7e72102aa9188a3501ab27f431a22ebe81c99fb2
[linux-2.6-microblaze.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39
40 static struct blkcg_policy blkcg_policy_throtl;
41
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69         struct list_head        node;           /* service_queue->queued[] */
70         struct bio_list         bios;           /* queued bios */
71         struct throtl_grp       *tg;            /* tg this qnode belongs to */
72 };
73
74 struct throtl_service_queue {
75         struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
77         /*
78          * Bios queued directly to this service_queue or dispatched from
79          * children throtl_grp's.
80          */
81         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
82         unsigned int            nr_queued[2];   /* number of queued bios */
83
84         /*
85          * RB tree of active children throtl_grp's, which are sorted by
86          * their ->disptime.
87          */
88         struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
89         unsigned int            nr_pending;     /* # queued in the tree */
90         unsigned long           first_pending_disptime; /* disptime of the first tg */
91         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
96         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102         LIMIT_LOW,
103         LIMIT_MAX,
104         LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108         /* must be the first member */
109         struct blkg_policy_data pd;
110
111         /* active throtl group service_queue member */
112         struct rb_node rb_node;
113
114         /* throtl_data this group belongs to */
115         struct throtl_data *td;
116
117         /* this group's service queue */
118         struct throtl_service_queue service_queue;
119
120         /*
121          * qnode_on_self is used when bios are directly queued to this
122          * throtl_grp so that local bios compete fairly with bios
123          * dispatched from children.  qnode_on_parent is used when bios are
124          * dispatched from this throtl_grp into its parent and will compete
125          * with the sibling qnode_on_parents and the parent's
126          * qnode_on_self.
127          */
128         struct throtl_qnode qnode_on_self[2];
129         struct throtl_qnode qnode_on_parent[2];
130
131         /*
132          * Dispatch time in jiffies. This is the estimated time when group
133          * will unthrottle and is ready to dispatch more bio. It is used as
134          * key to sort active groups in service tree.
135          */
136         unsigned long disptime;
137
138         unsigned int flags;
139
140         /* are there any throtl rules between this group and td? */
141         bool has_rules[2];
142
143         /* internally used bytes per second rate limits */
144         uint64_t bps[2][LIMIT_CNT];
145         /* user configured bps limits */
146         uint64_t bps_conf[2][LIMIT_CNT];
147
148         /* internally used IOPS limits */
149         unsigned int iops[2][LIMIT_CNT];
150         /* user configured IOPS limits */
151         unsigned int iops_conf[2][LIMIT_CNT];
152
153         /* Number of bytes dispatched in current slice */
154         uint64_t bytes_disp[2];
155         /* Number of bio's dispatched in current slice */
156         unsigned int io_disp[2];
157
158         unsigned long last_low_overflow_time[2];
159
160         uint64_t last_bytes_disp[2];
161         unsigned int last_io_disp[2];
162
163         unsigned long last_check_time;
164
165         unsigned long latency_target; /* us */
166         unsigned long latency_target_conf; /* us */
167         /* When did we start a new slice */
168         unsigned long slice_start[2];
169         unsigned long slice_end[2];
170
171         unsigned long last_finish_time; /* ns / 1024 */
172         unsigned long checked_last_finish_time; /* ns / 1024 */
173         unsigned long avg_idletime; /* ns / 1024 */
174         unsigned long idletime_threshold; /* us */
175         unsigned long idletime_threshold_conf; /* us */
176
177         unsigned int bio_cnt; /* total bios */
178         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179         unsigned long bio_cnt_reset_time;
180
181         struct blkg_rwstat stat_bytes;
182         struct blkg_rwstat stat_ios;
183 };
184
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187
188 struct latency_bucket {
189         unsigned long total_latency; /* ns / 1024 */
190         int samples;
191 };
192
193 struct avg_latency_bucket {
194         unsigned long latency; /* ns / 1024 */
195         bool valid;
196 };
197
198 struct throtl_data
199 {
200         /* service tree for active throtl groups */
201         struct throtl_service_queue service_queue;
202
203         struct request_queue *queue;
204
205         /* Total Number of queued bios on READ and WRITE lists */
206         unsigned int nr_queued[2];
207
208         unsigned int throtl_slice;
209
210         /* Work for dispatching throttled bios */
211         struct work_struct dispatch_work;
212         unsigned int limit_index;
213         bool limit_valid[LIMIT_CNT];
214
215         unsigned long low_upgrade_time;
216         unsigned long low_downgrade_time;
217
218         unsigned int scale;
219
220         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222         struct latency_bucket __percpu *latency_buckets[2];
223         unsigned long last_calculate_time;
224         unsigned long filtered_latency;
225
226         bool track_bio_latency;
227 };
228
229 static void throtl_pending_timer_fn(struct timer_list *t);
230
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243         return pd_to_blkg(&tg->pd);
244 }
245
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255         if (sq && sq->parent_sq)
256                 return container_of(sq, struct throtl_grp, service_queue);
257         else
258                 return NULL;
259 }
260
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270         struct throtl_grp *tg = sq_to_tg(sq);
271
272         if (tg)
273                 return tg->td;
274         else
275                 return container_of(sq, struct throtl_data, service_queue);
276 }
277
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288         /* arbitrary value to avoid too big scale */
289         if (td->scale < 4096 && time_after_eq(jiffies,
290             td->low_upgrade_time + td->scale * td->throtl_slice))
291                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293         return low + (low >> 1) * td->scale;
294 }
295
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298         struct blkcg_gq *blkg = tg_to_blkg(tg);
299         struct throtl_data *td;
300         uint64_t ret;
301
302         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303                 return U64_MAX;
304
305         td = tg->td;
306         ret = tg->bps[rw][td->limit_index];
307         if (ret == 0 && td->limit_index == LIMIT_LOW) {
308                 /* intermediate node or iops isn't 0 */
309                 if (!list_empty(&blkg->blkcg->css.children) ||
310                     tg->iops[rw][td->limit_index])
311                         return U64_MAX;
312                 else
313                         return MIN_THROTL_BPS;
314         }
315
316         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318                 uint64_t adjusted;
319
320                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322         }
323         return ret;
324 }
325
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328         struct blkcg_gq *blkg = tg_to_blkg(tg);
329         struct throtl_data *td;
330         unsigned int ret;
331
332         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333                 return UINT_MAX;
334
335         td = tg->td;
336         ret = tg->iops[rw][td->limit_index];
337         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338                 /* intermediate node or bps isn't 0 */
339                 if (!list_empty(&blkg->blkcg->css.children) ||
340                     tg->bps[rw][td->limit_index])
341                         return UINT_MAX;
342                 else
343                         return MIN_THROTL_IOPS;
344         }
345
346         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348                 uint64_t adjusted;
349
350                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351                 if (adjusted > UINT_MAX)
352                         adjusted = UINT_MAX;
353                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354         }
355         return ret;
356 }
357
358 #define request_bucket_index(sectors) \
359         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)    do {                            \
371         struct throtl_grp *__tg = sq_to_tg((sq));                       \
372         struct throtl_data *__td = sq_to_td((sq));                      \
373                                                                         \
374         (void)__td;                                                     \
375         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
376                 break;                                                  \
377         if ((__tg)) {                                                   \
378                 blk_add_cgroup_trace_msg(__td->queue,                   \
379                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380         } else {                                                        \
381                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
382         }                                                               \
383 } while (0)
384
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387         /* assume it's one sector */
388         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389                 return 512;
390         return bio->bi_iter.bi_size;
391 }
392
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395         INIT_LIST_HEAD(&qn->node);
396         bio_list_init(&qn->bios);
397         qn->tg = tg;
398 }
399
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411                                  struct list_head *queued)
412 {
413         bio_list_add(&qn->bios, bio);
414         if (list_empty(&qn->node)) {
415                 list_add_tail(&qn->node, queued);
416                 blkg_get(tg_to_blkg(qn->tg));
417         }
418 }
419
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
427         struct bio *bio;
428
429         if (list_empty(queued))
430                 return NULL;
431
432         bio = bio_list_peek(&qn->bios);
433         WARN_ON_ONCE(!bio);
434         return bio;
435 }
436
437 /**
438  * throtl_pop_queued - pop the first bio form a qnode list
439  * @queued: the qnode list to pop a bio from
440  * @tg_to_put: optional out argument for throtl_grp to put
441  *
442  * Pop the first bio from the qnode list @queued.  After popping, the first
443  * qnode is removed from @queued if empty or moved to the end of @queued so
444  * that the popping order is round-robin.
445  *
446  * When the first qnode is removed, its associated throtl_grp should be put
447  * too.  If @tg_to_put is NULL, this function automatically puts it;
448  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449  * responsible for putting it.
450  */
451 static struct bio *throtl_pop_queued(struct list_head *queued,
452                                      struct throtl_grp **tg_to_put)
453 {
454         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
455         struct bio *bio;
456
457         if (list_empty(queued))
458                 return NULL;
459
460         bio = bio_list_pop(&qn->bios);
461         WARN_ON_ONCE(!bio);
462
463         if (bio_list_empty(&qn->bios)) {
464                 list_del_init(&qn->node);
465                 if (tg_to_put)
466                         *tg_to_put = qn->tg;
467                 else
468                         blkg_put(tg_to_blkg(qn->tg));
469         } else {
470                 list_move_tail(&qn->node, queued);
471         }
472
473         return bio;
474 }
475
476 /* init a service_queue, assumes the caller zeroed it */
477 static void throtl_service_queue_init(struct throtl_service_queue *sq)
478 {
479         INIT_LIST_HEAD(&sq->queued[0]);
480         INIT_LIST_HEAD(&sq->queued[1]);
481         sq->pending_tree = RB_ROOT_CACHED;
482         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
483 }
484
485 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
486                                                 struct request_queue *q,
487                                                 struct blkcg *blkcg)
488 {
489         struct throtl_grp *tg;
490         int rw;
491
492         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
493         if (!tg)
494                 return NULL;
495
496         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
497                 goto err_free_tg;
498
499         if (blkg_rwstat_init(&tg->stat_ios, gfp))
500                 goto err_exit_stat_bytes;
501
502         throtl_service_queue_init(&tg->service_queue);
503
504         for (rw = READ; rw <= WRITE; rw++) {
505                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
506                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
507         }
508
509         RB_CLEAR_NODE(&tg->rb_node);
510         tg->bps[READ][LIMIT_MAX] = U64_MAX;
511         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
512         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
513         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
514         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
515         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
516         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
517         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
518         /* LIMIT_LOW will have default value 0 */
519
520         tg->latency_target = DFL_LATENCY_TARGET;
521         tg->latency_target_conf = DFL_LATENCY_TARGET;
522         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
523         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
524
525         return &tg->pd;
526
527 err_exit_stat_bytes:
528         blkg_rwstat_exit(&tg->stat_bytes);
529 err_free_tg:
530         kfree(tg);
531         return NULL;
532 }
533
534 static void throtl_pd_init(struct blkg_policy_data *pd)
535 {
536         struct throtl_grp *tg = pd_to_tg(pd);
537         struct blkcg_gq *blkg = tg_to_blkg(tg);
538         struct throtl_data *td = blkg->q->td;
539         struct throtl_service_queue *sq = &tg->service_queue;
540
541         /*
542          * If on the default hierarchy, we switch to properly hierarchical
543          * behavior where limits on a given throtl_grp are applied to the
544          * whole subtree rather than just the group itself.  e.g. If 16M
545          * read_bps limit is set on the root group, the whole system can't
546          * exceed 16M for the device.
547          *
548          * If not on the default hierarchy, the broken flat hierarchy
549          * behavior is retained where all throtl_grps are treated as if
550          * they're all separate root groups right below throtl_data.
551          * Limits of a group don't interact with limits of other groups
552          * regardless of the position of the group in the hierarchy.
553          */
554         sq->parent_sq = &td->service_queue;
555         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
556                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
557         tg->td = td;
558 }
559
560 /*
561  * Set has_rules[] if @tg or any of its parents have limits configured.
562  * This doesn't require walking up to the top of the hierarchy as the
563  * parent's has_rules[] is guaranteed to be correct.
564  */
565 static void tg_update_has_rules(struct throtl_grp *tg)
566 {
567         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
568         struct throtl_data *td = tg->td;
569         int rw;
570
571         for (rw = READ; rw <= WRITE; rw++)
572                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
573                         (td->limit_valid[td->limit_index] &&
574                          (tg_bps_limit(tg, rw) != U64_MAX ||
575                           tg_iops_limit(tg, rw) != UINT_MAX));
576 }
577
578 static void throtl_pd_online(struct blkg_policy_data *pd)
579 {
580         struct throtl_grp *tg = pd_to_tg(pd);
581         /*
582          * We don't want new groups to escape the limits of its ancestors.
583          * Update has_rules[] after a new group is brought online.
584          */
585         tg_update_has_rules(tg);
586 }
587
588 static void blk_throtl_update_limit_valid(struct throtl_data *td)
589 {
590         struct cgroup_subsys_state *pos_css;
591         struct blkcg_gq *blkg;
592         bool low_valid = false;
593
594         rcu_read_lock();
595         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
596                 struct throtl_grp *tg = blkg_to_tg(blkg);
597
598                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
599                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
600                         low_valid = true;
601                         break;
602                 }
603         }
604         rcu_read_unlock();
605
606         td->limit_valid[LIMIT_LOW] = low_valid;
607 }
608
609 static void throtl_upgrade_state(struct throtl_data *td);
610 static void throtl_pd_offline(struct blkg_policy_data *pd)
611 {
612         struct throtl_grp *tg = pd_to_tg(pd);
613
614         tg->bps[READ][LIMIT_LOW] = 0;
615         tg->bps[WRITE][LIMIT_LOW] = 0;
616         tg->iops[READ][LIMIT_LOW] = 0;
617         tg->iops[WRITE][LIMIT_LOW] = 0;
618
619         blk_throtl_update_limit_valid(tg->td);
620
621         if (!tg->td->limit_valid[tg->td->limit_index])
622                 throtl_upgrade_state(tg->td);
623 }
624
625 static void throtl_pd_free(struct blkg_policy_data *pd)
626 {
627         struct throtl_grp *tg = pd_to_tg(pd);
628
629         del_timer_sync(&tg->service_queue.pending_timer);
630         blkg_rwstat_exit(&tg->stat_bytes);
631         blkg_rwstat_exit(&tg->stat_ios);
632         kfree(tg);
633 }
634
635 static struct throtl_grp *
636 throtl_rb_first(struct throtl_service_queue *parent_sq)
637 {
638         struct rb_node *n;
639         /* Service tree is empty */
640         if (!parent_sq->nr_pending)
641                 return NULL;
642
643         n = rb_first_cached(&parent_sq->pending_tree);
644         WARN_ON_ONCE(!n);
645         if (!n)
646                 return NULL;
647         return rb_entry_tg(n);
648 }
649
650 static void throtl_rb_erase(struct rb_node *n,
651                             struct throtl_service_queue *parent_sq)
652 {
653         rb_erase_cached(n, &parent_sq->pending_tree);
654         RB_CLEAR_NODE(n);
655         --parent_sq->nr_pending;
656 }
657
658 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
659 {
660         struct throtl_grp *tg;
661
662         tg = throtl_rb_first(parent_sq);
663         if (!tg)
664                 return;
665
666         parent_sq->first_pending_disptime = tg->disptime;
667 }
668
669 static void tg_service_queue_add(struct throtl_grp *tg)
670 {
671         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
672         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
673         struct rb_node *parent = NULL;
674         struct throtl_grp *__tg;
675         unsigned long key = tg->disptime;
676         bool leftmost = true;
677
678         while (*node != NULL) {
679                 parent = *node;
680                 __tg = rb_entry_tg(parent);
681
682                 if (time_before(key, __tg->disptime))
683                         node = &parent->rb_left;
684                 else {
685                         node = &parent->rb_right;
686                         leftmost = false;
687                 }
688         }
689
690         rb_link_node(&tg->rb_node, parent, node);
691         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
692                                leftmost);
693 }
694
695 static void __throtl_enqueue_tg(struct throtl_grp *tg)
696 {
697         tg_service_queue_add(tg);
698         tg->flags |= THROTL_TG_PENDING;
699         tg->service_queue.parent_sq->nr_pending++;
700 }
701
702 static void throtl_enqueue_tg(struct throtl_grp *tg)
703 {
704         if (!(tg->flags & THROTL_TG_PENDING))
705                 __throtl_enqueue_tg(tg);
706 }
707
708 static void __throtl_dequeue_tg(struct throtl_grp *tg)
709 {
710         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
711         tg->flags &= ~THROTL_TG_PENDING;
712 }
713
714 static void throtl_dequeue_tg(struct throtl_grp *tg)
715 {
716         if (tg->flags & THROTL_TG_PENDING)
717                 __throtl_dequeue_tg(tg);
718 }
719
720 /* Call with queue lock held */
721 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
722                                           unsigned long expires)
723 {
724         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
725
726         /*
727          * Since we are adjusting the throttle limit dynamically, the sleep
728          * time calculated according to previous limit might be invalid. It's
729          * possible the cgroup sleep time is very long and no other cgroups
730          * have IO running so notify the limit changes. Make sure the cgroup
731          * doesn't sleep too long to avoid the missed notification.
732          */
733         if (time_after(expires, max_expire))
734                 expires = max_expire;
735         mod_timer(&sq->pending_timer, expires);
736         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
737                    expires - jiffies, jiffies);
738 }
739
740 /**
741  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
742  * @sq: the service_queue to schedule dispatch for
743  * @force: force scheduling
744  *
745  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
746  * dispatch time of the first pending child.  Returns %true if either timer
747  * is armed or there's no pending child left.  %false if the current
748  * dispatch window is still open and the caller should continue
749  * dispatching.
750  *
751  * If @force is %true, the dispatch timer is always scheduled and this
752  * function is guaranteed to return %true.  This is to be used when the
753  * caller can't dispatch itself and needs to invoke pending_timer
754  * unconditionally.  Note that forced scheduling is likely to induce short
755  * delay before dispatch starts even if @sq->first_pending_disptime is not
756  * in the future and thus shouldn't be used in hot paths.
757  */
758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
759                                           bool force)
760 {
761         /* any pending children left? */
762         if (!sq->nr_pending)
763                 return true;
764
765         update_min_dispatch_time(sq);
766
767         /* is the next dispatch time in the future? */
768         if (force || time_after(sq->first_pending_disptime, jiffies)) {
769                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
770                 return true;
771         }
772
773         /* tell the caller to continue dispatching */
774         return false;
775 }
776
777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
778                 bool rw, unsigned long start)
779 {
780         tg->bytes_disp[rw] = 0;
781         tg->io_disp[rw] = 0;
782
783         /*
784          * Previous slice has expired. We must have trimmed it after last
785          * bio dispatch. That means since start of last slice, we never used
786          * that bandwidth. Do try to make use of that bandwidth while giving
787          * credit.
788          */
789         if (time_after_eq(start, tg->slice_start[rw]))
790                 tg->slice_start[rw] = start;
791
792         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
793         throtl_log(&tg->service_queue,
794                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
795                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
796                    tg->slice_end[rw], jiffies);
797 }
798
799 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
800 {
801         tg->bytes_disp[rw] = 0;
802         tg->io_disp[rw] = 0;
803         tg->slice_start[rw] = jiffies;
804         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
805         throtl_log(&tg->service_queue,
806                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
807                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
808                    tg->slice_end[rw], jiffies);
809 }
810
811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812                                         unsigned long jiffy_end)
813 {
814         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
815 }
816
817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818                                        unsigned long jiffy_end)
819 {
820         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
821         throtl_log(&tg->service_queue,
822                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
824                    tg->slice_end[rw], jiffies);
825 }
826
827 /* Determine if previously allocated or extended slice is complete or not */
828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
829 {
830         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
831                 return false;
832
833         return true;
834 }
835
836 /* Trim the used slices and adjust slice start accordingly */
837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
838 {
839         unsigned long nr_slices, time_elapsed, io_trim;
840         u64 bytes_trim, tmp;
841
842         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843
844         /*
845          * If bps are unlimited (-1), then time slice don't get
846          * renewed. Don't try to trim the slice if slice is used. A new
847          * slice will start when appropriate.
848          */
849         if (throtl_slice_used(tg, rw))
850                 return;
851
852         /*
853          * A bio has been dispatched. Also adjust slice_end. It might happen
854          * that initially cgroup limit was very low resulting in high
855          * slice_end, but later limit was bumped up and bio was dispatched
856          * sooner, then we need to reduce slice_end. A high bogus slice_end
857          * is bad because it does not allow new slice to start.
858          */
859
860         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
861
862         time_elapsed = jiffies - tg->slice_start[rw];
863
864         nr_slices = time_elapsed / tg->td->throtl_slice;
865
866         if (!nr_slices)
867                 return;
868         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869         do_div(tmp, HZ);
870         bytes_trim = tmp;
871
872         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873                 HZ;
874
875         if (!bytes_trim && !io_trim)
876                 return;
877
878         if (tg->bytes_disp[rw] >= bytes_trim)
879                 tg->bytes_disp[rw] -= bytes_trim;
880         else
881                 tg->bytes_disp[rw] = 0;
882
883         if (tg->io_disp[rw] >= io_trim)
884                 tg->io_disp[rw] -= io_trim;
885         else
886                 tg->io_disp[rw] = 0;
887
888         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
889
890         throtl_log(&tg->service_queue,
891                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
894 }
895
896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
897                                   u32 iops_limit, unsigned long *wait)
898 {
899         bool rw = bio_data_dir(bio);
900         unsigned int io_allowed;
901         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
902         u64 tmp;
903
904         if (iops_limit == UINT_MAX) {
905                 if (wait)
906                         *wait = 0;
907                 return true;
908         }
909
910         jiffy_elapsed = jiffies - tg->slice_start[rw];
911
912         /* Round up to the next throttle slice, wait time must be nonzero */
913         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
914
915         /*
916          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
917          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
918          * will allow dispatch after 1 second and after that slice should
919          * have been trimmed.
920          */
921
922         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
923         do_div(tmp, HZ);
924
925         if (tmp > UINT_MAX)
926                 io_allowed = UINT_MAX;
927         else
928                 io_allowed = tmp;
929
930         if (tg->io_disp[rw] + 1 <= io_allowed) {
931                 if (wait)
932                         *wait = 0;
933                 return true;
934         }
935
936         /* Calc approx time to dispatch */
937         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
938
939         if (wait)
940                 *wait = jiffy_wait;
941         return false;
942 }
943
944 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
945                                  u64 bps_limit, unsigned long *wait)
946 {
947         bool rw = bio_data_dir(bio);
948         u64 bytes_allowed, extra_bytes, tmp;
949         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
950         unsigned int bio_size = throtl_bio_data_size(bio);
951
952         if (bps_limit == U64_MAX) {
953                 if (wait)
954                         *wait = 0;
955                 return true;
956         }
957
958         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
959
960         /* Slice has just started. Consider one slice interval */
961         if (!jiffy_elapsed)
962                 jiffy_elapsed_rnd = tg->td->throtl_slice;
963
964         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
965
966         tmp = bps_limit * jiffy_elapsed_rnd;
967         do_div(tmp, HZ);
968         bytes_allowed = tmp;
969
970         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
971                 if (wait)
972                         *wait = 0;
973                 return true;
974         }
975
976         /* Calc approx time to dispatch */
977         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
978         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
979
980         if (!jiffy_wait)
981                 jiffy_wait = 1;
982
983         /*
984          * This wait time is without taking into consideration the rounding
985          * up we did. Add that time also.
986          */
987         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
988         if (wait)
989                 *wait = jiffy_wait;
990         return false;
991 }
992
993 /*
994  * Returns whether one can dispatch a bio or not. Also returns approx number
995  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
996  */
997 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
998                             unsigned long *wait)
999 {
1000         bool rw = bio_data_dir(bio);
1001         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1002         u64 bps_limit = tg_bps_limit(tg, rw);
1003         u32 iops_limit = tg_iops_limit(tg, rw);
1004
1005         /*
1006          * Currently whole state machine of group depends on first bio
1007          * queued in the group bio list. So one should not be calling
1008          * this function with a different bio if there are other bios
1009          * queued.
1010          */
1011         BUG_ON(tg->service_queue.nr_queued[rw] &&
1012                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1013
1014         /* If tg->bps = -1, then BW is unlimited */
1015         if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1016                 if (wait)
1017                         *wait = 0;
1018                 return true;
1019         }
1020
1021         /*
1022          * If previous slice expired, start a new one otherwise renew/extend
1023          * existing slice to make sure it is at least throtl_slice interval
1024          * long since now. New slice is started only for empty throttle group.
1025          * If there is queued bio, that means there should be an active
1026          * slice and it should be extended instead.
1027          */
1028         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1029                 throtl_start_new_slice(tg, rw);
1030         else {
1031                 if (time_before(tg->slice_end[rw],
1032                     jiffies + tg->td->throtl_slice))
1033                         throtl_extend_slice(tg, rw,
1034                                 jiffies + tg->td->throtl_slice);
1035         }
1036
1037         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1038             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1039                 if (wait)
1040                         *wait = 0;
1041                 return true;
1042         }
1043
1044         max_wait = max(bps_wait, iops_wait);
1045
1046         if (wait)
1047                 *wait = max_wait;
1048
1049         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1050                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1051
1052         return false;
1053 }
1054
1055 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1056 {
1057         bool rw = bio_data_dir(bio);
1058         unsigned int bio_size = throtl_bio_data_size(bio);
1059
1060         /* Charge the bio to the group */
1061         tg->bytes_disp[rw] += bio_size;
1062         tg->io_disp[rw]++;
1063         tg->last_bytes_disp[rw] += bio_size;
1064         tg->last_io_disp[rw]++;
1065
1066         /*
1067          * BIO_THROTTLED is used to prevent the same bio to be throttled
1068          * more than once as a throttled bio will go through blk-throtl the
1069          * second time when it eventually gets issued.  Set it when a bio
1070          * is being charged to a tg.
1071          */
1072         if (!bio_flagged(bio, BIO_THROTTLED))
1073                 bio_set_flag(bio, BIO_THROTTLED);
1074 }
1075
1076 /**
1077  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1078  * @bio: bio to add
1079  * @qn: qnode to use
1080  * @tg: the target throtl_grp
1081  *
1082  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1083  * tg->qnode_on_self[] is used.
1084  */
1085 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1086                               struct throtl_grp *tg)
1087 {
1088         struct throtl_service_queue *sq = &tg->service_queue;
1089         bool rw = bio_data_dir(bio);
1090
1091         if (!qn)
1092                 qn = &tg->qnode_on_self[rw];
1093
1094         /*
1095          * If @tg doesn't currently have any bios queued in the same
1096          * direction, queueing @bio can change when @tg should be
1097          * dispatched.  Mark that @tg was empty.  This is automatically
1098          * cleared on the next tg_update_disptime().
1099          */
1100         if (!sq->nr_queued[rw])
1101                 tg->flags |= THROTL_TG_WAS_EMPTY;
1102
1103         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1104
1105         sq->nr_queued[rw]++;
1106         throtl_enqueue_tg(tg);
1107 }
1108
1109 static void tg_update_disptime(struct throtl_grp *tg)
1110 {
1111         struct throtl_service_queue *sq = &tg->service_queue;
1112         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1113         struct bio *bio;
1114
1115         bio = throtl_peek_queued(&sq->queued[READ]);
1116         if (bio)
1117                 tg_may_dispatch(tg, bio, &read_wait);
1118
1119         bio = throtl_peek_queued(&sq->queued[WRITE]);
1120         if (bio)
1121                 tg_may_dispatch(tg, bio, &write_wait);
1122
1123         min_wait = min(read_wait, write_wait);
1124         disptime = jiffies + min_wait;
1125
1126         /* Update dispatch time */
1127         throtl_dequeue_tg(tg);
1128         tg->disptime = disptime;
1129         throtl_enqueue_tg(tg);
1130
1131         /* see throtl_add_bio_tg() */
1132         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1133 }
1134
1135 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1136                                         struct throtl_grp *parent_tg, bool rw)
1137 {
1138         if (throtl_slice_used(parent_tg, rw)) {
1139                 throtl_start_new_slice_with_credit(parent_tg, rw,
1140                                 child_tg->slice_start[rw]);
1141         }
1142
1143 }
1144
1145 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1146 {
1147         struct throtl_service_queue *sq = &tg->service_queue;
1148         struct throtl_service_queue *parent_sq = sq->parent_sq;
1149         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1150         struct throtl_grp *tg_to_put = NULL;
1151         struct bio *bio;
1152
1153         /*
1154          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1155          * from @tg may put its reference and @parent_sq might end up
1156          * getting released prematurely.  Remember the tg to put and put it
1157          * after @bio is transferred to @parent_sq.
1158          */
1159         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1160         sq->nr_queued[rw]--;
1161
1162         throtl_charge_bio(tg, bio);
1163
1164         /*
1165          * If our parent is another tg, we just need to transfer @bio to
1166          * the parent using throtl_add_bio_tg().  If our parent is
1167          * @td->service_queue, @bio is ready to be issued.  Put it on its
1168          * bio_lists[] and decrease total number queued.  The caller is
1169          * responsible for issuing these bios.
1170          */
1171         if (parent_tg) {
1172                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1173                 start_parent_slice_with_credit(tg, parent_tg, rw);
1174         } else {
1175                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1176                                      &parent_sq->queued[rw]);
1177                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1178                 tg->td->nr_queued[rw]--;
1179         }
1180
1181         throtl_trim_slice(tg, rw);
1182
1183         if (tg_to_put)
1184                 blkg_put(tg_to_blkg(tg_to_put));
1185 }
1186
1187 static int throtl_dispatch_tg(struct throtl_grp *tg)
1188 {
1189         struct throtl_service_queue *sq = &tg->service_queue;
1190         unsigned int nr_reads = 0, nr_writes = 0;
1191         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1192         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1193         struct bio *bio;
1194
1195         /* Try to dispatch 75% READS and 25% WRITES */
1196
1197         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1198                tg_may_dispatch(tg, bio, NULL)) {
1199
1200                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1201                 nr_reads++;
1202
1203                 if (nr_reads >= max_nr_reads)
1204                         break;
1205         }
1206
1207         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1208                tg_may_dispatch(tg, bio, NULL)) {
1209
1210                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1211                 nr_writes++;
1212
1213                 if (nr_writes >= max_nr_writes)
1214                         break;
1215         }
1216
1217         return nr_reads + nr_writes;
1218 }
1219
1220 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1221 {
1222         unsigned int nr_disp = 0;
1223
1224         while (1) {
1225                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1226                 struct throtl_service_queue *sq;
1227
1228                 if (!tg)
1229                         break;
1230
1231                 if (time_before(jiffies, tg->disptime))
1232                         break;
1233
1234                 throtl_dequeue_tg(tg);
1235
1236                 nr_disp += throtl_dispatch_tg(tg);
1237
1238                 sq = &tg->service_queue;
1239                 if (sq->nr_queued[0] || sq->nr_queued[1])
1240                         tg_update_disptime(tg);
1241
1242                 if (nr_disp >= THROTL_QUANTUM)
1243                         break;
1244         }
1245
1246         return nr_disp;
1247 }
1248
1249 static bool throtl_can_upgrade(struct throtl_data *td,
1250         struct throtl_grp *this_tg);
1251 /**
1252  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1253  * @t: the pending_timer member of the throtl_service_queue being serviced
1254  *
1255  * This timer is armed when a child throtl_grp with active bio's become
1256  * pending and queued on the service_queue's pending_tree and expires when
1257  * the first child throtl_grp should be dispatched.  This function
1258  * dispatches bio's from the children throtl_grps to the parent
1259  * service_queue.
1260  *
1261  * If the parent's parent is another throtl_grp, dispatching is propagated
1262  * by either arming its pending_timer or repeating dispatch directly.  If
1263  * the top-level service_tree is reached, throtl_data->dispatch_work is
1264  * kicked so that the ready bio's are issued.
1265  */
1266 static void throtl_pending_timer_fn(struct timer_list *t)
1267 {
1268         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1269         struct throtl_grp *tg = sq_to_tg(sq);
1270         struct throtl_data *td = sq_to_td(sq);
1271         struct request_queue *q = td->queue;
1272         struct throtl_service_queue *parent_sq;
1273         bool dispatched;
1274         int ret;
1275
1276         spin_lock_irq(&q->queue_lock);
1277         if (throtl_can_upgrade(td, NULL))
1278                 throtl_upgrade_state(td);
1279
1280 again:
1281         parent_sq = sq->parent_sq;
1282         dispatched = false;
1283
1284         while (true) {
1285                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1286                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1287                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1288
1289                 ret = throtl_select_dispatch(sq);
1290                 if (ret) {
1291                         throtl_log(sq, "bios disp=%u", ret);
1292                         dispatched = true;
1293                 }
1294
1295                 if (throtl_schedule_next_dispatch(sq, false))
1296                         break;
1297
1298                 /* this dispatch windows is still open, relax and repeat */
1299                 spin_unlock_irq(&q->queue_lock);
1300                 cpu_relax();
1301                 spin_lock_irq(&q->queue_lock);
1302         }
1303
1304         if (!dispatched)
1305                 goto out_unlock;
1306
1307         if (parent_sq) {
1308                 /* @parent_sq is another throl_grp, propagate dispatch */
1309                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1310                         tg_update_disptime(tg);
1311                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1312                                 /* window is already open, repeat dispatching */
1313                                 sq = parent_sq;
1314                                 tg = sq_to_tg(sq);
1315                                 goto again;
1316                         }
1317                 }
1318         } else {
1319                 /* reached the top-level, queue issuing */
1320                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1321         }
1322 out_unlock:
1323         spin_unlock_irq(&q->queue_lock);
1324 }
1325
1326 /**
1327  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1328  * @work: work item being executed
1329  *
1330  * This function is queued for execution when bios reach the bio_lists[]
1331  * of throtl_data->service_queue.  Those bios are ready and issued by this
1332  * function.
1333  */
1334 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1335 {
1336         struct throtl_data *td = container_of(work, struct throtl_data,
1337                                               dispatch_work);
1338         struct throtl_service_queue *td_sq = &td->service_queue;
1339         struct request_queue *q = td->queue;
1340         struct bio_list bio_list_on_stack;
1341         struct bio *bio;
1342         struct blk_plug plug;
1343         int rw;
1344
1345         bio_list_init(&bio_list_on_stack);
1346
1347         spin_lock_irq(&q->queue_lock);
1348         for (rw = READ; rw <= WRITE; rw++)
1349                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1350                         bio_list_add(&bio_list_on_stack, bio);
1351         spin_unlock_irq(&q->queue_lock);
1352
1353         if (!bio_list_empty(&bio_list_on_stack)) {
1354                 blk_start_plug(&plug);
1355                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1356                         submit_bio_noacct(bio);
1357                 blk_finish_plug(&plug);
1358         }
1359 }
1360
1361 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1362                               int off)
1363 {
1364         struct throtl_grp *tg = pd_to_tg(pd);
1365         u64 v = *(u64 *)((void *)tg + off);
1366
1367         if (v == U64_MAX)
1368                 return 0;
1369         return __blkg_prfill_u64(sf, pd, v);
1370 }
1371
1372 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1373                                int off)
1374 {
1375         struct throtl_grp *tg = pd_to_tg(pd);
1376         unsigned int v = *(unsigned int *)((void *)tg + off);
1377
1378         if (v == UINT_MAX)
1379                 return 0;
1380         return __blkg_prfill_u64(sf, pd, v);
1381 }
1382
1383 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1384 {
1385         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1386                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1387         return 0;
1388 }
1389
1390 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1391 {
1392         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1393                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1394         return 0;
1395 }
1396
1397 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1398 {
1399         struct throtl_service_queue *sq = &tg->service_queue;
1400         struct cgroup_subsys_state *pos_css;
1401         struct blkcg_gq *blkg;
1402
1403         throtl_log(&tg->service_queue,
1404                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1405                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1406                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1407
1408         /*
1409          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1410          * considered to have rules if either the tg itself or any of its
1411          * ancestors has rules.  This identifies groups without any
1412          * restrictions in the whole hierarchy and allows them to bypass
1413          * blk-throttle.
1414          */
1415         blkg_for_each_descendant_pre(blkg, pos_css,
1416                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1417                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1418                 struct throtl_grp *parent_tg;
1419
1420                 tg_update_has_rules(this_tg);
1421                 /* ignore root/second level */
1422                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1423                     !blkg->parent->parent)
1424                         continue;
1425                 parent_tg = blkg_to_tg(blkg->parent);
1426                 /*
1427                  * make sure all children has lower idle time threshold and
1428                  * higher latency target
1429                  */
1430                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1431                                 parent_tg->idletime_threshold);
1432                 this_tg->latency_target = max(this_tg->latency_target,
1433                                 parent_tg->latency_target);
1434         }
1435
1436         /*
1437          * We're already holding queue_lock and know @tg is valid.  Let's
1438          * apply the new config directly.
1439          *
1440          * Restart the slices for both READ and WRITES. It might happen
1441          * that a group's limit are dropped suddenly and we don't want to
1442          * account recently dispatched IO with new low rate.
1443          */
1444         throtl_start_new_slice(tg, READ);
1445         throtl_start_new_slice(tg, WRITE);
1446
1447         if (tg->flags & THROTL_TG_PENDING) {
1448                 tg_update_disptime(tg);
1449                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1450         }
1451 }
1452
1453 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1454                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1455 {
1456         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1457         struct blkg_conf_ctx ctx;
1458         struct throtl_grp *tg;
1459         int ret;
1460         u64 v;
1461
1462         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1463         if (ret)
1464                 return ret;
1465
1466         ret = -EINVAL;
1467         if (sscanf(ctx.body, "%llu", &v) != 1)
1468                 goto out_finish;
1469         if (!v)
1470                 v = U64_MAX;
1471
1472         tg = blkg_to_tg(ctx.blkg);
1473
1474         if (is_u64)
1475                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1476         else
1477                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1478
1479         tg_conf_updated(tg, false);
1480         ret = 0;
1481 out_finish:
1482         blkg_conf_finish(&ctx);
1483         return ret ?: nbytes;
1484 }
1485
1486 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1487                                char *buf, size_t nbytes, loff_t off)
1488 {
1489         return tg_set_conf(of, buf, nbytes, off, true);
1490 }
1491
1492 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1493                                 char *buf, size_t nbytes, loff_t off)
1494 {
1495         return tg_set_conf(of, buf, nbytes, off, false);
1496 }
1497
1498 static int tg_print_rwstat(struct seq_file *sf, void *v)
1499 {
1500         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1501                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1502                           seq_cft(sf)->private, true);
1503         return 0;
1504 }
1505
1506 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1507                                       struct blkg_policy_data *pd, int off)
1508 {
1509         struct blkg_rwstat_sample sum;
1510
1511         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1512                                   &sum);
1513         return __blkg_prfill_rwstat(sf, pd, &sum);
1514 }
1515
1516 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1517 {
1518         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1519                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1520                           seq_cft(sf)->private, true);
1521         return 0;
1522 }
1523
1524 static struct cftype throtl_legacy_files[] = {
1525         {
1526                 .name = "throttle.read_bps_device",
1527                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1528                 .seq_show = tg_print_conf_u64,
1529                 .write = tg_set_conf_u64,
1530         },
1531         {
1532                 .name = "throttle.write_bps_device",
1533                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1534                 .seq_show = tg_print_conf_u64,
1535                 .write = tg_set_conf_u64,
1536         },
1537         {
1538                 .name = "throttle.read_iops_device",
1539                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1540                 .seq_show = tg_print_conf_uint,
1541                 .write = tg_set_conf_uint,
1542         },
1543         {
1544                 .name = "throttle.write_iops_device",
1545                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1546                 .seq_show = tg_print_conf_uint,
1547                 .write = tg_set_conf_uint,
1548         },
1549         {
1550                 .name = "throttle.io_service_bytes",
1551                 .private = offsetof(struct throtl_grp, stat_bytes),
1552                 .seq_show = tg_print_rwstat,
1553         },
1554         {
1555                 .name = "throttle.io_service_bytes_recursive",
1556                 .private = offsetof(struct throtl_grp, stat_bytes),
1557                 .seq_show = tg_print_rwstat_recursive,
1558         },
1559         {
1560                 .name = "throttle.io_serviced",
1561                 .private = offsetof(struct throtl_grp, stat_ios),
1562                 .seq_show = tg_print_rwstat,
1563         },
1564         {
1565                 .name = "throttle.io_serviced_recursive",
1566                 .private = offsetof(struct throtl_grp, stat_ios),
1567                 .seq_show = tg_print_rwstat_recursive,
1568         },
1569         { }     /* terminate */
1570 };
1571
1572 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1573                          int off)
1574 {
1575         struct throtl_grp *tg = pd_to_tg(pd);
1576         const char *dname = blkg_dev_name(pd->blkg);
1577         char bufs[4][21] = { "max", "max", "max", "max" };
1578         u64 bps_dft;
1579         unsigned int iops_dft;
1580         char idle_time[26] = "";
1581         char latency_time[26] = "";
1582
1583         if (!dname)
1584                 return 0;
1585
1586         if (off == LIMIT_LOW) {
1587                 bps_dft = 0;
1588                 iops_dft = 0;
1589         } else {
1590                 bps_dft = U64_MAX;
1591                 iops_dft = UINT_MAX;
1592         }
1593
1594         if (tg->bps_conf[READ][off] == bps_dft &&
1595             tg->bps_conf[WRITE][off] == bps_dft &&
1596             tg->iops_conf[READ][off] == iops_dft &&
1597             tg->iops_conf[WRITE][off] == iops_dft &&
1598             (off != LIMIT_LOW ||
1599              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1600               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1601                 return 0;
1602
1603         if (tg->bps_conf[READ][off] != U64_MAX)
1604                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1605                         tg->bps_conf[READ][off]);
1606         if (tg->bps_conf[WRITE][off] != U64_MAX)
1607                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1608                         tg->bps_conf[WRITE][off]);
1609         if (tg->iops_conf[READ][off] != UINT_MAX)
1610                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1611                         tg->iops_conf[READ][off]);
1612         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1613                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1614                         tg->iops_conf[WRITE][off]);
1615         if (off == LIMIT_LOW) {
1616                 if (tg->idletime_threshold_conf == ULONG_MAX)
1617                         strcpy(idle_time, " idle=max");
1618                 else
1619                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1620                                 tg->idletime_threshold_conf);
1621
1622                 if (tg->latency_target_conf == ULONG_MAX)
1623                         strcpy(latency_time, " latency=max");
1624                 else
1625                         snprintf(latency_time, sizeof(latency_time),
1626                                 " latency=%lu", tg->latency_target_conf);
1627         }
1628
1629         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1630                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1631                    latency_time);
1632         return 0;
1633 }
1634
1635 static int tg_print_limit(struct seq_file *sf, void *v)
1636 {
1637         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1638                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1639         return 0;
1640 }
1641
1642 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1643                           char *buf, size_t nbytes, loff_t off)
1644 {
1645         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1646         struct blkg_conf_ctx ctx;
1647         struct throtl_grp *tg;
1648         u64 v[4];
1649         unsigned long idle_time;
1650         unsigned long latency_time;
1651         int ret;
1652         int index = of_cft(of)->private;
1653
1654         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1655         if (ret)
1656                 return ret;
1657
1658         tg = blkg_to_tg(ctx.blkg);
1659
1660         v[0] = tg->bps_conf[READ][index];
1661         v[1] = tg->bps_conf[WRITE][index];
1662         v[2] = tg->iops_conf[READ][index];
1663         v[3] = tg->iops_conf[WRITE][index];
1664
1665         idle_time = tg->idletime_threshold_conf;
1666         latency_time = tg->latency_target_conf;
1667         while (true) {
1668                 char tok[27];   /* wiops=18446744073709551616 */
1669                 char *p;
1670                 u64 val = U64_MAX;
1671                 int len;
1672
1673                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1674                         break;
1675                 if (tok[0] == '\0')
1676                         break;
1677                 ctx.body += len;
1678
1679                 ret = -EINVAL;
1680                 p = tok;
1681                 strsep(&p, "=");
1682                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1683                         goto out_finish;
1684
1685                 ret = -ERANGE;
1686                 if (!val)
1687                         goto out_finish;
1688
1689                 ret = -EINVAL;
1690                 if (!strcmp(tok, "rbps"))
1691                         v[0] = val;
1692                 else if (!strcmp(tok, "wbps"))
1693                         v[1] = val;
1694                 else if (!strcmp(tok, "riops"))
1695                         v[2] = min_t(u64, val, UINT_MAX);
1696                 else if (!strcmp(tok, "wiops"))
1697                         v[3] = min_t(u64, val, UINT_MAX);
1698                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1699                         idle_time = val;
1700                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1701                         latency_time = val;
1702                 else
1703                         goto out_finish;
1704         }
1705
1706         tg->bps_conf[READ][index] = v[0];
1707         tg->bps_conf[WRITE][index] = v[1];
1708         tg->iops_conf[READ][index] = v[2];
1709         tg->iops_conf[WRITE][index] = v[3];
1710
1711         if (index == LIMIT_MAX) {
1712                 tg->bps[READ][index] = v[0];
1713                 tg->bps[WRITE][index] = v[1];
1714                 tg->iops[READ][index] = v[2];
1715                 tg->iops[WRITE][index] = v[3];
1716         }
1717         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1718                 tg->bps_conf[READ][LIMIT_MAX]);
1719         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1720                 tg->bps_conf[WRITE][LIMIT_MAX]);
1721         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1722                 tg->iops_conf[READ][LIMIT_MAX]);
1723         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1724                 tg->iops_conf[WRITE][LIMIT_MAX]);
1725         tg->idletime_threshold_conf = idle_time;
1726         tg->latency_target_conf = latency_time;
1727
1728         /* force user to configure all settings for low limit  */
1729         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1730               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1731             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1732             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1733                 tg->bps[READ][LIMIT_LOW] = 0;
1734                 tg->bps[WRITE][LIMIT_LOW] = 0;
1735                 tg->iops[READ][LIMIT_LOW] = 0;
1736                 tg->iops[WRITE][LIMIT_LOW] = 0;
1737                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1738                 tg->latency_target = DFL_LATENCY_TARGET;
1739         } else if (index == LIMIT_LOW) {
1740                 tg->idletime_threshold = tg->idletime_threshold_conf;
1741                 tg->latency_target = tg->latency_target_conf;
1742         }
1743
1744         blk_throtl_update_limit_valid(tg->td);
1745         if (tg->td->limit_valid[LIMIT_LOW]) {
1746                 if (index == LIMIT_LOW)
1747                         tg->td->limit_index = LIMIT_LOW;
1748         } else
1749                 tg->td->limit_index = LIMIT_MAX;
1750         tg_conf_updated(tg, index == LIMIT_LOW &&
1751                 tg->td->limit_valid[LIMIT_LOW]);
1752         ret = 0;
1753 out_finish:
1754         blkg_conf_finish(&ctx);
1755         return ret ?: nbytes;
1756 }
1757
1758 static struct cftype throtl_files[] = {
1759 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1760         {
1761                 .name = "low",
1762                 .flags = CFTYPE_NOT_ON_ROOT,
1763                 .seq_show = tg_print_limit,
1764                 .write = tg_set_limit,
1765                 .private = LIMIT_LOW,
1766         },
1767 #endif
1768         {
1769                 .name = "max",
1770                 .flags = CFTYPE_NOT_ON_ROOT,
1771                 .seq_show = tg_print_limit,
1772                 .write = tg_set_limit,
1773                 .private = LIMIT_MAX,
1774         },
1775         { }     /* terminate */
1776 };
1777
1778 static void throtl_shutdown_wq(struct request_queue *q)
1779 {
1780         struct throtl_data *td = q->td;
1781
1782         cancel_work_sync(&td->dispatch_work);
1783 }
1784
1785 static struct blkcg_policy blkcg_policy_throtl = {
1786         .dfl_cftypes            = throtl_files,
1787         .legacy_cftypes         = throtl_legacy_files,
1788
1789         .pd_alloc_fn            = throtl_pd_alloc,
1790         .pd_init_fn             = throtl_pd_init,
1791         .pd_online_fn           = throtl_pd_online,
1792         .pd_offline_fn          = throtl_pd_offline,
1793         .pd_free_fn             = throtl_pd_free,
1794 };
1795
1796 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1797 {
1798         unsigned long rtime = jiffies, wtime = jiffies;
1799
1800         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1801                 rtime = tg->last_low_overflow_time[READ];
1802         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1803                 wtime = tg->last_low_overflow_time[WRITE];
1804         return min(rtime, wtime);
1805 }
1806
1807 /* tg should not be an intermediate node */
1808 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1809 {
1810         struct throtl_service_queue *parent_sq;
1811         struct throtl_grp *parent = tg;
1812         unsigned long ret = __tg_last_low_overflow_time(tg);
1813
1814         while (true) {
1815                 parent_sq = parent->service_queue.parent_sq;
1816                 parent = sq_to_tg(parent_sq);
1817                 if (!parent)
1818                         break;
1819
1820                 /*
1821                  * The parent doesn't have low limit, it always reaches low
1822                  * limit. Its overflow time is useless for children
1823                  */
1824                 if (!parent->bps[READ][LIMIT_LOW] &&
1825                     !parent->iops[READ][LIMIT_LOW] &&
1826                     !parent->bps[WRITE][LIMIT_LOW] &&
1827                     !parent->iops[WRITE][LIMIT_LOW])
1828                         continue;
1829                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1830                         ret = __tg_last_low_overflow_time(parent);
1831         }
1832         return ret;
1833 }
1834
1835 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1836 {
1837         /*
1838          * cgroup is idle if:
1839          * - single idle is too long, longer than a fixed value (in case user
1840          *   configure a too big threshold) or 4 times of idletime threshold
1841          * - average think time is more than threshold
1842          * - IO latency is largely below threshold
1843          */
1844         unsigned long time;
1845         bool ret;
1846
1847         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1848         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1849               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1850               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1851               tg->avg_idletime > tg->idletime_threshold ||
1852               (tg->latency_target && tg->bio_cnt &&
1853                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1854         throtl_log(&tg->service_queue,
1855                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1856                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1857                 tg->bio_cnt, ret, tg->td->scale);
1858         return ret;
1859 }
1860
1861 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1862 {
1863         struct throtl_service_queue *sq = &tg->service_queue;
1864         bool read_limit, write_limit;
1865
1866         /*
1867          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1868          * reaches), it's ok to upgrade to next limit
1869          */
1870         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1871         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1872         if (!read_limit && !write_limit)
1873                 return true;
1874         if (read_limit && sq->nr_queued[READ] &&
1875             (!write_limit || sq->nr_queued[WRITE]))
1876                 return true;
1877         if (write_limit && sq->nr_queued[WRITE] &&
1878             (!read_limit || sq->nr_queued[READ]))
1879                 return true;
1880
1881         if (time_after_eq(jiffies,
1882                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1883             throtl_tg_is_idle(tg))
1884                 return true;
1885         return false;
1886 }
1887
1888 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1889 {
1890         while (true) {
1891                 if (throtl_tg_can_upgrade(tg))
1892                         return true;
1893                 tg = sq_to_tg(tg->service_queue.parent_sq);
1894                 if (!tg || !tg_to_blkg(tg)->parent)
1895                         return false;
1896         }
1897         return false;
1898 }
1899
1900 static bool throtl_can_upgrade(struct throtl_data *td,
1901         struct throtl_grp *this_tg)
1902 {
1903         struct cgroup_subsys_state *pos_css;
1904         struct blkcg_gq *blkg;
1905
1906         if (td->limit_index != LIMIT_LOW)
1907                 return false;
1908
1909         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1910                 return false;
1911
1912         rcu_read_lock();
1913         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1914                 struct throtl_grp *tg = blkg_to_tg(blkg);
1915
1916                 if (tg == this_tg)
1917                         continue;
1918                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1919                         continue;
1920                 if (!throtl_hierarchy_can_upgrade(tg)) {
1921                         rcu_read_unlock();
1922                         return false;
1923                 }
1924         }
1925         rcu_read_unlock();
1926         return true;
1927 }
1928
1929 static void throtl_upgrade_check(struct throtl_grp *tg)
1930 {
1931         unsigned long now = jiffies;
1932
1933         if (tg->td->limit_index != LIMIT_LOW)
1934                 return;
1935
1936         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1937                 return;
1938
1939         tg->last_check_time = now;
1940
1941         if (!time_after_eq(now,
1942              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1943                 return;
1944
1945         if (throtl_can_upgrade(tg->td, NULL))
1946                 throtl_upgrade_state(tg->td);
1947 }
1948
1949 static void throtl_upgrade_state(struct throtl_data *td)
1950 {
1951         struct cgroup_subsys_state *pos_css;
1952         struct blkcg_gq *blkg;
1953
1954         throtl_log(&td->service_queue, "upgrade to max");
1955         td->limit_index = LIMIT_MAX;
1956         td->low_upgrade_time = jiffies;
1957         td->scale = 0;
1958         rcu_read_lock();
1959         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1960                 struct throtl_grp *tg = blkg_to_tg(blkg);
1961                 struct throtl_service_queue *sq = &tg->service_queue;
1962
1963                 tg->disptime = jiffies - 1;
1964                 throtl_select_dispatch(sq);
1965                 throtl_schedule_next_dispatch(sq, true);
1966         }
1967         rcu_read_unlock();
1968         throtl_select_dispatch(&td->service_queue);
1969         throtl_schedule_next_dispatch(&td->service_queue, true);
1970         queue_work(kthrotld_workqueue, &td->dispatch_work);
1971 }
1972
1973 static void throtl_downgrade_state(struct throtl_data *td)
1974 {
1975         td->scale /= 2;
1976
1977         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1978         if (td->scale) {
1979                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1980                 return;
1981         }
1982
1983         td->limit_index = LIMIT_LOW;
1984         td->low_downgrade_time = jiffies;
1985 }
1986
1987 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1988 {
1989         struct throtl_data *td = tg->td;
1990         unsigned long now = jiffies;
1991
1992         /*
1993          * If cgroup is below low limit, consider downgrade and throttle other
1994          * cgroups
1995          */
1996         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1997             time_after_eq(now, tg_last_low_overflow_time(tg) +
1998                                         td->throtl_slice) &&
1999             (!throtl_tg_is_idle(tg) ||
2000              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2001                 return true;
2002         return false;
2003 }
2004
2005 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2006 {
2007         while (true) {
2008                 if (!throtl_tg_can_downgrade(tg))
2009                         return false;
2010                 tg = sq_to_tg(tg->service_queue.parent_sq);
2011                 if (!tg || !tg_to_blkg(tg)->parent)
2012                         break;
2013         }
2014         return true;
2015 }
2016
2017 static void throtl_downgrade_check(struct throtl_grp *tg)
2018 {
2019         uint64_t bps;
2020         unsigned int iops;
2021         unsigned long elapsed_time;
2022         unsigned long now = jiffies;
2023
2024         if (tg->td->limit_index != LIMIT_MAX ||
2025             !tg->td->limit_valid[LIMIT_LOW])
2026                 return;
2027         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2028                 return;
2029         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2030                 return;
2031
2032         elapsed_time = now - tg->last_check_time;
2033         tg->last_check_time = now;
2034
2035         if (time_before(now, tg_last_low_overflow_time(tg) +
2036                         tg->td->throtl_slice))
2037                 return;
2038
2039         if (tg->bps[READ][LIMIT_LOW]) {
2040                 bps = tg->last_bytes_disp[READ] * HZ;
2041                 do_div(bps, elapsed_time);
2042                 if (bps >= tg->bps[READ][LIMIT_LOW])
2043                         tg->last_low_overflow_time[READ] = now;
2044         }
2045
2046         if (tg->bps[WRITE][LIMIT_LOW]) {
2047                 bps = tg->last_bytes_disp[WRITE] * HZ;
2048                 do_div(bps, elapsed_time);
2049                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2050                         tg->last_low_overflow_time[WRITE] = now;
2051         }
2052
2053         if (tg->iops[READ][LIMIT_LOW]) {
2054                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2055                 if (iops >= tg->iops[READ][LIMIT_LOW])
2056                         tg->last_low_overflow_time[READ] = now;
2057         }
2058
2059         if (tg->iops[WRITE][LIMIT_LOW]) {
2060                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2061                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2062                         tg->last_low_overflow_time[WRITE] = now;
2063         }
2064
2065         /*
2066          * If cgroup is below low limit, consider downgrade and throttle other
2067          * cgroups
2068          */
2069         if (throtl_hierarchy_can_downgrade(tg))
2070                 throtl_downgrade_state(tg->td);
2071
2072         tg->last_bytes_disp[READ] = 0;
2073         tg->last_bytes_disp[WRITE] = 0;
2074         tg->last_io_disp[READ] = 0;
2075         tg->last_io_disp[WRITE] = 0;
2076 }
2077
2078 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2079 {
2080         unsigned long now;
2081         unsigned long last_finish_time = tg->last_finish_time;
2082
2083         if (last_finish_time == 0)
2084                 return;
2085
2086         now = ktime_get_ns() >> 10;
2087         if (now <= last_finish_time ||
2088             last_finish_time == tg->checked_last_finish_time)
2089                 return;
2090
2091         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2092         tg->checked_last_finish_time = last_finish_time;
2093 }
2094
2095 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2096 static void throtl_update_latency_buckets(struct throtl_data *td)
2097 {
2098         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2099         int i, cpu, rw;
2100         unsigned long last_latency[2] = { 0 };
2101         unsigned long latency[2];
2102
2103         if (!blk_queue_nonrot(td->queue))
2104                 return;
2105         if (time_before(jiffies, td->last_calculate_time + HZ))
2106                 return;
2107         td->last_calculate_time = jiffies;
2108
2109         memset(avg_latency, 0, sizeof(avg_latency));
2110         for (rw = READ; rw <= WRITE; rw++) {
2111                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2112                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2113
2114                         for_each_possible_cpu(cpu) {
2115                                 struct latency_bucket *bucket;
2116
2117                                 /* this isn't race free, but ok in practice */
2118                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2119                                         cpu);
2120                                 tmp->total_latency += bucket[i].total_latency;
2121                                 tmp->samples += bucket[i].samples;
2122                                 bucket[i].total_latency = 0;
2123                                 bucket[i].samples = 0;
2124                         }
2125
2126                         if (tmp->samples >= 32) {
2127                                 int samples = tmp->samples;
2128
2129                                 latency[rw] = tmp->total_latency;
2130
2131                                 tmp->total_latency = 0;
2132                                 tmp->samples = 0;
2133                                 latency[rw] /= samples;
2134                                 if (latency[rw] == 0)
2135                                         continue;
2136                                 avg_latency[rw][i].latency = latency[rw];
2137                         }
2138                 }
2139         }
2140
2141         for (rw = READ; rw <= WRITE; rw++) {
2142                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2143                         if (!avg_latency[rw][i].latency) {
2144                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2145                                         td->avg_buckets[rw][i].latency =
2146                                                 last_latency[rw];
2147                                 continue;
2148                         }
2149
2150                         if (!td->avg_buckets[rw][i].valid)
2151                                 latency[rw] = avg_latency[rw][i].latency;
2152                         else
2153                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2154                                         avg_latency[rw][i].latency) >> 3;
2155
2156                         td->avg_buckets[rw][i].latency = max(latency[rw],
2157                                 last_latency[rw]);
2158                         td->avg_buckets[rw][i].valid = true;
2159                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2160                 }
2161         }
2162
2163         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2164                 throtl_log(&td->service_queue,
2165                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2166                         "write latency=%ld, write valid=%d", i,
2167                         td->avg_buckets[READ][i].latency,
2168                         td->avg_buckets[READ][i].valid,
2169                         td->avg_buckets[WRITE][i].latency,
2170                         td->avg_buckets[WRITE][i].valid);
2171 }
2172 #else
2173 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2174 {
2175 }
2176 #endif
2177
2178 bool blk_throtl_bio(struct bio *bio)
2179 {
2180         struct request_queue *q = bio->bi_disk->queue;
2181         struct blkcg_gq *blkg = bio->bi_blkg;
2182         struct throtl_qnode *qn = NULL;
2183         struct throtl_grp *tg = blkg_to_tg(blkg);
2184         struct throtl_service_queue *sq;
2185         bool rw = bio_data_dir(bio);
2186         bool throttled = false;
2187         struct throtl_data *td = tg->td;
2188
2189         rcu_read_lock();
2190
2191         /* see throtl_charge_bio() */
2192         if (bio_flagged(bio, BIO_THROTTLED))
2193                 goto out;
2194
2195         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2196                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2197                                 bio->bi_iter.bi_size);
2198                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2199         }
2200
2201         if (!tg->has_rules[rw])
2202                 goto out;
2203
2204         spin_lock_irq(&q->queue_lock);
2205
2206         throtl_update_latency_buckets(td);
2207
2208         blk_throtl_update_idletime(tg);
2209
2210         sq = &tg->service_queue;
2211
2212 again:
2213         while (true) {
2214                 if (tg->last_low_overflow_time[rw] == 0)
2215                         tg->last_low_overflow_time[rw] = jiffies;
2216                 throtl_downgrade_check(tg);
2217                 throtl_upgrade_check(tg);
2218                 /* throtl is FIFO - if bios are already queued, should queue */
2219                 if (sq->nr_queued[rw])
2220                         break;
2221
2222                 /* if above limits, break to queue */
2223                 if (!tg_may_dispatch(tg, bio, NULL)) {
2224                         tg->last_low_overflow_time[rw] = jiffies;
2225                         if (throtl_can_upgrade(td, tg)) {
2226                                 throtl_upgrade_state(td);
2227                                 goto again;
2228                         }
2229                         break;
2230                 }
2231
2232                 /* within limits, let's charge and dispatch directly */
2233                 throtl_charge_bio(tg, bio);
2234
2235                 /*
2236                  * We need to trim slice even when bios are not being queued
2237                  * otherwise it might happen that a bio is not queued for
2238                  * a long time and slice keeps on extending and trim is not
2239                  * called for a long time. Now if limits are reduced suddenly
2240                  * we take into account all the IO dispatched so far at new
2241                  * low rate and * newly queued IO gets a really long dispatch
2242                  * time.
2243                  *
2244                  * So keep on trimming slice even if bio is not queued.
2245                  */
2246                 throtl_trim_slice(tg, rw);
2247
2248                 /*
2249                  * @bio passed through this layer without being throttled.
2250                  * Climb up the ladder.  If we're already at the top, it
2251                  * can be executed directly.
2252                  */
2253                 qn = &tg->qnode_on_parent[rw];
2254                 sq = sq->parent_sq;
2255                 tg = sq_to_tg(sq);
2256                 if (!tg)
2257                         goto out_unlock;
2258         }
2259
2260         /* out-of-limit, queue to @tg */
2261         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2262                    rw == READ ? 'R' : 'W',
2263                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2264                    tg_bps_limit(tg, rw),
2265                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2266                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2267
2268         tg->last_low_overflow_time[rw] = jiffies;
2269
2270         td->nr_queued[rw]++;
2271         throtl_add_bio_tg(bio, qn, tg);
2272         throttled = true;
2273
2274         /*
2275          * Update @tg's dispatch time and force schedule dispatch if @tg
2276          * was empty before @bio.  The forced scheduling isn't likely to
2277          * cause undue delay as @bio is likely to be dispatched directly if
2278          * its @tg's disptime is not in the future.
2279          */
2280         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2281                 tg_update_disptime(tg);
2282                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2283         }
2284
2285 out_unlock:
2286         spin_unlock_irq(&q->queue_lock);
2287 out:
2288         bio_set_flag(bio, BIO_THROTTLED);
2289
2290 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2291         if (throttled || !td->track_bio_latency)
2292                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2293 #endif
2294         rcu_read_unlock();
2295         return throttled;
2296 }
2297
2298 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2299 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2300         int op, unsigned long time)
2301 {
2302         struct latency_bucket *latency;
2303         int index;
2304
2305         if (!td || td->limit_index != LIMIT_LOW ||
2306             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2307             !blk_queue_nonrot(td->queue))
2308                 return;
2309
2310         index = request_bucket_index(size);
2311
2312         latency = get_cpu_ptr(td->latency_buckets[op]);
2313         latency[index].total_latency += time;
2314         latency[index].samples++;
2315         put_cpu_ptr(td->latency_buckets[op]);
2316 }
2317
2318 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2319 {
2320         struct request_queue *q = rq->q;
2321         struct throtl_data *td = q->td;
2322
2323         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2324                              time_ns >> 10);
2325 }
2326
2327 void blk_throtl_bio_endio(struct bio *bio)
2328 {
2329         struct blkcg_gq *blkg;
2330         struct throtl_grp *tg;
2331         u64 finish_time_ns;
2332         unsigned long finish_time;
2333         unsigned long start_time;
2334         unsigned long lat;
2335         int rw = bio_data_dir(bio);
2336
2337         blkg = bio->bi_blkg;
2338         if (!blkg)
2339                 return;
2340         tg = blkg_to_tg(blkg);
2341
2342         finish_time_ns = ktime_get_ns();
2343         tg->last_finish_time = finish_time_ns >> 10;
2344
2345         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2346         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2347         if (!start_time || finish_time <= start_time)
2348                 return;
2349
2350         lat = finish_time - start_time;
2351         /* this is only for bio based driver */
2352         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2353                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2354                                      bio_op(bio), lat);
2355
2356         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2357                 int bucket;
2358                 unsigned int threshold;
2359
2360                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2361                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2362                         tg->latency_target;
2363                 if (lat > threshold)
2364                         tg->bad_bio_cnt++;
2365                 /*
2366                  * Not race free, could get wrong count, which means cgroups
2367                  * will be throttled
2368                  */
2369                 tg->bio_cnt++;
2370         }
2371
2372         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2373                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2374                 tg->bio_cnt /= 2;
2375                 tg->bad_bio_cnt /= 2;
2376         }
2377 }
2378 #endif
2379
2380 int blk_throtl_init(struct request_queue *q)
2381 {
2382         struct throtl_data *td;
2383         int ret;
2384
2385         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2386         if (!td)
2387                 return -ENOMEM;
2388         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2389                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2390         if (!td->latency_buckets[READ]) {
2391                 kfree(td);
2392                 return -ENOMEM;
2393         }
2394         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2395                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2396         if (!td->latency_buckets[WRITE]) {
2397                 free_percpu(td->latency_buckets[READ]);
2398                 kfree(td);
2399                 return -ENOMEM;
2400         }
2401
2402         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2403         throtl_service_queue_init(&td->service_queue);
2404
2405         q->td = td;
2406         td->queue = q;
2407
2408         td->limit_valid[LIMIT_MAX] = true;
2409         td->limit_index = LIMIT_MAX;
2410         td->low_upgrade_time = jiffies;
2411         td->low_downgrade_time = jiffies;
2412
2413         /* activate policy */
2414         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2415         if (ret) {
2416                 free_percpu(td->latency_buckets[READ]);
2417                 free_percpu(td->latency_buckets[WRITE]);
2418                 kfree(td);
2419         }
2420         return ret;
2421 }
2422
2423 void blk_throtl_exit(struct request_queue *q)
2424 {
2425         BUG_ON(!q->td);
2426         throtl_shutdown_wq(q);
2427         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2428         free_percpu(q->td->latency_buckets[READ]);
2429         free_percpu(q->td->latency_buckets[WRITE]);
2430         kfree(q->td);
2431 }
2432
2433 void blk_throtl_register_queue(struct request_queue *q)
2434 {
2435         struct throtl_data *td;
2436         int i;
2437
2438         td = q->td;
2439         BUG_ON(!td);
2440
2441         if (blk_queue_nonrot(q)) {
2442                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2443                 td->filtered_latency = LATENCY_FILTERED_SSD;
2444         } else {
2445                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2446                 td->filtered_latency = LATENCY_FILTERED_HD;
2447                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2448                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2449                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2450                 }
2451         }
2452 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2453         /* if no low limit, use previous default */
2454         td->throtl_slice = DFL_THROTL_SLICE_HD;
2455 #endif
2456
2457         td->track_bio_latency = !queue_is_mq(q);
2458         if (!td->track_bio_latency)
2459                 blk_stat_enable_accounting(q);
2460 }
2461
2462 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2463 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2464 {
2465         if (!q->td)
2466                 return -EINVAL;
2467         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2468 }
2469
2470 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2471         const char *page, size_t count)
2472 {
2473         unsigned long v;
2474         unsigned long t;
2475
2476         if (!q->td)
2477                 return -EINVAL;
2478         if (kstrtoul(page, 10, &v))
2479                 return -EINVAL;
2480         t = msecs_to_jiffies(v);
2481         if (t == 0 || t > MAX_THROTL_SLICE)
2482                 return -EINVAL;
2483         q->td->throtl_slice = t;
2484         return count;
2485 }
2486 #endif
2487
2488 static int __init throtl_init(void)
2489 {
2490         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2491         if (!kthrotld_workqueue)
2492                 panic("Failed to create kthrotld\n");
2493
2494         return blkcg_policy_register(&blkcg_policy_throtl);
2495 }
2496
2497 module_init(throtl_init);