1 /* gf128mul.c - GF(2^128) multiplication functions
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8 * See the original copyright notice below.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
47 This file provides fast multiplication in GF(2^128) as required by several
48 cryptographic authentication modes
51 #include <crypto/gf128mul.h>
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/slab.h>
56 #define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
92 * Given a value i in 0..255 as the byte overflow when a field element
93 * in GF(2^128) is multiplied by x^8, the following macro returns the
94 * 16-bit value that must be XOR-ed into the low-degree end of the
95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
97 * There are two versions of the macro, and hence two tables: one for
98 * the "be" convention where the highest-order bit is the coefficient of
99 * the highest-degree polynomial term, and one for the "le" convention
100 * where the highest-order bit is the coefficient of the lowest-degree
101 * polynomial term. In both cases the values are stored in CPU byte
102 * endianness such that the coefficients are ordered consistently across
103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
104 * correspond to the coefficients of x^15..x^0, and in the "le" table
105 * bits 15..0 correspond to the coefficients of x^0..x^15.
107 * Therefore, provided that the appropriate byte endianness conversions
108 * are done by the multiplication functions (and these must be in place
109 * anyway to support both little endian and big endian CPUs), the "be"
110 * table can be used for multiplications of both "bbe" and "ble"
111 * elements, and the "le" table can be used for multiplications of both
112 * "lle" and "lbe" elements.
115 #define xda_be(i) ( \
116 (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117 (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118 (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119 (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
122 #define xda_le(i) ( \
123 (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124 (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125 (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126 (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
129 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
133 * The following functions multiply a field element by x^8 in
134 * the polynomial field representation. They use 64-bit word operations
135 * to gain speed but compensate for machine endianness and hence work
136 * correctly on both styles of machine.
139 static void gf128mul_x8_lle(be128 *x)
141 u64 a = be64_to_cpu(x->a);
142 u64 b = be64_to_cpu(x->b);
143 u64 _tt = gf128mul_table_le[b & 0xff];
145 x->b = cpu_to_be64((b >> 8) | (a << 56));
146 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
149 static void gf128mul_x8_bbe(be128 *x)
151 u64 a = be64_to_cpu(x->a);
152 u64 b = be64_to_cpu(x->b);
153 u64 _tt = gf128mul_table_be[a >> 56];
155 x->a = cpu_to_be64((a << 8) | (b >> 56));
156 x->b = cpu_to_be64((b << 8) ^ _tt);
159 void gf128mul_lle(be128 *r, const be128 *b)
165 for (i = 0; i < 7; ++i)
166 gf128mul_x_lle(&p[i + 1], &p[i]);
168 memset(r, 0, sizeof(*r));
170 u8 ch = ((u8 *)b)[15 - i];
173 be128_xor(r, r, &p[0]);
175 be128_xor(r, r, &p[1]);
177 be128_xor(r, r, &p[2]);
179 be128_xor(r, r, &p[3]);
181 be128_xor(r, r, &p[4]);
183 be128_xor(r, r, &p[5]);
185 be128_xor(r, r, &p[6]);
187 be128_xor(r, r, &p[7]);
195 EXPORT_SYMBOL(gf128mul_lle);
197 void gf128mul_bbe(be128 *r, const be128 *b)
203 for (i = 0; i < 7; ++i)
204 gf128mul_x_bbe(&p[i + 1], &p[i]);
206 memset(r, 0, sizeof(*r));
208 u8 ch = ((u8 *)b)[i];
211 be128_xor(r, r, &p[7]);
213 be128_xor(r, r, &p[6]);
215 be128_xor(r, r, &p[5]);
217 be128_xor(r, r, &p[4]);
219 be128_xor(r, r, &p[3]);
221 be128_xor(r, r, &p[2]);
223 be128_xor(r, r, &p[1]);
225 be128_xor(r, r, &p[0]);
233 EXPORT_SYMBOL(gf128mul_bbe);
235 /* This version uses 64k bytes of table space.
236 A 16 byte buffer has to be multiplied by a 16 byte key
237 value in GF(2^128). If we consider a GF(2^128) value in
238 the buffer's lowest byte, we can construct a table of
239 the 256 16 byte values that result from the 256 values
240 of this byte. This requires 4096 bytes. But we also
241 need tables for each of the 16 higher bytes in the
242 buffer as well, which makes 64 kbytes in total.
244 /* additional explanation
245 * t[0][BYTE] contains g*BYTE
246 * t[1][BYTE] contains g*x^8*BYTE
248 * t[15][BYTE] contains g*x^120*BYTE */
249 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
251 struct gf128mul_64k *t;
254 t = kzalloc(sizeof(*t), GFP_KERNEL);
258 for (i = 0; i < 16; i++) {
259 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
261 gf128mul_free_64k(t);
268 for (j = 1; j <= 64; j <<= 1)
269 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
272 for (j = 2; j < 256; j += j)
273 for (k = 1; k < j; ++k)
274 be128_xor(&t->t[i]->t[j + k],
275 &t->t[i]->t[j], &t->t[i]->t[k]);
280 for (j = 128; j > 0; j >>= 1) {
281 t->t[i]->t[j] = t->t[i - 1]->t[j];
282 gf128mul_x8_bbe(&t->t[i]->t[j]);
289 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
291 void gf128mul_free_64k(struct gf128mul_64k *t)
295 for (i = 0; i < 16; i++)
299 EXPORT_SYMBOL(gf128mul_free_64k);
301 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
307 *r = t->t[0]->t[ap[15]];
308 for (i = 1; i < 16; ++i)
309 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
312 EXPORT_SYMBOL(gf128mul_64k_bbe);
314 /* This version uses 4k bytes of table space.
315 A 16 byte buffer has to be multiplied by a 16 byte key
316 value in GF(2^128). If we consider a GF(2^128) value in a
317 single byte, we can construct a table of the 256 16 byte
318 values that result from the 256 values of this byte.
319 This requires 4096 bytes. If we take the highest byte in
320 the buffer and use this table to get the result, we then
321 have to multiply by x^120 to get the final value. For the
322 next highest byte the result has to be multiplied by x^112
323 and so on. But we can do this by accumulating the result
324 in an accumulator starting with the result for the top
325 byte. We repeatedly multiply the accumulator value by
326 x^8 and then add in (i.e. xor) the 16 bytes of the next
327 lower byte in the buffer, stopping when we reach the
328 lowest byte. This requires a 4096 byte table.
330 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
332 struct gf128mul_4k *t;
335 t = kzalloc(sizeof(*t), GFP_KERNEL);
340 for (j = 64; j > 0; j >>= 1)
341 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
343 for (j = 2; j < 256; j += j)
344 for (k = 1; k < j; ++k)
345 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
350 EXPORT_SYMBOL(gf128mul_init_4k_lle);
352 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
354 struct gf128mul_4k *t;
357 t = kzalloc(sizeof(*t), GFP_KERNEL);
362 for (j = 1; j <= 64; j <<= 1)
363 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
365 for (j = 2; j < 256; j += j)
366 for (k = 1; k < j; ++k)
367 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
372 EXPORT_SYMBOL(gf128mul_init_4k_bbe);
374 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
383 be128_xor(r, r, &t->t[ap[i]]);
387 EXPORT_SYMBOL(gf128mul_4k_lle);
389 void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
398 be128_xor(r, r, &t->t[ap[i]]);
402 EXPORT_SYMBOL(gf128mul_4k_bbe);
404 MODULE_LICENSE("GPL");
405 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");