Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / crypto / skcipher.c
1 /*
2  * Symmetric key cipher operations.
3  *
4  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5  * multiple page boundaries by using temporary blocks.  In user context,
6  * the kernel is given a chance to schedule us once per page.
7  *
8  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  *
15  */
16
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28
29 #include "internal.h"
30
31 enum {
32         SKCIPHER_WALK_PHYS = 1 << 0,
33         SKCIPHER_WALK_SLOW = 1 << 1,
34         SKCIPHER_WALK_COPY = 1 << 2,
35         SKCIPHER_WALK_DIFF = 1 << 3,
36         SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38
39 struct skcipher_walk_buffer {
40         struct list_head entry;
41         struct scatter_walk dst;
42         unsigned int len;
43         u8 *data;
44         u8 buffer[];
45 };
46
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51         if (PageHighMem(scatterwalk_page(walk)))
52                 kunmap_atomic(vaddr);
53 }
54
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57         struct page *page = scatterwalk_page(walk);
58
59         return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60                offset_in_page(walk->offset);
61 }
62
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65         walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70         walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75         skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80         skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85         return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87
88 /* Get a spot of the specified length that does not straddle a page.
89  * The caller needs to ensure that there is enough space for this operation.
90  */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93         u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94
95         return max(start, end_page);
96 }
97
98 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100         u8 *addr;
101
102         addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103         addr = skcipher_get_spot(addr, bsize);
104         scatterwalk_copychunks(addr, &walk->out, bsize,
105                                (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 }
107
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110         unsigned int n; /* bytes processed */
111         bool more;
112
113         if (unlikely(err < 0))
114                 goto finish;
115
116         n = walk->nbytes - err;
117         walk->total -= n;
118         more = (walk->total != 0);
119
120         if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
121                                     SKCIPHER_WALK_SLOW |
122                                     SKCIPHER_WALK_COPY |
123                                     SKCIPHER_WALK_DIFF)))) {
124 unmap_src:
125                 skcipher_unmap_src(walk);
126         } else if (walk->flags & SKCIPHER_WALK_DIFF) {
127                 skcipher_unmap_dst(walk);
128                 goto unmap_src;
129         } else if (walk->flags & SKCIPHER_WALK_COPY) {
130                 skcipher_map_dst(walk);
131                 memcpy(walk->dst.virt.addr, walk->page, n);
132                 skcipher_unmap_dst(walk);
133         } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
134                 if (err) {
135                         /*
136                          * Didn't process all bytes.  Either the algorithm is
137                          * broken, or this was the last step and it turned out
138                          * the message wasn't evenly divisible into blocks but
139                          * the algorithm requires it.
140                          */
141                         err = -EINVAL;
142                         goto finish;
143                 }
144                 skcipher_done_slow(walk, n);
145                 goto already_advanced;
146         }
147
148         scatterwalk_advance(&walk->in, n);
149         scatterwalk_advance(&walk->out, n);
150 already_advanced:
151         scatterwalk_done(&walk->in, 0, more);
152         scatterwalk_done(&walk->out, 1, more);
153
154         if (more) {
155                 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
156                              CRYPTO_TFM_REQ_MAY_SLEEP : 0);
157                 return skcipher_walk_next(walk);
158         }
159         err = 0;
160 finish:
161         walk->nbytes = 0;
162
163         /* Short-circuit for the common/fast path. */
164         if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165                 goto out;
166
167         if (walk->flags & SKCIPHER_WALK_PHYS)
168                 goto out;
169
170         if (walk->iv != walk->oiv)
171                 memcpy(walk->oiv, walk->iv, walk->ivsize);
172         if (walk->buffer != walk->page)
173                 kfree(walk->buffer);
174         if (walk->page)
175                 free_page((unsigned long)walk->page);
176
177 out:
178         return err;
179 }
180 EXPORT_SYMBOL_GPL(skcipher_walk_done);
181
182 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 {
184         struct skcipher_walk_buffer *p, *tmp;
185
186         list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187                 u8 *data;
188
189                 if (err)
190                         goto done;
191
192                 data = p->data;
193                 if (!data) {
194                         data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195                         data = skcipher_get_spot(data, walk->stride);
196                 }
197
198                 scatterwalk_copychunks(data, &p->dst, p->len, 1);
199
200                 if (offset_in_page(p->data) + p->len + walk->stride >
201                     PAGE_SIZE)
202                         free_page((unsigned long)p->data);
203
204 done:
205                 list_del(&p->entry);
206                 kfree(p);
207         }
208
209         if (!err && walk->iv != walk->oiv)
210                 memcpy(walk->oiv, walk->iv, walk->ivsize);
211         if (walk->buffer != walk->page)
212                 kfree(walk->buffer);
213         if (walk->page)
214                 free_page((unsigned long)walk->page);
215 }
216 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217
218 static void skcipher_queue_write(struct skcipher_walk *walk,
219                                  struct skcipher_walk_buffer *p)
220 {
221         p->dst = walk->out;
222         list_add_tail(&p->entry, &walk->buffers);
223 }
224
225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 {
227         bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228         unsigned alignmask = walk->alignmask;
229         struct skcipher_walk_buffer *p;
230         unsigned a;
231         unsigned n;
232         u8 *buffer;
233         void *v;
234
235         if (!phys) {
236                 if (!walk->buffer)
237                         walk->buffer = walk->page;
238                 buffer = walk->buffer;
239                 if (buffer)
240                         goto ok;
241         }
242
243         /* Start with the minimum alignment of kmalloc. */
244         a = crypto_tfm_ctx_alignment() - 1;
245         n = bsize;
246
247         if (phys) {
248                 /* Calculate the minimum alignment of p->buffer. */
249                 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250                 n += sizeof(*p);
251         }
252
253         /* Minimum size to align p->buffer by alignmask. */
254         n += alignmask & ~a;
255
256         /* Minimum size to ensure p->buffer does not straddle a page. */
257         n += (bsize - 1) & ~(alignmask | a);
258
259         v = kzalloc(n, skcipher_walk_gfp(walk));
260         if (!v)
261                 return skcipher_walk_done(walk, -ENOMEM);
262
263         if (phys) {
264                 p = v;
265                 p->len = bsize;
266                 skcipher_queue_write(walk, p);
267                 buffer = p->buffer;
268         } else {
269                 walk->buffer = v;
270                 buffer = v;
271         }
272
273 ok:
274         walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275         walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276         walk->src.virt.addr = walk->dst.virt.addr;
277
278         scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279
280         walk->nbytes = bsize;
281         walk->flags |= SKCIPHER_WALK_SLOW;
282
283         return 0;
284 }
285
286 static int skcipher_next_copy(struct skcipher_walk *walk)
287 {
288         struct skcipher_walk_buffer *p;
289         u8 *tmp = walk->page;
290
291         skcipher_map_src(walk);
292         memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293         skcipher_unmap_src(walk);
294
295         walk->src.virt.addr = tmp;
296         walk->dst.virt.addr = tmp;
297
298         if (!(walk->flags & SKCIPHER_WALK_PHYS))
299                 return 0;
300
301         p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302         if (!p)
303                 return -ENOMEM;
304
305         p->data = walk->page;
306         p->len = walk->nbytes;
307         skcipher_queue_write(walk, p);
308
309         if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310             PAGE_SIZE)
311                 walk->page = NULL;
312         else
313                 walk->page += walk->nbytes;
314
315         return 0;
316 }
317
318 static int skcipher_next_fast(struct skcipher_walk *walk)
319 {
320         unsigned long diff;
321
322         walk->src.phys.page = scatterwalk_page(&walk->in);
323         walk->src.phys.offset = offset_in_page(walk->in.offset);
324         walk->dst.phys.page = scatterwalk_page(&walk->out);
325         walk->dst.phys.offset = offset_in_page(walk->out.offset);
326
327         if (walk->flags & SKCIPHER_WALK_PHYS)
328                 return 0;
329
330         diff = walk->src.phys.offset - walk->dst.phys.offset;
331         diff |= walk->src.virt.page - walk->dst.virt.page;
332
333         skcipher_map_src(walk);
334         walk->dst.virt.addr = walk->src.virt.addr;
335
336         if (diff) {
337                 walk->flags |= SKCIPHER_WALK_DIFF;
338                 skcipher_map_dst(walk);
339         }
340
341         return 0;
342 }
343
344 static int skcipher_walk_next(struct skcipher_walk *walk)
345 {
346         unsigned int bsize;
347         unsigned int n;
348         int err;
349
350         walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351                          SKCIPHER_WALK_DIFF);
352
353         n = walk->total;
354         bsize = min(walk->stride, max(n, walk->blocksize));
355         n = scatterwalk_clamp(&walk->in, n);
356         n = scatterwalk_clamp(&walk->out, n);
357
358         if (unlikely(n < bsize)) {
359                 if (unlikely(walk->total < walk->blocksize))
360                         return skcipher_walk_done(walk, -EINVAL);
361
362 slow_path:
363                 err = skcipher_next_slow(walk, bsize);
364                 goto set_phys_lowmem;
365         }
366
367         if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368                 if (!walk->page) {
369                         gfp_t gfp = skcipher_walk_gfp(walk);
370
371                         walk->page = (void *)__get_free_page(gfp);
372                         if (!walk->page)
373                                 goto slow_path;
374                 }
375
376                 walk->nbytes = min_t(unsigned, n,
377                                      PAGE_SIZE - offset_in_page(walk->page));
378                 walk->flags |= SKCIPHER_WALK_COPY;
379                 err = skcipher_next_copy(walk);
380                 goto set_phys_lowmem;
381         }
382
383         walk->nbytes = n;
384
385         return skcipher_next_fast(walk);
386
387 set_phys_lowmem:
388         if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389                 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390                 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391                 walk->src.phys.offset &= PAGE_SIZE - 1;
392                 walk->dst.phys.offset &= PAGE_SIZE - 1;
393         }
394         return err;
395 }
396
397 static int skcipher_copy_iv(struct skcipher_walk *walk)
398 {
399         unsigned a = crypto_tfm_ctx_alignment() - 1;
400         unsigned alignmask = walk->alignmask;
401         unsigned ivsize = walk->ivsize;
402         unsigned bs = walk->stride;
403         unsigned aligned_bs;
404         unsigned size;
405         u8 *iv;
406
407         aligned_bs = ALIGN(bs, alignmask + 1);
408
409         /* Minimum size to align buffer by alignmask. */
410         size = alignmask & ~a;
411
412         if (walk->flags & SKCIPHER_WALK_PHYS)
413                 size += ivsize;
414         else {
415                 size += aligned_bs + ivsize;
416
417                 /* Minimum size to ensure buffer does not straddle a page. */
418                 size += (bs - 1) & ~(alignmask | a);
419         }
420
421         walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
422         if (!walk->buffer)
423                 return -ENOMEM;
424
425         iv = PTR_ALIGN(walk->buffer, alignmask + 1);
426         iv = skcipher_get_spot(iv, bs) + aligned_bs;
427
428         walk->iv = memcpy(iv, walk->iv, walk->ivsize);
429         return 0;
430 }
431
432 static int skcipher_walk_first(struct skcipher_walk *walk)
433 {
434         if (WARN_ON_ONCE(in_irq()))
435                 return -EDEADLK;
436
437         walk->buffer = NULL;
438         if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439                 int err = skcipher_copy_iv(walk);
440                 if (err)
441                         return err;
442         }
443
444         walk->page = NULL;
445
446         return skcipher_walk_next(walk);
447 }
448
449 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450                                   struct skcipher_request *req)
451 {
452         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453
454         walk->total = req->cryptlen;
455         walk->nbytes = 0;
456         walk->iv = req->iv;
457         walk->oiv = req->iv;
458
459         if (unlikely(!walk->total))
460                 return 0;
461
462         scatterwalk_start(&walk->in, req->src);
463         scatterwalk_start(&walk->out, req->dst);
464
465         walk->flags &= ~SKCIPHER_WALK_SLEEP;
466         walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
467                        SKCIPHER_WALK_SLEEP : 0;
468
469         walk->blocksize = crypto_skcipher_blocksize(tfm);
470         walk->stride = crypto_skcipher_walksize(tfm);
471         walk->ivsize = crypto_skcipher_ivsize(tfm);
472         walk->alignmask = crypto_skcipher_alignmask(tfm);
473
474         return skcipher_walk_first(walk);
475 }
476
477 int skcipher_walk_virt(struct skcipher_walk *walk,
478                        struct skcipher_request *req, bool atomic)
479 {
480         int err;
481
482         might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
483
484         walk->flags &= ~SKCIPHER_WALK_PHYS;
485
486         err = skcipher_walk_skcipher(walk, req);
487
488         walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489
490         return err;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493
494 void skcipher_walk_atomise(struct skcipher_walk *walk)
495 {
496         walk->flags &= ~SKCIPHER_WALK_SLEEP;
497 }
498 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
499
500 int skcipher_walk_async(struct skcipher_walk *walk,
501                         struct skcipher_request *req)
502 {
503         walk->flags |= SKCIPHER_WALK_PHYS;
504
505         INIT_LIST_HEAD(&walk->buffers);
506
507         return skcipher_walk_skcipher(walk, req);
508 }
509 EXPORT_SYMBOL_GPL(skcipher_walk_async);
510
511 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
512                                      struct aead_request *req, bool atomic)
513 {
514         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
515         int err;
516
517         walk->nbytes = 0;
518         walk->iv = req->iv;
519         walk->oiv = req->iv;
520
521         if (unlikely(!walk->total))
522                 return 0;
523
524         walk->flags &= ~SKCIPHER_WALK_PHYS;
525
526         scatterwalk_start(&walk->in, req->src);
527         scatterwalk_start(&walk->out, req->dst);
528
529         scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
530         scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
531
532         scatterwalk_done(&walk->in, 0, walk->total);
533         scatterwalk_done(&walk->out, 0, walk->total);
534
535         if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
536                 walk->flags |= SKCIPHER_WALK_SLEEP;
537         else
538                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
539
540         walk->blocksize = crypto_aead_blocksize(tfm);
541         walk->stride = crypto_aead_chunksize(tfm);
542         walk->ivsize = crypto_aead_ivsize(tfm);
543         walk->alignmask = crypto_aead_alignmask(tfm);
544
545         err = skcipher_walk_first(walk);
546
547         if (atomic)
548                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
549
550         return err;
551 }
552
553 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
554                        bool atomic)
555 {
556         walk->total = req->cryptlen;
557
558         return skcipher_walk_aead_common(walk, req, atomic);
559 }
560 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
561
562 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
563                                struct aead_request *req, bool atomic)
564 {
565         walk->total = req->cryptlen;
566
567         return skcipher_walk_aead_common(walk, req, atomic);
568 }
569 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
570
571 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
572                                struct aead_request *req, bool atomic)
573 {
574         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
575
576         walk->total = req->cryptlen - crypto_aead_authsize(tfm);
577
578         return skcipher_walk_aead_common(walk, req, atomic);
579 }
580 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
581
582 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
583 {
584         if (alg->cra_type == &crypto_blkcipher_type)
585                 return sizeof(struct crypto_blkcipher *);
586
587         if (alg->cra_type == &crypto_ablkcipher_type)
588                 return sizeof(struct crypto_ablkcipher *);
589
590         return crypto_alg_extsize(alg);
591 }
592
593 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
594 {
595         if (tfm->keysize)
596                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
597 }
598
599 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
600                                      const u8 *key, unsigned int keylen)
601 {
602         struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
603         struct crypto_blkcipher *blkcipher = *ctx;
604         int err;
605
606         crypto_blkcipher_clear_flags(blkcipher, ~0);
607         crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
608                                               CRYPTO_TFM_REQ_MASK);
609         err = crypto_blkcipher_setkey(blkcipher, key, keylen);
610         crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
611                                        CRYPTO_TFM_RES_MASK);
612         if (unlikely(err)) {
613                 skcipher_set_needkey(tfm);
614                 return err;
615         }
616
617         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
618         return 0;
619 }
620
621 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
622                                     int (*crypt)(struct blkcipher_desc *,
623                                                  struct scatterlist *,
624                                                  struct scatterlist *,
625                                                  unsigned int))
626 {
627         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
628         struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
629         struct blkcipher_desc desc = {
630                 .tfm = *ctx,
631                 .info = req->iv,
632                 .flags = req->base.flags,
633         };
634
635
636         return crypt(&desc, req->dst, req->src, req->cryptlen);
637 }
638
639 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
640 {
641         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
642         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
643         struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
644
645         return skcipher_crypt_blkcipher(req, alg->encrypt);
646 }
647
648 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
649 {
650         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
651         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
652         struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
653
654         return skcipher_crypt_blkcipher(req, alg->decrypt);
655 }
656
657 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
658 {
659         struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
660
661         crypto_free_blkcipher(*ctx);
662 }
663
664 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
665 {
666         struct crypto_alg *calg = tfm->__crt_alg;
667         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
668         struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
669         struct crypto_blkcipher *blkcipher;
670         struct crypto_tfm *btfm;
671
672         if (!crypto_mod_get(calg))
673                 return -EAGAIN;
674
675         btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
676                                         CRYPTO_ALG_TYPE_MASK);
677         if (IS_ERR(btfm)) {
678                 crypto_mod_put(calg);
679                 return PTR_ERR(btfm);
680         }
681
682         blkcipher = __crypto_blkcipher_cast(btfm);
683         *ctx = blkcipher;
684         tfm->exit = crypto_exit_skcipher_ops_blkcipher;
685
686         skcipher->setkey = skcipher_setkey_blkcipher;
687         skcipher->encrypt = skcipher_encrypt_blkcipher;
688         skcipher->decrypt = skcipher_decrypt_blkcipher;
689
690         skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
691         skcipher->keysize = calg->cra_blkcipher.max_keysize;
692
693         skcipher_set_needkey(skcipher);
694
695         return 0;
696 }
697
698 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
699                                       const u8 *key, unsigned int keylen)
700 {
701         struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
702         struct crypto_ablkcipher *ablkcipher = *ctx;
703         int err;
704
705         crypto_ablkcipher_clear_flags(ablkcipher, ~0);
706         crypto_ablkcipher_set_flags(ablkcipher,
707                                     crypto_skcipher_get_flags(tfm) &
708                                     CRYPTO_TFM_REQ_MASK);
709         err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
710         crypto_skcipher_set_flags(tfm,
711                                   crypto_ablkcipher_get_flags(ablkcipher) &
712                                   CRYPTO_TFM_RES_MASK);
713         if (unlikely(err)) {
714                 skcipher_set_needkey(tfm);
715                 return err;
716         }
717
718         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
719         return 0;
720 }
721
722 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
723                                      int (*crypt)(struct ablkcipher_request *))
724 {
725         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
726         struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
727         struct ablkcipher_request *subreq = skcipher_request_ctx(req);
728
729         ablkcipher_request_set_tfm(subreq, *ctx);
730         ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
731                                         req->base.complete, req->base.data);
732         ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
733                                      req->iv);
734
735         return crypt(subreq);
736 }
737
738 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
739 {
740         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
741         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
742         struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
743
744         return skcipher_crypt_ablkcipher(req, alg->encrypt);
745 }
746
747 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
748 {
749         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
750         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
751         struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
752
753         return skcipher_crypt_ablkcipher(req, alg->decrypt);
754 }
755
756 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
757 {
758         struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
759
760         crypto_free_ablkcipher(*ctx);
761 }
762
763 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
764 {
765         struct crypto_alg *calg = tfm->__crt_alg;
766         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
767         struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
768         struct crypto_ablkcipher *ablkcipher;
769         struct crypto_tfm *abtfm;
770
771         if (!crypto_mod_get(calg))
772                 return -EAGAIN;
773
774         abtfm = __crypto_alloc_tfm(calg, 0, 0);
775         if (IS_ERR(abtfm)) {
776                 crypto_mod_put(calg);
777                 return PTR_ERR(abtfm);
778         }
779
780         ablkcipher = __crypto_ablkcipher_cast(abtfm);
781         *ctx = ablkcipher;
782         tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
783
784         skcipher->setkey = skcipher_setkey_ablkcipher;
785         skcipher->encrypt = skcipher_encrypt_ablkcipher;
786         skcipher->decrypt = skcipher_decrypt_ablkcipher;
787
788         skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
789         skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
790                             sizeof(struct ablkcipher_request);
791         skcipher->keysize = calg->cra_ablkcipher.max_keysize;
792
793         skcipher_set_needkey(skcipher);
794
795         return 0;
796 }
797
798 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
799                                      const u8 *key, unsigned int keylen)
800 {
801         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
802         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
803         u8 *buffer, *alignbuffer;
804         unsigned long absize;
805         int ret;
806
807         absize = keylen + alignmask;
808         buffer = kmalloc(absize, GFP_ATOMIC);
809         if (!buffer)
810                 return -ENOMEM;
811
812         alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
813         memcpy(alignbuffer, key, keylen);
814         ret = cipher->setkey(tfm, alignbuffer, keylen);
815         kzfree(buffer);
816         return ret;
817 }
818
819 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
820                            unsigned int keylen)
821 {
822         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
823         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
824         int err;
825
826         if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
827                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
828                 return -EINVAL;
829         }
830
831         if ((unsigned long)key & alignmask)
832                 err = skcipher_setkey_unaligned(tfm, key, keylen);
833         else
834                 err = cipher->setkey(tfm, key, keylen);
835
836         if (unlikely(err)) {
837                 skcipher_set_needkey(tfm);
838                 return err;
839         }
840
841         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
842         return 0;
843 }
844
845 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
846 {
847         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
848         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
849
850         alg->exit(skcipher);
851 }
852
853 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
854 {
855         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
856         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
857
858         if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
859                 return crypto_init_skcipher_ops_blkcipher(tfm);
860
861         if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
862                 return crypto_init_skcipher_ops_ablkcipher(tfm);
863
864         skcipher->setkey = skcipher_setkey;
865         skcipher->encrypt = alg->encrypt;
866         skcipher->decrypt = alg->decrypt;
867         skcipher->ivsize = alg->ivsize;
868         skcipher->keysize = alg->max_keysize;
869
870         skcipher_set_needkey(skcipher);
871
872         if (alg->exit)
873                 skcipher->base.exit = crypto_skcipher_exit_tfm;
874
875         if (alg->init)
876                 return alg->init(skcipher);
877
878         return 0;
879 }
880
881 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
882 {
883         struct skcipher_instance *skcipher =
884                 container_of(inst, struct skcipher_instance, s.base);
885
886         skcipher->free(skcipher);
887 }
888
889 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
890         __maybe_unused;
891 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
892 {
893         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
894                                                      base);
895
896         seq_printf(m, "type         : skcipher\n");
897         seq_printf(m, "async        : %s\n",
898                    alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
899         seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
900         seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
901         seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
902         seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
903         seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
904         seq_printf(m, "walksize     : %u\n", skcipher->walksize);
905 }
906
907 #ifdef CONFIG_NET
908 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
909 {
910         struct crypto_report_blkcipher rblkcipher;
911         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
912                                                      base);
913
914         memset(&rblkcipher, 0, sizeof(rblkcipher));
915
916         strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
917         strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
918
919         rblkcipher.blocksize = alg->cra_blocksize;
920         rblkcipher.min_keysize = skcipher->min_keysize;
921         rblkcipher.max_keysize = skcipher->max_keysize;
922         rblkcipher.ivsize = skcipher->ivsize;
923
924         return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
925                        sizeof(rblkcipher), &rblkcipher);
926 }
927 #else
928 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
929 {
930         return -ENOSYS;
931 }
932 #endif
933
934 static const struct crypto_type crypto_skcipher_type2 = {
935         .extsize = crypto_skcipher_extsize,
936         .init_tfm = crypto_skcipher_init_tfm,
937         .free = crypto_skcipher_free_instance,
938 #ifdef CONFIG_PROC_FS
939         .show = crypto_skcipher_show,
940 #endif
941         .report = crypto_skcipher_report,
942         .maskclear = ~CRYPTO_ALG_TYPE_MASK,
943         .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
944         .type = CRYPTO_ALG_TYPE_SKCIPHER,
945         .tfmsize = offsetof(struct crypto_skcipher, base),
946 };
947
948 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
949                           const char *name, u32 type, u32 mask)
950 {
951         spawn->base.frontend = &crypto_skcipher_type2;
952         return crypto_grab_spawn(&spawn->base, name, type, mask);
953 }
954 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
955
956 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
957                                               u32 type, u32 mask)
958 {
959         return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
960 }
961 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
962
963 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
964                                 const char *alg_name, u32 type, u32 mask)
965 {
966         struct crypto_skcipher *tfm;
967
968         /* Only sync algorithms allowed. */
969         mask |= CRYPTO_ALG_ASYNC;
970
971         tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
972
973         /*
974          * Make sure we do not allocate something that might get used with
975          * an on-stack request: check the request size.
976          */
977         if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
978                                     MAX_SYNC_SKCIPHER_REQSIZE)) {
979                 crypto_free_skcipher(tfm);
980                 return ERR_PTR(-EINVAL);
981         }
982
983         return (struct crypto_sync_skcipher *)tfm;
984 }
985 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
986
987 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
988 {
989         return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
990                                    type, mask);
991 }
992 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
993
994 static int skcipher_prepare_alg(struct skcipher_alg *alg)
995 {
996         struct crypto_alg *base = &alg->base;
997
998         if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
999             alg->walksize > PAGE_SIZE / 8)
1000                 return -EINVAL;
1001
1002         if (!alg->chunksize)
1003                 alg->chunksize = base->cra_blocksize;
1004         if (!alg->walksize)
1005                 alg->walksize = alg->chunksize;
1006
1007         base->cra_type = &crypto_skcipher_type2;
1008         base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
1009         base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
1010
1011         return 0;
1012 }
1013
1014 int crypto_register_skcipher(struct skcipher_alg *alg)
1015 {
1016         struct crypto_alg *base = &alg->base;
1017         int err;
1018
1019         err = skcipher_prepare_alg(alg);
1020         if (err)
1021                 return err;
1022
1023         return crypto_register_alg(base);
1024 }
1025 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
1026
1027 void crypto_unregister_skcipher(struct skcipher_alg *alg)
1028 {
1029         crypto_unregister_alg(&alg->base);
1030 }
1031 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
1032
1033 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
1034 {
1035         int i, ret;
1036
1037         for (i = 0; i < count; i++) {
1038                 ret = crypto_register_skcipher(&algs[i]);
1039                 if (ret)
1040                         goto err;
1041         }
1042
1043         return 0;
1044
1045 err:
1046         for (--i; i >= 0; --i)
1047                 crypto_unregister_skcipher(&algs[i]);
1048
1049         return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1052
1053 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1054 {
1055         int i;
1056
1057         for (i = count - 1; i >= 0; --i)
1058                 crypto_unregister_skcipher(&algs[i]);
1059 }
1060 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1061
1062 int skcipher_register_instance(struct crypto_template *tmpl,
1063                            struct skcipher_instance *inst)
1064 {
1065         int err;
1066
1067         err = skcipher_prepare_alg(&inst->alg);
1068         if (err)
1069                 return err;
1070
1071         return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1072 }
1073 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1074
1075 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
1076                                   unsigned int keylen)
1077 {
1078         struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
1079         int err;
1080
1081         crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
1082         crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
1083                                 CRYPTO_TFM_REQ_MASK);
1084         err = crypto_cipher_setkey(cipher, key, keylen);
1085         crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) &
1086                                   CRYPTO_TFM_RES_MASK);
1087         return err;
1088 }
1089
1090 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
1091 {
1092         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
1093         struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
1094         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1095         struct crypto_cipher *cipher;
1096
1097         cipher = crypto_spawn_cipher(spawn);
1098         if (IS_ERR(cipher))
1099                 return PTR_ERR(cipher);
1100
1101         ctx->cipher = cipher;
1102         return 0;
1103 }
1104
1105 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
1106 {
1107         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1108
1109         crypto_free_cipher(ctx->cipher);
1110 }
1111
1112 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1113 {
1114         crypto_drop_spawn(skcipher_instance_ctx(inst));
1115         kfree(inst);
1116 }
1117
1118 /**
1119  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1120  *
1121  * Allocate an skcipher_instance for a simple block cipher mode of operation,
1122  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1123  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1124  * alignmask, and priority are set from the underlying cipher but can be
1125  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1126  * default ->setkey(), ->init(), and ->exit() methods are installed.
1127  *
1128  * @tmpl: the template being instantiated
1129  * @tb: the template parameters
1130  * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is
1131  *                  returned here.  It must be dropped with crypto_mod_put().
1132  *
1133  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1134  *         needs to register the instance.
1135  */
1136 struct skcipher_instance *
1137 skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb,
1138                                struct crypto_alg **cipher_alg_ret)
1139 {
1140         struct crypto_attr_type *algt;
1141         struct crypto_alg *cipher_alg;
1142         struct skcipher_instance *inst;
1143         struct crypto_spawn *spawn;
1144         u32 mask;
1145         int err;
1146
1147         algt = crypto_get_attr_type(tb);
1148         if (IS_ERR(algt))
1149                 return ERR_CAST(algt);
1150
1151         if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
1152                 return ERR_PTR(-EINVAL);
1153
1154         mask = CRYPTO_ALG_TYPE_MASK |
1155                 crypto_requires_off(algt->type, algt->mask,
1156                                     CRYPTO_ALG_NEED_FALLBACK);
1157
1158         cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
1159         if (IS_ERR(cipher_alg))
1160                 return ERR_CAST(cipher_alg);
1161
1162         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1163         if (!inst) {
1164                 err = -ENOMEM;
1165                 goto err_put_cipher_alg;
1166         }
1167         spawn = skcipher_instance_ctx(inst);
1168
1169         err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1170                                   cipher_alg);
1171         if (err)
1172                 goto err_free_inst;
1173
1174         err = crypto_init_spawn(spawn, cipher_alg,
1175                                 skcipher_crypto_instance(inst),
1176                                 CRYPTO_ALG_TYPE_MASK);
1177         if (err)
1178                 goto err_free_inst;
1179         inst->free = skcipher_free_instance_simple;
1180
1181         /* Default algorithm properties, can be overridden */
1182         inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1183         inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1184         inst->alg.base.cra_priority = cipher_alg->cra_priority;
1185         inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1186         inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1187         inst->alg.ivsize = cipher_alg->cra_blocksize;
1188
1189         /* Use skcipher_ctx_simple by default, can be overridden */
1190         inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1191         inst->alg.setkey = skcipher_setkey_simple;
1192         inst->alg.init = skcipher_init_tfm_simple;
1193         inst->alg.exit = skcipher_exit_tfm_simple;
1194
1195         *cipher_alg_ret = cipher_alg;
1196         return inst;
1197
1198 err_free_inst:
1199         kfree(inst);
1200 err_put_cipher_alg:
1201         crypto_mod_put(cipher_alg);
1202         return ERR_PTR(err);
1203 }
1204 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1205
1206 MODULE_LICENSE("GPL");
1207 MODULE_DESCRIPTION("Symmetric key cipher type");