1 // SPDX-License-Identifier: GPL-2.0
3 * Adiantum length-preserving encryption mode
5 * Copyright 2018 Google LLC
9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10 * and secure disk encryption, especially on CPUs without dedicated crypto
11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream
12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14 * 16-byte block. See the paper for details:
16 * Adiantum: length-preserving encryption for entry-level processors
17 * (https://eprint.iacr.org/2018/720.pdf)
19 * For flexibility, this implementation also allows other ciphers:
21 * - Stream cipher: XChaCha12 or XChaCha20
22 * - Block cipher: any with a 128-bit block size and 256-bit key
24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25 * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC
26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
27 * formally defined to take two inputs (tweak, message) which makes it difficult
28 * to wrap with the crypto_shash API. Rather, some details need to be handled
29 * here. Nevertheless, if needed in the future, support for other ε-∆U hash
30 * functions could be added here.
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/hash.h>
36 #include <crypto/internal/poly1305.h>
37 #include <crypto/internal/skcipher.h>
38 #include <crypto/nhpoly1305.h>
39 #include <crypto/scatterwalk.h>
40 #include <linux/module.h>
43 * Size of right-hand part of input data, in bytes; also the size of the block
44 * cipher's block size and the hash function's output.
46 #define BLOCKCIPHER_BLOCK_SIZE 16
48 /* Size of the block cipher key (K_E) in bytes */
49 #define BLOCKCIPHER_KEY_SIZE 32
51 /* Size of the hash key (K_H) in bytes */
52 #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
55 * The specification allows variable-length tweaks, but Linux's crypto API
56 * currently only allows algorithms to support a single length. The "natural"
57 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
58 * the best performance. But longer tweaks are useful for fscrypt, to avoid
59 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
63 struct adiantum_instance_ctx {
64 struct crypto_skcipher_spawn streamcipher_spawn;
65 struct crypto_cipher_spawn blockcipher_spawn;
66 struct crypto_shash_spawn hash_spawn;
69 struct adiantum_tfm_ctx {
70 struct crypto_skcipher *streamcipher;
71 struct crypto_cipher *blockcipher;
72 struct crypto_shash *hash;
73 struct poly1305_core_key header_hash_key;
76 struct adiantum_request_ctx {
79 * Buffer for right-hand part of data, i.e.
81 * P_L => P_M => C_M => C_R when encrypting, or
82 * C_R => C_M => P_M => P_L when decrypting.
84 * Also used to build the IV for the stream cipher.
87 u8 bytes[XCHACHA_IV_SIZE];
88 __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
89 le128 bignum; /* interpret as element of Z/(2^{128}Z) */
92 bool enc; /* true if encrypting, false if decrypting */
95 * The result of the Poly1305 ε-∆U hash function applied to
96 * (bulk length, tweak)
100 /* Sub-requests, must be last */
102 struct shash_desc hash_desc;
103 struct skcipher_request streamcipher_req;
108 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
109 * hash key K_H as follows:
111 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113 * Note that this denotes using bits from the XChaCha keystream, which here we
114 * get indirectly by encrypting a buffer containing all 0's.
116 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
119 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
121 u8 iv[XCHACHA_IV_SIZE];
122 u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
123 struct scatterlist sg;
124 struct crypto_wait wait;
125 struct skcipher_request req; /* must be last */
130 /* Set the stream cipher key (K_S) */
131 crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
132 crypto_skcipher_set_flags(tctx->streamcipher,
133 crypto_skcipher_get_flags(tfm) &
134 CRYPTO_TFM_REQ_MASK);
135 err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
139 /* Derive the subkeys */
140 data = kzalloc(sizeof(*data) +
141 crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
145 sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
146 crypto_init_wait(&data->wait);
147 skcipher_request_set_tfm(&data->req, tctx->streamcipher);
148 skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
149 CRYPTO_TFM_REQ_MAY_BACKLOG,
150 crypto_req_done, &data->wait);
151 skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
152 sizeof(data->derived_keys), data->iv);
153 err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
156 keyp = data->derived_keys;
158 /* Set the block cipher key (K_E) */
159 crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
160 crypto_cipher_set_flags(tctx->blockcipher,
161 crypto_skcipher_get_flags(tfm) &
162 CRYPTO_TFM_REQ_MASK);
163 err = crypto_cipher_setkey(tctx->blockcipher, keyp,
164 BLOCKCIPHER_KEY_SIZE);
167 keyp += BLOCKCIPHER_KEY_SIZE;
169 /* Set the hash key (K_H) */
170 poly1305_core_setkey(&tctx->header_hash_key, keyp);
171 keyp += POLY1305_BLOCK_SIZE;
173 crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
174 crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
175 CRYPTO_TFM_REQ_MASK);
176 err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
177 keyp += NHPOLY1305_KEY_SIZE;
178 WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
180 kfree_sensitive(data);
184 /* Addition in Z/(2^{128}Z) */
185 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
187 u64 x = le64_to_cpu(v1->b);
188 u64 y = le64_to_cpu(v2->b);
190 r->b = cpu_to_le64(x + y);
191 r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
195 /* Subtraction in Z/(2^{128}Z) */
196 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
198 u64 x = le64_to_cpu(v1->b);
199 u64 y = le64_to_cpu(v2->b);
201 r->b = cpu_to_le64(x - y);
202 r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
207 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
208 * result to rctx->header_hash. This is the calculation
210 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
212 * from the procedure in section 6.4 of the Adiantum paper. The resulting value
213 * is reused in both the first and second hash steps. Specifically, it's added
214 * to the result of an independently keyed ε-∆U hash function (for equal length
215 * inputs only) taken over the left-hand part (the "bulk") of the message, to
216 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
218 static void adiantum_hash_header(struct skcipher_request *req)
220 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
221 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
222 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
223 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
228 .message_bits = cpu_to_le64((u64)bulk_len * 8)
230 struct poly1305_state state;
232 poly1305_core_init(&state);
234 BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
235 poly1305_core_blocks(&state, &tctx->header_hash_key,
236 &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
238 BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
239 poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
240 TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
242 poly1305_core_emit(&state, NULL, &rctx->header_hash);
245 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
246 static int adiantum_hash_message(struct skcipher_request *req,
247 struct scatterlist *sgl, le128 *digest)
249 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
250 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
251 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
252 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
253 struct shash_desc *hash_desc = &rctx->u.hash_desc;
254 struct sg_mapping_iter miter;
258 hash_desc->tfm = tctx->hash;
260 err = crypto_shash_init(hash_desc);
264 sg_miter_start(&miter, sgl, sg_nents(sgl),
265 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
266 for (i = 0; i < bulk_len; i += n) {
267 sg_miter_next(&miter);
268 n = min_t(unsigned int, miter.length, bulk_len - i);
269 err = crypto_shash_update(hash_desc, miter.addr, n);
273 sg_miter_stop(&miter);
277 return crypto_shash_final(hash_desc, (u8 *)digest);
280 /* Continue Adiantum encryption/decryption after the stream cipher step */
281 static int adiantum_finish(struct skcipher_request *req)
283 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
284 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
285 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
286 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
290 /* If decrypting, decrypt C_M with the block cipher to get P_M */
292 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
297 * enc: C_R = C_M - H_{K_H}(T, C_L)
298 * dec: P_R = P_M - H_{K_H}(T, P_L)
300 err = adiantum_hash_message(req, req->dst, &digest);
303 le128_add(&digest, &digest, &rctx->header_hash);
304 le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
305 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst,
306 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1);
310 static void adiantum_streamcipher_done(struct crypto_async_request *areq,
313 struct skcipher_request *req = areq->data;
316 err = adiantum_finish(req);
318 skcipher_request_complete(req, err);
321 static int adiantum_crypt(struct skcipher_request *req, bool enc)
323 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
324 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
325 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
326 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
327 unsigned int stream_len;
331 if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
338 * enc: P_M = P_R + H_{K_H}(T, P_L)
339 * dec: C_M = C_R + H_{K_H}(T, C_L)
341 adiantum_hash_header(req);
342 err = adiantum_hash_message(req, req->src, &digest);
345 le128_add(&digest, &digest, &rctx->header_hash);
346 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src,
347 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0);
348 le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
350 /* If encrypting, encrypt P_M with the block cipher to get C_M */
352 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
355 /* Initialize the rest of the XChaCha IV (first part is C_M) */
356 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
357 BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */
358 rctx->rbuf.words[4] = cpu_to_le32(1);
359 rctx->rbuf.words[5] = 0;
360 rctx->rbuf.words[6] = 0;
361 rctx->rbuf.words[7] = 0;
364 * XChaCha needs to be done on all the data except the last 16 bytes;
365 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha
366 * implementations tend to be most efficient when passed a whole number
367 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
368 * And here it doesn't matter whether the last 16 bytes are written to,
369 * as the second hash step will overwrite them. Thus, round the XChaCha
370 * length up to the next 64-byte boundary if possible.
372 stream_len = bulk_len;
373 if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
374 stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
376 skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
377 skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
378 req->dst, stream_len, &rctx->rbuf);
379 skcipher_request_set_callback(&rctx->u.streamcipher_req,
381 adiantum_streamcipher_done, req);
382 return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
383 adiantum_finish(req);
386 static int adiantum_encrypt(struct skcipher_request *req)
388 return adiantum_crypt(req, true);
391 static int adiantum_decrypt(struct skcipher_request *req)
393 return adiantum_crypt(req, false);
396 static int adiantum_init_tfm(struct crypto_skcipher *tfm)
398 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
399 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
400 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
401 struct crypto_skcipher *streamcipher;
402 struct crypto_cipher *blockcipher;
403 struct crypto_shash *hash;
404 unsigned int subreq_size;
407 streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
408 if (IS_ERR(streamcipher))
409 return PTR_ERR(streamcipher);
411 blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
412 if (IS_ERR(blockcipher)) {
413 err = PTR_ERR(blockcipher);
414 goto err_free_streamcipher;
417 hash = crypto_spawn_shash(&ictx->hash_spawn);
420 goto err_free_blockcipher;
423 tctx->streamcipher = streamcipher;
424 tctx->blockcipher = blockcipher;
427 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
428 sizeof(struct adiantum_request_ctx));
429 subreq_size = max(sizeof_field(struct adiantum_request_ctx,
431 crypto_shash_descsize(hash),
432 sizeof_field(struct adiantum_request_ctx,
433 u.streamcipher_req) +
434 crypto_skcipher_reqsize(streamcipher));
436 crypto_skcipher_set_reqsize(tfm,
437 offsetof(struct adiantum_request_ctx, u) +
441 err_free_blockcipher:
442 crypto_free_cipher(blockcipher);
443 err_free_streamcipher:
444 crypto_free_skcipher(streamcipher);
448 static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
450 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
452 crypto_free_skcipher(tctx->streamcipher);
453 crypto_free_cipher(tctx->blockcipher);
454 crypto_free_shash(tctx->hash);
457 static void adiantum_free_instance(struct skcipher_instance *inst)
459 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
461 crypto_drop_skcipher(&ictx->streamcipher_spawn);
462 crypto_drop_cipher(&ictx->blockcipher_spawn);
463 crypto_drop_shash(&ictx->hash_spawn);
468 * Check for a supported set of inner algorithms.
469 * See the comment at the beginning of this file.
471 static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg,
472 struct crypto_alg *blockcipher_alg,
473 struct shash_alg *hash_alg)
475 if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
476 strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
479 if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
480 blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
482 if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
485 if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
491 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
494 const char *nhpoly1305_name;
495 struct skcipher_instance *inst;
496 struct adiantum_instance_ctx *ictx;
497 struct skcipher_alg *streamcipher_alg;
498 struct crypto_alg *blockcipher_alg;
499 struct shash_alg *hash_alg;
502 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
506 inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
509 ictx = skcipher_instance_ctx(inst);
511 /* Stream cipher, e.g. "xchacha12" */
512 err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
513 skcipher_crypto_instance(inst),
514 crypto_attr_alg_name(tb[1]), 0, mask);
517 streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn);
519 /* Block cipher, e.g. "aes" */
520 err = crypto_grab_cipher(&ictx->blockcipher_spawn,
521 skcipher_crypto_instance(inst),
522 crypto_attr_alg_name(tb[2]), 0, mask);
525 blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
527 /* NHPoly1305 ε-∆U hash function */
528 nhpoly1305_name = crypto_attr_alg_name(tb[3]);
529 if (nhpoly1305_name == ERR_PTR(-ENOENT))
530 nhpoly1305_name = "nhpoly1305";
531 err = crypto_grab_shash(&ictx->hash_spawn,
532 skcipher_crypto_instance(inst),
533 nhpoly1305_name, 0, mask);
536 hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn);
538 /* Check the set of algorithms */
539 if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
541 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
542 streamcipher_alg->base.cra_name,
543 blockcipher_alg->cra_name, hash_alg->base.cra_name);
548 /* Instance fields */
551 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
552 "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
553 blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
555 if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
556 "adiantum(%s,%s,%s)",
557 streamcipher_alg->base.cra_driver_name,
558 blockcipher_alg->cra_driver_name,
559 hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
562 inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
563 inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
564 inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask |
565 hash_alg->base.cra_alignmask;
567 * The block cipher is only invoked once per message, so for long
568 * messages (e.g. sectors for disk encryption) its performance doesn't
569 * matter as much as that of the stream cipher and hash function. Thus,
570 * weigh the block cipher's ->cra_priority less.
572 inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
573 2 * hash_alg->base.cra_priority +
574 blockcipher_alg->cra_priority) / 7;
576 inst->alg.setkey = adiantum_setkey;
577 inst->alg.encrypt = adiantum_encrypt;
578 inst->alg.decrypt = adiantum_decrypt;
579 inst->alg.init = adiantum_init_tfm;
580 inst->alg.exit = adiantum_exit_tfm;
581 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg);
582 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg);
583 inst->alg.ivsize = TWEAK_SIZE;
585 inst->free = adiantum_free_instance;
587 err = skcipher_register_instance(tmpl, inst);
590 adiantum_free_instance(inst);
595 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
596 static struct crypto_template adiantum_tmpl = {
598 .create = adiantum_create,
599 .module = THIS_MODULE,
602 static int __init adiantum_module_init(void)
604 return crypto_register_template(&adiantum_tmpl);
607 static void __exit adiantum_module_exit(void)
609 crypto_unregister_template(&adiantum_tmpl);
612 subsys_initcall(adiantum_module_init);
613 module_exit(adiantum_module_exit);
615 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
616 MODULE_LICENSE("GPL v2");
617 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
618 MODULE_ALIAS_CRYPTO("adiantum");