Merge tag 'io_uring-5.19-2022-07-01' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / crypto / asymmetric_keys / x509_public_key.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/asymmetric-parser.h>
14 #include <keys/system_keyring.h>
15 #include <crypto/hash.h>
16 #include "asymmetric_keys.h"
17 #include "x509_parser.h"
18
19 /*
20  * Set up the signature parameters in an X.509 certificate.  This involves
21  * digesting the signed data and extracting the signature.
22  */
23 int x509_get_sig_params(struct x509_certificate *cert)
24 {
25         struct public_key_signature *sig = cert->sig;
26         struct crypto_shash *tfm;
27         struct shash_desc *desc;
28         size_t desc_size;
29         int ret;
30
31         pr_devel("==>%s()\n", __func__);
32
33         sig->data = cert->tbs;
34         sig->data_size = cert->tbs_size;
35
36         sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
37         if (!sig->s)
38                 return -ENOMEM;
39
40         sig->s_size = cert->raw_sig_size;
41
42         /* Allocate the hashing algorithm we're going to need and find out how
43          * big the hash operational data will be.
44          */
45         tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
46         if (IS_ERR(tfm)) {
47                 if (PTR_ERR(tfm) == -ENOENT) {
48                         cert->unsupported_sig = true;
49                         return 0;
50                 }
51                 return PTR_ERR(tfm);
52         }
53
54         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
55         sig->digest_size = crypto_shash_digestsize(tfm);
56
57         ret = -ENOMEM;
58         sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
59         if (!sig->digest)
60                 goto error;
61
62         desc = kzalloc(desc_size, GFP_KERNEL);
63         if (!desc)
64                 goto error;
65
66         desc->tfm = tfm;
67
68         ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
69         if (ret < 0)
70                 goto error_2;
71
72         ret = is_hash_blacklisted(sig->digest, sig->digest_size,
73                                   BLACKLIST_HASH_X509_TBS);
74         if (ret == -EKEYREJECTED) {
75                 pr_err("Cert %*phN is blacklisted\n",
76                        sig->digest_size, sig->digest);
77                 cert->blacklisted = true;
78                 ret = 0;
79         }
80
81 error_2:
82         kfree(desc);
83 error:
84         crypto_free_shash(tfm);
85         pr_devel("<==%s() = %d\n", __func__, ret);
86         return ret;
87 }
88
89 /*
90  * Check for self-signedness in an X.509 cert and if found, check the signature
91  * immediately if we can.
92  */
93 int x509_check_for_self_signed(struct x509_certificate *cert)
94 {
95         int ret = 0;
96
97         pr_devel("==>%s()\n", __func__);
98
99         if (cert->raw_subject_size != cert->raw_issuer_size ||
100             memcmp(cert->raw_subject, cert->raw_issuer,
101                    cert->raw_issuer_size) != 0)
102                 goto not_self_signed;
103
104         if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
105                 /* If the AKID is present it may have one or two parts.  If
106                  * both are supplied, both must match.
107                  */
108                 bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
109                 bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
110
111                 if (!a && !b)
112                         goto not_self_signed;
113
114                 ret = -EKEYREJECTED;
115                 if (((a && !b) || (b && !a)) &&
116                     cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
117                         goto out;
118         }
119
120         ret = public_key_verify_signature(cert->pub, cert->sig);
121         if (ret < 0) {
122                 if (ret == -ENOPKG) {
123                         cert->unsupported_sig = true;
124                         ret = 0;
125                 }
126                 goto out;
127         }
128
129         pr_devel("Cert Self-signature verified");
130         cert->self_signed = true;
131
132 out:
133         pr_devel("<==%s() = %d\n", __func__, ret);
134         return ret;
135
136 not_self_signed:
137         pr_devel("<==%s() = 0 [not]\n", __func__);
138         return 0;
139 }
140
141 /*
142  * Attempt to parse a data blob for a key as an X509 certificate.
143  */
144 static int x509_key_preparse(struct key_preparsed_payload *prep)
145 {
146         struct asymmetric_key_ids *kids;
147         struct x509_certificate *cert;
148         const char *q;
149         size_t srlen, sulen;
150         char *desc = NULL, *p;
151         int ret;
152
153         cert = x509_cert_parse(prep->data, prep->datalen);
154         if (IS_ERR(cert))
155                 return PTR_ERR(cert);
156
157         pr_devel("Cert Issuer: %s\n", cert->issuer);
158         pr_devel("Cert Subject: %s\n", cert->subject);
159         pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
160         pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
161
162         cert->pub->id_type = "X509";
163
164         if (cert->unsupported_sig) {
165                 public_key_signature_free(cert->sig);
166                 cert->sig = NULL;
167         } else {
168                 pr_devel("Cert Signature: %s + %s\n",
169                          cert->sig->pkey_algo, cert->sig->hash_algo);
170         }
171
172         /* Don't permit addition of blacklisted keys */
173         ret = -EKEYREJECTED;
174         if (cert->blacklisted)
175                 goto error_free_cert;
176
177         /* Propose a description */
178         sulen = strlen(cert->subject);
179         if (cert->raw_skid) {
180                 srlen = cert->raw_skid_size;
181                 q = cert->raw_skid;
182         } else {
183                 srlen = cert->raw_serial_size;
184                 q = cert->raw_serial;
185         }
186
187         ret = -ENOMEM;
188         desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
189         if (!desc)
190                 goto error_free_cert;
191         p = memcpy(desc, cert->subject, sulen);
192         p += sulen;
193         *p++ = ':';
194         *p++ = ' ';
195         p = bin2hex(p, q, srlen);
196         *p = 0;
197
198         kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
199         if (!kids)
200                 goto error_free_desc;
201         kids->id[0] = cert->id;
202         kids->id[1] = cert->skid;
203         kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
204                                                  cert->raw_subject_size,
205                                                  "", 0);
206         if (IS_ERR(kids->id[2])) {
207                 ret = PTR_ERR(kids->id[2]);
208                 goto error_free_kids;
209         }
210
211         /* We're pinning the module by being linked against it */
212         __module_get(public_key_subtype.owner);
213         prep->payload.data[asym_subtype] = &public_key_subtype;
214         prep->payload.data[asym_key_ids] = kids;
215         prep->payload.data[asym_crypto] = cert->pub;
216         prep->payload.data[asym_auth] = cert->sig;
217         prep->description = desc;
218         prep->quotalen = 100;
219
220         /* We've finished with the certificate */
221         cert->pub = NULL;
222         cert->id = NULL;
223         cert->skid = NULL;
224         cert->sig = NULL;
225         desc = NULL;
226         kids = NULL;
227         ret = 0;
228
229 error_free_kids:
230         kfree(kids);
231 error_free_desc:
232         kfree(desc);
233 error_free_cert:
234         x509_free_certificate(cert);
235         return ret;
236 }
237
238 static struct asymmetric_key_parser x509_key_parser = {
239         .owner  = THIS_MODULE,
240         .name   = "x509",
241         .parse  = x509_key_preparse,
242 };
243
244 /*
245  * Module stuff
246  */
247 extern int __init certs_selftest(void);
248 static int __init x509_key_init(void)
249 {
250         int ret;
251
252         ret = register_asymmetric_key_parser(&x509_key_parser);
253         if (ret < 0)
254                 return ret;
255         return fips_signature_selftest();
256 }
257
258 static void __exit x509_key_exit(void)
259 {
260         unregister_asymmetric_key_parser(&x509_key_parser);
261 }
262
263 module_init(x509_key_init);
264 module_exit(x509_key_exit);
265
266 MODULE_DESCRIPTION("X.509 certificate parser");
267 MODULE_AUTHOR("Red Hat, Inc.");
268 MODULE_LICENSE("GPL");