1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
15 #include "blk-cgroup-rwstat.h"
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 static struct blkcg_policy blkcg_policy_throtl;
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
74 struct throtl_service_queue {
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
82 unsigned int nr_queued[2]; /* number of queued bios */
85 * RB tree of active children throtl_grp's, which are sorted by
88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
91 struct timer_list pending_timer; /* fires on first_pending_disptime */
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
108 /* must be the first member */
109 struct blkg_policy_data pd;
111 /* active throtl group service_queue member */
112 struct rb_node rb_node;
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
136 unsigned long disptime;
140 /* are there any throtl rules between this group and td? */
143 /* internally used bytes per second rate limits */
144 uint64_t bps[2][LIMIT_CNT];
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
148 /* internally used IOPS limits */
149 unsigned int iops[2][LIMIT_CNT];
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
153 /* Number of bytes dispatched in current slice */
154 uint64_t bytes_disp[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
158 unsigned long last_low_overflow_time[2];
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
163 unsigned long last_check_time;
165 unsigned long latency_target; /* us */
166 unsigned long latency_target_conf; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
175 unsigned long idletime_threshold_conf; /* us */
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
181 struct blkg_rwstat stat_bytes;
182 struct blkg_rwstat stat_ios;
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
188 struct latency_bucket {
189 unsigned long total_latency; /* ns / 1024 */
193 struct avg_latency_bucket {
194 unsigned long latency; /* ns / 1024 */
200 /* service tree for active throtl groups */
201 struct throtl_service_queue service_queue;
203 struct request_queue *queue;
205 /* Total Number of queued bios on READ and WRITE lists */
206 unsigned int nr_queued[2];
208 unsigned int throtl_slice;
210 /* Work for dispatching throttled bios */
211 struct work_struct dispatch_work;
212 unsigned int limit_index;
213 bool limit_valid[LIMIT_CNT];
215 unsigned long low_upgrade_time;
216 unsigned long low_downgrade_time;
220 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222 struct latency_bucket __percpu *latency_buckets[2];
223 unsigned long last_calculate_time;
224 unsigned long filtered_latency;
226 bool track_bio_latency;
229 static void throtl_pending_timer_fn(struct timer_list *t);
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
233 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
238 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
243 return pd_to_blkg(&tg->pd);
247 * sq_to_tg - return the throl_grp the specified service queue belongs to
248 * @sq: the throtl_service_queue of interest
250 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
251 * embedded in throtl_data, %NULL is returned.
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
255 if (sq && sq->parent_sq)
256 return container_of(sq, struct throtl_grp, service_queue);
262 * sq_to_td - return throtl_data the specified service queue belongs to
263 * @sq: the throtl_service_queue of interest
265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
266 * Determine the associated throtl_data accordingly and return it.
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
270 struct throtl_grp *tg = sq_to_tg(sq);
275 return container_of(sq, struct throtl_data, service_queue);
279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280 * make the IO dispatch more smooth.
281 * Scale up: linearly scale up according to lapsed time since upgrade. For
282 * every throtl_slice, the limit scales up 1/2 .low limit till the
283 * limit hits .max limit
284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
288 /* arbitrary value to avoid too big scale */
289 if (td->scale < 4096 && time_after_eq(jiffies,
290 td->low_upgrade_time + td->scale * td->throtl_slice))
291 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
293 return low + (low >> 1) * td->scale;
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
298 struct blkcg_gq *blkg = tg_to_blkg(tg);
299 struct throtl_data *td;
302 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
306 ret = tg->bps[rw][td->limit_index];
307 if (ret == 0 && td->limit_index == LIMIT_LOW) {
308 /* intermediate node or iops isn't 0 */
309 if (!list_empty(&blkg->blkcg->css.children) ||
310 tg->iops[rw][td->limit_index])
313 return MIN_THROTL_BPS;
316 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
320 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
328 struct blkcg_gq *blkg = tg_to_blkg(tg);
329 struct throtl_data *td;
332 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
336 ret = tg->iops[rw][td->limit_index];
337 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338 /* intermediate node or bps isn't 0 */
339 if (!list_empty(&blkg->blkcg->css.children) ||
340 tg->bps[rw][td->limit_index])
343 return MIN_THROTL_IOPS;
346 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
350 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351 if (adjusted > UINT_MAX)
353 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
358 #define request_bucket_index(sectors) \
359 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
362 * throtl_log - log debug message via blktrace
363 * @sq: the service_queue being reported
364 * @fmt: printf format string
367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368 * throtl_grp; otherwise, just "throtl".
370 #define throtl_log(sq, fmt, args...) do { \
371 struct throtl_grp *__tg = sq_to_tg((sq)); \
372 struct throtl_data *__td = sq_to_td((sq)); \
375 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
378 blk_add_cgroup_trace_msg(__td->queue, \
379 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
387 /* assume it's one sector */
388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
390 return bio->bi_iter.bi_size;
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
395 INIT_LIST_HEAD(&qn->node);
396 bio_list_init(&qn->bios);
401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402 * @bio: bio being added
403 * @qn: qnode to add bio to
404 * @queued: the service_queue->queued[] list @qn belongs to
406 * Add @bio to @qn and put @qn on @queued if it's not already on.
407 * @qn->tg's reference count is bumped when @qn is activated. See the
408 * comment on top of throtl_qnode definition for details.
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 struct list_head *queued)
413 bio_list_add(&qn->bios, bio);
414 if (list_empty(&qn->node)) {
415 list_add_tail(&qn->node, queued);
416 blkg_get(tg_to_blkg(qn->tg));
421 * throtl_peek_queued - peek the first bio on a qnode list
422 * @queued: the qnode list to peek
424 static struct bio *throtl_peek_queued(struct list_head *queued)
426 struct throtl_qnode *qn;
429 if (list_empty(queued))
432 qn = list_first_entry(queued, struct throtl_qnode, node);
433 bio = bio_list_peek(&qn->bios);
439 * throtl_pop_queued - pop the first bio form a qnode list
440 * @queued: the qnode list to pop a bio from
441 * @tg_to_put: optional out argument for throtl_grp to put
443 * Pop the first bio from the qnode list @queued. After popping, the first
444 * qnode is removed from @queued if empty or moved to the end of @queued so
445 * that the popping order is round-robin.
447 * When the first qnode is removed, its associated throtl_grp should be put
448 * too. If @tg_to_put is NULL, this function automatically puts it;
449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450 * responsible for putting it.
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453 struct throtl_grp **tg_to_put)
455 struct throtl_qnode *qn;
458 if (list_empty(queued))
461 qn = list_first_entry(queued, struct throtl_qnode, node);
462 bio = bio_list_pop(&qn->bios);
465 if (bio_list_empty(&qn->bios)) {
466 list_del_init(&qn->node);
470 blkg_put(tg_to_blkg(qn->tg));
472 list_move_tail(&qn->node, queued);
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
481 INIT_LIST_HEAD(&sq->queued[0]);
482 INIT_LIST_HEAD(&sq->queued[1]);
483 sq->pending_tree = RB_ROOT_CACHED;
484 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488 struct request_queue *q,
491 struct throtl_grp *tg;
494 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
498 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
501 if (blkg_rwstat_init(&tg->stat_ios, gfp))
502 goto err_exit_stat_bytes;
504 throtl_service_queue_init(&tg->service_queue);
506 for (rw = READ; rw <= WRITE; rw++) {
507 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
511 RB_CLEAR_NODE(&tg->rb_node);
512 tg->bps[READ][LIMIT_MAX] = U64_MAX;
513 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520 /* LIMIT_LOW will have default value 0 */
522 tg->latency_target = DFL_LATENCY_TARGET;
523 tg->latency_target_conf = DFL_LATENCY_TARGET;
524 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
530 blkg_rwstat_exit(&tg->stat_bytes);
536 static void throtl_pd_init(struct blkg_policy_data *pd)
538 struct throtl_grp *tg = pd_to_tg(pd);
539 struct blkcg_gq *blkg = tg_to_blkg(tg);
540 struct throtl_data *td = blkg->q->td;
541 struct throtl_service_queue *sq = &tg->service_queue;
544 * If on the default hierarchy, we switch to properly hierarchical
545 * behavior where limits on a given throtl_grp are applied to the
546 * whole subtree rather than just the group itself. e.g. If 16M
547 * read_bps limit is set on the root group, the whole system can't
548 * exceed 16M for the device.
550 * If not on the default hierarchy, the broken flat hierarchy
551 * behavior is retained where all throtl_grps are treated as if
552 * they're all separate root groups right below throtl_data.
553 * Limits of a group don't interact with limits of other groups
554 * regardless of the position of the group in the hierarchy.
556 sq->parent_sq = &td->service_queue;
557 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
563 * Set has_rules[] if @tg or any of its parents have limits configured.
564 * This doesn't require walking up to the top of the hierarchy as the
565 * parent's has_rules[] is guaranteed to be correct.
567 static void tg_update_has_rules(struct throtl_grp *tg)
569 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570 struct throtl_data *td = tg->td;
573 for (rw = READ; rw <= WRITE; rw++)
574 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 (td->limit_valid[td->limit_index] &&
576 (tg_bps_limit(tg, rw) != U64_MAX ||
577 tg_iops_limit(tg, rw) != UINT_MAX));
580 static void throtl_pd_online(struct blkg_policy_data *pd)
582 struct throtl_grp *tg = pd_to_tg(pd);
584 * We don't want new groups to escape the limits of its ancestors.
585 * Update has_rules[] after a new group is brought online.
587 tg_update_has_rules(tg);
590 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
591 static void blk_throtl_update_limit_valid(struct throtl_data *td)
593 struct cgroup_subsys_state *pos_css;
594 struct blkcg_gq *blkg;
595 bool low_valid = false;
598 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
599 struct throtl_grp *tg = blkg_to_tg(blkg);
601 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
602 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
609 td->limit_valid[LIMIT_LOW] = low_valid;
612 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
617 static void throtl_upgrade_state(struct throtl_data *td);
618 static void throtl_pd_offline(struct blkg_policy_data *pd)
620 struct throtl_grp *tg = pd_to_tg(pd);
622 tg->bps[READ][LIMIT_LOW] = 0;
623 tg->bps[WRITE][LIMIT_LOW] = 0;
624 tg->iops[READ][LIMIT_LOW] = 0;
625 tg->iops[WRITE][LIMIT_LOW] = 0;
627 blk_throtl_update_limit_valid(tg->td);
629 if (!tg->td->limit_valid[tg->td->limit_index])
630 throtl_upgrade_state(tg->td);
633 static void throtl_pd_free(struct blkg_policy_data *pd)
635 struct throtl_grp *tg = pd_to_tg(pd);
637 del_timer_sync(&tg->service_queue.pending_timer);
638 blkg_rwstat_exit(&tg->stat_bytes);
639 blkg_rwstat_exit(&tg->stat_ios);
643 static struct throtl_grp *
644 throtl_rb_first(struct throtl_service_queue *parent_sq)
648 n = rb_first_cached(&parent_sq->pending_tree);
652 return rb_entry_tg(n);
655 static void throtl_rb_erase(struct rb_node *n,
656 struct throtl_service_queue *parent_sq)
658 rb_erase_cached(n, &parent_sq->pending_tree);
660 --parent_sq->nr_pending;
663 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
665 struct throtl_grp *tg;
667 tg = throtl_rb_first(parent_sq);
671 parent_sq->first_pending_disptime = tg->disptime;
674 static void tg_service_queue_add(struct throtl_grp *tg)
676 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
677 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
678 struct rb_node *parent = NULL;
679 struct throtl_grp *__tg;
680 unsigned long key = tg->disptime;
681 bool leftmost = true;
683 while (*node != NULL) {
685 __tg = rb_entry_tg(parent);
687 if (time_before(key, __tg->disptime))
688 node = &parent->rb_left;
690 node = &parent->rb_right;
695 rb_link_node(&tg->rb_node, parent, node);
696 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
700 static void throtl_enqueue_tg(struct throtl_grp *tg)
702 if (!(tg->flags & THROTL_TG_PENDING)) {
703 tg_service_queue_add(tg);
704 tg->flags |= THROTL_TG_PENDING;
705 tg->service_queue.parent_sq->nr_pending++;
709 static void throtl_dequeue_tg(struct throtl_grp *tg)
711 if (tg->flags & THROTL_TG_PENDING) {
712 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
713 tg->flags &= ~THROTL_TG_PENDING;
717 /* Call with queue lock held */
718 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
719 unsigned long expires)
721 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
724 * Since we are adjusting the throttle limit dynamically, the sleep
725 * time calculated according to previous limit might be invalid. It's
726 * possible the cgroup sleep time is very long and no other cgroups
727 * have IO running so notify the limit changes. Make sure the cgroup
728 * doesn't sleep too long to avoid the missed notification.
730 if (time_after(expires, max_expire))
731 expires = max_expire;
732 mod_timer(&sq->pending_timer, expires);
733 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
734 expires - jiffies, jiffies);
738 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
739 * @sq: the service_queue to schedule dispatch for
740 * @force: force scheduling
742 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
743 * dispatch time of the first pending child. Returns %true if either timer
744 * is armed or there's no pending child left. %false if the current
745 * dispatch window is still open and the caller should continue
748 * If @force is %true, the dispatch timer is always scheduled and this
749 * function is guaranteed to return %true. This is to be used when the
750 * caller can't dispatch itself and needs to invoke pending_timer
751 * unconditionally. Note that forced scheduling is likely to induce short
752 * delay before dispatch starts even if @sq->first_pending_disptime is not
753 * in the future and thus shouldn't be used in hot paths.
755 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
758 /* any pending children left? */
762 update_min_dispatch_time(sq);
764 /* is the next dispatch time in the future? */
765 if (force || time_after(sq->first_pending_disptime, jiffies)) {
766 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
770 /* tell the caller to continue dispatching */
774 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
775 bool rw, unsigned long start)
777 tg->bytes_disp[rw] = 0;
781 * Previous slice has expired. We must have trimmed it after last
782 * bio dispatch. That means since start of last slice, we never used
783 * that bandwidth. Do try to make use of that bandwidth while giving
786 if (time_after_eq(start, tg->slice_start[rw]))
787 tg->slice_start[rw] = start;
789 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
790 throtl_log(&tg->service_queue,
791 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 tg->slice_end[rw], jiffies);
796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
798 tg->bytes_disp[rw] = 0;
800 tg->slice_start[rw] = jiffies;
801 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
802 throtl_log(&tg->service_queue,
803 "[%c] new slice start=%lu end=%lu jiffies=%lu",
804 rw == READ ? 'R' : 'W', tg->slice_start[rw],
805 tg->slice_end[rw], jiffies);
808 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
809 unsigned long jiffy_end)
811 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
814 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
815 unsigned long jiffy_end)
817 throtl_set_slice_end(tg, rw, jiffy_end);
818 throtl_log(&tg->service_queue,
819 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
820 rw == READ ? 'R' : 'W', tg->slice_start[rw],
821 tg->slice_end[rw], jiffies);
824 /* Determine if previously allocated or extended slice is complete or not */
825 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
827 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
833 /* Trim the used slices and adjust slice start accordingly */
834 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
836 unsigned long nr_slices, time_elapsed, io_trim;
839 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
842 * If bps are unlimited (-1), then time slice don't get
843 * renewed. Don't try to trim the slice if slice is used. A new
844 * slice will start when appropriate.
846 if (throtl_slice_used(tg, rw))
850 * A bio has been dispatched. Also adjust slice_end. It might happen
851 * that initially cgroup limit was very low resulting in high
852 * slice_end, but later limit was bumped up and bio was dispatched
853 * sooner, then we need to reduce slice_end. A high bogus slice_end
854 * is bad because it does not allow new slice to start.
857 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
859 time_elapsed = jiffies - tg->slice_start[rw];
861 nr_slices = time_elapsed / tg->td->throtl_slice;
865 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
872 if (!bytes_trim && !io_trim)
875 if (tg->bytes_disp[rw] >= bytes_trim)
876 tg->bytes_disp[rw] -= bytes_trim;
878 tg->bytes_disp[rw] = 0;
880 if (tg->io_disp[rw] >= io_trim)
881 tg->io_disp[rw] -= io_trim;
885 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
887 throtl_log(&tg->service_queue,
888 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
889 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
890 tg->slice_start[rw], tg->slice_end[rw], jiffies);
893 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
894 u32 iops_limit, unsigned long *wait)
896 bool rw = bio_data_dir(bio);
897 unsigned int io_allowed;
898 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
901 if (iops_limit == UINT_MAX) {
907 jiffy_elapsed = jiffies - tg->slice_start[rw];
909 /* Round up to the next throttle slice, wait time must be nonzero */
910 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
913 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
914 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
915 * will allow dispatch after 1 second and after that slice should
919 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
923 io_allowed = UINT_MAX;
927 if (tg->io_disp[rw] + 1 <= io_allowed) {
933 /* Calc approx time to dispatch */
934 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
941 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
942 u64 bps_limit, unsigned long *wait)
944 bool rw = bio_data_dir(bio);
945 u64 bytes_allowed, extra_bytes, tmp;
946 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
947 unsigned int bio_size = throtl_bio_data_size(bio);
949 if (bps_limit == U64_MAX) {
955 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
957 /* Slice has just started. Consider one slice interval */
959 jiffy_elapsed_rnd = tg->td->throtl_slice;
961 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
963 tmp = bps_limit * jiffy_elapsed_rnd;
967 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
973 /* Calc approx time to dispatch */
974 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
975 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
981 * This wait time is without taking into consideration the rounding
982 * up we did. Add that time also.
984 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
991 * Returns whether one can dispatch a bio or not. Also returns approx number
992 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
994 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
997 bool rw = bio_data_dir(bio);
998 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
999 u64 bps_limit = tg_bps_limit(tg, rw);
1000 u32 iops_limit = tg_iops_limit(tg, rw);
1003 * Currently whole state machine of group depends on first bio
1004 * queued in the group bio list. So one should not be calling
1005 * this function with a different bio if there are other bios
1008 BUG_ON(tg->service_queue.nr_queued[rw] &&
1009 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1011 /* If tg->bps = -1, then BW is unlimited */
1012 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1019 * If previous slice expired, start a new one otherwise renew/extend
1020 * existing slice to make sure it is at least throtl_slice interval
1021 * long since now. New slice is started only for empty throttle group.
1022 * If there is queued bio, that means there should be an active
1023 * slice and it should be extended instead.
1025 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1026 throtl_start_new_slice(tg, rw);
1028 if (time_before(tg->slice_end[rw],
1029 jiffies + tg->td->throtl_slice))
1030 throtl_extend_slice(tg, rw,
1031 jiffies + tg->td->throtl_slice);
1034 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1035 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1041 max_wait = max(bps_wait, iops_wait);
1046 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1047 throtl_extend_slice(tg, rw, jiffies + max_wait);
1052 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1054 bool rw = bio_data_dir(bio);
1055 unsigned int bio_size = throtl_bio_data_size(bio);
1057 /* Charge the bio to the group */
1058 tg->bytes_disp[rw] += bio_size;
1060 tg->last_bytes_disp[rw] += bio_size;
1061 tg->last_io_disp[rw]++;
1064 * BIO_THROTTLED is used to prevent the same bio to be throttled
1065 * more than once as a throttled bio will go through blk-throtl the
1066 * second time when it eventually gets issued. Set it when a bio
1067 * is being charged to a tg.
1069 if (!bio_flagged(bio, BIO_THROTTLED))
1070 bio_set_flag(bio, BIO_THROTTLED);
1074 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1077 * @tg: the target throtl_grp
1079 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1080 * tg->qnode_on_self[] is used.
1082 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1083 struct throtl_grp *tg)
1085 struct throtl_service_queue *sq = &tg->service_queue;
1086 bool rw = bio_data_dir(bio);
1089 qn = &tg->qnode_on_self[rw];
1092 * If @tg doesn't currently have any bios queued in the same
1093 * direction, queueing @bio can change when @tg should be
1094 * dispatched. Mark that @tg was empty. This is automatically
1095 * cleared on the next tg_update_disptime().
1097 if (!sq->nr_queued[rw])
1098 tg->flags |= THROTL_TG_WAS_EMPTY;
1100 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1102 sq->nr_queued[rw]++;
1103 throtl_enqueue_tg(tg);
1106 static void tg_update_disptime(struct throtl_grp *tg)
1108 struct throtl_service_queue *sq = &tg->service_queue;
1109 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1112 bio = throtl_peek_queued(&sq->queued[READ]);
1114 tg_may_dispatch(tg, bio, &read_wait);
1116 bio = throtl_peek_queued(&sq->queued[WRITE]);
1118 tg_may_dispatch(tg, bio, &write_wait);
1120 min_wait = min(read_wait, write_wait);
1121 disptime = jiffies + min_wait;
1123 /* Update dispatch time */
1124 throtl_dequeue_tg(tg);
1125 tg->disptime = disptime;
1126 throtl_enqueue_tg(tg);
1128 /* see throtl_add_bio_tg() */
1129 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1132 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1133 struct throtl_grp *parent_tg, bool rw)
1135 if (throtl_slice_used(parent_tg, rw)) {
1136 throtl_start_new_slice_with_credit(parent_tg, rw,
1137 child_tg->slice_start[rw]);
1142 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1144 struct throtl_service_queue *sq = &tg->service_queue;
1145 struct throtl_service_queue *parent_sq = sq->parent_sq;
1146 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1147 struct throtl_grp *tg_to_put = NULL;
1151 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1152 * from @tg may put its reference and @parent_sq might end up
1153 * getting released prematurely. Remember the tg to put and put it
1154 * after @bio is transferred to @parent_sq.
1156 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1157 sq->nr_queued[rw]--;
1159 throtl_charge_bio(tg, bio);
1162 * If our parent is another tg, we just need to transfer @bio to
1163 * the parent using throtl_add_bio_tg(). If our parent is
1164 * @td->service_queue, @bio is ready to be issued. Put it on its
1165 * bio_lists[] and decrease total number queued. The caller is
1166 * responsible for issuing these bios.
1169 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1170 start_parent_slice_with_credit(tg, parent_tg, rw);
1172 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1173 &parent_sq->queued[rw]);
1174 BUG_ON(tg->td->nr_queued[rw] <= 0);
1175 tg->td->nr_queued[rw]--;
1178 throtl_trim_slice(tg, rw);
1181 blkg_put(tg_to_blkg(tg_to_put));
1184 static int throtl_dispatch_tg(struct throtl_grp *tg)
1186 struct throtl_service_queue *sq = &tg->service_queue;
1187 unsigned int nr_reads = 0, nr_writes = 0;
1188 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1189 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1192 /* Try to dispatch 75% READS and 25% WRITES */
1194 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1195 tg_may_dispatch(tg, bio, NULL)) {
1197 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1200 if (nr_reads >= max_nr_reads)
1204 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1205 tg_may_dispatch(tg, bio, NULL)) {
1207 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1210 if (nr_writes >= max_nr_writes)
1214 return nr_reads + nr_writes;
1217 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1219 unsigned int nr_disp = 0;
1222 struct throtl_grp *tg;
1223 struct throtl_service_queue *sq;
1225 if (!parent_sq->nr_pending)
1228 tg = throtl_rb_first(parent_sq);
1232 if (time_before(jiffies, tg->disptime))
1235 throtl_dequeue_tg(tg);
1237 nr_disp += throtl_dispatch_tg(tg);
1239 sq = &tg->service_queue;
1240 if (sq->nr_queued[0] || sq->nr_queued[1])
1241 tg_update_disptime(tg);
1243 if (nr_disp >= THROTL_QUANTUM)
1250 static bool throtl_can_upgrade(struct throtl_data *td,
1251 struct throtl_grp *this_tg);
1253 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1254 * @t: the pending_timer member of the throtl_service_queue being serviced
1256 * This timer is armed when a child throtl_grp with active bio's become
1257 * pending and queued on the service_queue's pending_tree and expires when
1258 * the first child throtl_grp should be dispatched. This function
1259 * dispatches bio's from the children throtl_grps to the parent
1262 * If the parent's parent is another throtl_grp, dispatching is propagated
1263 * by either arming its pending_timer or repeating dispatch directly. If
1264 * the top-level service_tree is reached, throtl_data->dispatch_work is
1265 * kicked so that the ready bio's are issued.
1267 static void throtl_pending_timer_fn(struct timer_list *t)
1269 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1270 struct throtl_grp *tg = sq_to_tg(sq);
1271 struct throtl_data *td = sq_to_td(sq);
1272 struct request_queue *q = td->queue;
1273 struct throtl_service_queue *parent_sq;
1277 spin_lock_irq(&q->queue_lock);
1278 if (throtl_can_upgrade(td, NULL))
1279 throtl_upgrade_state(td);
1282 parent_sq = sq->parent_sq;
1286 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1287 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1288 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1290 ret = throtl_select_dispatch(sq);
1292 throtl_log(sq, "bios disp=%u", ret);
1296 if (throtl_schedule_next_dispatch(sq, false))
1299 /* this dispatch windows is still open, relax and repeat */
1300 spin_unlock_irq(&q->queue_lock);
1302 spin_lock_irq(&q->queue_lock);
1309 /* @parent_sq is another throl_grp, propagate dispatch */
1310 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1311 tg_update_disptime(tg);
1312 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1313 /* window is already open, repeat dispatching */
1320 /* reached the top-level, queue issuing */
1321 queue_work(kthrotld_workqueue, &td->dispatch_work);
1324 spin_unlock_irq(&q->queue_lock);
1328 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1329 * @work: work item being executed
1331 * This function is queued for execution when bios reach the bio_lists[]
1332 * of throtl_data->service_queue. Those bios are ready and issued by this
1335 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1337 struct throtl_data *td = container_of(work, struct throtl_data,
1339 struct throtl_service_queue *td_sq = &td->service_queue;
1340 struct request_queue *q = td->queue;
1341 struct bio_list bio_list_on_stack;
1343 struct blk_plug plug;
1346 bio_list_init(&bio_list_on_stack);
1348 spin_lock_irq(&q->queue_lock);
1349 for (rw = READ; rw <= WRITE; rw++)
1350 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1351 bio_list_add(&bio_list_on_stack, bio);
1352 spin_unlock_irq(&q->queue_lock);
1354 if (!bio_list_empty(&bio_list_on_stack)) {
1355 blk_start_plug(&plug);
1356 while ((bio = bio_list_pop(&bio_list_on_stack)))
1357 submit_bio_noacct(bio);
1358 blk_finish_plug(&plug);
1362 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1365 struct throtl_grp *tg = pd_to_tg(pd);
1366 u64 v = *(u64 *)((void *)tg + off);
1370 return __blkg_prfill_u64(sf, pd, v);
1373 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1376 struct throtl_grp *tg = pd_to_tg(pd);
1377 unsigned int v = *(unsigned int *)((void *)tg + off);
1381 return __blkg_prfill_u64(sf, pd, v);
1384 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1386 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1387 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1391 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1393 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1394 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1398 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1400 struct throtl_service_queue *sq = &tg->service_queue;
1401 struct cgroup_subsys_state *pos_css;
1402 struct blkcg_gq *blkg;
1404 throtl_log(&tg->service_queue,
1405 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1406 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1407 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1410 * Update has_rules[] flags for the updated tg's subtree. A tg is
1411 * considered to have rules if either the tg itself or any of its
1412 * ancestors has rules. This identifies groups without any
1413 * restrictions in the whole hierarchy and allows them to bypass
1416 blkg_for_each_descendant_pre(blkg, pos_css,
1417 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1418 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1419 struct throtl_grp *parent_tg;
1421 tg_update_has_rules(this_tg);
1422 /* ignore root/second level */
1423 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1424 !blkg->parent->parent)
1426 parent_tg = blkg_to_tg(blkg->parent);
1428 * make sure all children has lower idle time threshold and
1429 * higher latency target
1431 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1432 parent_tg->idletime_threshold);
1433 this_tg->latency_target = max(this_tg->latency_target,
1434 parent_tg->latency_target);
1438 * We're already holding queue_lock and know @tg is valid. Let's
1439 * apply the new config directly.
1441 * Restart the slices for both READ and WRITES. It might happen
1442 * that a group's limit are dropped suddenly and we don't want to
1443 * account recently dispatched IO with new low rate.
1445 throtl_start_new_slice(tg, READ);
1446 throtl_start_new_slice(tg, WRITE);
1448 if (tg->flags & THROTL_TG_PENDING) {
1449 tg_update_disptime(tg);
1450 throtl_schedule_next_dispatch(sq->parent_sq, true);
1454 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1455 char *buf, size_t nbytes, loff_t off, bool is_u64)
1457 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1458 struct blkg_conf_ctx ctx;
1459 struct throtl_grp *tg;
1463 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1468 if (sscanf(ctx.body, "%llu", &v) != 1)
1473 tg = blkg_to_tg(ctx.blkg);
1476 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1478 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1480 tg_conf_updated(tg, false);
1483 blkg_conf_finish(&ctx);
1484 return ret ?: nbytes;
1487 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1488 char *buf, size_t nbytes, loff_t off)
1490 return tg_set_conf(of, buf, nbytes, off, true);
1493 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1494 char *buf, size_t nbytes, loff_t off)
1496 return tg_set_conf(of, buf, nbytes, off, false);
1499 static int tg_print_rwstat(struct seq_file *sf, void *v)
1501 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1502 blkg_prfill_rwstat, &blkcg_policy_throtl,
1503 seq_cft(sf)->private, true);
1507 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1508 struct blkg_policy_data *pd, int off)
1510 struct blkg_rwstat_sample sum;
1512 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1514 return __blkg_prfill_rwstat(sf, pd, &sum);
1517 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1519 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1520 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1521 seq_cft(sf)->private, true);
1525 static struct cftype throtl_legacy_files[] = {
1527 .name = "throttle.read_bps_device",
1528 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1529 .seq_show = tg_print_conf_u64,
1530 .write = tg_set_conf_u64,
1533 .name = "throttle.write_bps_device",
1534 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1535 .seq_show = tg_print_conf_u64,
1536 .write = tg_set_conf_u64,
1539 .name = "throttle.read_iops_device",
1540 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1541 .seq_show = tg_print_conf_uint,
1542 .write = tg_set_conf_uint,
1545 .name = "throttle.write_iops_device",
1546 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1547 .seq_show = tg_print_conf_uint,
1548 .write = tg_set_conf_uint,
1551 .name = "throttle.io_service_bytes",
1552 .private = offsetof(struct throtl_grp, stat_bytes),
1553 .seq_show = tg_print_rwstat,
1556 .name = "throttle.io_service_bytes_recursive",
1557 .private = offsetof(struct throtl_grp, stat_bytes),
1558 .seq_show = tg_print_rwstat_recursive,
1561 .name = "throttle.io_serviced",
1562 .private = offsetof(struct throtl_grp, stat_ios),
1563 .seq_show = tg_print_rwstat,
1566 .name = "throttle.io_serviced_recursive",
1567 .private = offsetof(struct throtl_grp, stat_ios),
1568 .seq_show = tg_print_rwstat_recursive,
1573 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1576 struct throtl_grp *tg = pd_to_tg(pd);
1577 const char *dname = blkg_dev_name(pd->blkg);
1578 char bufs[4][21] = { "max", "max", "max", "max" };
1580 unsigned int iops_dft;
1581 char idle_time[26] = "";
1582 char latency_time[26] = "";
1587 if (off == LIMIT_LOW) {
1592 iops_dft = UINT_MAX;
1595 if (tg->bps_conf[READ][off] == bps_dft &&
1596 tg->bps_conf[WRITE][off] == bps_dft &&
1597 tg->iops_conf[READ][off] == iops_dft &&
1598 tg->iops_conf[WRITE][off] == iops_dft &&
1599 (off != LIMIT_LOW ||
1600 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1601 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1604 if (tg->bps_conf[READ][off] != U64_MAX)
1605 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1606 tg->bps_conf[READ][off]);
1607 if (tg->bps_conf[WRITE][off] != U64_MAX)
1608 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1609 tg->bps_conf[WRITE][off]);
1610 if (tg->iops_conf[READ][off] != UINT_MAX)
1611 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1612 tg->iops_conf[READ][off]);
1613 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1614 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1615 tg->iops_conf[WRITE][off]);
1616 if (off == LIMIT_LOW) {
1617 if (tg->idletime_threshold_conf == ULONG_MAX)
1618 strcpy(idle_time, " idle=max");
1620 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1621 tg->idletime_threshold_conf);
1623 if (tg->latency_target_conf == ULONG_MAX)
1624 strcpy(latency_time, " latency=max");
1626 snprintf(latency_time, sizeof(latency_time),
1627 " latency=%lu", tg->latency_target_conf);
1630 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1631 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1636 static int tg_print_limit(struct seq_file *sf, void *v)
1638 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1639 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1643 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1644 char *buf, size_t nbytes, loff_t off)
1646 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1647 struct blkg_conf_ctx ctx;
1648 struct throtl_grp *tg;
1650 unsigned long idle_time;
1651 unsigned long latency_time;
1653 int index = of_cft(of)->private;
1655 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1659 tg = blkg_to_tg(ctx.blkg);
1661 v[0] = tg->bps_conf[READ][index];
1662 v[1] = tg->bps_conf[WRITE][index];
1663 v[2] = tg->iops_conf[READ][index];
1664 v[3] = tg->iops_conf[WRITE][index];
1666 idle_time = tg->idletime_threshold_conf;
1667 latency_time = tg->latency_target_conf;
1669 char tok[27]; /* wiops=18446744073709551616 */
1674 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1683 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1691 if (!strcmp(tok, "rbps") && val > 1)
1693 else if (!strcmp(tok, "wbps") && val > 1)
1695 else if (!strcmp(tok, "riops") && val > 1)
1696 v[2] = min_t(u64, val, UINT_MAX);
1697 else if (!strcmp(tok, "wiops") && val > 1)
1698 v[3] = min_t(u64, val, UINT_MAX);
1699 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1701 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1707 tg->bps_conf[READ][index] = v[0];
1708 tg->bps_conf[WRITE][index] = v[1];
1709 tg->iops_conf[READ][index] = v[2];
1710 tg->iops_conf[WRITE][index] = v[3];
1712 if (index == LIMIT_MAX) {
1713 tg->bps[READ][index] = v[0];
1714 tg->bps[WRITE][index] = v[1];
1715 tg->iops[READ][index] = v[2];
1716 tg->iops[WRITE][index] = v[3];
1718 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1719 tg->bps_conf[READ][LIMIT_MAX]);
1720 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1721 tg->bps_conf[WRITE][LIMIT_MAX]);
1722 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1723 tg->iops_conf[READ][LIMIT_MAX]);
1724 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1725 tg->iops_conf[WRITE][LIMIT_MAX]);
1726 tg->idletime_threshold_conf = idle_time;
1727 tg->latency_target_conf = latency_time;
1729 /* force user to configure all settings for low limit */
1730 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1731 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1732 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1733 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1734 tg->bps[READ][LIMIT_LOW] = 0;
1735 tg->bps[WRITE][LIMIT_LOW] = 0;
1736 tg->iops[READ][LIMIT_LOW] = 0;
1737 tg->iops[WRITE][LIMIT_LOW] = 0;
1738 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1739 tg->latency_target = DFL_LATENCY_TARGET;
1740 } else if (index == LIMIT_LOW) {
1741 tg->idletime_threshold = tg->idletime_threshold_conf;
1742 tg->latency_target = tg->latency_target_conf;
1745 blk_throtl_update_limit_valid(tg->td);
1746 if (tg->td->limit_valid[LIMIT_LOW]) {
1747 if (index == LIMIT_LOW)
1748 tg->td->limit_index = LIMIT_LOW;
1750 tg->td->limit_index = LIMIT_MAX;
1751 tg_conf_updated(tg, index == LIMIT_LOW &&
1752 tg->td->limit_valid[LIMIT_LOW]);
1755 blkg_conf_finish(&ctx);
1756 return ret ?: nbytes;
1759 static struct cftype throtl_files[] = {
1760 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1763 .flags = CFTYPE_NOT_ON_ROOT,
1764 .seq_show = tg_print_limit,
1765 .write = tg_set_limit,
1766 .private = LIMIT_LOW,
1771 .flags = CFTYPE_NOT_ON_ROOT,
1772 .seq_show = tg_print_limit,
1773 .write = tg_set_limit,
1774 .private = LIMIT_MAX,
1779 static void throtl_shutdown_wq(struct request_queue *q)
1781 struct throtl_data *td = q->td;
1783 cancel_work_sync(&td->dispatch_work);
1786 static struct blkcg_policy blkcg_policy_throtl = {
1787 .dfl_cftypes = throtl_files,
1788 .legacy_cftypes = throtl_legacy_files,
1790 .pd_alloc_fn = throtl_pd_alloc,
1791 .pd_init_fn = throtl_pd_init,
1792 .pd_online_fn = throtl_pd_online,
1793 .pd_offline_fn = throtl_pd_offline,
1794 .pd_free_fn = throtl_pd_free,
1797 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1799 unsigned long rtime = jiffies, wtime = jiffies;
1801 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1802 rtime = tg->last_low_overflow_time[READ];
1803 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1804 wtime = tg->last_low_overflow_time[WRITE];
1805 return min(rtime, wtime);
1808 /* tg should not be an intermediate node */
1809 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1811 struct throtl_service_queue *parent_sq;
1812 struct throtl_grp *parent = tg;
1813 unsigned long ret = __tg_last_low_overflow_time(tg);
1816 parent_sq = parent->service_queue.parent_sq;
1817 parent = sq_to_tg(parent_sq);
1822 * The parent doesn't have low limit, it always reaches low
1823 * limit. Its overflow time is useless for children
1825 if (!parent->bps[READ][LIMIT_LOW] &&
1826 !parent->iops[READ][LIMIT_LOW] &&
1827 !parent->bps[WRITE][LIMIT_LOW] &&
1828 !parent->iops[WRITE][LIMIT_LOW])
1830 if (time_after(__tg_last_low_overflow_time(parent), ret))
1831 ret = __tg_last_low_overflow_time(parent);
1836 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1839 * cgroup is idle if:
1840 * - single idle is too long, longer than a fixed value (in case user
1841 * configure a too big threshold) or 4 times of idletime threshold
1842 * - average think time is more than threshold
1843 * - IO latency is largely below threshold
1848 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1849 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1850 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1851 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1852 tg->avg_idletime > tg->idletime_threshold ||
1853 (tg->latency_target && tg->bio_cnt &&
1854 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1855 throtl_log(&tg->service_queue,
1856 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1857 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1858 tg->bio_cnt, ret, tg->td->scale);
1862 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1864 struct throtl_service_queue *sq = &tg->service_queue;
1865 bool read_limit, write_limit;
1868 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1869 * reaches), it's ok to upgrade to next limit
1871 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1872 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1873 if (!read_limit && !write_limit)
1875 if (read_limit && sq->nr_queued[READ] &&
1876 (!write_limit || sq->nr_queued[WRITE]))
1878 if (write_limit && sq->nr_queued[WRITE] &&
1879 (!read_limit || sq->nr_queued[READ]))
1882 if (time_after_eq(jiffies,
1883 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1884 throtl_tg_is_idle(tg))
1889 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1892 if (throtl_tg_can_upgrade(tg))
1894 tg = sq_to_tg(tg->service_queue.parent_sq);
1895 if (!tg || !tg_to_blkg(tg)->parent)
1901 static bool throtl_can_upgrade(struct throtl_data *td,
1902 struct throtl_grp *this_tg)
1904 struct cgroup_subsys_state *pos_css;
1905 struct blkcg_gq *blkg;
1907 if (td->limit_index != LIMIT_LOW)
1910 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1914 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915 struct throtl_grp *tg = blkg_to_tg(blkg);
1919 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1921 if (!throtl_hierarchy_can_upgrade(tg)) {
1930 static void throtl_upgrade_check(struct throtl_grp *tg)
1932 unsigned long now = jiffies;
1934 if (tg->td->limit_index != LIMIT_LOW)
1937 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1940 tg->last_check_time = now;
1942 if (!time_after_eq(now,
1943 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1946 if (throtl_can_upgrade(tg->td, NULL))
1947 throtl_upgrade_state(tg->td);
1950 static void throtl_upgrade_state(struct throtl_data *td)
1952 struct cgroup_subsys_state *pos_css;
1953 struct blkcg_gq *blkg;
1955 throtl_log(&td->service_queue, "upgrade to max");
1956 td->limit_index = LIMIT_MAX;
1957 td->low_upgrade_time = jiffies;
1960 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1961 struct throtl_grp *tg = blkg_to_tg(blkg);
1962 struct throtl_service_queue *sq = &tg->service_queue;
1964 tg->disptime = jiffies - 1;
1965 throtl_select_dispatch(sq);
1966 throtl_schedule_next_dispatch(sq, true);
1969 throtl_select_dispatch(&td->service_queue);
1970 throtl_schedule_next_dispatch(&td->service_queue, true);
1971 queue_work(kthrotld_workqueue, &td->dispatch_work);
1974 static void throtl_downgrade_state(struct throtl_data *td)
1978 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1980 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1984 td->limit_index = LIMIT_LOW;
1985 td->low_downgrade_time = jiffies;
1988 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1990 struct throtl_data *td = tg->td;
1991 unsigned long now = jiffies;
1994 * If cgroup is below low limit, consider downgrade and throttle other
1997 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1998 time_after_eq(now, tg_last_low_overflow_time(tg) +
1999 td->throtl_slice) &&
2000 (!throtl_tg_is_idle(tg) ||
2001 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2006 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2009 if (!throtl_tg_can_downgrade(tg))
2011 tg = sq_to_tg(tg->service_queue.parent_sq);
2012 if (!tg || !tg_to_blkg(tg)->parent)
2018 static void throtl_downgrade_check(struct throtl_grp *tg)
2022 unsigned long elapsed_time;
2023 unsigned long now = jiffies;
2025 if (tg->td->limit_index != LIMIT_MAX ||
2026 !tg->td->limit_valid[LIMIT_LOW])
2028 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2030 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2033 elapsed_time = now - tg->last_check_time;
2034 tg->last_check_time = now;
2036 if (time_before(now, tg_last_low_overflow_time(tg) +
2037 tg->td->throtl_slice))
2040 if (tg->bps[READ][LIMIT_LOW]) {
2041 bps = tg->last_bytes_disp[READ] * HZ;
2042 do_div(bps, elapsed_time);
2043 if (bps >= tg->bps[READ][LIMIT_LOW])
2044 tg->last_low_overflow_time[READ] = now;
2047 if (tg->bps[WRITE][LIMIT_LOW]) {
2048 bps = tg->last_bytes_disp[WRITE] * HZ;
2049 do_div(bps, elapsed_time);
2050 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2051 tg->last_low_overflow_time[WRITE] = now;
2054 if (tg->iops[READ][LIMIT_LOW]) {
2055 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2056 if (iops >= tg->iops[READ][LIMIT_LOW])
2057 tg->last_low_overflow_time[READ] = now;
2060 if (tg->iops[WRITE][LIMIT_LOW]) {
2061 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2062 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2063 tg->last_low_overflow_time[WRITE] = now;
2067 * If cgroup is below low limit, consider downgrade and throttle other
2070 if (throtl_hierarchy_can_downgrade(tg))
2071 throtl_downgrade_state(tg->td);
2073 tg->last_bytes_disp[READ] = 0;
2074 tg->last_bytes_disp[WRITE] = 0;
2075 tg->last_io_disp[READ] = 0;
2076 tg->last_io_disp[WRITE] = 0;
2079 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2082 unsigned long last_finish_time = tg->last_finish_time;
2084 if (last_finish_time == 0)
2087 now = ktime_get_ns() >> 10;
2088 if (now <= last_finish_time ||
2089 last_finish_time == tg->checked_last_finish_time)
2092 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2093 tg->checked_last_finish_time = last_finish_time;
2096 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2097 static void throtl_update_latency_buckets(struct throtl_data *td)
2099 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2101 unsigned long last_latency[2] = { 0 };
2102 unsigned long latency[2];
2104 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2106 if (time_before(jiffies, td->last_calculate_time + HZ))
2108 td->last_calculate_time = jiffies;
2110 memset(avg_latency, 0, sizeof(avg_latency));
2111 for (rw = READ; rw <= WRITE; rw++) {
2112 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2113 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2115 for_each_possible_cpu(cpu) {
2116 struct latency_bucket *bucket;
2118 /* this isn't race free, but ok in practice */
2119 bucket = per_cpu_ptr(td->latency_buckets[rw],
2121 tmp->total_latency += bucket[i].total_latency;
2122 tmp->samples += bucket[i].samples;
2123 bucket[i].total_latency = 0;
2124 bucket[i].samples = 0;
2127 if (tmp->samples >= 32) {
2128 int samples = tmp->samples;
2130 latency[rw] = tmp->total_latency;
2132 tmp->total_latency = 0;
2134 latency[rw] /= samples;
2135 if (latency[rw] == 0)
2137 avg_latency[rw][i].latency = latency[rw];
2142 for (rw = READ; rw <= WRITE; rw++) {
2143 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2144 if (!avg_latency[rw][i].latency) {
2145 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2146 td->avg_buckets[rw][i].latency =
2151 if (!td->avg_buckets[rw][i].valid)
2152 latency[rw] = avg_latency[rw][i].latency;
2154 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2155 avg_latency[rw][i].latency) >> 3;
2157 td->avg_buckets[rw][i].latency = max(latency[rw],
2159 td->avg_buckets[rw][i].valid = true;
2160 last_latency[rw] = td->avg_buckets[rw][i].latency;
2164 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2165 throtl_log(&td->service_queue,
2166 "Latency bucket %d: read latency=%ld, read valid=%d, "
2167 "write latency=%ld, write valid=%d", i,
2168 td->avg_buckets[READ][i].latency,
2169 td->avg_buckets[READ][i].valid,
2170 td->avg_buckets[WRITE][i].latency,
2171 td->avg_buckets[WRITE][i].valid);
2174 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2179 bool blk_throtl_bio(struct bio *bio)
2181 struct request_queue *q = bio->bi_disk->queue;
2182 struct blkcg_gq *blkg = bio->bi_blkg;
2183 struct throtl_qnode *qn = NULL;
2184 struct throtl_grp *tg = blkg_to_tg(blkg);
2185 struct throtl_service_queue *sq;
2186 bool rw = bio_data_dir(bio);
2187 bool throttled = false;
2188 struct throtl_data *td = tg->td;
2192 /* see throtl_charge_bio() */
2193 if (bio_flagged(bio, BIO_THROTTLED))
2196 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2197 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2198 bio->bi_iter.bi_size);
2199 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2202 if (!tg->has_rules[rw])
2205 spin_lock_irq(&q->queue_lock);
2207 throtl_update_latency_buckets(td);
2209 blk_throtl_update_idletime(tg);
2211 sq = &tg->service_queue;
2215 if (tg->last_low_overflow_time[rw] == 0)
2216 tg->last_low_overflow_time[rw] = jiffies;
2217 throtl_downgrade_check(tg);
2218 throtl_upgrade_check(tg);
2219 /* throtl is FIFO - if bios are already queued, should queue */
2220 if (sq->nr_queued[rw])
2223 /* if above limits, break to queue */
2224 if (!tg_may_dispatch(tg, bio, NULL)) {
2225 tg->last_low_overflow_time[rw] = jiffies;
2226 if (throtl_can_upgrade(td, tg)) {
2227 throtl_upgrade_state(td);
2233 /* within limits, let's charge and dispatch directly */
2234 throtl_charge_bio(tg, bio);
2237 * We need to trim slice even when bios are not being queued
2238 * otherwise it might happen that a bio is not queued for
2239 * a long time and slice keeps on extending and trim is not
2240 * called for a long time. Now if limits are reduced suddenly
2241 * we take into account all the IO dispatched so far at new
2242 * low rate and * newly queued IO gets a really long dispatch
2245 * So keep on trimming slice even if bio is not queued.
2247 throtl_trim_slice(tg, rw);
2250 * @bio passed through this layer without being throttled.
2251 * Climb up the ladder. If we're already at the top, it
2252 * can be executed directly.
2254 qn = &tg->qnode_on_parent[rw];
2261 /* out-of-limit, queue to @tg */
2262 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2263 rw == READ ? 'R' : 'W',
2264 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2265 tg_bps_limit(tg, rw),
2266 tg->io_disp[rw], tg_iops_limit(tg, rw),
2267 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2269 tg->last_low_overflow_time[rw] = jiffies;
2271 td->nr_queued[rw]++;
2272 throtl_add_bio_tg(bio, qn, tg);
2276 * Update @tg's dispatch time and force schedule dispatch if @tg
2277 * was empty before @bio. The forced scheduling isn't likely to
2278 * cause undue delay as @bio is likely to be dispatched directly if
2279 * its @tg's disptime is not in the future.
2281 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2282 tg_update_disptime(tg);
2283 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2287 spin_unlock_irq(&q->queue_lock);
2289 bio_set_flag(bio, BIO_THROTTLED);
2291 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2292 if (throttled || !td->track_bio_latency)
2293 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2299 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2300 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2301 int op, unsigned long time)
2303 struct latency_bucket *latency;
2306 if (!td || td->limit_index != LIMIT_LOW ||
2307 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2308 !blk_queue_nonrot(td->queue))
2311 index = request_bucket_index(size);
2313 latency = get_cpu_ptr(td->latency_buckets[op]);
2314 latency[index].total_latency += time;
2315 latency[index].samples++;
2316 put_cpu_ptr(td->latency_buckets[op]);
2319 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2321 struct request_queue *q = rq->q;
2322 struct throtl_data *td = q->td;
2324 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2328 void blk_throtl_bio_endio(struct bio *bio)
2330 struct blkcg_gq *blkg;
2331 struct throtl_grp *tg;
2333 unsigned long finish_time;
2334 unsigned long start_time;
2336 int rw = bio_data_dir(bio);
2338 blkg = bio->bi_blkg;
2341 tg = blkg_to_tg(blkg);
2342 if (!tg->td->limit_valid[LIMIT_LOW])
2345 finish_time_ns = ktime_get_ns();
2346 tg->last_finish_time = finish_time_ns >> 10;
2348 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2349 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2350 if (!start_time || finish_time <= start_time)
2353 lat = finish_time - start_time;
2354 /* this is only for bio based driver */
2355 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2356 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2359 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2361 unsigned int threshold;
2363 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2364 threshold = tg->td->avg_buckets[rw][bucket].latency +
2366 if (lat > threshold)
2369 * Not race free, could get wrong count, which means cgroups
2375 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2376 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2378 tg->bad_bio_cnt /= 2;
2383 int blk_throtl_init(struct request_queue *q)
2385 struct throtl_data *td;
2388 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2391 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2392 LATENCY_BUCKET_SIZE, __alignof__(u64));
2393 if (!td->latency_buckets[READ]) {
2397 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2398 LATENCY_BUCKET_SIZE, __alignof__(u64));
2399 if (!td->latency_buckets[WRITE]) {
2400 free_percpu(td->latency_buckets[READ]);
2405 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2406 throtl_service_queue_init(&td->service_queue);
2411 td->limit_valid[LIMIT_MAX] = true;
2412 td->limit_index = LIMIT_MAX;
2413 td->low_upgrade_time = jiffies;
2414 td->low_downgrade_time = jiffies;
2416 /* activate policy */
2417 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2419 free_percpu(td->latency_buckets[READ]);
2420 free_percpu(td->latency_buckets[WRITE]);
2426 void blk_throtl_exit(struct request_queue *q)
2429 throtl_shutdown_wq(q);
2430 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2431 free_percpu(q->td->latency_buckets[READ]);
2432 free_percpu(q->td->latency_buckets[WRITE]);
2436 void blk_throtl_register_queue(struct request_queue *q)
2438 struct throtl_data *td;
2444 if (blk_queue_nonrot(q)) {
2445 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2446 td->filtered_latency = LATENCY_FILTERED_SSD;
2448 td->throtl_slice = DFL_THROTL_SLICE_HD;
2449 td->filtered_latency = LATENCY_FILTERED_HD;
2450 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2451 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2452 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2455 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2456 /* if no low limit, use previous default */
2457 td->throtl_slice = DFL_THROTL_SLICE_HD;
2460 td->track_bio_latency = !queue_is_mq(q);
2461 if (!td->track_bio_latency)
2462 blk_stat_enable_accounting(q);
2465 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2466 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2470 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2473 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2474 const char *page, size_t count)
2481 if (kstrtoul(page, 10, &v))
2483 t = msecs_to_jiffies(v);
2484 if (t == 0 || t > MAX_THROTL_SLICE)
2486 q->td->throtl_slice = t;
2491 static int __init throtl_init(void)
2493 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2494 if (!kthrotld_workqueue)
2495 panic("Failed to create kthrotld\n");
2497 return blkcg_policy_register(&blkcg_policy_throtl);
2500 module_init(throtl_init);