accel/habanalabs: unmap mapped memory when TLB inv fails
[linux-2.6-microblaze.git] / drivers / accel / habanalabs / common / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include <linux/slab.h>
9
10 #include "../habanalabs.h"
11
12 #include <trace/events/habanalabs.h>
13
14 /**
15  * hl_mmu_get_funcs() - get MMU functions structure
16  * @hdev: habanalabs device structure.
17  * @pgt_residency: page table residency.
18  * @is_dram_addr: true if we need HMMU functions
19  *
20  * @return appropriate MMU functions structure
21  */
22 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
23                                                                         bool is_dram_addr)
24 {
25         return &hdev->mmu_func[pgt_residency];
26 }
27
28 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
29 {
30         struct asic_fixed_properties *prop = &hdev->asic_prop;
31
32         return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
33                                         prop->dmmu.start_addr,
34                                         prop->dmmu.end_addr);
35 }
36
37 /**
38  * hl_mmu_init() - initialize the MMU module.
39  * @hdev: habanalabs device structure.
40  *
41  * Return: 0 for success, non-zero for failure.
42  */
43 int hl_mmu_init(struct hl_device *hdev)
44 {
45         int rc = -EOPNOTSUPP;
46
47         if (!hdev->mmu_enable)
48                 return 0;
49
50         mutex_init(&hdev->mmu_lock);
51
52         if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
53                 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
54                 if (rc)
55                         return rc;
56         }
57
58         if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
59                 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
60                 if (rc)
61                         goto fini_dr_mmu;
62         }
63
64         return 0;
65
66 fini_dr_mmu:
67         if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
68                 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
69
70         return rc;
71 }
72
73 /**
74  * hl_mmu_fini() - release the MMU module.
75  * @hdev: habanalabs device structure.
76  *
77  * This function does the following:
78  * - Disable MMU in H/W.
79  * - Free the pgt_infos pool.
80  *
81  * All contexts should be freed before calling this function.
82  */
83 void hl_mmu_fini(struct hl_device *hdev)
84 {
85         if (!hdev->mmu_enable)
86                 return;
87
88         if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
89                 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
90
91         if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
92                 hdev->mmu_func[MMU_HR_PGT].fini(hdev);
93
94         mutex_destroy(&hdev->mmu_lock);
95 }
96
97 /**
98  * hl_mmu_ctx_init() - initialize a context for using the MMU module.
99  * @ctx: pointer to the context structure to initialize.
100  *
101  * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
102  * page tables hops related to this context.
103  * Return: 0 on success, non-zero otherwise.
104  */
105 int hl_mmu_ctx_init(struct hl_ctx *ctx)
106 {
107         struct hl_device *hdev = ctx->hdev;
108         int rc = -EOPNOTSUPP;
109
110         if (!hdev->mmu_enable)
111                 return 0;
112
113         if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
114                 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
115                 if (rc)
116                         return rc;
117         }
118
119         if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
120                 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
121                 if (rc)
122                         goto fini_dr_ctx;
123         }
124
125         return 0;
126
127 fini_dr_ctx:
128         if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
129                 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
130
131         return rc;
132 }
133
134 /*
135  * hl_mmu_ctx_fini - disable a ctx from using the mmu module
136  *
137  * @ctx: pointer to the context structure
138  *
139  * This function does the following:
140  * - Free any pgts which were not freed yet
141  * - Free the mutex
142  * - Free DRAM default page mapping hops
143  */
144 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
145 {
146         struct hl_device *hdev = ctx->hdev;
147
148         if (!hdev->mmu_enable)
149                 return;
150
151         if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
152                 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
153
154         if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
155                 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
156 }
157
158 /*
159  * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
160  *
161  * @hdev: pointer to device data.
162  * @mmu_prop: MMU properties.
163  * @page_size: page size
164  * @real_page_size: set here the actual page size to use for the operation
165  * @is_dram_addr: true if DRAM address, otherwise false.
166  *
167  * @return 0 on success, otherwise non 0 error code
168  *
169  * note that this is general implementation that can fit most MMU arch. but as this is used as an
170  * MMU function:
171  * 1. it shall not be called directly- only from mmu_func structure instance
172  * 2. each MMU may modify the implementation internally
173  */
174 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
175                                 u32 page_size, u32 *real_page_size, bool is_dram_addr)
176 {
177         /*
178          * The H/W handles mapping of specific page sizes. Hence if the page
179          * size is bigger, we break it to sub-pages and map them separately.
180          */
181         if ((page_size % mmu_prop->page_size) == 0) {
182                 *real_page_size = mmu_prop->page_size;
183                 return 0;
184         }
185
186         dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
187                                                 page_size, mmu_prop->page_size >> 10);
188
189         return -EFAULT;
190 }
191
192 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
193                                                         bool is_dram_addr)
194 {
195         struct asic_fixed_properties *prop = &hdev->asic_prop;
196
197         if (is_dram_addr)
198                 return &prop->dmmu;
199         else if ((page_size % prop->pmmu_huge.page_size) == 0)
200                 return &prop->pmmu_huge;
201
202         return &prop->pmmu;
203 }
204
205 /*
206  * hl_mmu_unmap_page - unmaps a virtual addr
207  *
208  * @ctx: pointer to the context structure
209  * @virt_addr: virt addr to map from
210  * @page_size: size of the page to unmap
211  * @flush_pte: whether to do a PCI flush
212  *
213  * This function does the following:
214  * - Check that the virt addr is mapped
215  * - Unmap the virt addr and frees pgts if possible
216  * - Returns 0 on success, -EINVAL if the given addr is not mapped
217  *
218  * Because this function changes the page tables in the device and because it
219  * changes the MMU hash, it must be protected by a lock.
220  * However, because it maps only a single page, the lock should be implemented
221  * in a higher level in order to protect the entire mapping of the memory area
222  *
223  * For optimization reasons PCI flush may be requested once after unmapping of
224  * large area.
225  */
226 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
227 {
228         struct hl_device *hdev = ctx->hdev;
229         struct hl_mmu_properties *mmu_prop;
230         struct hl_mmu_funcs *mmu_funcs;
231         int i, pgt_residency, rc = 0;
232         u32 real_page_size, npages;
233         u64 real_virt_addr;
234         bool is_dram_addr;
235
236         if (!hdev->mmu_enable)
237                 return 0;
238
239         is_dram_addr = hl_is_dram_va(hdev, virt_addr);
240         mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
241
242         pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
243         mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
244
245         rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
246                                                         is_dram_addr);
247         if (rc)
248                 return rc;
249
250         npages = page_size / real_page_size;
251         real_virt_addr = virt_addr;
252
253         for (i = 0 ; i < npages ; i++) {
254                 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
255                 if (rc)
256                         break;
257
258                 real_virt_addr += real_page_size;
259         }
260
261         if (flush_pte)
262                 mmu_funcs->flush(ctx);
263
264         if (trace_habanalabs_mmu_unmap_enabled() && !rc)
265                 trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
266
267         return rc;
268 }
269
270 /*
271  * hl_mmu_map_page - maps a virtual addr to physical addr
272  *
273  * @ctx: pointer to the context structure
274  * @virt_addr: virt addr to map from
275  * @phys_addr: phys addr to map to
276  * @page_size: physical page size
277  * @flush_pte: whether to do a PCI flush
278  *
279  * This function does the following:
280  * - Check that the virt addr is not mapped
281  * - Allocate pgts as necessary in order to map the virt addr to the phys
282  * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
283  *
284  * Because this function changes the page tables in the device and because it
285  * changes the MMU hash, it must be protected by a lock.
286  * However, because it maps only a single page, the lock should be implemented
287  * in a higher level in order to protect the entire mapping of the memory area
288  *
289  * For optimization reasons PCI flush may be requested once after mapping of
290  * large area.
291  */
292 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
293                         bool flush_pte)
294 {
295         int i, rc, pgt_residency, mapped_cnt = 0;
296         struct hl_device *hdev = ctx->hdev;
297         struct hl_mmu_properties *mmu_prop;
298         u64 real_virt_addr, real_phys_addr;
299         struct hl_mmu_funcs *mmu_funcs;
300         u32 real_page_size, npages;
301         bool is_dram_addr;
302
303
304         if (!hdev->mmu_enable)
305                 return 0;
306
307         is_dram_addr = hl_is_dram_va(hdev, virt_addr);
308         mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
309
310         pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
311         mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
312
313         rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
314                                                         is_dram_addr);
315         if (rc)
316                 return rc;
317
318         /*
319          * Verify that the phys and virt addresses are aligned with the
320          * MMU page size (in dram this means checking the address and MMU
321          * after scrambling)
322          */
323         if ((is_dram_addr &&
324                         ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
325                                 (mmu_prop->page_size - 1)) ||
326                         (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
327                                 (mmu_prop->page_size - 1)))) ||
328                 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
329                                 (virt_addr & (real_page_size - 1)))))
330                 dev_crit(hdev->dev,
331                         "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
332                         phys_addr, virt_addr, real_page_size);
333
334         npages = page_size / real_page_size;
335         real_virt_addr = virt_addr;
336         real_phys_addr = phys_addr;
337
338         for (i = 0 ; i < npages ; i++) {
339                 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
340                                                                                 is_dram_addr);
341                 if (rc)
342                         goto err;
343
344                 real_virt_addr += real_page_size;
345                 real_phys_addr += real_page_size;
346                 mapped_cnt++;
347         }
348
349         if (flush_pte)
350                 mmu_funcs->flush(ctx);
351
352         trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
353
354         return 0;
355
356 err:
357         real_virt_addr = virt_addr;
358         for (i = 0 ; i < mapped_cnt ; i++) {
359                 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
360                         dev_warn_ratelimited(hdev->dev,
361                                 "failed to unmap va: 0x%llx\n", real_virt_addr);
362
363                 real_virt_addr += real_page_size;
364         }
365
366         mmu_funcs->flush(ctx);
367
368         return rc;
369 }
370
371 /*
372  * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
373  *                         for mapping contiguous physical memory
374  *
375  * @ctx: pointer to the context structure
376  * @virt_addr: virt addr to map from
377  * @phys_addr: phys addr to map to
378  * @size: size to map
379  *
380  */
381 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
382                                         u64 phys_addr, u32 size)
383 {
384         struct hl_device *hdev = ctx->hdev;
385         struct asic_fixed_properties *prop = &hdev->asic_prop;
386         u64 curr_va, curr_pa;
387         u32 page_size;
388         bool flush_pte;
389         int rc = 0, off;
390
391         if (hl_mem_area_inside_range(virt_addr, size,
392                         prop->dmmu.start_addr, prop->dmmu.end_addr))
393                 page_size = prop->dmmu.page_size;
394         else if (hl_mem_area_inside_range(virt_addr, size,
395                         prop->pmmu.start_addr, prop->pmmu.end_addr))
396                 page_size = prop->pmmu.page_size;
397         else if (hl_mem_area_inside_range(virt_addr, size,
398                         prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
399                 page_size = prop->pmmu_huge.page_size;
400         else
401                 return -EINVAL;
402
403         for (off = 0 ; off < size ; off += page_size) {
404                 curr_va = virt_addr + off;
405                 curr_pa = phys_addr + off;
406                 flush_pte = (off + page_size) >= size;
407                 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
408                                                                 flush_pte);
409                 if (rc) {
410                         dev_err(hdev->dev,
411                                 "Map failed for va 0x%llx to pa 0x%llx\n",
412                                 curr_va, curr_pa);
413                         /* last mapping failed so don't try to unmap it - reduce off by page_size */
414                         off -= page_size;
415                         goto unmap;
416                 }
417         }
418
419         return rc;
420
421 unmap:
422         for (; off >= 0 ; off -= page_size) {
423                 curr_va = virt_addr + off;
424                 flush_pte = (off - (s32) page_size) < 0;
425                 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
426                         dev_warn_ratelimited(hdev->dev,
427                                 "failed to unmap va 0x%llx\n", curr_va);
428         }
429
430         return rc;
431 }
432
433 /*
434  * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
435  *                           for unmapping contiguous physical memory
436  *
437  * @ctx: pointer to the context structure
438  * @virt_addr: virt addr to unmap
439  * @size: size to unmap
440  *
441  */
442 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
443 {
444         struct hl_device *hdev = ctx->hdev;
445         struct asic_fixed_properties *prop = &hdev->asic_prop;
446         u64 curr_va;
447         u32 page_size;
448         bool flush_pte;
449         int rc = 0, off;
450
451         if (hl_mem_area_inside_range(virt_addr, size,
452                         prop->dmmu.start_addr, prop->dmmu.end_addr))
453                 page_size = prop->dmmu.page_size;
454         else if (hl_mem_area_inside_range(virt_addr, size,
455                         prop->pmmu.start_addr, prop->pmmu.end_addr))
456                 page_size = prop->pmmu.page_size;
457         else if (hl_mem_area_inside_range(virt_addr, size,
458                         prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
459                 page_size = prop->pmmu_huge.page_size;
460         else
461                 return -EINVAL;
462
463         for (off = 0 ; off < size ; off += page_size) {
464                 curr_va = virt_addr + off;
465                 flush_pte = (off + page_size) >= size;
466                 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
467                 if (rc)
468                         dev_warn_ratelimited(hdev->dev,
469                                 "Unmap failed for va 0x%llx\n", curr_va);
470         }
471
472         return rc;
473 }
474
475 /*
476  * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
477  *
478  * @ctx: pointer to the context structure
479  *
480  */
481 void hl_mmu_swap_out(struct hl_ctx *ctx)
482 {
483         struct hl_device *hdev = ctx->hdev;
484
485         if (!hdev->mmu_enable)
486                 return;
487
488         if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
489                 hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
490
491         if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
492                 hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
493 }
494
495 /*
496  * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
497  *
498  * @ctx: pointer to the context structure
499  *
500  */
501 void hl_mmu_swap_in(struct hl_ctx *ctx)
502 {
503         struct hl_device *hdev = ctx->hdev;
504
505         if (!hdev->mmu_enable)
506                 return;
507
508         if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
509                 hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
510
511         if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
512                 hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
513 }
514
515 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
516                                                 struct hl_mmu_hop_info *hops,
517                                                 u64 *phys_addr)
518 {
519         struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
520         u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
521         struct hl_mmu_properties *mmu_prop;
522
523         /* last hop holds the phys address and flags */
524         if (hops->unscrambled_paddr)
525                 tmp_phys_addr = hops->unscrambled_paddr;
526         else
527                 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
528
529         if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
530                 mmu_prop = &prop->pmmu_huge;
531         else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
532                 mmu_prop = &prop->pmmu;
533         else /* HL_VA_RANGE_TYPE_DRAM */
534                 mmu_prop = &prop->dmmu;
535
536         if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
537                         !is_power_of_2(prop->dram_page_size)) {
538                 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
539                         page_id, page_start;
540                 u32 page_off;
541
542                 /*
543                  * Bit arithmetic cannot be used for non power of two page
544                  * sizes. In addition, since bit arithmetic is not used,
545                  * we cannot ignore dram base. All that shall be considered.
546                  */
547
548                 dram_page_size = prop->dram_page_size;
549                 dram_base = prop->dram_base_address;
550                 abs_phys_addr = tmp_phys_addr - dram_base;
551                 abs_virt_addr = virt_addr - dram_base;
552                 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
553                 page_start = page_id * dram_page_size;
554                 div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
555
556                 *phys_addr = page_start + page_off + dram_base;
557         } else {
558                 /*
559                  * find the correct hop shift field in hl_mmu_properties
560                  * structure in order to determine the right masks
561                  * for the page offset.
562                  */
563                 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
564                 offset_mask = (1ull << hop_shift) - 1;
565                 addr_mask = ~(offset_mask);
566                 *phys_addr = (tmp_phys_addr & addr_mask) |
567                                 (virt_addr & offset_mask);
568         }
569 }
570
571 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
572 {
573         struct hl_mmu_hop_info hops;
574         int rc;
575
576         memset(&hops, 0, sizeof(hops));
577
578         rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
579         if (rc)
580                 return rc;
581
582         hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops,  phys_addr);
583
584         return 0;
585 }
586
587 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
588                         struct hl_mmu_hop_info *hops)
589 {
590         struct hl_device *hdev = ctx->hdev;
591         struct asic_fixed_properties *prop;
592         struct hl_mmu_properties *mmu_prop;
593         struct hl_mmu_funcs *mmu_funcs;
594         int pgt_residency, rc;
595         bool is_dram_addr;
596
597         if (!hdev->mmu_enable)
598                 return -EOPNOTSUPP;
599
600         prop = &hdev->asic_prop;
601         hops->scrambled_vaddr = virt_addr;      /* assume no scrambling */
602
603         is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
604                                                                 prop->dmmu.start_addr,
605                                                                 prop->dmmu.end_addr);
606
607         /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
608         mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
609         pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
610         mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
611
612         mutex_lock(&hdev->mmu_lock);
613         rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
614         mutex_unlock(&hdev->mmu_lock);
615
616         if (rc)
617                 return rc;
618
619         /* add page offset to physical address */
620         if (hops->unscrambled_paddr)
621                 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
622
623         return 0;
624 }
625
626 int hl_mmu_if_set_funcs(struct hl_device *hdev)
627 {
628         if (!hdev->mmu_enable)
629                 return 0;
630
631         switch (hdev->asic_type) {
632         case ASIC_GOYA:
633         case ASIC_GAUDI:
634         case ASIC_GAUDI_SEC:
635                 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
636                 break;
637         case ASIC_GAUDI2:
638         case ASIC_GAUDI2B:
639                 /* MMUs in Gaudi2 are always host resident */
640                 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
641                 break;
642         default:
643                 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
644                         hdev->asic_type);
645                 return -EOPNOTSUPP;
646         }
647
648         return 0;
649 }
650
651 /**
652  * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
653  * @hdev: pointer to device data.
654  * @addr: The address to scramble.
655  *
656  * Return: The scrambled address.
657  */
658 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
659 {
660         return addr;
661 }
662
663 /**
664  * hl_mmu_descramble_addr() - The generic mmu address descrambling
665  * routine.
666  * @hdev: pointer to device data.
667  * @addr: The address to descramble.
668  *
669  * Return: The un-scrambled address.
670  */
671 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
672 {
673         return addr;
674 }
675
676 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
677 {
678         int rc;
679
680         rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
681         if (rc)
682                 dev_err_ratelimited(hdev->dev,
683                                 "%s cache invalidation failed, rc=%d\n",
684                                 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
685
686         return rc;
687 }
688
689 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
690                                         u32 flags, u32 asid, u64 va, u64 size)
691 {
692         int rc;
693
694         rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
695                                                                 asid, va, size);
696         if (rc)
697                 dev_err_ratelimited(hdev->dev,
698                                 "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
699                                 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
700
701         return rc;
702 }
703
704 static void hl_mmu_prefetch_work_function(struct work_struct *work)
705 {
706         struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
707         struct hl_ctx *ctx = pfw->ctx;
708         struct hl_device *hdev = ctx->hdev;
709
710         if (!hl_device_operational(hdev, NULL))
711                 goto put_ctx;
712
713         mutex_lock(&hdev->mmu_lock);
714
715         hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
716
717         mutex_unlock(&hdev->mmu_lock);
718
719 put_ctx:
720         /*
721          * context was taken in the common mmu prefetch function- see comment there about
722          * context handling.
723          */
724         hl_ctx_put(ctx);
725         kfree(pfw);
726 }
727
728 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
729 {
730         struct hl_prefetch_work *handle_prefetch_work;
731
732         handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
733         if (!handle_prefetch_work)
734                 return -ENOMEM;
735
736         INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
737         handle_prefetch_work->ctx = ctx;
738         handle_prefetch_work->va = va;
739         handle_prefetch_work->size = size;
740         handle_prefetch_work->flags = flags;
741         handle_prefetch_work->asid = asid;
742
743         /*
744          * as actual prefetch is done in a WQ we must get the context (and put it
745          * at the end of the work function)
746          */
747         hl_ctx_get(ctx);
748         queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
749
750         return 0;
751 }
752
753 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
754 {
755         return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
756 }
757
758 /**
759  * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
760  * @ctx: pointer to the context structure to initialize.
761  * @mmu_prop: MMU properties.
762  * @hop_idx: HOP index.
763  * @hop_addr: HOP address.
764  * @virt_addr: virtual address for the translation.
765  *
766  * @return the matching PTE value on success, otherwise U64_MAX.
767  */
768 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
769                                         u8 hop_idx, u64 hop_addr, u64 virt_addr)
770 {
771         u64 mask, shift;
772
773         if (hop_idx >= mmu_prop->num_hops) {
774                 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
775                 return U64_MAX;
776         }
777
778         shift = mmu_prop->hop_shifts[hop_idx];
779         mask = mmu_prop->hop_masks[hop_idx];
780
781         return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
782 }
783
784 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
785                                         struct gen_pool_chunk *chunk,
786                                         void *data)
787 {
788         struct hl_device *hdev = data;
789
790         hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
791                                         (void *)chunk->start_addr, chunk->phys_addr);
792 }
793
794 void hl_mmu_hr_flush(struct hl_ctx *ctx)
795 {
796         /* a flush operation requires memory barrier */
797         mb();
798 }
799
800 /**
801  * hl_mmu_hr_pool_destroy() - destroy genpool
802  * @hdev: habanalabs device structure.
803  * @hr_priv: MMU HR private data.
804  * @hop_table_size: HOP table size.
805  *
806  * This function does the following:
807  * - free entries allocated for shadow HOP0
808  * - free pool chunks
809  * - free pool
810  */
811 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
812                                         u32 hop_table_size)
813 {
814         struct asic_fixed_properties *prop = &hdev->asic_prop;
815         struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
816         struct pgt_info *hop0_pgt;
817         int asid;
818
819         if (ZERO_OR_NULL_PTR(*pool))
820                 return;
821
822         /* Free the Fixed allocation of HOPs0 */
823         if (hr_priv->mmu_asid_hop0) {
824                 for (asid = 0 ; asid < prop->max_asid ; asid++) {
825                         hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
826                         if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
827                                 continue;
828
829                         gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
830                 }
831         }
832
833         gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
834         gen_pool_destroy(*pool);
835
836         /* Make sure that if we arrive here again without init was called we
837          * won't cause kernel panic. This can happen for example if we fail
838          * during hard reset code at certain points
839          */
840         *pool = NULL;
841 }
842
843 /**
844  * hl_mmu_hr_init() - initialize the MMU module.
845  * @hdev: habanalabs device structure.
846  * @hr_priv: MMU HR private data.
847  * @hop_table_size: HOP table size.
848  * @pgt_size: memory size allocated for the page table
849  *
850  * @return 0 on success otherwise non-zero error code
851  *
852  * This function does the following:
853  * - Create a pool of pages for pgt_infos.
854  * - Create a shadow table for pgt
855  */
856 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
857                         u64 pgt_size)
858 {
859         struct asic_fixed_properties *prop = &hdev->asic_prop;
860         size_t pool_chunk_size = SZ_4M;
861         struct pgt_info *hop0_pgt;
862         dma_addr_t dma_addr;
863         u64 virt_addr;
864         int i, rc;
865
866         /*
867          * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
868          * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
869          * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
870          * allocations with higher-order alignment restrictions
871          */
872         hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
873         if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
874                 dev_err(hdev->dev, "Failed to create hr page pool\n");
875                 return -ENOMEM;
876         }
877
878         hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
879         if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
880                 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
881                 rc = -ENOMEM;
882                 goto destroy_mmu_pgt_pool;
883         }
884
885         for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
886                 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
887                                                                         &dma_addr,
888                                                                         GFP_KERNEL | __GFP_ZERO);
889                 if (ZERO_OR_NULL_PTR(virt_addr)) {
890                         dev_err(hdev->dev,
891                                 "Failed to allocate memory for host-resident page pool\n");
892                         rc = -ENOMEM;
893                         goto destroy_mmu_pgt_pool;
894                 }
895
896                 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
897                                                 pool_chunk_size, -1);
898                 if (rc) {
899                         dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
900                         goto destroy_mmu_pgt_pool;
901                 }
902         }
903
904         for (i = 0 ; i < prop->max_asid ; i++) {
905                 hop0_pgt = &hr_priv->mmu_asid_hop0[i];
906                 hop0_pgt->virt_addr = (uintptr_t)
907                                         gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
908                                                                 hop_table_size,
909                                                                 (dma_addr_t *) &hop0_pgt->phys_addr,
910                                                                 hop_table_size);
911                 if (!hop0_pgt->virt_addr) {
912                         dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
913                         rc = -ENOMEM;
914                         goto destroy_mmu_pgt_pool;
915                 }
916         }
917
918         /* MMU H/W init will be done in device hw_init() */
919
920         return 0;
921
922 destroy_mmu_pgt_pool:
923         hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
924         if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
925                 kvfree(hr_priv->mmu_asid_hop0);
926
927         return rc;
928 }
929
930 /**
931  * hl_mmu_hr_fini() - release the MMU module.
932  * @hdev: habanalabs device structure.
933  * @hr_priv: MMU host resident private info.
934  * @hop_table_size: HOP table size
935  *
936  * This function does the following:
937  * - Disable MMU in H/W.
938  * - Free the pgt_infos pool.
939  *
940  * All contexts should be freed before calling this function.
941  */
942 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
943 {
944         /* MMU H/W fini was already done in device hw_fini() */
945
946         hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
947
948         if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
949                 kvfree(hr_priv->mmu_asid_hop0);
950
951                 /* Make sure that if we arrive here again without init was
952                  * called we won't cause kernel panic. This can happen for
953                  * example if we fail during hard reset code at certain points
954                  */
955                 hr_priv->mmu_asid_hop0 = NULL;
956         }
957 }
958
959 /**
960  * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
961  * @pgt_info: page table info structure.
962  * @hr_priv: MMU HR private data.
963  * @hop_table_size: HOP table size.
964  */
965 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
966                                         u32 hop_table_size)
967 {
968         gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
969         hash_del(&pgt_info->node);
970         kfree(pgt_info);
971 }
972
973 /**
974  * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
975  * @ctx: pointer to the context structure
976  * @pgt: pgt_info for the HOP hosting the PTE
977  * @phys_pte_addr: phys address of the PTE
978  * @hop_table_size: HOP table size
979  *
980  * @return PTE virtual address
981  *
982  * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
983  * by adding the PTE offset.
984  */
985 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
986                                                         u64 phys_pte_addr, u32 hop_table_size)
987 {
988         u64 page_mask = (hop_table_size - 1);
989         u64 pte_offset = phys_pte_addr & page_mask;
990
991         return pgt->virt_addr + pte_offset;
992 }
993
994 /**
995  * hl_mmu_hr_write_pte() - write HR PTE
996  * @ctx: pointer to the context structure
997  * @pgt_info: HOP's page table info structure
998  * @phys_pte_addr: phys PTE address
999  * @val: raw PTE data
1000  * @hop_table_size: HOP table size
1001  */
1002 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
1003                                                                 u64 val, u32 hop_table_size)
1004 {
1005         /*
1006          * The value to write is the phys address of the next hop +
1007          * flags at the 12 LSBs.
1008          */
1009         u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
1010
1011         *((u64 *) (uintptr_t) virt_addr) = val;
1012 }
1013
1014 /**
1015  * hl_mmu_hr_clear_pte() - clear HR PTE
1016  * @ctx: pointer to the context structure
1017  * @pgt_info: HOP's page table info structure
1018  * @phys_pte_addr: phys PTE address
1019  * @hop_table_size: HOP table size
1020  */
1021 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
1022                                                 u32 hop_table_size)
1023 {
1024         /* no need to transform the value to physical address */
1025         hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
1026 }
1027
1028 /**
1029  * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
1030  * @ctx: pointer to the context structure
1031  * @pgt_info: HOP's page table info structure
1032  * @hr_priv: HR MMU private info
1033  * @hop_table_size: HOP table size
1034  *
1035  * @return number of PTEs still in the HOP
1036  */
1037 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
1038                                                 struct hl_mmu_hr_priv *hr_priv,
1039                                                 u32 hop_table_size)
1040 {
1041         int num_of_ptes_left;
1042
1043         pgt_info->num_of_ptes--;
1044
1045         /*
1046          * Need to save the number of ptes left because free_hop might free
1047          * the pgt_info
1048          */
1049         num_of_ptes_left = pgt_info->num_of_ptes;
1050         if (!num_of_ptes_left)
1051                 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1052
1053         return num_of_ptes_left;
1054 }
1055
1056 /**
1057  * hl_mmu_hr_get_pte() - increase PGT PTE count
1058  * @ctx: pointer to the context structure
1059  * @hr_func: host resident functions
1060  * @phys_hop_addr: HOP phys address
1061  */
1062 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1063 {
1064         hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1065 }
1066
1067 /**
1068  * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1069  * @ctx: pointer to the context structure.
1070  * @hr_func: host resident functions.
1071  * @curr_pte: current PTE value.
1072  *
1073  * @return pgt_info structure on success, otherwise NULL.
1074  */
1075 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1076                                                         struct hl_hr_mmu_funcs *hr_func,
1077                                                         u64 curr_pte)
1078 {
1079         u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1080
1081         if (next_hop_phys_addr == ULLONG_MAX)
1082                 return NULL;
1083
1084         return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1085 }
1086
1087 /**
1088  * hl_mmu_hr_alloc_hop() - allocate HOP
1089  * @ctx: pointer to the context structure.
1090  * @hr_priv: host resident private info structure.
1091  * @hr_func: host resident functions.
1092  * @mmu_prop: MMU properties.
1093  *
1094  * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1095  */
1096 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1097                                                         struct hl_hr_mmu_funcs *hr_func,
1098                                                         struct hl_mmu_properties *mmu_prop)
1099 {
1100         struct hl_device *hdev = ctx->hdev;
1101         struct pgt_info *pgt_info;
1102         dma_addr_t phys_addr;
1103         void *virt_addr;
1104         int i, retry = 1;
1105
1106         pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1107         if (!pgt_info)
1108                 return NULL;
1109
1110         for (i = 0; i <= retry; i++) {
1111                 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1112                                                         mmu_prop->hop_table_size,
1113                                                         &phys_addr,
1114                                                         mmu_prop->hop_table_size);
1115                 if (virt_addr)
1116                         break;
1117
1118                 /* No memory in pool - get some and try again */
1119                 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1120                                                         GFP_KERNEL | __GFP_ZERO);
1121                 if (ZERO_OR_NULL_PTR(virt_addr))
1122                         break;
1123
1124                 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1125                                                                 phys_addr, SZ_2M, -1)) {
1126                         hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1127                         virt_addr = NULL;
1128                         break;
1129                 }
1130         }
1131
1132         if (ZERO_OR_NULL_PTR(virt_addr)) {
1133                 dev_err(hdev->dev, "failed to allocate page\n");
1134                 goto pool_alloc_err;
1135         }
1136
1137         pgt_info->phys_addr = phys_addr;
1138         pgt_info->shadow_addr = (unsigned long) NULL;
1139         pgt_info->virt_addr = (unsigned long)virt_addr;
1140         pgt_info->ctx = ctx;
1141         pgt_info->num_of_ptes = 0;
1142         hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1143
1144         return pgt_info;
1145
1146 pool_alloc_err:
1147         kfree(pgt_info);
1148
1149         return NULL;
1150 }
1151
1152 /**
1153  * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1154  * @ctx: pointer to the context structure.
1155  * @hr_priv: host resident private info structure.
1156  * @hr_func: host resident functions.
1157  * @mmu_prop: MMU properties.
1158  * @curr_pte: current PTE value.
1159  * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1160  *
1161  * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1162  */
1163 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1164                                                         struct hl_mmu_hr_priv *hr_priv,
1165                                                         struct hl_hr_mmu_funcs *hr_func,
1166                                                         struct hl_mmu_properties *mmu_prop,
1167                                                         u64 curr_pte, bool *is_new_hop)
1168 {
1169         u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1170
1171         if (hop_addr != ULLONG_MAX)
1172                 return hr_func->get_pgt_info(ctx, hop_addr);
1173
1174         *is_new_hop = true;
1175         return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1176 }
1177
1178 /**
1179  * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1180  * @ctx: pointer to the context structure.
1181  * @virt_addr: the virt address for which to get info.
1182  * @hops: HOPs info structure.
1183  * @hr_func: host resident functions.
1184  *
1185  * @return 0 on success, otherwise non 0 error code..
1186  */
1187 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1188                                                                 struct hl_hr_mmu_funcs *hr_func)
1189 {
1190         /* using 6 HOPs as this is the maximum number of HOPs */
1191         struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1192         struct hl_device *hdev = ctx->hdev;
1193         struct hl_mmu_properties *mmu_prop;
1194         int rc, i, used_hops;
1195         bool is_huge;
1196
1197         rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1198         if (rc)
1199                 return rc;
1200
1201         used_hops = mmu_prop->num_hops;
1202
1203         /* huge pages use one less hop */
1204         if (is_huge)
1205                 used_hops--;
1206
1207         hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1208
1209         for (i = 0 ; i < used_hops ; i++) {
1210                 if (i == 0)
1211                         hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1212                 else
1213                         hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1214                                                                 hops->hop_info[i - 1].hop_pte_val);
1215
1216                 if (!hops_pgt_info[i])
1217                         return -EFAULT;
1218
1219                 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1220                 hops->hop_info[i].hop_pte_addr =
1221                                 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1222                                                                 hops->hop_info[i].hop_addr,
1223                                                                 hops->scrambled_vaddr);
1224                 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1225                                                 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1226                                                                 hops->hop_info[i].hop_pte_addr,
1227                                                                 mmu_prop->hop_table_size);
1228
1229                 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1230                         return -EFAULT;
1231
1232                 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1233                         break;
1234         }
1235
1236         /* if passed over all hops then no last hop was found */
1237         if (i == mmu_prop->num_hops)
1238                 return -EFAULT;
1239
1240         if (hops->scrambled_vaddr != virt_addr)
1241                 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1242                                 (hdev, hops->hop_info[i].hop_pte_val);
1243         else
1244                 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1245
1246         hops->used_hops = i + 1;
1247
1248         return 0;
1249 }
1250