1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
19 #include "blk-rq-qos.h"
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
24 q->rq_timeout = timeout;
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29 * blk_set_default_limits - reset limits to default values
30 * @lim: the queue_limits structure to reset
33 * Returns a queue_limit struct to its default state.
35 void blk_set_default_limits(struct queue_limits *lim)
37 lim->max_segments = BLK_MAX_SEGMENTS;
38 lim->max_discard_segments = 1;
39 lim->max_integrity_segments = 0;
40 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
41 lim->virt_boundary_mask = 0;
42 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
43 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
44 lim->max_user_sectors = lim->max_dev_sectors = 0;
45 lim->chunk_sectors = 0;
46 lim->max_write_zeroes_sectors = 0;
47 lim->max_zone_append_sectors = 0;
48 lim->max_discard_sectors = 0;
49 lim->max_hw_discard_sectors = 0;
50 lim->max_secure_erase_sectors = 0;
51 lim->discard_granularity = 0;
52 lim->discard_alignment = 0;
53 lim->discard_misaligned = 0;
54 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
55 lim->bounce = BLK_BOUNCE_NONE;
56 lim->alignment_offset = 0;
59 lim->zoned = BLK_ZONED_NONE;
60 lim->zone_write_granularity = 0;
61 lim->dma_alignment = 511;
65 * blk_set_stacking_limits - set default limits for stacking devices
66 * @lim: the queue_limits structure to reset
69 * Returns a queue_limit struct to its default state. Should be used
70 * by stacking drivers like DM that have no internal limits.
72 void blk_set_stacking_limits(struct queue_limits *lim)
74 blk_set_default_limits(lim);
76 /* Inherit limits from component devices */
77 lim->max_segments = USHRT_MAX;
78 lim->max_discard_segments = USHRT_MAX;
79 lim->max_hw_sectors = UINT_MAX;
80 lim->max_segment_size = UINT_MAX;
81 lim->max_sectors = UINT_MAX;
82 lim->max_dev_sectors = UINT_MAX;
83 lim->max_write_zeroes_sectors = UINT_MAX;
84 lim->max_zone_append_sectors = UINT_MAX;
86 EXPORT_SYMBOL(blk_set_stacking_limits);
89 * blk_queue_bounce_limit - set bounce buffer limit for queue
90 * @q: the request queue for the device
91 * @bounce: bounce limit to enforce
94 * Force bouncing for ISA DMA ranges or highmem.
96 * DEPRECATED, don't use in new code.
98 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
100 q->limits.bounce = bounce;
102 EXPORT_SYMBOL(blk_queue_bounce_limit);
105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
106 * @q: the request queue for the device
107 * @max_hw_sectors: max hardware sectors in the usual 512b unit
110 * Enables a low level driver to set a hard upper limit,
111 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
112 * the device driver based upon the capabilities of the I/O
115 * max_dev_sectors is a hard limit imposed by the storage device for
116 * READ/WRITE requests. It is set by the disk driver.
118 * max_sectors is a soft limit imposed by the block layer for
119 * filesystem type requests. This value can be overridden on a
120 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
121 * The soft limit can not exceed max_hw_sectors.
123 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
125 struct queue_limits *limits = &q->limits;
126 unsigned int max_sectors;
128 if ((max_hw_sectors << 9) < PAGE_SIZE) {
129 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
130 printk(KERN_INFO "%s: set to minimum %d\n",
131 __func__, max_hw_sectors);
134 max_hw_sectors = round_down(max_hw_sectors,
135 limits->logical_block_size >> SECTOR_SHIFT);
136 limits->max_hw_sectors = max_hw_sectors;
138 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
140 if (limits->max_user_sectors)
141 max_sectors = min(max_sectors, limits->max_user_sectors);
143 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS);
145 max_sectors = round_down(max_sectors,
146 limits->logical_block_size >> SECTOR_SHIFT);
147 limits->max_sectors = max_sectors;
151 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
153 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
156 * blk_queue_chunk_sectors - set size of the chunk for this queue
157 * @q: the request queue for the device
158 * @chunk_sectors: chunk sectors in the usual 512b unit
161 * If a driver doesn't want IOs to cross a given chunk size, it can set
162 * this limit and prevent merging across chunks. Note that the block layer
163 * must accept a page worth of data at any offset. So if the crossing of
164 * chunks is a hard limitation in the driver, it must still be prepared
165 * to split single page bios.
167 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
169 q->limits.chunk_sectors = chunk_sectors;
171 EXPORT_SYMBOL(blk_queue_chunk_sectors);
174 * blk_queue_max_discard_sectors - set max sectors for a single discard
175 * @q: the request queue for the device
176 * @max_discard_sectors: maximum number of sectors to discard
178 void blk_queue_max_discard_sectors(struct request_queue *q,
179 unsigned int max_discard_sectors)
181 q->limits.max_hw_discard_sectors = max_discard_sectors;
182 q->limits.max_discard_sectors = max_discard_sectors;
184 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
187 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
188 * @q: the request queue for the device
189 * @max_sectors: maximum number of sectors to secure_erase
191 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
192 unsigned int max_sectors)
194 q->limits.max_secure_erase_sectors = max_sectors;
196 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
199 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
201 * @q: the request queue for the device
202 * @max_write_zeroes_sectors: maximum number of sectors to write per command
204 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
205 unsigned int max_write_zeroes_sectors)
207 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
209 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
212 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
213 * @q: the request queue for the device
214 * @max_zone_append_sectors: maximum number of sectors to write per command
216 void blk_queue_max_zone_append_sectors(struct request_queue *q,
217 unsigned int max_zone_append_sectors)
219 unsigned int max_sectors;
221 if (WARN_ON(!blk_queue_is_zoned(q)))
224 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
225 max_sectors = min(q->limits.chunk_sectors, max_sectors);
228 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
229 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
230 * or the max_hw_sectors limit not set.
232 WARN_ON(!max_sectors);
234 q->limits.max_zone_append_sectors = max_sectors;
236 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
239 * blk_queue_max_segments - set max hw segments for a request for this queue
240 * @q: the request queue for the device
241 * @max_segments: max number of segments
244 * Enables a low level driver to set an upper limit on the number of
245 * hw data segments in a request.
247 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
251 printk(KERN_INFO "%s: set to minimum %d\n",
252 __func__, max_segments);
255 q->limits.max_segments = max_segments;
257 EXPORT_SYMBOL(blk_queue_max_segments);
260 * blk_queue_max_discard_segments - set max segments for discard requests
261 * @q: the request queue for the device
262 * @max_segments: max number of segments
265 * Enables a low level driver to set an upper limit on the number of
266 * segments in a discard request.
268 void blk_queue_max_discard_segments(struct request_queue *q,
269 unsigned short max_segments)
271 q->limits.max_discard_segments = max_segments;
273 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
276 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
277 * @q: the request queue for the device
278 * @max_size: max size of segment in bytes
281 * Enables a low level driver to set an upper limit on the size of a
284 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
286 if (max_size < PAGE_SIZE) {
287 max_size = PAGE_SIZE;
288 printk(KERN_INFO "%s: set to minimum %d\n",
292 /* see blk_queue_virt_boundary() for the explanation */
293 WARN_ON_ONCE(q->limits.virt_boundary_mask);
295 q->limits.max_segment_size = max_size;
297 EXPORT_SYMBOL(blk_queue_max_segment_size);
300 * blk_queue_logical_block_size - set logical block size for the queue
301 * @q: the request queue for the device
302 * @size: the logical block size, in bytes
305 * This should be set to the lowest possible block size that the
306 * storage device can address. The default of 512 covers most
309 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
311 struct queue_limits *limits = &q->limits;
313 limits->logical_block_size = size;
315 if (limits->physical_block_size < size)
316 limits->physical_block_size = size;
318 if (limits->io_min < limits->physical_block_size)
319 limits->io_min = limits->physical_block_size;
321 limits->max_hw_sectors =
322 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
323 limits->max_sectors =
324 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
326 EXPORT_SYMBOL(blk_queue_logical_block_size);
329 * blk_queue_physical_block_size - set physical block size for the queue
330 * @q: the request queue for the device
331 * @size: the physical block size, in bytes
334 * This should be set to the lowest possible sector size that the
335 * hardware can operate on without reverting to read-modify-write
338 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
340 q->limits.physical_block_size = size;
342 if (q->limits.physical_block_size < q->limits.logical_block_size)
343 q->limits.physical_block_size = q->limits.logical_block_size;
345 if (q->limits.io_min < q->limits.physical_block_size)
346 q->limits.io_min = q->limits.physical_block_size;
348 EXPORT_SYMBOL(blk_queue_physical_block_size);
351 * blk_queue_zone_write_granularity - set zone write granularity for the queue
352 * @q: the request queue for the zoned device
353 * @size: the zone write granularity size, in bytes
356 * This should be set to the lowest possible size allowing to write in
357 * sequential zones of a zoned block device.
359 void blk_queue_zone_write_granularity(struct request_queue *q,
362 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
365 q->limits.zone_write_granularity = size;
367 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
368 q->limits.zone_write_granularity = q->limits.logical_block_size;
370 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
373 * blk_queue_alignment_offset - set physical block alignment offset
374 * @q: the request queue for the device
375 * @offset: alignment offset in bytes
378 * Some devices are naturally misaligned to compensate for things like
379 * the legacy DOS partition table 63-sector offset. Low-level drivers
380 * should call this function for devices whose first sector is not
383 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
385 q->limits.alignment_offset =
386 offset & (q->limits.physical_block_size - 1);
387 q->limits.misaligned = 0;
389 EXPORT_SYMBOL(blk_queue_alignment_offset);
391 void disk_update_readahead(struct gendisk *disk)
393 struct request_queue *q = disk->queue;
396 * For read-ahead of large files to be effective, we need to read ahead
397 * at least twice the optimal I/O size.
399 disk->bdi->ra_pages =
400 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
401 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
403 EXPORT_SYMBOL_GPL(disk_update_readahead);
406 * blk_limits_io_min - set minimum request size for a device
407 * @limits: the queue limits
408 * @min: smallest I/O size in bytes
411 * Some devices have an internal block size bigger than the reported
412 * hardware sector size. This function can be used to signal the
413 * smallest I/O the device can perform without incurring a performance
416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
418 limits->io_min = min;
420 if (limits->io_min < limits->logical_block_size)
421 limits->io_min = limits->logical_block_size;
423 if (limits->io_min < limits->physical_block_size)
424 limits->io_min = limits->physical_block_size;
426 EXPORT_SYMBOL(blk_limits_io_min);
429 * blk_queue_io_min - set minimum request size for the queue
430 * @q: the request queue for the device
431 * @min: smallest I/O size in bytes
434 * Storage devices may report a granularity or preferred minimum I/O
435 * size which is the smallest request the device can perform without
436 * incurring a performance penalty. For disk drives this is often the
437 * physical block size. For RAID arrays it is often the stripe chunk
438 * size. A properly aligned multiple of minimum_io_size is the
439 * preferred request size for workloads where a high number of I/O
440 * operations is desired.
442 void blk_queue_io_min(struct request_queue *q, unsigned int min)
444 blk_limits_io_min(&q->limits, min);
446 EXPORT_SYMBOL(blk_queue_io_min);
449 * blk_limits_io_opt - set optimal request size for a device
450 * @limits: the queue limits
451 * @opt: smallest I/O size in bytes
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
463 limits->io_opt = opt;
465 EXPORT_SYMBOL(blk_limits_io_opt);
468 * blk_queue_io_opt - set optimal request size for the queue
469 * @q: the request queue for the device
470 * @opt: optimal request size in bytes
473 * Storage devices may report an optimal I/O size, which is the
474 * device's preferred unit for sustained I/O. This is rarely reported
475 * for disk drives. For RAID arrays it is usually the stripe width or
476 * the internal track size. A properly aligned multiple of
477 * optimal_io_size is the preferred request size for workloads where
478 * sustained throughput is desired.
480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
482 blk_limits_io_opt(&q->limits, opt);
485 q->disk->bdi->ra_pages =
486 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
488 EXPORT_SYMBOL(blk_queue_io_opt);
490 static int queue_limit_alignment_offset(const struct queue_limits *lim,
493 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
494 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
497 return (granularity + lim->alignment_offset - alignment) % granularity;
500 static unsigned int queue_limit_discard_alignment(
501 const struct queue_limits *lim, sector_t sector)
503 unsigned int alignment, granularity, offset;
505 if (!lim->max_discard_sectors)
508 /* Why are these in bytes, not sectors? */
509 alignment = lim->discard_alignment >> SECTOR_SHIFT;
510 granularity = lim->discard_granularity >> SECTOR_SHIFT;
514 /* Offset of the partition start in 'granularity' sectors */
515 offset = sector_div(sector, granularity);
517 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
518 offset = (granularity + alignment - offset) % granularity;
520 /* Turn it back into bytes, gaah */
521 return offset << SECTOR_SHIFT;
524 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
526 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
527 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
528 sectors = PAGE_SIZE >> SECTOR_SHIFT;
533 * blk_stack_limits - adjust queue_limits for stacked devices
534 * @t: the stacking driver limits (top device)
535 * @b: the underlying queue limits (bottom, component device)
536 * @start: first data sector within component device
539 * This function is used by stacking drivers like MD and DM to ensure
540 * that all component devices have compatible block sizes and
541 * alignments. The stacking driver must provide a queue_limits
542 * struct (top) and then iteratively call the stacking function for
543 * all component (bottom) devices. The stacking function will
544 * attempt to combine the values and ensure proper alignment.
546 * Returns 0 if the top and bottom queue_limits are compatible. The
547 * top device's block sizes and alignment offsets may be adjusted to
548 * ensure alignment with the bottom device. If no compatible sizes
549 * and alignments exist, -1 is returned and the resulting top
550 * queue_limits will have the misaligned flag set to indicate that
551 * the alignment_offset is undefined.
553 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
556 unsigned int top, bottom, alignment, ret = 0;
558 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
559 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
560 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
561 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
562 b->max_write_zeroes_sectors);
563 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
564 b->max_zone_append_sectors);
565 t->bounce = max(t->bounce, b->bounce);
567 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
568 b->seg_boundary_mask);
569 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
570 b->virt_boundary_mask);
572 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
573 t->max_discard_segments = min_not_zero(t->max_discard_segments,
574 b->max_discard_segments);
575 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
576 b->max_integrity_segments);
578 t->max_segment_size = min_not_zero(t->max_segment_size,
579 b->max_segment_size);
581 t->misaligned |= b->misaligned;
583 alignment = queue_limit_alignment_offset(b, start);
585 /* Bottom device has different alignment. Check that it is
586 * compatible with the current top alignment.
588 if (t->alignment_offset != alignment) {
590 top = max(t->physical_block_size, t->io_min)
591 + t->alignment_offset;
592 bottom = max(b->physical_block_size, b->io_min) + alignment;
594 /* Verify that top and bottom intervals line up */
595 if (max(top, bottom) % min(top, bottom)) {
601 t->logical_block_size = max(t->logical_block_size,
602 b->logical_block_size);
604 t->physical_block_size = max(t->physical_block_size,
605 b->physical_block_size);
607 t->io_min = max(t->io_min, b->io_min);
608 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
609 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
611 /* Set non-power-of-2 compatible chunk_sectors boundary */
612 if (b->chunk_sectors)
613 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
615 /* Physical block size a multiple of the logical block size? */
616 if (t->physical_block_size & (t->logical_block_size - 1)) {
617 t->physical_block_size = t->logical_block_size;
622 /* Minimum I/O a multiple of the physical block size? */
623 if (t->io_min & (t->physical_block_size - 1)) {
624 t->io_min = t->physical_block_size;
629 /* Optimal I/O a multiple of the physical block size? */
630 if (t->io_opt & (t->physical_block_size - 1)) {
636 /* chunk_sectors a multiple of the physical block size? */
637 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
638 t->chunk_sectors = 0;
643 t->raid_partial_stripes_expensive =
644 max(t->raid_partial_stripes_expensive,
645 b->raid_partial_stripes_expensive);
647 /* Find lowest common alignment_offset */
648 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
649 % max(t->physical_block_size, t->io_min);
651 /* Verify that new alignment_offset is on a logical block boundary */
652 if (t->alignment_offset & (t->logical_block_size - 1)) {
657 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
658 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
659 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
661 /* Discard alignment and granularity */
662 if (b->discard_granularity) {
663 alignment = queue_limit_discard_alignment(b, start);
665 if (t->discard_granularity != 0 &&
666 t->discard_alignment != alignment) {
667 top = t->discard_granularity + t->discard_alignment;
668 bottom = b->discard_granularity + alignment;
670 /* Verify that top and bottom intervals line up */
671 if ((max(top, bottom) % min(top, bottom)) != 0)
672 t->discard_misaligned = 1;
675 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
676 b->max_discard_sectors);
677 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
678 b->max_hw_discard_sectors);
679 t->discard_granularity = max(t->discard_granularity,
680 b->discard_granularity);
681 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
682 t->discard_granularity;
684 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
685 b->max_secure_erase_sectors);
686 t->zone_write_granularity = max(t->zone_write_granularity,
687 b->zone_write_granularity);
688 t->zoned = max(t->zoned, b->zoned);
691 EXPORT_SYMBOL(blk_stack_limits);
694 * disk_stack_limits - adjust queue limits for stacked drivers
695 * @disk: MD/DM gendisk (top)
696 * @bdev: the underlying block device (bottom)
697 * @offset: offset to beginning of data within component device
700 * Merges the limits for a top level gendisk and a bottom level
703 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
706 struct request_queue *t = disk->queue;
708 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
709 get_start_sect(bdev) + (offset >> 9)) < 0)
710 pr_notice("%s: Warning: Device %pg is misaligned\n",
711 disk->disk_name, bdev);
713 disk_update_readahead(disk);
715 EXPORT_SYMBOL(disk_stack_limits);
718 * blk_queue_update_dma_pad - update pad mask
719 * @q: the request queue for the device
722 * Update dma pad mask.
724 * Appending pad buffer to a request modifies the last entry of a
725 * scatter list such that it includes the pad buffer.
727 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
729 if (mask > q->dma_pad_mask)
730 q->dma_pad_mask = mask;
732 EXPORT_SYMBOL(blk_queue_update_dma_pad);
735 * blk_queue_segment_boundary - set boundary rules for segment merging
736 * @q: the request queue for the device
737 * @mask: the memory boundary mask
739 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
741 if (mask < PAGE_SIZE - 1) {
742 mask = PAGE_SIZE - 1;
743 printk(KERN_INFO "%s: set to minimum %lx\n",
747 q->limits.seg_boundary_mask = mask;
749 EXPORT_SYMBOL(blk_queue_segment_boundary);
752 * blk_queue_virt_boundary - set boundary rules for bio merging
753 * @q: the request queue for the device
754 * @mask: the memory boundary mask
756 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
758 q->limits.virt_boundary_mask = mask;
761 * Devices that require a virtual boundary do not support scatter/gather
762 * I/O natively, but instead require a descriptor list entry for each
763 * page (which might not be idential to the Linux PAGE_SIZE). Because
764 * of that they are not limited by our notion of "segment size".
767 q->limits.max_segment_size = UINT_MAX;
769 EXPORT_SYMBOL(blk_queue_virt_boundary);
772 * blk_queue_dma_alignment - set dma length and memory alignment
773 * @q: the request queue for the device
774 * @mask: alignment mask
777 * set required memory and length alignment for direct dma transactions.
778 * this is used when building direct io requests for the queue.
781 void blk_queue_dma_alignment(struct request_queue *q, int mask)
783 q->limits.dma_alignment = mask;
785 EXPORT_SYMBOL(blk_queue_dma_alignment);
788 * blk_queue_update_dma_alignment - update dma length and memory alignment
789 * @q: the request queue for the device
790 * @mask: alignment mask
793 * update required memory and length alignment for direct dma transactions.
794 * If the requested alignment is larger than the current alignment, then
795 * the current queue alignment is updated to the new value, otherwise it
796 * is left alone. The design of this is to allow multiple objects
797 * (driver, device, transport etc) to set their respective
798 * alignments without having them interfere.
801 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
803 BUG_ON(mask > PAGE_SIZE);
805 if (mask > q->limits.dma_alignment)
806 q->limits.dma_alignment = mask;
808 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
811 * blk_set_queue_depth - tell the block layer about the device queue depth
812 * @q: the request queue for the device
813 * @depth: queue depth
816 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
818 q->queue_depth = depth;
819 rq_qos_queue_depth_changed(q);
821 EXPORT_SYMBOL(blk_set_queue_depth);
824 * blk_queue_write_cache - configure queue's write cache
825 * @q: the request queue for the device
826 * @wc: write back cache on or off
827 * @fua: device supports FUA writes, if true
829 * Tell the block layer about the write cache of @q.
831 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
834 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
835 blk_queue_flag_set(QUEUE_FLAG_WC, q);
837 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
838 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
841 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
843 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
845 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
847 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
850 * blk_queue_required_elevator_features - Set a queue required elevator features
851 * @q: the request queue for the target device
852 * @features: Required elevator features OR'ed together
854 * Tell the block layer that for the device controlled through @q, only the
855 * only elevators that can be used are those that implement at least the set of
856 * features specified by @features.
858 void blk_queue_required_elevator_features(struct request_queue *q,
859 unsigned int features)
861 q->required_elevator_features = features;
863 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
866 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
867 * @q: the request queue for the device
868 * @dev: the device pointer for dma
870 * Tell the block layer about merging the segments by dma map of @q.
872 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
875 unsigned long boundary = dma_get_merge_boundary(dev);
880 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
881 blk_queue_virt_boundary(q, boundary);
885 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
887 static bool disk_has_partitions(struct gendisk *disk)
890 struct block_device *part;
894 xa_for_each(&disk->part_tbl, idx, part) {
895 if (bdev_is_partition(part)) {
906 * disk_set_zoned - configure the zoned model for a disk
907 * @disk: the gendisk of the queue to configure
908 * @model: the zoned model to set
910 * Set the zoned model of @disk to @model.
912 * When @model is BLK_ZONED_HM (host managed), this should be called only
913 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
914 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
915 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
918 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
920 struct request_queue *q = disk->queue;
921 unsigned int old_model = q->limits.zoned;
926 * Host managed devices are supported only if
927 * CONFIG_BLK_DEV_ZONED is enabled.
929 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
933 * Host aware devices can be treated either as regular block
934 * devices (similar to drive managed devices) or as zoned block
935 * devices to take advantage of the zone command set, similarly
936 * to host managed devices. We try the latter if there are no
937 * partitions and zoned block device support is enabled, else
938 * we do nothing special as far as the block layer is concerned.
940 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
941 disk_has_partitions(disk))
942 model = BLK_ZONED_NONE;
946 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
947 model = BLK_ZONED_NONE;
951 q->limits.zoned = model;
952 if (model != BLK_ZONED_NONE) {
954 * Set the zone write granularity to the device logical block
955 * size by default. The driver can change this value if needed.
957 blk_queue_zone_write_granularity(q,
958 queue_logical_block_size(q));
959 } else if (old_model != BLK_ZONED_NONE) {
960 disk_clear_zone_settings(disk);
963 EXPORT_SYMBOL_GPL(disk_set_zoned);
965 int bdev_alignment_offset(struct block_device *bdev)
967 struct request_queue *q = bdev_get_queue(bdev);
969 if (q->limits.misaligned)
971 if (bdev_is_partition(bdev))
972 return queue_limit_alignment_offset(&q->limits,
973 bdev->bd_start_sect);
974 return q->limits.alignment_offset;
976 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
978 unsigned int bdev_discard_alignment(struct block_device *bdev)
980 struct request_queue *q = bdev_get_queue(bdev);
982 if (bdev_is_partition(bdev))
983 return queue_limit_discard_alignment(&q->limits,
984 bdev->bd_start_sect);
985 return q->limits.discard_alignment;
987 EXPORT_SYMBOL_GPL(bdev_discard_alignment);