Merge tag 'hwlock-v5.3' of git://github.com/andersson/remoteproc
[linux-2.6-microblaze.git] / crypto / sha3_generic.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Cryptographic API.
4  *
5  * SHA-3, as specified in
6  * http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
7  *
8  * SHA-3 code by Jeff Garzik <jeff@garzik.org>
9  *               Ard Biesheuvel <ard.biesheuvel@linaro.org>
10  */
11 #include <crypto/internal/hash.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <crypto/sha3.h>
16 #include <asm/unaligned.h>
17
18 /*
19  * On some 32-bit architectures (h8300), GCC ends up using
20  * over 1 KB of stack if we inline the round calculation into the loop
21  * in keccakf(). On the other hand, on 64-bit architectures with plenty
22  * of [64-bit wide] general purpose registers, not inlining it severely
23  * hurts performance. So let's use 64-bitness as a heuristic to decide
24  * whether to inline or not.
25  */
26 #ifdef CONFIG_64BIT
27 #define SHA3_INLINE     inline
28 #else
29 #define SHA3_INLINE     noinline
30 #endif
31
32 #define KECCAK_ROUNDS 24
33
34 static const u64 keccakf_rndc[24] = {
35         0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
36         0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
37         0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
38         0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
39         0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
40         0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
41         0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
42         0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
43 };
44
45 /* update the state with given number of rounds */
46
47 static SHA3_INLINE void keccakf_round(u64 st[25])
48 {
49         u64 t[5], tt, bc[5];
50
51         /* Theta */
52         bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
53         bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
54         bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
55         bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
56         bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
57
58         t[0] = bc[4] ^ rol64(bc[1], 1);
59         t[1] = bc[0] ^ rol64(bc[2], 1);
60         t[2] = bc[1] ^ rol64(bc[3], 1);
61         t[3] = bc[2] ^ rol64(bc[4], 1);
62         t[4] = bc[3] ^ rol64(bc[0], 1);
63
64         st[0] ^= t[0];
65
66         /* Rho Pi */
67         tt = st[1];
68         st[ 1] = rol64(st[ 6] ^ t[1], 44);
69         st[ 6] = rol64(st[ 9] ^ t[4], 20);
70         st[ 9] = rol64(st[22] ^ t[2], 61);
71         st[22] = rol64(st[14] ^ t[4], 39);
72         st[14] = rol64(st[20] ^ t[0], 18);
73         st[20] = rol64(st[ 2] ^ t[2], 62);
74         st[ 2] = rol64(st[12] ^ t[2], 43);
75         st[12] = rol64(st[13] ^ t[3], 25);
76         st[13] = rol64(st[19] ^ t[4],  8);
77         st[19] = rol64(st[23] ^ t[3], 56);
78         st[23] = rol64(st[15] ^ t[0], 41);
79         st[15] = rol64(st[ 4] ^ t[4], 27);
80         st[ 4] = rol64(st[24] ^ t[4], 14);
81         st[24] = rol64(st[21] ^ t[1],  2);
82         st[21] = rol64(st[ 8] ^ t[3], 55);
83         st[ 8] = rol64(st[16] ^ t[1], 45);
84         st[16] = rol64(st[ 5] ^ t[0], 36);
85         st[ 5] = rol64(st[ 3] ^ t[3], 28);
86         st[ 3] = rol64(st[18] ^ t[3], 21);
87         st[18] = rol64(st[17] ^ t[2], 15);
88         st[17] = rol64(st[11] ^ t[1], 10);
89         st[11] = rol64(st[ 7] ^ t[2],  6);
90         st[ 7] = rol64(st[10] ^ t[0],  3);
91         st[10] = rol64(    tt ^ t[1],  1);
92
93         /* Chi */
94         bc[ 0] = ~st[ 1] & st[ 2];
95         bc[ 1] = ~st[ 2] & st[ 3];
96         bc[ 2] = ~st[ 3] & st[ 4];
97         bc[ 3] = ~st[ 4] & st[ 0];
98         bc[ 4] = ~st[ 0] & st[ 1];
99         st[ 0] ^= bc[ 0];
100         st[ 1] ^= bc[ 1];
101         st[ 2] ^= bc[ 2];
102         st[ 3] ^= bc[ 3];
103         st[ 4] ^= bc[ 4];
104
105         bc[ 0] = ~st[ 6] & st[ 7];
106         bc[ 1] = ~st[ 7] & st[ 8];
107         bc[ 2] = ~st[ 8] & st[ 9];
108         bc[ 3] = ~st[ 9] & st[ 5];
109         bc[ 4] = ~st[ 5] & st[ 6];
110         st[ 5] ^= bc[ 0];
111         st[ 6] ^= bc[ 1];
112         st[ 7] ^= bc[ 2];
113         st[ 8] ^= bc[ 3];
114         st[ 9] ^= bc[ 4];
115
116         bc[ 0] = ~st[11] & st[12];
117         bc[ 1] = ~st[12] & st[13];
118         bc[ 2] = ~st[13] & st[14];
119         bc[ 3] = ~st[14] & st[10];
120         bc[ 4] = ~st[10] & st[11];
121         st[10] ^= bc[ 0];
122         st[11] ^= bc[ 1];
123         st[12] ^= bc[ 2];
124         st[13] ^= bc[ 3];
125         st[14] ^= bc[ 4];
126
127         bc[ 0] = ~st[16] & st[17];
128         bc[ 1] = ~st[17] & st[18];
129         bc[ 2] = ~st[18] & st[19];
130         bc[ 3] = ~st[19] & st[15];
131         bc[ 4] = ~st[15] & st[16];
132         st[15] ^= bc[ 0];
133         st[16] ^= bc[ 1];
134         st[17] ^= bc[ 2];
135         st[18] ^= bc[ 3];
136         st[19] ^= bc[ 4];
137
138         bc[ 0] = ~st[21] & st[22];
139         bc[ 1] = ~st[22] & st[23];
140         bc[ 2] = ~st[23] & st[24];
141         bc[ 3] = ~st[24] & st[20];
142         bc[ 4] = ~st[20] & st[21];
143         st[20] ^= bc[ 0];
144         st[21] ^= bc[ 1];
145         st[22] ^= bc[ 2];
146         st[23] ^= bc[ 3];
147         st[24] ^= bc[ 4];
148 }
149
150 static void keccakf(u64 st[25])
151 {
152         int round;
153
154         for (round = 0; round < KECCAK_ROUNDS; round++) {
155                 keccakf_round(st);
156                 /* Iota */
157                 st[0] ^= keccakf_rndc[round];
158         }
159 }
160
161 int crypto_sha3_init(struct shash_desc *desc)
162 {
163         struct sha3_state *sctx = shash_desc_ctx(desc);
164         unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
165
166         sctx->rsiz = 200 - 2 * digest_size;
167         sctx->rsizw = sctx->rsiz / 8;
168         sctx->partial = 0;
169
170         memset(sctx->st, 0, sizeof(sctx->st));
171         return 0;
172 }
173 EXPORT_SYMBOL(crypto_sha3_init);
174
175 int crypto_sha3_update(struct shash_desc *desc, const u8 *data,
176                        unsigned int len)
177 {
178         struct sha3_state *sctx = shash_desc_ctx(desc);
179         unsigned int done;
180         const u8 *src;
181
182         done = 0;
183         src = data;
184
185         if ((sctx->partial + len) > (sctx->rsiz - 1)) {
186                 if (sctx->partial) {
187                         done = -sctx->partial;
188                         memcpy(sctx->buf + sctx->partial, data,
189                                done + sctx->rsiz);
190                         src = sctx->buf;
191                 }
192
193                 do {
194                         unsigned int i;
195
196                         for (i = 0; i < sctx->rsizw; i++)
197                                 sctx->st[i] ^= get_unaligned_le64(src + 8 * i);
198                         keccakf(sctx->st);
199
200                         done += sctx->rsiz;
201                         src = data + done;
202                 } while (done + (sctx->rsiz - 1) < len);
203
204                 sctx->partial = 0;
205         }
206         memcpy(sctx->buf + sctx->partial, src, len - done);
207         sctx->partial += (len - done);
208
209         return 0;
210 }
211 EXPORT_SYMBOL(crypto_sha3_update);
212
213 int crypto_sha3_final(struct shash_desc *desc, u8 *out)
214 {
215         struct sha3_state *sctx = shash_desc_ctx(desc);
216         unsigned int i, inlen = sctx->partial;
217         unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
218         __le64 *digest = (__le64 *)out;
219
220         sctx->buf[inlen++] = 0x06;
221         memset(sctx->buf + inlen, 0, sctx->rsiz - inlen);
222         sctx->buf[sctx->rsiz - 1] |= 0x80;
223
224         for (i = 0; i < sctx->rsizw; i++)
225                 sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i);
226
227         keccakf(sctx->st);
228
229         for (i = 0; i < digest_size / 8; i++)
230                 put_unaligned_le64(sctx->st[i], digest++);
231
232         if (digest_size & 4)
233                 put_unaligned_le32(sctx->st[i], (__le32 *)digest);
234
235         memset(sctx, 0, sizeof(*sctx));
236         return 0;
237 }
238 EXPORT_SYMBOL(crypto_sha3_final);
239
240 static struct shash_alg algs[] = { {
241         .digestsize             = SHA3_224_DIGEST_SIZE,
242         .init                   = crypto_sha3_init,
243         .update                 = crypto_sha3_update,
244         .final                  = crypto_sha3_final,
245         .descsize               = sizeof(struct sha3_state),
246         .base.cra_name          = "sha3-224",
247         .base.cra_driver_name   = "sha3-224-generic",
248         .base.cra_blocksize     = SHA3_224_BLOCK_SIZE,
249         .base.cra_module        = THIS_MODULE,
250 }, {
251         .digestsize             = SHA3_256_DIGEST_SIZE,
252         .init                   = crypto_sha3_init,
253         .update                 = crypto_sha3_update,
254         .final                  = crypto_sha3_final,
255         .descsize               = sizeof(struct sha3_state),
256         .base.cra_name          = "sha3-256",
257         .base.cra_driver_name   = "sha3-256-generic",
258         .base.cra_blocksize     = SHA3_256_BLOCK_SIZE,
259         .base.cra_module        = THIS_MODULE,
260 }, {
261         .digestsize             = SHA3_384_DIGEST_SIZE,
262         .init                   = crypto_sha3_init,
263         .update                 = crypto_sha3_update,
264         .final                  = crypto_sha3_final,
265         .descsize               = sizeof(struct sha3_state),
266         .base.cra_name          = "sha3-384",
267         .base.cra_driver_name   = "sha3-384-generic",
268         .base.cra_blocksize     = SHA3_384_BLOCK_SIZE,
269         .base.cra_module        = THIS_MODULE,
270 }, {
271         .digestsize             = SHA3_512_DIGEST_SIZE,
272         .init                   = crypto_sha3_init,
273         .update                 = crypto_sha3_update,
274         .final                  = crypto_sha3_final,
275         .descsize               = sizeof(struct sha3_state),
276         .base.cra_name          = "sha3-512",
277         .base.cra_driver_name   = "sha3-512-generic",
278         .base.cra_blocksize     = SHA3_512_BLOCK_SIZE,
279         .base.cra_module        = THIS_MODULE,
280 } };
281
282 static int __init sha3_generic_mod_init(void)
283 {
284         return crypto_register_shashes(algs, ARRAY_SIZE(algs));
285 }
286
287 static void __exit sha3_generic_mod_fini(void)
288 {
289         crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
290 }
291
292 subsys_initcall(sha3_generic_mod_init);
293 module_exit(sha3_generic_mod_fini);
294
295 MODULE_LICENSE("GPL");
296 MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm");
297
298 MODULE_ALIAS_CRYPTO("sha3-224");
299 MODULE_ALIAS_CRYPTO("sha3-224-generic");
300 MODULE_ALIAS_CRYPTO("sha3-256");
301 MODULE_ALIAS_CRYPTO("sha3-256-generic");
302 MODULE_ALIAS_CRYPTO("sha3-384");
303 MODULE_ALIAS_CRYPTO("sha3-384-generic");
304 MODULE_ALIAS_CRYPTO("sha3-512");
305 MODULE_ALIAS_CRYPTO("sha3-512-generic");