1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Shared crypto simd helpers
5 * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6 * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7 * Copyright (c) 2019 Google LLC
9 * Based on aesni-intel_glue.c by:
10 * Copyright (C) 2008, Intel Corp.
11 * Author: Huang Ying <ying.huang@intel.com>
15 * Shared crypto SIMD helpers. These functions dynamically create and register
16 * an skcipher or AEAD algorithm that wraps another, internal algorithm. The
17 * wrapper ensures that the internal algorithm is only executed in a context
18 * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19 * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20 * Otherwise it defers execution to a workqueue via cryptd.
22 * This is an alternative to the internal algorithm implementing a fallback for
23 * the !may_use_simd() case itself.
25 * Note that the wrapper algorithm is asynchronous, i.e. it has the
26 * CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
27 * explicitly allocate a synchronous algorithm.
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
39 /* skcipher support */
41 struct simd_skcipher_alg {
42 const char *ialg_name;
43 struct skcipher_alg alg;
46 struct simd_skcipher_ctx {
47 struct cryptd_skcipher *cryptd_tfm;
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
53 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54 struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
56 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
57 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
59 return crypto_skcipher_setkey(child, key, key_len);
62 static int simd_skcipher_encrypt(struct skcipher_request *req)
64 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
65 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66 struct skcipher_request *subreq;
67 struct crypto_skcipher *child;
69 subreq = skcipher_request_ctx(req);
72 if (!crypto_simd_usable() ||
73 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
74 child = &ctx->cryptd_tfm->base;
76 child = cryptd_skcipher_child(ctx->cryptd_tfm);
78 skcipher_request_set_tfm(subreq, child);
80 return crypto_skcipher_encrypt(subreq);
83 static int simd_skcipher_decrypt(struct skcipher_request *req)
85 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
86 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
87 struct skcipher_request *subreq;
88 struct crypto_skcipher *child;
90 subreq = skcipher_request_ctx(req);
93 if (!crypto_simd_usable() ||
94 (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
95 child = &ctx->cryptd_tfm->base;
97 child = cryptd_skcipher_child(ctx->cryptd_tfm);
99 skcipher_request_set_tfm(subreq, child);
101 return crypto_skcipher_decrypt(subreq);
104 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
106 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
108 cryptd_free_skcipher(ctx->cryptd_tfm);
111 static int simd_skcipher_init(struct crypto_skcipher *tfm)
113 struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
114 struct cryptd_skcipher *cryptd_tfm;
115 struct simd_skcipher_alg *salg;
116 struct skcipher_alg *alg;
119 alg = crypto_skcipher_alg(tfm);
120 salg = container_of(alg, struct simd_skcipher_alg, alg);
122 cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
124 CRYPTO_ALG_INTERNAL);
125 if (IS_ERR(cryptd_tfm))
126 return PTR_ERR(cryptd_tfm);
128 ctx->cryptd_tfm = cryptd_tfm;
130 reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
131 reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
132 reqsize += sizeof(struct skcipher_request);
134 crypto_skcipher_set_reqsize(tfm, reqsize);
139 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
141 const char *basename)
143 struct simd_skcipher_alg *salg;
144 struct crypto_skcipher *tfm;
145 struct skcipher_alg *ialg;
146 struct skcipher_alg *alg;
149 tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
150 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
152 return ERR_CAST(tfm);
154 ialg = crypto_skcipher_alg(tfm);
156 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
158 salg = ERR_PTR(-ENOMEM);
162 salg->ialg_name = basename;
166 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
170 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
171 drvname) >= CRYPTO_MAX_ALG_NAME)
174 alg->base.cra_flags = CRYPTO_ALG_ASYNC |
175 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
176 alg->base.cra_priority = ialg->base.cra_priority;
177 alg->base.cra_blocksize = ialg->base.cra_blocksize;
178 alg->base.cra_alignmask = ialg->base.cra_alignmask;
179 alg->base.cra_module = ialg->base.cra_module;
180 alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
182 alg->ivsize = ialg->ivsize;
183 alg->chunksize = ialg->chunksize;
184 alg->min_keysize = ialg->min_keysize;
185 alg->max_keysize = ialg->max_keysize;
187 alg->init = simd_skcipher_init;
188 alg->exit = simd_skcipher_exit;
190 alg->setkey = simd_skcipher_setkey;
191 alg->encrypt = simd_skcipher_encrypt;
192 alg->decrypt = simd_skcipher_decrypt;
194 err = crypto_register_skcipher(alg);
199 crypto_free_skcipher(tfm);
207 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
209 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
210 const char *basename)
212 char drvname[CRYPTO_MAX_ALG_NAME];
214 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
216 return ERR_PTR(-ENAMETOOLONG);
218 return simd_skcipher_create_compat(algname, drvname, basename);
220 EXPORT_SYMBOL_GPL(simd_skcipher_create);
222 void simd_skcipher_free(struct simd_skcipher_alg *salg)
224 crypto_unregister_skcipher(&salg->alg);
227 EXPORT_SYMBOL_GPL(simd_skcipher_free);
229 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
230 struct simd_skcipher_alg **simd_algs)
236 const char *basename;
237 struct simd_skcipher_alg *simd;
239 err = crypto_register_skciphers(algs, count);
243 for (i = 0; i < count; i++) {
244 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
245 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
246 algname = algs[i].base.cra_name + 2;
247 drvname = algs[i].base.cra_driver_name + 2;
248 basename = algs[i].base.cra_driver_name;
249 simd = simd_skcipher_create_compat(algname, drvname, basename);
258 simd_unregister_skciphers(algs, count, simd_algs);
261 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
263 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
264 struct simd_skcipher_alg **simd_algs)
268 crypto_unregister_skciphers(algs, count);
270 for (i = 0; i < count; i++) {
272 simd_skcipher_free(simd_algs[i]);
277 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
281 struct simd_aead_alg {
282 const char *ialg_name;
286 struct simd_aead_ctx {
287 struct cryptd_aead *cryptd_tfm;
290 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
291 unsigned int key_len)
293 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
294 struct crypto_aead *child = &ctx->cryptd_tfm->base;
296 crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
297 crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
298 CRYPTO_TFM_REQ_MASK);
299 return crypto_aead_setkey(child, key, key_len);
302 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
304 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
305 struct crypto_aead *child = &ctx->cryptd_tfm->base;
307 return crypto_aead_setauthsize(child, authsize);
310 static int simd_aead_encrypt(struct aead_request *req)
312 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
313 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
314 struct aead_request *subreq;
315 struct crypto_aead *child;
317 subreq = aead_request_ctx(req);
320 if (!crypto_simd_usable() ||
321 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
322 child = &ctx->cryptd_tfm->base;
324 child = cryptd_aead_child(ctx->cryptd_tfm);
326 aead_request_set_tfm(subreq, child);
328 return crypto_aead_encrypt(subreq);
331 static int simd_aead_decrypt(struct aead_request *req)
333 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
334 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
335 struct aead_request *subreq;
336 struct crypto_aead *child;
338 subreq = aead_request_ctx(req);
341 if (!crypto_simd_usable() ||
342 (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
343 child = &ctx->cryptd_tfm->base;
345 child = cryptd_aead_child(ctx->cryptd_tfm);
347 aead_request_set_tfm(subreq, child);
349 return crypto_aead_decrypt(subreq);
352 static void simd_aead_exit(struct crypto_aead *tfm)
354 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
356 cryptd_free_aead(ctx->cryptd_tfm);
359 static int simd_aead_init(struct crypto_aead *tfm)
361 struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
362 struct cryptd_aead *cryptd_tfm;
363 struct simd_aead_alg *salg;
364 struct aead_alg *alg;
367 alg = crypto_aead_alg(tfm);
368 salg = container_of(alg, struct simd_aead_alg, alg);
370 cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
371 CRYPTO_ALG_INTERNAL);
372 if (IS_ERR(cryptd_tfm))
373 return PTR_ERR(cryptd_tfm);
375 ctx->cryptd_tfm = cryptd_tfm;
377 reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
378 reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
379 reqsize += sizeof(struct aead_request);
381 crypto_aead_set_reqsize(tfm, reqsize);
386 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
388 const char *basename)
390 struct simd_aead_alg *salg;
391 struct crypto_aead *tfm;
392 struct aead_alg *ialg;
393 struct aead_alg *alg;
396 tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
397 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
399 return ERR_CAST(tfm);
401 ialg = crypto_aead_alg(tfm);
403 salg = kzalloc(sizeof(*salg), GFP_KERNEL);
405 salg = ERR_PTR(-ENOMEM);
409 salg->ialg_name = basename;
413 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
417 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
418 drvname) >= CRYPTO_MAX_ALG_NAME)
421 alg->base.cra_flags = CRYPTO_ALG_ASYNC |
422 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
423 alg->base.cra_priority = ialg->base.cra_priority;
424 alg->base.cra_blocksize = ialg->base.cra_blocksize;
425 alg->base.cra_alignmask = ialg->base.cra_alignmask;
426 alg->base.cra_module = ialg->base.cra_module;
427 alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
429 alg->ivsize = ialg->ivsize;
430 alg->maxauthsize = ialg->maxauthsize;
431 alg->chunksize = ialg->chunksize;
433 alg->init = simd_aead_init;
434 alg->exit = simd_aead_exit;
436 alg->setkey = simd_aead_setkey;
437 alg->setauthsize = simd_aead_setauthsize;
438 alg->encrypt = simd_aead_encrypt;
439 alg->decrypt = simd_aead_decrypt;
441 err = crypto_register_aead(alg);
446 crypto_free_aead(tfm);
454 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
456 struct simd_aead_alg *simd_aead_create(const char *algname,
457 const char *basename)
459 char drvname[CRYPTO_MAX_ALG_NAME];
461 if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
463 return ERR_PTR(-ENAMETOOLONG);
465 return simd_aead_create_compat(algname, drvname, basename);
467 EXPORT_SYMBOL_GPL(simd_aead_create);
469 void simd_aead_free(struct simd_aead_alg *salg)
471 crypto_unregister_aead(&salg->alg);
474 EXPORT_SYMBOL_GPL(simd_aead_free);
476 int simd_register_aeads_compat(struct aead_alg *algs, int count,
477 struct simd_aead_alg **simd_algs)
483 const char *basename;
484 struct simd_aead_alg *simd;
486 err = crypto_register_aeads(algs, count);
490 for (i = 0; i < count; i++) {
491 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
492 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
493 algname = algs[i].base.cra_name + 2;
494 drvname = algs[i].base.cra_driver_name + 2;
495 basename = algs[i].base.cra_driver_name;
496 simd = simd_aead_create_compat(algname, drvname, basename);
505 simd_unregister_aeads(algs, count, simd_algs);
508 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
510 void simd_unregister_aeads(struct aead_alg *algs, int count,
511 struct simd_aead_alg **simd_algs)
515 crypto_unregister_aeads(algs, count);
517 for (i = 0; i < count; i++) {
519 simd_aead_free(simd_algs[i]);
524 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
526 MODULE_LICENSE("GPL");