 struct lpss_device_links {
482         const char *supplier_hid;
483         const char *supplier_uid;
484         const char *consumer_hid;
485         const char *consumer_uid;
486         u32 flags;
487         const struct dmi_system_id *dep_missing_ids;
488 };
489
490 /* Please keep this list sorted alphabetically by vendor and model */
491 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
492         {
493                 .matches = {
494                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
495                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
496                 },
497         },
498         {}
499 };
500
501 /*
502  * The _DEP method is used to identify dependencies but instead of creating
503  * device links for every handle in _DEP, only links in the following list are
504  * created. That is necessary because, in the general case, _DEP can refer to
505  * devices that might not have drivers, or that are on different buses, or where
506  * the supplier is not enumerated until after the consumer is probed.
507  */
508 static const struct lpss_device_links lpss_device_links[] = {
509         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
510         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
511         /* CHT iGPU depends on PMIC I2C controller */
512         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
513         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
514         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
515          i2c1_dep_missing_dmi_ids},
516         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
517         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
519         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520 };
521
522 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
523                                   const struct lpss_device_links *link)
524 {
525         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
526 }
527
528 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
529                                   const struct lpss_device_links *link)
530 {
531         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
532 }
533
534 struct hid_uid {
535         const char *hid;
536         const char *uid;
537 };
538
539 static int match_hid_uid(struct device *dev, const void *data)
540 {
541         struct acpi_device *adev = ACPI_COMPANION(dev);
542         const struct hid_uid *id = data;
543
544         if (!adev)
545                 return 0;
546
547         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
548 }
549
550 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
551 {
552         struct device *dev;
553
554         struct hid_uid data = {
555                 .hid = hid,
556                 .uid = uid,
557         };
558
559         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
560         if (dev)
561                 return dev;
562
563         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
564 }
565
566 static void acpi_lpss_link_consumer(struct device *dev1,
567                                     const struct lpss_device_links *link)
568 {
569         struct device *dev2;
570
571         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
572         if (!dev2)
573                 return;
574
575         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
576             || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
577                 device_link_add(dev2, dev1, link->flags);
578
579         put_device(dev2);
580 }
581
582 static void acpi_lpss_link_supplier(struct device *dev1,
583                                     const struct lpss_device_links *link)
584 {
585         struct device *dev2;
586
587         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
588         if (!dev2)
589                 return;
590
591         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
592             || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
593                 device_link_add(dev1, dev2, link->flags);
594
595         put_device(dev2);
596 }
597
598 static void acpi_lpss_create_device_links(struct acpi_device *adev,
599                                           struct platform_device *pdev)
600 {
601         int i;
602
603         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
604                 const struct lpss_device_links *link = &lpss_device_links[i];
605
606                 if (acpi_lpss_is_supplier(adev, link))
607                         acpi_lpss_link_consumer(&pdev->dev, link);
608
609                 if (acpi_lpss_is_consumer(adev, link))
610                         acpi_lpss_link_supplier(&pdev->dev, link);
611         }
612 }
613
614 static int acpi_lpss_create_device(struct acpi_device *adev,
615                                    const struct acpi_device_id *id)
616 {
617         const struct lpss_device_desc *dev_desc;
618         struct lpss_private_data *pdata;
619         struct resource_entry *rentry;
620         struct list_head resource_list;
621         struct platform_device *pdev;
622         int ret;
623
624         dev_desc = (const struct lpss_device_desc *)id->driver_data;
625         if (!dev_desc)
626                 return -EINVAL;
627
628         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
629         if (!pdata)
630                 return -ENOMEM;
631
632         INIT_LIST_HEAD(&resource_list);
633         ret = acpi_dev_get_memory_resources(adev, &resource_list);
634         if (ret < 0)
635                 goto err_out;
636
637         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
638         if (rentry) {
639                 if (dev_desc->prv_size_override)
640                         pdata->mmio_size = dev_desc->prv_size_override;
641                 else
642                         pdata->mmio_size = resource_size(rentry->res);
643                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
644         }
645
646         acpi_dev_free_resource_list(&resource_list);
647
648         if (!pdata->mmio_base) {
649                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650                 adev->pnp.type.platform_id = 0;
651                 goto out_free;
652         }
653
654         pdata->adev = adev;
655         pdata->dev_desc = dev_desc;
656
657         if (dev_desc->setup)
658                 dev_desc->setup(pdata);
659
660         if (dev_desc->flags & LPSS_CLK) {
661                 ret = register_device_clock(adev, pdata);
662                 if (ret)
663                         goto out_free;
664         }
665
666         /*
667          * This works around a known issue in ACPI tables where LPSS devices
668          * have _PS0 and _PS3 without _PSC (and no power resources), so
669          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
670          */
671         acpi_device_fix_up_power(adev);
672
673         adev->driver_data = pdata;
674         pdev = acpi_create_platform_device(adev, dev_desc->properties);
675         if (IS_ERR_OR_NULL(pdev)) {
676                 adev->driver_data = NULL;
677                 ret = PTR_ERR(pdev);
678                 goto err_out;
679         }
680
681         acpi_lpss_create_device_links(adev, pdev);
682         return 1;
683
684 out_free:
685         /* Skip the device, but continue the namespace scan */
686         ret = 0;
687 err_out:
688         kfree(pdata);
689         return ret;
690 }
691
692 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693 {
694         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695 }
696
697 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698                              unsigned int reg)
699 {
700         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701 }
702
703 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704 {
705         struct acpi_device *adev = ACPI_COMPANION(dev);
706         struct lpss_private_data *pdata;
707         unsigned long flags;
708         int ret;
709
710         if (WARN_ON(!adev))
711                 return -ENODEV;
712
713         spin_lock_irqsave(&dev->power.lock, flags);
714         if (pm_runtime_suspended(dev)) {
715                 ret = -EAGAIN;
716                 goto out;
717         }
718         pdata = acpi_driver_data(adev);
719         if (WARN_ON(!pdata || !pdata->mmio_base)) {
720                 ret = -ENODEV;
721                 goto out;
722         }
723         *val = __lpss_reg_read(pdata, reg);
724         ret = 0;
725
726  out:
727         spin_unlock_irqrestore(&dev->power.lock, flags);
728         return ret;
729 }
730
731 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732                              char *buf)
733 {
734         u32 ltr_value = 0;
735         unsigned int reg;
736         int ret;
737
738         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739         ret = lpss_reg_read(dev, reg, &ltr_value);
740         if (ret)
741                 return ret;
742
743         return sysfs_emit(buf, "%08x\n", ltr_value);
744 }
745
746 static ssize_t lpss_ltr_mode_show(struct device *dev,
747                                   struct device_attribute *attr, char *buf)
748 {
749         u32 ltr_mode = 0;
750         char *outstr;
751         int ret;
752
753         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
754         if (ret)
755                 return ret;
756
757         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758         return sprintf(buf, "%s\n", outstr);
759 }
760
761 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765 static struct attribute *lpss_attrs[] = {
766         &dev_attr_auto_ltr.attr,
767         &dev_attr_sw_ltr.attr,
768         &dev_attr_ltr_mode.attr,
769         NULL,
770 };
771
772 static const struct attribute_group lpss_attr_group = {
773         .attrs = lpss_attrs,
774         .name = "lpss_ltr",
775 };
776
777 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778 {
779         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780         u32 ltr_mode, ltr_val;
781
782         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783         if (val < 0) {
784                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787                 }
788                 return;
789         }
790         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793                 val = LPSS_LTR_MAX_VAL;
794         } else if (val > LPSS_LTR_MAX_VAL) {
795                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797         } else {
798                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799         }
800         ltr_val |= val;
801         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805         }
806 }
807
808 #ifdef CONFIG_PM
809 /**
810  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811  * @dev: LPSS device
812  * @pdata: pointer to the private data of the LPSS device
813  *
814  * Most LPSS devices have private registers which may loose their context when
815  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816  * prv_reg_ctx array.
817  */
818 static void acpi_lpss_save_ctx(struct device *dev,
819                                struct lpss_private_data *pdata)
820 {
821         unsigned int i;
822
823         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824                 unsigned long offset = i * sizeof(u32);
825
826                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828                         pdata->prv_reg_ctx[i], offset);
829         }
830 }
831
832 /**
833  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834  * @dev: LPSS device
835  * @pdata: pointer to the private data of the LPSS device
836  *
837  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838  */
839 static void acpi_lpss_restore_ctx(struct device *dev,
840                                   struct lpss_private_data *pdata)
841 {
842         unsigned int i;
843
844         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845                 unsigned long offset = i * sizeof(u32);
846
847                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849                         pdata->prv_reg_ctx[i], offset);
850         }
851 }
852
853 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854 {
855         /*
856          * The following delay is needed or the subsequent write operations may
857          * fail. The LPSS devices are actually PCI devices and the PCI spec
858          * expects 10ms delay before the device can be accessed after D3 to D0
859          * transition. However some platforms like BSW does not need this delay.
860          */
861         unsigned int delay = 10;        /* default 10ms delay */
862
863         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864                 delay = 0;
865
866         msleep(delay);
867 }
868
869 static int acpi_lpss_activate(struct device *dev)
870 {
871         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872         int ret;
873
874         ret = acpi_dev_resume(dev);
875         if (ret)
876                 return ret;
877
878         acpi_lpss_d3_to_d0_delay(pdata);
879
880         /*
881          * This is called only on ->probe() stage where a device is either in
882          * known state defined by BIOS or most likely powered off. Due to this
883          * we have to deassert reset line to be sure that ->probe() will
884          * recognize the device.
885          */
886         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
887                 lpss_deassert_reset(pdata);
888
889 #ifdef CONFIG_PM
890         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
891                 acpi_lpss_save_ctx(dev, pdata);
892 #endif
893
894         return 0;
895 }
896
897 static void acpi_lpss_dismiss(struct device *dev)
898 {
899         acpi_dev_suspend(dev, false);
900 }
901
902 /* IOSF SB for LPSS island */
903 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
904 #define LPSS_IOSF_UNIT_LPIO1            0xAB
905 #define LPSS_IOSF_UNIT_LPIO2            0xAC
906
907 #define LPSS_IOSF_PMCSR                 0x84
908 #define LPSS_PMCSR_D0                   0
909 #define LPSS_PMCSR_D3hot                3
910 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
911
912 #define LPSS_IOSF_GPIODEF0              0x154
913 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
914 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
915 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
916 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
917
918 static DEFINE_MUTEX(lpss_iosf_mutex);
919 static bool lpss_iosf_d3_entered = true;
920
921 static void lpss_iosf_enter_d3_state(void)
922 {
923         u32 value1 = 0;
924         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
925         u32 value2 = LPSS_PMCSR_D3hot;
926         u32 mask2 = LPSS_PMCSR_Dx_MASK;
927         /*
928          * PMC provides an information about actual status of the LPSS devices.
929          * Here we read the values related to LPSS power island, i.e. LPSS
930          * devices, excluding both LPSS DMA controllers, along with SCC domain.
931          */
932         u32 func_dis, d3_sts_0, pmc_status;
933         int ret;
934
935         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
936         if (ret)
937                 return;
938
939         mutex_lock(&lpss_iosf_mutex);
940
941         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
942         if (ret)
943                 goto exit;
944
945         /*
946          * Get the status of entire LPSS power island per device basis.
947          * Shutdown both LPSS DMA controllers if and only if all other devices
948          * are already in D3hot.
949          */
950         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
951         if (pmc_status)
952                 goto exit;
953
954         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
955                         LPSS_IOSF_PMCSR, value2, mask2);
956
957         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
958                         LPSS_IOSF_PMCSR, value2, mask2);
959
960         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
961                         LPSS_IOSF_GPIODEF0, value1, mask1);
962
963         lpss_iosf_d3_entered = true;
964
965 exit:
966         mutex_unlock(&lpss_iosf_mutex);
967 }
968
969 static void lpss_iosf_exit_d3_state(void)
970 {
971         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
972                      LPSS_GPIODEF0_DMA_LLP;
973         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
974         u32 value2 = LPSS_PMCSR_D0;
975         u32 mask2 = LPSS_PMCSR_Dx_MASK;
976
977         mutex_lock(&lpss_iosf_mutex);
978
979         if (!lpss_iosf_d3_entered)
980                 goto exit;
981
982         lpss_iosf_d3_entered = false;
983
984         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
985                         LPSS_IOSF_GPIODEF0, value1, mask1);
986
987         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
988                         LPSS_IOSF_PMCSR, value2, mask2);
989
990         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991                         LPSS_IOSF_PMCSR, value2, mask2);
992
993 exit:
994         mutex_unlock(&lpss_iosf_mutex);
995 }
996
997 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
998 {
999         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1000         int ret;
1001
1002         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1003                 acpi_lpss_save_ctx(dev, pdata);
1004
1005         ret = acpi_dev_suspend(dev, wakeup);
1006
1007         /*
1008          * This call must be last in the sequence, otherwise PMC will return
1009          * wrong status for devices being about to be powered off. See
1010          * lpss_iosf_enter_d3_state() for further information.
1011          */
1012         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1013             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1014                 lpss_iosf_enter_d3_state();
1015
1016         return ret;
1017 }
1018
1019 static int acpi_lpss_resume(struct device *dev)
1020 {
1021         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1022         int ret;
1023
1024         /*
1025          * This call is kept first to be in symmetry with
1026          * acpi_lpss_runtime_suspend() one.
1027          */
1028         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1029                 lpss_iosf_exit_d3_state();
1030
1031         ret = acpi_dev_resume(dev);
1032         if (ret)
1033                 return ret;
1034
1035         acpi_lpss_d3_to_d0_delay(pdata);
1036
1037         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1038                 acpi_lpss_restore_ctx(dev, pdata);
1039
1040         return 0;
1041 }
1042
1043 #ifdef CONFIG_PM_SLEEP
1044 static int acpi_lpss_do_suspend_late(struct device *dev)
1045 {
1046         int ret;
1047
1048         if (dev_pm_skip_suspend(dev))
1049                 return 0;
1050
1051         ret = pm_generic_suspend_late(dev);
1052         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1053 }
1054
1055 static int acpi_lpss_suspend_late(struct device *dev)
1056 {
1057         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058
1059         if (pdata->dev_desc->resume_from_noirq)
1060                 return 0;
1061
1062         return acpi_lpss_do_suspend_late(dev);
1063 }
1064
1065 static int acpi_lpss_suspend_noirq(struct device *dev)
1066 {
1067         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068         int ret;
1069
1070         if (pdata->dev_desc->resume_from_noirq) {
1071                 /*
1072                  * The driver's ->suspend_late callback will be invoked by
1073                  * acpi_lpss_do_suspend_late(), with the assumption that the
1074                  * driver really wanted to run that code in ->suspend_noirq, but
1075                  * it could not run after acpi_dev_suspend() and the driver
1076                  * expected the latter to be called in the "late" phase.
1077                  */
1078                 ret = acpi_lpss_do_suspend_late(dev);
1079                 if (ret)
1080                         return ret;
1081         }
1082
1083         return acpi_subsys_suspend_noirq(dev);
1084 }
1085
1086 static int acpi_lpss_do_resume_early(struct device *dev)
1087 {
1088         int ret = acpi_lpss_resume(dev);
1089
1090         return ret ? ret : pm_generic_resume_early(dev);
1091 }
1092
1093 static int acpi_lpss_resume_early(struct device *dev)
1094 {
1095         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096
1097         if (pdata->dev_desc->resume_from_noirq)
1098                 return 0;
1099
1100         if (dev_pm_skip_resume(dev))
1101                 return 0;
1102
1103         return acpi_lpss_do_resume_early(dev);
1104 }
1105
1106 static int acpi_lpss_resume_noirq(struct device *dev)
1107 {
1108         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1109         int ret;
1110
1111         /* Follow acpi_subsys_resume_noirq(). */
1112         if (dev_pm_skip_resume(dev))
1113                 return 0;
1114
1115         ret = pm_generic_resume_noirq(dev);
1116         if (ret)
1117                 return ret;
1118
1119         if (!pdata->dev_desc->resume_from_noirq)
1120                 return 0;
1121
1122         /*
1123          * The driver's ->resume_early callback will be invoked by
1124          * acpi_lpss_do_resume_early(), with the assumption that the driver
1125          * really wanted to run that code in ->resume_noirq, but it could not
1126          * run before acpi_dev_resume() and the driver expected the latter to be
1127          * called in the "early" phase.
1128          */
1129         return acpi_lpss_do_resume_early(dev);
1130 }
1131
1132 static int acpi_lpss_do_restore_early(struct device *dev)
1133 {
1134         int ret = acpi_lpss_resume(dev);
1135
1136         return ret ? ret : pm_generic_restore_early(dev);
1137 }
1138
1139 static int acpi_lpss_restore_early(struct device *dev)
1140 {
1141         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1142
1143         if (pdata->dev_desc->resume_from_noirq)
1144                 return 0;
1145
1146         return acpi_lpss_do_restore_early(dev);
1147 }
1148
1149 static int acpi_lpss_restore_noirq(struct device *dev)
1150 {
1151         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152         int ret;
1153
1154         ret = pm_generic_restore_noirq(dev);
1155         if (ret)
1156                 return ret;
1157
1158         if (!pdata->dev_desc->resume_from_noirq)
1159                 return 0;
1160
1161         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1162         return acpi_lpss_do_restore_early(dev);
1163 }
1164
1165 static int acpi_lpss_do_poweroff_late(struct device *dev)
1166 {
1167         int ret = pm_generic_poweroff_late(dev);
1168
1169         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1170 }
1171
1172 static int acpi_lpss_poweroff_late(struct device *dev)
1173 {
1174         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175
1176         if (dev_pm_skip_suspend(dev))
1177                 return 0;
1178
1179         if (pdata->dev_desc->resume_from_noirq)
1180                 return 0;
1181
1182         return acpi_lpss_do_poweroff_late(dev);
1183 }
1184
1185 static int acpi_lpss_poweroff_noirq(struct device *dev)
1186 {
1187         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188
1189         if (dev_pm_skip_suspend(dev))
1190                 return 0;
1191
1192         if (pdata->dev_desc->resume_from_noirq) {
1193                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1194                 int ret = acpi_lpss_do_poweroff_late(dev);
1195
1196                 if (ret)
1197                         return ret;
1198         }
1199
1200         return pm_generic_poweroff_noirq(dev);
1201 }
1202 #endif /* CONFIG_PM_SLEEP */
1203
1204 static int acpi_lpss_runtime_suspend(struct device *dev)
1205 {
1206         int ret = pm_generic_runtime_suspend(dev);
1207
1208         return ret ? ret : acpi_lpss_suspend(dev, true);
1209 }
1210
1211 static int acpi_lpss_runtime_resume(struct device *dev)
1212 {
1213         int ret = acpi_lpss_resume(dev);
1214
1215         return ret ? ret : pm_generic_runtime_resume(dev);
1216 }
1217 #endif /* CONFIG_PM */
1218
1219 static struct dev_pm_domain acpi_lpss_pm_domain = {
1220 #ifdef CONFIG_PM
1221         .activate = acpi_lpss_activate,
1222         .dismiss = acpi_lpss_dismiss,
1223 #endif
1224         .ops = {
1225 #ifdef CONFIG_PM
1226 #ifdef CONFIG_PM_SLEEP
1227                 .prepare = acpi_subsys_prepare,
1228                 .complete = acpi_subsys_complete,
1229                 .suspend = acpi_subsys_suspend,
1230                 .suspend_late = acpi_lpss_suspend_late,
1231                 .suspend_noirq = acpi_lpss_suspend_noirq,
1232                 .resume_noirq = acpi_lpss_resume_noirq,
1233                 .resume_early = acpi_lpss_resume_early,
1234                 .freeze = acpi_subsys_freeze,
1235                 .poweroff = acpi_subsys_poweroff,
1236                 .poweroff_late = acpi_lpss_poweroff_late,
1237                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1238                 .restore_noirq = acpi_lpss_restore_noirq,
1239                 .restore_early = acpi_lpss_restore_early,
1240 #endif
1241                 .runtime_suspend = acpi_lpss_runtime_suspend,
1242                 .runtime_resume = acpi_lpss_runtime_resume,
1243 #endif
1244         },
1245 };
1246
1247 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1248                                      unsigned long action, void *data)
1249 {
1250         struct platform_device *pdev = to_platform_device(data);
1251         struct lpss_private_data *pdata;
1252         struct acpi_device *adev;
1253         const struct acpi_device_id *id;
1254
1255         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1256         if (!id || !id->driver_data)
1257                 return 0;
1258
1259         adev = ACPI_COMPANION(&pdev->dev);
1260         if (!adev)
1261                 return 0;
1262
1263         pdata = acpi_driver_data(adev);
1264         if (!pdata)
1265                 return 0;
1266
1267         if (pdata->mmio_base &&
1268             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1269                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1270                 return 0;
1271         }
1272
1273         switch (action) {
1274         case BUS_NOTIFY_BIND_DRIVER:
1275                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276                 break;
1277         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1278         case BUS_NOTIFY_UNBOUND_DRIVER:
1279                 dev_pm_domain_set(&pdev->dev, NULL);
1280                 break;
1281         case BUS_NOTIFY_ADD_DEVICE:
1282                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1283                 if (pdata->dev_desc->flags & LPSS_LTR)
1284                         return sysfs_create_group(&pdev->dev.kobj,
1285                                                   &lpss_attr_group);
1286                 break;
1287         case BUS_NOTIFY_DEL_DEVICE:
1288                 if (pdata->dev_desc->flags & LPSS_LTR)
1289                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1290                 dev_pm_domain_set(&pdev->dev, NULL);
1291                 break;
1292         default:
1293                 break;
1294         }
1295
1296         return 0;
1297 }
1298
1299 static struct notifier_block acpi_lpss_nb = {
1300         .notifier_call = acpi_lpss_platform_notify,
1301 };
1302
1303 static void acpi_lpss_bind(struct device *dev)
1304 {
1305         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1306
1307         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1308                 return;
1309
1310         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1311                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1312         else
1313                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1314 }
1315
1316 static void acpi_lpss_unbind(struct device *dev)
1317 {
1318         dev->power.set_latency_tolerance = NULL;
1319 }
1320
1321 static struct acpi_scan_handler lpss_handler = {
1322         .ids = acpi_lpss_device_ids,
1323         .attach = acpi_lpss_create_device,
1324         .bind = acpi_lpss_bind,
1325         .unbind = acpi_lpss_unbind,
1326 };
1327
1328 void __init acpi_lpss_init(void)
1329 {
1330         const struct x86_cpu_id *id;
1331         int ret;
1332
1333         ret = lpss_atom_clk_init();
1334         if (ret)
1335                 return;
1336
1337         id = x86_match_cpu(lpss_cpu_ids);
1338         if (id)
1339                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1340
1341         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1342         acpi_scan_add_handler(&lpss_handler);
1343 }
1344
1345 #else
1346
1347 static struct acpi_scan_handler lpss_handler = {
1348         .ids = acpi_lpss_device_ids,
1349 };
1350
1351 void __init acpi_lpss_init(void)
1352 {
1353         acpi_scan_add_handler(&lpss_handler);
1354 }
1355
1356 #endif /* CONFIG_X86_INTEL_LPSS */