hexagon: drop empty and unused free_initrd_mem
[linux-2.6-microblaze.git] / block / blk-rq-qos.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "blk-rq-qos.h"
4
5 /*
6  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7  * false if 'v' + 1 would be bigger than 'below'.
8  */
9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 {
11         unsigned int cur = atomic_read(v);
12
13         for (;;) {
14                 unsigned int old;
15
16                 if (cur >= below)
17                         return false;
18                 old = atomic_cmpxchg(v, cur, cur + 1);
19                 if (old == cur)
20                         break;
21                 cur = old;
22         }
23
24         return true;
25 }
26
27 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
28 {
29         return atomic_inc_below(&rq_wait->inflight, limit);
30 }
31
32 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
33 {
34         do {
35                 if (rqos->ops->cleanup)
36                         rqos->ops->cleanup(rqos, bio);
37                 rqos = rqos->next;
38         } while (rqos);
39 }
40
41 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
42 {
43         do {
44                 if (rqos->ops->done)
45                         rqos->ops->done(rqos, rq);
46                 rqos = rqos->next;
47         } while (rqos);
48 }
49
50 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
51 {
52         do {
53                 if (rqos->ops->issue)
54                         rqos->ops->issue(rqos, rq);
55                 rqos = rqos->next;
56         } while (rqos);
57 }
58
59 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
60 {
61         do {
62                 if (rqos->ops->requeue)
63                         rqos->ops->requeue(rqos, rq);
64                 rqos = rqos->next;
65         } while (rqos);
66 }
67
68 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
69 {
70         do {
71                 if (rqos->ops->throttle)
72                         rqos->ops->throttle(rqos, bio);
73                 rqos = rqos->next;
74         } while (rqos);
75 }
76
77 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
78 {
79         do {
80                 if (rqos->ops->track)
81                         rqos->ops->track(rqos, rq, bio);
82                 rqos = rqos->next;
83         } while (rqos);
84 }
85
86 void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
87 {
88         do {
89                 if (rqos->ops->merge)
90                         rqos->ops->merge(rqos, rq, bio);
91                 rqos = rqos->next;
92         } while (rqos);
93 }
94
95 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
96 {
97         do {
98                 if (rqos->ops->done_bio)
99                         rqos->ops->done_bio(rqos, bio);
100                 rqos = rqos->next;
101         } while (rqos);
102 }
103
104 void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
105 {
106         do {
107                 if (rqos->ops->queue_depth_changed)
108                         rqos->ops->queue_depth_changed(rqos);
109                 rqos = rqos->next;
110         } while (rqos);
111 }
112
113 /*
114  * Return true, if we can't increase the depth further by scaling
115  */
116 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
117 {
118         unsigned int depth;
119         bool ret = false;
120
121         /*
122          * For QD=1 devices, this is a special case. It's important for those
123          * to have one request ready when one completes, so force a depth of
124          * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
125          * since the device can't have more than that in flight. If we're
126          * scaling down, then keep a setting of 1/1/1.
127          */
128         if (rqd->queue_depth == 1) {
129                 if (rqd->scale_step > 0)
130                         rqd->max_depth = 1;
131                 else {
132                         rqd->max_depth = 2;
133                         ret = true;
134                 }
135         } else {
136                 /*
137                  * scale_step == 0 is our default state. If we have suffered
138                  * latency spikes, step will be > 0, and we shrink the
139                  * allowed write depths. If step is < 0, we're only doing
140                  * writes, and we allow a temporarily higher depth to
141                  * increase performance.
142                  */
143                 depth = min_t(unsigned int, rqd->default_depth,
144                               rqd->queue_depth);
145                 if (rqd->scale_step > 0)
146                         depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
147                 else if (rqd->scale_step < 0) {
148                         unsigned int maxd = 3 * rqd->queue_depth / 4;
149
150                         depth = 1 + ((depth - 1) << -rqd->scale_step);
151                         if (depth > maxd) {
152                                 depth = maxd;
153                                 ret = true;
154                         }
155                 }
156
157                 rqd->max_depth = depth;
158         }
159
160         return ret;
161 }
162
163 void rq_depth_scale_up(struct rq_depth *rqd)
164 {
165         /*
166          * Hit max in previous round, stop here
167          */
168         if (rqd->scaled_max)
169                 return;
170
171         rqd->scale_step--;
172
173         rqd->scaled_max = rq_depth_calc_max_depth(rqd);
174 }
175
176 /*
177  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
178  * had a latency violation.
179  */
180 void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
181 {
182         /*
183          * Stop scaling down when we've hit the limit. This also prevents
184          * ->scale_step from going to crazy values, if the device can't
185          * keep up.
186          */
187         if (rqd->max_depth == 1)
188                 return;
189
190         if (rqd->scale_step < 0 && hard_throttle)
191                 rqd->scale_step = 0;
192         else
193                 rqd->scale_step++;
194
195         rqd->scaled_max = false;
196         rq_depth_calc_max_depth(rqd);
197 }
198
199 struct rq_qos_wait_data {
200         struct wait_queue_entry wq;
201         struct task_struct *task;
202         struct rq_wait *rqw;
203         acquire_inflight_cb_t *cb;
204         void *private_data;
205         bool got_token;
206 };
207
208 static int rq_qos_wake_function(struct wait_queue_entry *curr,
209                                 unsigned int mode, int wake_flags, void *key)
210 {
211         struct rq_qos_wait_data *data = container_of(curr,
212                                                      struct rq_qos_wait_data,
213                                                      wq);
214
215         /*
216          * If we fail to get a budget, return -1 to interrupt the wake up loop
217          * in __wake_up_common.
218          */
219         if (!data->cb(data->rqw, data->private_data))
220                 return -1;
221
222         data->got_token = true;
223         smp_wmb();
224         list_del_init(&curr->entry);
225         wake_up_process(data->task);
226         return 1;
227 }
228
229 /**
230  * rq_qos_wait - throttle on a rqw if we need to
231  * @rqw: rqw to throttle on
232  * @private_data: caller provided specific data
233  * @acquire_inflight_cb: inc the rqw->inflight counter if we can
234  * @cleanup_cb: the callback to cleanup in case we race with a waker
235  *
236  * This provides a uniform place for the rq_qos users to do their throttling.
237  * Since you can end up with a lot of things sleeping at once, this manages the
238  * waking up based on the resources available.  The acquire_inflight_cb should
239  * inc the rqw->inflight if we have the ability to do so, or return false if not
240  * and then we will sleep until the room becomes available.
241  *
242  * cleanup_cb is in case that we race with a waker and need to cleanup the
243  * inflight count accordingly.
244  */
245 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
246                  acquire_inflight_cb_t *acquire_inflight_cb,
247                  cleanup_cb_t *cleanup_cb)
248 {
249         struct rq_qos_wait_data data = {
250                 .wq = {
251                         .func   = rq_qos_wake_function,
252                         .entry  = LIST_HEAD_INIT(data.wq.entry),
253                 },
254                 .task = current,
255                 .rqw = rqw,
256                 .cb = acquire_inflight_cb,
257                 .private_data = private_data,
258         };
259         bool has_sleeper;
260
261         has_sleeper = wq_has_sleeper(&rqw->wait);
262         if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
263                 return;
264
265         prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
266         has_sleeper = !wq_has_single_sleeper(&rqw->wait);
267         do {
268                 /* The memory barrier in set_task_state saves us here. */
269                 if (data.got_token)
270                         break;
271                 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
272                         finish_wait(&rqw->wait, &data.wq);
273
274                         /*
275                          * We raced with wbt_wake_function() getting a token,
276                          * which means we now have two. Put our local token
277                          * and wake anyone else potentially waiting for one.
278                          */
279                         smp_rmb();
280                         if (data.got_token)
281                                 cleanup_cb(rqw, private_data);
282                         break;
283                 }
284                 io_schedule();
285                 has_sleeper = true;
286                 set_current_state(TASK_UNINTERRUPTIBLE);
287         } while (1);
288         finish_wait(&rqw->wait, &data.wq);
289 }
290
291 void rq_qos_exit(struct request_queue *q)
292 {
293         blk_mq_debugfs_unregister_queue_rqos(q);
294
295         while (q->rq_qos) {
296                 struct rq_qos *rqos = q->rq_qos;
297                 q->rq_qos = rqos->next;
298                 rqos->ops->exit(rqos);
299         }
300 }