Merge tag 'xfs-6.5-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / crypto / asymmetric_keys / x509_public_key.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <crypto/hash.h>
10 #include <crypto/sm2.h>
11 #include <keys/asymmetric-parser.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/system_keyring.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include "asymmetric_keys.h"
19 #include "x509_parser.h"
20
21 /*
22  * Set up the signature parameters in an X.509 certificate.  This involves
23  * digesting the signed data and extracting the signature.
24  */
25 int x509_get_sig_params(struct x509_certificate *cert)
26 {
27         struct public_key_signature *sig = cert->sig;
28         struct crypto_shash *tfm;
29         struct shash_desc *desc;
30         size_t desc_size;
31         int ret;
32
33         pr_devel("==>%s()\n", __func__);
34
35         sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
36         if (!sig->s)
37                 return -ENOMEM;
38
39         sig->s_size = cert->raw_sig_size;
40
41         /* Allocate the hashing algorithm we're going to need and find out how
42          * big the hash operational data will be.
43          */
44         tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
45         if (IS_ERR(tfm)) {
46                 if (PTR_ERR(tfm) == -ENOENT) {
47                         cert->unsupported_sig = true;
48                         return 0;
49                 }
50                 return PTR_ERR(tfm);
51         }
52
53         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
54         sig->digest_size = crypto_shash_digestsize(tfm);
55
56         ret = -ENOMEM;
57         sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
58         if (!sig->digest)
59                 goto error;
60
61         desc = kzalloc(desc_size, GFP_KERNEL);
62         if (!desc)
63                 goto error;
64
65         desc->tfm = tfm;
66
67         if (strcmp(cert->pub->pkey_algo, "sm2") == 0) {
68                 ret = strcmp(sig->hash_algo, "sm3") != 0 ? -EINVAL :
69                       crypto_shash_init(desc) ?:
70                       sm2_compute_z_digest(desc, cert->pub->key,
71                                            cert->pub->keylen, sig->digest) ?:
72                       crypto_shash_init(desc) ?:
73                       crypto_shash_update(desc, sig->digest,
74                                           sig->digest_size) ?:
75                       crypto_shash_finup(desc, cert->tbs, cert->tbs_size,
76                                          sig->digest);
77         } else {
78                 ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size,
79                                           sig->digest);
80         }
81
82         if (ret < 0)
83                 goto error_2;
84
85         ret = is_hash_blacklisted(sig->digest, sig->digest_size,
86                                   BLACKLIST_HASH_X509_TBS);
87         if (ret == -EKEYREJECTED) {
88                 pr_err("Cert %*phN is blacklisted\n",
89                        sig->digest_size, sig->digest);
90                 cert->blacklisted = true;
91                 ret = 0;
92         }
93
94 error_2:
95         kfree(desc);
96 error:
97         crypto_free_shash(tfm);
98         pr_devel("<==%s() = %d\n", __func__, ret);
99         return ret;
100 }
101
102 /*
103  * Check for self-signedness in an X.509 cert and if found, check the signature
104  * immediately if we can.
105  */
106 int x509_check_for_self_signed(struct x509_certificate *cert)
107 {
108         int ret = 0;
109
110         pr_devel("==>%s()\n", __func__);
111
112         if (cert->raw_subject_size != cert->raw_issuer_size ||
113             memcmp(cert->raw_subject, cert->raw_issuer,
114                    cert->raw_issuer_size) != 0)
115                 goto not_self_signed;
116
117         if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
118                 /* If the AKID is present it may have one or two parts.  If
119                  * both are supplied, both must match.
120                  */
121                 bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
122                 bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
123
124                 if (!a && !b)
125                         goto not_self_signed;
126
127                 ret = -EKEYREJECTED;
128                 if (((a && !b) || (b && !a)) &&
129                     cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
130                         goto out;
131         }
132
133         ret = public_key_verify_signature(cert->pub, cert->sig);
134         if (ret < 0) {
135                 if (ret == -ENOPKG) {
136                         cert->unsupported_sig = true;
137                         ret = 0;
138                 }
139                 goto out;
140         }
141
142         pr_devel("Cert Self-signature verified");
143         cert->self_signed = true;
144
145 out:
146         pr_devel("<==%s() = %d\n", __func__, ret);
147         return ret;
148
149 not_self_signed:
150         pr_devel("<==%s() = 0 [not]\n", __func__);
151         return 0;
152 }
153
154 /*
155  * Attempt to parse a data blob for a key as an X509 certificate.
156  */
157 static int x509_key_preparse(struct key_preparsed_payload *prep)
158 {
159         struct asymmetric_key_ids *kids;
160         struct x509_certificate *cert;
161         const char *q;
162         size_t srlen, sulen;
163         char *desc = NULL, *p;
164         int ret;
165
166         cert = x509_cert_parse(prep->data, prep->datalen);
167         if (IS_ERR(cert))
168                 return PTR_ERR(cert);
169
170         pr_devel("Cert Issuer: %s\n", cert->issuer);
171         pr_devel("Cert Subject: %s\n", cert->subject);
172         pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
173         pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
174
175         cert->pub->id_type = "X509";
176
177         if (cert->unsupported_sig) {
178                 public_key_signature_free(cert->sig);
179                 cert->sig = NULL;
180         } else {
181                 pr_devel("Cert Signature: %s + %s\n",
182                          cert->sig->pkey_algo, cert->sig->hash_algo);
183         }
184
185         /* Don't permit addition of blacklisted keys */
186         ret = -EKEYREJECTED;
187         if (cert->blacklisted)
188                 goto error_free_cert;
189
190         /* Propose a description */
191         sulen = strlen(cert->subject);
192         if (cert->raw_skid) {
193                 srlen = cert->raw_skid_size;
194                 q = cert->raw_skid;
195         } else {
196                 srlen = cert->raw_serial_size;
197                 q = cert->raw_serial;
198         }
199
200         ret = -ENOMEM;
201         desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
202         if (!desc)
203                 goto error_free_cert;
204         p = memcpy(desc, cert->subject, sulen);
205         p += sulen;
206         *p++ = ':';
207         *p++ = ' ';
208         p = bin2hex(p, q, srlen);
209         *p = 0;
210
211         kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
212         if (!kids)
213                 goto error_free_desc;
214         kids->id[0] = cert->id;
215         kids->id[1] = cert->skid;
216         kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
217                                                  cert->raw_subject_size,
218                                                  "", 0);
219         if (IS_ERR(kids->id[2])) {
220                 ret = PTR_ERR(kids->id[2]);
221                 goto error_free_kids;
222         }
223
224         /* We're pinning the module by being linked against it */
225         __module_get(public_key_subtype.owner);
226         prep->payload.data[asym_subtype] = &public_key_subtype;
227         prep->payload.data[asym_key_ids] = kids;
228         prep->payload.data[asym_crypto] = cert->pub;
229         prep->payload.data[asym_auth] = cert->sig;
230         prep->description = desc;
231         prep->quotalen = 100;
232
233         /* We've finished with the certificate */
234         cert->pub = NULL;
235         cert->id = NULL;
236         cert->skid = NULL;
237         cert->sig = NULL;
238         desc = NULL;
239         kids = NULL;
240         ret = 0;
241
242 error_free_kids:
243         kfree(kids);
244 error_free_desc:
245         kfree(desc);
246 error_free_cert:
247         x509_free_certificate(cert);
248         return ret;
249 }
250
251 static struct asymmetric_key_parser x509_key_parser = {
252         .owner  = THIS_MODULE,
253         .name   = "x509",
254         .parse  = x509_key_preparse,
255 };
256
257 /*
258  * Module stuff
259  */
260 extern int __init certs_selftest(void);
261 static int __init x509_key_init(void)
262 {
263         int ret;
264
265         ret = register_asymmetric_key_parser(&x509_key_parser);
266         if (ret < 0)
267                 return ret;
268         return fips_signature_selftest();
269 }
270
271 static void __exit x509_key_exit(void)
272 {
273         unregister_asymmetric_key_parser(&x509_key_parser);
274 }
275
276 module_init(x509_key_init);
277 module_exit(x509_key_exit);
278
279 MODULE_DESCRIPTION("X.509 certificate parser");
280 MODULE_AUTHOR("Red Hat, Inc.");
281 MODULE_LICENSE("GPL");