Merge tag 'mmc-v5.19-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         /*
478          * Try batched alloc if we want more than 1 tag.
479          */
480         if (data->nr_tags > 1) {
481                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482                 if (rq)
483                         return rq;
484                 data->nr_tags = 1;
485         }
486
487         /*
488          * Waiting allocations only fail because of an inactive hctx.  In that
489          * case just retry the hctx assignment and tag allocation as CPU hotplug
490          * should have migrated us to an online CPU by now.
491          */
492         tag = blk_mq_get_tag(data);
493         if (tag == BLK_MQ_NO_TAG) {
494                 if (data->flags & BLK_MQ_REQ_NOWAIT)
495                         return NULL;
496                 /*
497                  * Give up the CPU and sleep for a random short time to
498                  * ensure that thread using a realtime scheduling class
499                  * are migrated off the CPU, and thus off the hctx that
500                  * is going away.
501                  */
502                 msleep(3);
503                 goto retry;
504         }
505
506         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507                                         alloc_time_ns);
508 }
509
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511                 blk_mq_req_flags_t flags)
512 {
513         struct blk_mq_alloc_data data = {
514                 .q              = q,
515                 .flags          = flags,
516                 .cmd_flags      = op,
517                 .nr_tags        = 1,
518         };
519         struct request *rq;
520         int ret;
521
522         ret = blk_queue_enter(q, flags);
523         if (ret)
524                 return ERR_PTR(ret);
525
526         rq = __blk_mq_alloc_requests(&data);
527         if (!rq)
528                 goto out_queue_exit;
529         rq->__data_len = 0;
530         rq->__sector = (sector_t) -1;
531         rq->bio = rq->biotail = NULL;
532         return rq;
533 out_queue_exit:
534         blk_queue_exit(q);
535         return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542         struct blk_mq_alloc_data data = {
543                 .q              = q,
544                 .flags          = flags,
545                 .cmd_flags      = op,
546                 .nr_tags        = 1,
547         };
548         u64 alloc_time_ns = 0;
549         unsigned int cpu;
550         unsigned int tag;
551         int ret;
552
553         /* alloc_time includes depth and tag waits */
554         if (blk_queue_rq_alloc_time(q))
555                 alloc_time_ns = ktime_get_ns();
556
557         /*
558          * If the tag allocator sleeps we could get an allocation for a
559          * different hardware context.  No need to complicate the low level
560          * allocator for this for the rare use case of a command tied to
561          * a specific queue.
562          */
563         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564                 return ERR_PTR(-EINVAL);
565
566         if (hctx_idx >= q->nr_hw_queues)
567                 return ERR_PTR(-EIO);
568
569         ret = blk_queue_enter(q, flags);
570         if (ret)
571                 return ERR_PTR(ret);
572
573         /*
574          * Check if the hardware context is actually mapped to anything.
575          * If not tell the caller that it should skip this queue.
576          */
577         ret = -EXDEV;
578         data.hctx = xa_load(&q->hctx_table, hctx_idx);
579         if (!blk_mq_hw_queue_mapped(data.hctx))
580                 goto out_queue_exit;
581         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582         if (cpu >= nr_cpu_ids)
583                 goto out_queue_exit;
584         data.ctx = __blk_mq_get_ctx(q, cpu);
585
586         if (!q->elevator)
587                 blk_mq_tag_busy(data.hctx);
588         else
589                 data.rq_flags |= RQF_ELV;
590
591         ret = -EWOULDBLOCK;
592         tag = blk_mq_get_tag(&data);
593         if (tag == BLK_MQ_NO_TAG)
594                 goto out_queue_exit;
595         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
596                                         alloc_time_ns);
597
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(ret);
601 }
602 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
603
604 static void __blk_mq_free_request(struct request *rq)
605 {
606         struct request_queue *q = rq->q;
607         struct blk_mq_ctx *ctx = rq->mq_ctx;
608         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
609         const int sched_tag = rq->internal_tag;
610
611         blk_crypto_free_request(rq);
612         blk_pm_mark_last_busy(rq);
613         rq->mq_hctx = NULL;
614         if (rq->tag != BLK_MQ_NO_TAG)
615                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
616         if (sched_tag != BLK_MQ_NO_TAG)
617                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
618         blk_mq_sched_restart(hctx);
619         blk_queue_exit(q);
620 }
621
622 void blk_mq_free_request(struct request *rq)
623 {
624         struct request_queue *q = rq->q;
625         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
626
627         if ((rq->rq_flags & RQF_ELVPRIV) &&
628             q->elevator->type->ops.finish_request)
629                 q->elevator->type->ops.finish_request(rq);
630
631         if (rq->rq_flags & RQF_MQ_INFLIGHT)
632                 __blk_mq_dec_active_requests(hctx);
633
634         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
635                 laptop_io_completion(q->disk->bdi);
636
637         rq_qos_done(q, rq);
638
639         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
640         if (req_ref_put_and_test(rq))
641                 __blk_mq_free_request(rq);
642 }
643 EXPORT_SYMBOL_GPL(blk_mq_free_request);
644
645 void blk_mq_free_plug_rqs(struct blk_plug *plug)
646 {
647         struct request *rq;
648
649         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
650                 blk_mq_free_request(rq);
651 }
652
653 void blk_dump_rq_flags(struct request *rq, char *msg)
654 {
655         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
656                 rq->q->disk ? rq->q->disk->disk_name : "?",
657                 (unsigned long long) rq->cmd_flags);
658
659         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
660                (unsigned long long)blk_rq_pos(rq),
661                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
662         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
663                rq->bio, rq->biotail, blk_rq_bytes(rq));
664 }
665 EXPORT_SYMBOL(blk_dump_rq_flags);
666
667 static void req_bio_endio(struct request *rq, struct bio *bio,
668                           unsigned int nbytes, blk_status_t error)
669 {
670         if (unlikely(error)) {
671                 bio->bi_status = error;
672         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
673                 /*
674                  * Partial zone append completions cannot be supported as the
675                  * BIO fragments may end up not being written sequentially.
676                  */
677                 if (bio->bi_iter.bi_size != nbytes)
678                         bio->bi_status = BLK_STS_IOERR;
679                 else
680                         bio->bi_iter.bi_sector = rq->__sector;
681         }
682
683         bio_advance(bio, nbytes);
684
685         if (unlikely(rq->rq_flags & RQF_QUIET))
686                 bio_set_flag(bio, BIO_QUIET);
687         /* don't actually finish bio if it's part of flush sequence */
688         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
689                 bio_endio(bio);
690 }
691
692 static void blk_account_io_completion(struct request *req, unsigned int bytes)
693 {
694         if (req->part && blk_do_io_stat(req)) {
695                 const int sgrp = op_stat_group(req_op(req));
696
697                 part_stat_lock();
698                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
699                 part_stat_unlock();
700         }
701 }
702
703 static void blk_print_req_error(struct request *req, blk_status_t status)
704 {
705         printk_ratelimited(KERN_ERR
706                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
707                 "phys_seg %u prio class %u\n",
708                 blk_status_to_str(status),
709                 req->q->disk ? req->q->disk->disk_name : "?",
710                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
711                 req->cmd_flags & ~REQ_OP_MASK,
712                 req->nr_phys_segments,
713                 IOPRIO_PRIO_CLASS(req->ioprio));
714 }
715
716 /*
717  * Fully end IO on a request. Does not support partial completions, or
718  * errors.
719  */
720 static void blk_complete_request(struct request *req)
721 {
722         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
723         int total_bytes = blk_rq_bytes(req);
724         struct bio *bio = req->bio;
725
726         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
727
728         if (!bio)
729                 return;
730
731 #ifdef CONFIG_BLK_DEV_INTEGRITY
732         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
733                 req->q->integrity.profile->complete_fn(req, total_bytes);
734 #endif
735
736         blk_account_io_completion(req, total_bytes);
737
738         do {
739                 struct bio *next = bio->bi_next;
740
741                 /* Completion has already been traced */
742                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
743
744                 if (req_op(req) == REQ_OP_ZONE_APPEND)
745                         bio->bi_iter.bi_sector = req->__sector;
746
747                 if (!is_flush)
748                         bio_endio(bio);
749                 bio = next;
750         } while (bio);
751
752         /*
753          * Reset counters so that the request stacking driver
754          * can find how many bytes remain in the request
755          * later.
756          */
757         req->bio = NULL;
758         req->__data_len = 0;
759 }
760
761 /**
762  * blk_update_request - Complete multiple bytes without completing the request
763  * @req:      the request being processed
764  * @error:    block status code
765  * @nr_bytes: number of bytes to complete for @req
766  *
767  * Description:
768  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
769  *     the request structure even if @req doesn't have leftover.
770  *     If @req has leftover, sets it up for the next range of segments.
771  *
772  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
773  *     %false return from this function.
774  *
775  * Note:
776  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
777  *      except in the consistency check at the end of this function.
778  *
779  * Return:
780  *     %false - this request doesn't have any more data
781  *     %true  - this request has more data
782  **/
783 bool blk_update_request(struct request *req, blk_status_t error,
784                 unsigned int nr_bytes)
785 {
786         int total_bytes;
787
788         trace_block_rq_complete(req, error, nr_bytes);
789
790         if (!req->bio)
791                 return false;
792
793 #ifdef CONFIG_BLK_DEV_INTEGRITY
794         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
795             error == BLK_STS_OK)
796                 req->q->integrity.profile->complete_fn(req, nr_bytes);
797 #endif
798
799         if (unlikely(error && !blk_rq_is_passthrough(req) &&
800                      !(req->rq_flags & RQF_QUIET)) &&
801                      !test_bit(GD_DEAD, &req->q->disk->state)) {
802                 blk_print_req_error(req, error);
803                 trace_block_rq_error(req, error, nr_bytes);
804         }
805
806         blk_account_io_completion(req, nr_bytes);
807
808         total_bytes = 0;
809         while (req->bio) {
810                 struct bio *bio = req->bio;
811                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
812
813                 if (bio_bytes == bio->bi_iter.bi_size)
814                         req->bio = bio->bi_next;
815
816                 /* Completion has already been traced */
817                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818                 req_bio_endio(req, bio, bio_bytes, error);
819
820                 total_bytes += bio_bytes;
821                 nr_bytes -= bio_bytes;
822
823                 if (!nr_bytes)
824                         break;
825         }
826
827         /*
828          * completely done
829          */
830         if (!req->bio) {
831                 /*
832                  * Reset counters so that the request stacking driver
833                  * can find how many bytes remain in the request
834                  * later.
835                  */
836                 req->__data_len = 0;
837                 return false;
838         }
839
840         req->__data_len -= total_bytes;
841
842         /* update sector only for requests with clear definition of sector */
843         if (!blk_rq_is_passthrough(req))
844                 req->__sector += total_bytes >> 9;
845
846         /* mixed attributes always follow the first bio */
847         if (req->rq_flags & RQF_MIXED_MERGE) {
848                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
849                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
850         }
851
852         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
853                 /*
854                  * If total number of sectors is less than the first segment
855                  * size, something has gone terribly wrong.
856                  */
857                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
858                         blk_dump_rq_flags(req, "request botched");
859                         req->__data_len = blk_rq_cur_bytes(req);
860                 }
861
862                 /* recalculate the number of segments */
863                 req->nr_phys_segments = blk_recalc_rq_segments(req);
864         }
865
866         return true;
867 }
868 EXPORT_SYMBOL_GPL(blk_update_request);
869
870 static void __blk_account_io_done(struct request *req, u64 now)
871 {
872         const int sgrp = op_stat_group(req_op(req));
873
874         part_stat_lock();
875         update_io_ticks(req->part, jiffies, true);
876         part_stat_inc(req->part, ios[sgrp]);
877         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
878         part_stat_unlock();
879 }
880
881 static inline void blk_account_io_done(struct request *req, u64 now)
882 {
883         /*
884          * Account IO completion.  flush_rq isn't accounted as a
885          * normal IO on queueing nor completion.  Accounting the
886          * containing request is enough.
887          */
888         if (blk_do_io_stat(req) && req->part &&
889             !(req->rq_flags & RQF_FLUSH_SEQ))
890                 __blk_account_io_done(req, now);
891 }
892
893 static void __blk_account_io_start(struct request *rq)
894 {
895         /*
896          * All non-passthrough requests are created from a bio with one
897          * exception: when a flush command that is part of a flush sequence
898          * generated by the state machine in blk-flush.c is cloned onto the
899          * lower device by dm-multipath we can get here without a bio.
900          */
901         if (rq->bio)
902                 rq->part = rq->bio->bi_bdev;
903         else
904                 rq->part = rq->q->disk->part0;
905
906         part_stat_lock();
907         update_io_ticks(rq->part, jiffies, false);
908         part_stat_unlock();
909 }
910
911 static inline void blk_account_io_start(struct request *req)
912 {
913         if (blk_do_io_stat(req))
914                 __blk_account_io_start(req);
915 }
916
917 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
918 {
919         if (rq->rq_flags & RQF_STATS) {
920                 blk_mq_poll_stats_start(rq->q);
921                 blk_stat_add(rq, now);
922         }
923
924         blk_mq_sched_completed_request(rq, now);
925         blk_account_io_done(rq, now);
926 }
927
928 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
929 {
930         if (blk_mq_need_time_stamp(rq))
931                 __blk_mq_end_request_acct(rq, ktime_get_ns());
932
933         if (rq->end_io) {
934                 rq_qos_done(rq->q, rq);
935                 rq->end_io(rq, error);
936         } else {
937                 blk_mq_free_request(rq);
938         }
939 }
940 EXPORT_SYMBOL(__blk_mq_end_request);
941
942 void blk_mq_end_request(struct request *rq, blk_status_t error)
943 {
944         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
945                 BUG();
946         __blk_mq_end_request(rq, error);
947 }
948 EXPORT_SYMBOL(blk_mq_end_request);
949
950 #define TAG_COMP_BATCH          32
951
952 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
953                                           int *tag_array, int nr_tags)
954 {
955         struct request_queue *q = hctx->queue;
956
957         /*
958          * All requests should have been marked as RQF_MQ_INFLIGHT, so
959          * update hctx->nr_active in batch
960          */
961         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
962                 __blk_mq_sub_active_requests(hctx, nr_tags);
963
964         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
965         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
966 }
967
968 void blk_mq_end_request_batch(struct io_comp_batch *iob)
969 {
970         int tags[TAG_COMP_BATCH], nr_tags = 0;
971         struct blk_mq_hw_ctx *cur_hctx = NULL;
972         struct request *rq;
973         u64 now = 0;
974
975         if (iob->need_ts)
976                 now = ktime_get_ns();
977
978         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
979                 prefetch(rq->bio);
980                 prefetch(rq->rq_next);
981
982                 blk_complete_request(rq);
983                 if (iob->need_ts)
984                         __blk_mq_end_request_acct(rq, now);
985
986                 rq_qos_done(rq->q, rq);
987
988                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
989                 if (!req_ref_put_and_test(rq))
990                         continue;
991
992                 blk_crypto_free_request(rq);
993                 blk_pm_mark_last_busy(rq);
994
995                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
996                         if (cur_hctx)
997                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
998                         nr_tags = 0;
999                         cur_hctx = rq->mq_hctx;
1000                 }
1001                 tags[nr_tags++] = rq->tag;
1002         }
1003
1004         if (nr_tags)
1005                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1008
1009 static void blk_complete_reqs(struct llist_head *list)
1010 {
1011         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1012         struct request *rq, *next;
1013
1014         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1015                 rq->q->mq_ops->complete(rq);
1016 }
1017
1018 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1019 {
1020         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1021 }
1022
1023 static int blk_softirq_cpu_dead(unsigned int cpu)
1024 {
1025         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1026         return 0;
1027 }
1028
1029 static void __blk_mq_complete_request_remote(void *data)
1030 {
1031         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1032 }
1033
1034 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1035 {
1036         int cpu = raw_smp_processor_id();
1037
1038         if (!IS_ENABLED(CONFIG_SMP) ||
1039             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1040                 return false;
1041         /*
1042          * With force threaded interrupts enabled, raising softirq from an SMP
1043          * function call will always result in waking the ksoftirqd thread.
1044          * This is probably worse than completing the request on a different
1045          * cache domain.
1046          */
1047         if (force_irqthreads())
1048                 return false;
1049
1050         /* same CPU or cache domain?  Complete locally */
1051         if (cpu == rq->mq_ctx->cpu ||
1052             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1053              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1054                 return false;
1055
1056         /* don't try to IPI to an offline CPU */
1057         return cpu_online(rq->mq_ctx->cpu);
1058 }
1059
1060 static void blk_mq_complete_send_ipi(struct request *rq)
1061 {
1062         struct llist_head *list;
1063         unsigned int cpu;
1064
1065         cpu = rq->mq_ctx->cpu;
1066         list = &per_cpu(blk_cpu_done, cpu);
1067         if (llist_add(&rq->ipi_list, list)) {
1068                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1069                 smp_call_function_single_async(cpu, &rq->csd);
1070         }
1071 }
1072
1073 static void blk_mq_raise_softirq(struct request *rq)
1074 {
1075         struct llist_head *list;
1076
1077         preempt_disable();
1078         list = this_cpu_ptr(&blk_cpu_done);
1079         if (llist_add(&rq->ipi_list, list))
1080                 raise_softirq(BLOCK_SOFTIRQ);
1081         preempt_enable();
1082 }
1083
1084 bool blk_mq_complete_request_remote(struct request *rq)
1085 {
1086         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1087
1088         /*
1089          * For a polled request, always complete locally, it's pointless
1090          * to redirect the completion.
1091          */
1092         if (rq->cmd_flags & REQ_POLLED)
1093                 return false;
1094
1095         if (blk_mq_complete_need_ipi(rq)) {
1096                 blk_mq_complete_send_ipi(rq);
1097                 return true;
1098         }
1099
1100         if (rq->q->nr_hw_queues == 1) {
1101                 blk_mq_raise_softirq(rq);
1102                 return true;
1103         }
1104         return false;
1105 }
1106 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1107
1108 /**
1109  * blk_mq_complete_request - end I/O on a request
1110  * @rq:         the request being processed
1111  *
1112  * Description:
1113  *      Complete a request by scheduling the ->complete_rq operation.
1114  **/
1115 void blk_mq_complete_request(struct request *rq)
1116 {
1117         if (!blk_mq_complete_request_remote(rq))
1118                 rq->q->mq_ops->complete(rq);
1119 }
1120 EXPORT_SYMBOL(blk_mq_complete_request);
1121
1122 /**
1123  * blk_mq_start_request - Start processing a request
1124  * @rq: Pointer to request to be started
1125  *
1126  * Function used by device drivers to notify the block layer that a request
1127  * is going to be processed now, so blk layer can do proper initializations
1128  * such as starting the timeout timer.
1129  */
1130 void blk_mq_start_request(struct request *rq)
1131 {
1132         struct request_queue *q = rq->q;
1133
1134         trace_block_rq_issue(rq);
1135
1136         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1137                 rq->io_start_time_ns = ktime_get_ns();
1138                 rq->stats_sectors = blk_rq_sectors(rq);
1139                 rq->rq_flags |= RQF_STATS;
1140                 rq_qos_issue(q, rq);
1141         }
1142
1143         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1144
1145         blk_add_timer(rq);
1146         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1147
1148 #ifdef CONFIG_BLK_DEV_INTEGRITY
1149         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1150                 q->integrity.profile->prepare_fn(rq);
1151 #endif
1152         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1153                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1154 }
1155 EXPORT_SYMBOL(blk_mq_start_request);
1156
1157 /*
1158  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1159  * queues. This is important for md arrays to benefit from merging
1160  * requests.
1161  */
1162 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1163 {
1164         if (plug->multiple_queues)
1165                 return BLK_MAX_REQUEST_COUNT * 2;
1166         return BLK_MAX_REQUEST_COUNT;
1167 }
1168
1169 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1170 {
1171         struct request *last = rq_list_peek(&plug->mq_list);
1172
1173         if (!plug->rq_count) {
1174                 trace_block_plug(rq->q);
1175         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1176                    (!blk_queue_nomerges(rq->q) &&
1177                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1178                 blk_mq_flush_plug_list(plug, false);
1179                 trace_block_plug(rq->q);
1180         }
1181
1182         if (!plug->multiple_queues && last && last->q != rq->q)
1183                 plug->multiple_queues = true;
1184         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1185                 plug->has_elevator = true;
1186         rq->rq_next = NULL;
1187         rq_list_add(&plug->mq_list, rq);
1188         plug->rq_count++;
1189 }
1190
1191 /**
1192  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1193  * @rq:         request to insert
1194  * @at_head:    insert request at head or tail of queue
1195  *
1196  * Description:
1197  *    Insert a fully prepared request at the back of the I/O scheduler queue
1198  *    for execution.  Don't wait for completion.
1199  *
1200  * Note:
1201  *    This function will invoke @done directly if the queue is dead.
1202  */
1203 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1204 {
1205         WARN_ON(irqs_disabled());
1206         WARN_ON(!blk_rq_is_passthrough(rq));
1207
1208         blk_account_io_start(rq);
1209         if (current->plug)
1210                 blk_add_rq_to_plug(current->plug, rq);
1211         else
1212                 blk_mq_sched_insert_request(rq, at_head, true, false);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1215
1216 struct blk_rq_wait {
1217         struct completion done;
1218         blk_status_t ret;
1219 };
1220
1221 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1222 {
1223         struct blk_rq_wait *wait = rq->end_io_data;
1224
1225         wait->ret = ret;
1226         complete(&wait->done);
1227 }
1228
1229 static bool blk_rq_is_poll(struct request *rq)
1230 {
1231         if (!rq->mq_hctx)
1232                 return false;
1233         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1234                 return false;
1235         if (WARN_ON_ONCE(!rq->bio))
1236                 return false;
1237         return true;
1238 }
1239
1240 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1241 {
1242         do {
1243                 bio_poll(rq->bio, NULL, 0);
1244                 cond_resched();
1245         } while (!completion_done(wait));
1246 }
1247
1248 /**
1249  * blk_execute_rq - insert a request into queue for execution
1250  * @rq:         request to insert
1251  * @at_head:    insert request at head or tail of queue
1252  *
1253  * Description:
1254  *    Insert a fully prepared request at the back of the I/O scheduler queue
1255  *    for execution and wait for completion.
1256  * Return: The blk_status_t result provided to blk_mq_end_request().
1257  */
1258 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1259 {
1260         struct blk_rq_wait wait = {
1261                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1262         };
1263
1264         WARN_ON(irqs_disabled());
1265         WARN_ON(!blk_rq_is_passthrough(rq));
1266
1267         rq->end_io_data = &wait;
1268         rq->end_io = blk_end_sync_rq;
1269
1270         blk_account_io_start(rq);
1271         blk_mq_sched_insert_request(rq, at_head, true, false);
1272
1273         if (blk_rq_is_poll(rq)) {
1274                 blk_rq_poll_completion(rq, &wait.done);
1275         } else {
1276                 /*
1277                  * Prevent hang_check timer from firing at us during very long
1278                  * I/O
1279                  */
1280                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1281
1282                 if (hang_check)
1283                         while (!wait_for_completion_io_timeout(&wait.done,
1284                                         hang_check * (HZ/2)))
1285                                 ;
1286                 else
1287                         wait_for_completion_io(&wait.done);
1288         }
1289
1290         return wait.ret;
1291 }
1292 EXPORT_SYMBOL(blk_execute_rq);
1293
1294 static void __blk_mq_requeue_request(struct request *rq)
1295 {
1296         struct request_queue *q = rq->q;
1297
1298         blk_mq_put_driver_tag(rq);
1299
1300         trace_block_rq_requeue(rq);
1301         rq_qos_requeue(q, rq);
1302
1303         if (blk_mq_request_started(rq)) {
1304                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1305                 rq->rq_flags &= ~RQF_TIMED_OUT;
1306         }
1307 }
1308
1309 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1310 {
1311         __blk_mq_requeue_request(rq);
1312
1313         /* this request will be re-inserted to io scheduler queue */
1314         blk_mq_sched_requeue_request(rq);
1315
1316         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1317 }
1318 EXPORT_SYMBOL(blk_mq_requeue_request);
1319
1320 static void blk_mq_requeue_work(struct work_struct *work)
1321 {
1322         struct request_queue *q =
1323                 container_of(work, struct request_queue, requeue_work.work);
1324         LIST_HEAD(rq_list);
1325         struct request *rq, *next;
1326
1327         spin_lock_irq(&q->requeue_lock);
1328         list_splice_init(&q->requeue_list, &rq_list);
1329         spin_unlock_irq(&q->requeue_lock);
1330
1331         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1332                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1333                         continue;
1334
1335                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1336                 list_del_init(&rq->queuelist);
1337                 /*
1338                  * If RQF_DONTPREP, rq has contained some driver specific
1339                  * data, so insert it to hctx dispatch list to avoid any
1340                  * merge.
1341                  */
1342                 if (rq->rq_flags & RQF_DONTPREP)
1343                         blk_mq_request_bypass_insert(rq, false, false);
1344                 else
1345                         blk_mq_sched_insert_request(rq, true, false, false);
1346         }
1347
1348         while (!list_empty(&rq_list)) {
1349                 rq = list_entry(rq_list.next, struct request, queuelist);
1350                 list_del_init(&rq->queuelist);
1351                 blk_mq_sched_insert_request(rq, false, false, false);
1352         }
1353
1354         blk_mq_run_hw_queues(q, false);
1355 }
1356
1357 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1358                                 bool kick_requeue_list)
1359 {
1360         struct request_queue *q = rq->q;
1361         unsigned long flags;
1362
1363         /*
1364          * We abuse this flag that is otherwise used by the I/O scheduler to
1365          * request head insertion from the workqueue.
1366          */
1367         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1368
1369         spin_lock_irqsave(&q->requeue_lock, flags);
1370         if (at_head) {
1371                 rq->rq_flags |= RQF_SOFTBARRIER;
1372                 list_add(&rq->queuelist, &q->requeue_list);
1373         } else {
1374                 list_add_tail(&rq->queuelist, &q->requeue_list);
1375         }
1376         spin_unlock_irqrestore(&q->requeue_lock, flags);
1377
1378         if (kick_requeue_list)
1379                 blk_mq_kick_requeue_list(q);
1380 }
1381
1382 void blk_mq_kick_requeue_list(struct request_queue *q)
1383 {
1384         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1385 }
1386 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1387
1388 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1389                                     unsigned long msecs)
1390 {
1391         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1392                                     msecs_to_jiffies(msecs));
1393 }
1394 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1395
1396 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1397                                bool reserved)
1398 {
1399         /*
1400          * If we find a request that isn't idle we know the queue is busy
1401          * as it's checked in the iter.
1402          * Return false to stop the iteration.
1403          */
1404         if (blk_mq_request_started(rq)) {
1405                 bool *busy = priv;
1406
1407                 *busy = true;
1408                 return false;
1409         }
1410
1411         return true;
1412 }
1413
1414 bool blk_mq_queue_inflight(struct request_queue *q)
1415 {
1416         bool busy = false;
1417
1418         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1419         return busy;
1420 }
1421 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1422
1423 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1424 {
1425         req->rq_flags |= RQF_TIMED_OUT;
1426         if (req->q->mq_ops->timeout) {
1427                 enum blk_eh_timer_return ret;
1428
1429                 ret = req->q->mq_ops->timeout(req, reserved);
1430                 if (ret == BLK_EH_DONE)
1431                         return;
1432                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1433         }
1434
1435         blk_add_timer(req);
1436 }
1437
1438 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1439 {
1440         unsigned long deadline;
1441
1442         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1443                 return false;
1444         if (rq->rq_flags & RQF_TIMED_OUT)
1445                 return false;
1446
1447         deadline = READ_ONCE(rq->deadline);
1448         if (time_after_eq(jiffies, deadline))
1449                 return true;
1450
1451         if (*next == 0)
1452                 *next = deadline;
1453         else if (time_after(*next, deadline))
1454                 *next = deadline;
1455         return false;
1456 }
1457
1458 void blk_mq_put_rq_ref(struct request *rq)
1459 {
1460         if (is_flush_rq(rq))
1461                 rq->end_io(rq, 0);
1462         else if (req_ref_put_and_test(rq))
1463                 __blk_mq_free_request(rq);
1464 }
1465
1466 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1467 {
1468         unsigned long *next = priv;
1469
1470         /*
1471          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1472          * be reallocated underneath the timeout handler's processing, then
1473          * the expire check is reliable. If the request is not expired, then
1474          * it was completed and reallocated as a new request after returning
1475          * from blk_mq_check_expired().
1476          */
1477         if (blk_mq_req_expired(rq, next))
1478                 blk_mq_rq_timed_out(rq, reserved);
1479         return true;
1480 }
1481
1482 static void blk_mq_timeout_work(struct work_struct *work)
1483 {
1484         struct request_queue *q =
1485                 container_of(work, struct request_queue, timeout_work);
1486         unsigned long next = 0;
1487         struct blk_mq_hw_ctx *hctx;
1488         unsigned long i;
1489
1490         /* A deadlock might occur if a request is stuck requiring a
1491          * timeout at the same time a queue freeze is waiting
1492          * completion, since the timeout code would not be able to
1493          * acquire the queue reference here.
1494          *
1495          * That's why we don't use blk_queue_enter here; instead, we use
1496          * percpu_ref_tryget directly, because we need to be able to
1497          * obtain a reference even in the short window between the queue
1498          * starting to freeze, by dropping the first reference in
1499          * blk_freeze_queue_start, and the moment the last request is
1500          * consumed, marked by the instant q_usage_counter reaches
1501          * zero.
1502          */
1503         if (!percpu_ref_tryget(&q->q_usage_counter))
1504                 return;
1505
1506         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1507
1508         if (next != 0) {
1509                 mod_timer(&q->timeout, next);
1510         } else {
1511                 /*
1512                  * Request timeouts are handled as a forward rolling timer. If
1513                  * we end up here it means that no requests are pending and
1514                  * also that no request has been pending for a while. Mark
1515                  * each hctx as idle.
1516                  */
1517                 queue_for_each_hw_ctx(q, hctx, i) {
1518                         /* the hctx may be unmapped, so check it here */
1519                         if (blk_mq_hw_queue_mapped(hctx))
1520                                 blk_mq_tag_idle(hctx);
1521                 }
1522         }
1523         blk_queue_exit(q);
1524 }
1525
1526 struct flush_busy_ctx_data {
1527         struct blk_mq_hw_ctx *hctx;
1528         struct list_head *list;
1529 };
1530
1531 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1532 {
1533         struct flush_busy_ctx_data *flush_data = data;
1534         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1535         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1536         enum hctx_type type = hctx->type;
1537
1538         spin_lock(&ctx->lock);
1539         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1540         sbitmap_clear_bit(sb, bitnr);
1541         spin_unlock(&ctx->lock);
1542         return true;
1543 }
1544
1545 /*
1546  * Process software queues that have been marked busy, splicing them
1547  * to the for-dispatch
1548  */
1549 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1550 {
1551         struct flush_busy_ctx_data data = {
1552                 .hctx = hctx,
1553                 .list = list,
1554         };
1555
1556         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1557 }
1558 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1559
1560 struct dispatch_rq_data {
1561         struct blk_mq_hw_ctx *hctx;
1562         struct request *rq;
1563 };
1564
1565 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1566                 void *data)
1567 {
1568         struct dispatch_rq_data *dispatch_data = data;
1569         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1570         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1571         enum hctx_type type = hctx->type;
1572
1573         spin_lock(&ctx->lock);
1574         if (!list_empty(&ctx->rq_lists[type])) {
1575                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1576                 list_del_init(&dispatch_data->rq->queuelist);
1577                 if (list_empty(&ctx->rq_lists[type]))
1578                         sbitmap_clear_bit(sb, bitnr);
1579         }
1580         spin_unlock(&ctx->lock);
1581
1582         return !dispatch_data->rq;
1583 }
1584
1585 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1586                                         struct blk_mq_ctx *start)
1587 {
1588         unsigned off = start ? start->index_hw[hctx->type] : 0;
1589         struct dispatch_rq_data data = {
1590                 .hctx = hctx,
1591                 .rq   = NULL,
1592         };
1593
1594         __sbitmap_for_each_set(&hctx->ctx_map, off,
1595                                dispatch_rq_from_ctx, &data);
1596
1597         return data.rq;
1598 }
1599
1600 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1601 {
1602         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1603         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1604         int tag;
1605
1606         blk_mq_tag_busy(rq->mq_hctx);
1607
1608         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1609                 bt = &rq->mq_hctx->tags->breserved_tags;
1610                 tag_offset = 0;
1611         } else {
1612                 if (!hctx_may_queue(rq->mq_hctx, bt))
1613                         return false;
1614         }
1615
1616         tag = __sbitmap_queue_get(bt);
1617         if (tag == BLK_MQ_NO_TAG)
1618                 return false;
1619
1620         rq->tag = tag + tag_offset;
1621         return true;
1622 }
1623
1624 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1625 {
1626         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1627                 return false;
1628
1629         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1630                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1631                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1632                 __blk_mq_inc_active_requests(hctx);
1633         }
1634         hctx->tags->rqs[rq->tag] = rq;
1635         return true;
1636 }
1637
1638 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1639                                 int flags, void *key)
1640 {
1641         struct blk_mq_hw_ctx *hctx;
1642
1643         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1644
1645         spin_lock(&hctx->dispatch_wait_lock);
1646         if (!list_empty(&wait->entry)) {
1647                 struct sbitmap_queue *sbq;
1648
1649                 list_del_init(&wait->entry);
1650                 sbq = &hctx->tags->bitmap_tags;
1651                 atomic_dec(&sbq->ws_active);
1652         }
1653         spin_unlock(&hctx->dispatch_wait_lock);
1654
1655         blk_mq_run_hw_queue(hctx, true);
1656         return 1;
1657 }
1658
1659 /*
1660  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1661  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1662  * restart. For both cases, take care to check the condition again after
1663  * marking us as waiting.
1664  */
1665 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1666                                  struct request *rq)
1667 {
1668         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1669         struct wait_queue_head *wq;
1670         wait_queue_entry_t *wait;
1671         bool ret;
1672
1673         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1674                 blk_mq_sched_mark_restart_hctx(hctx);
1675
1676                 /*
1677                  * It's possible that a tag was freed in the window between the
1678                  * allocation failure and adding the hardware queue to the wait
1679                  * queue.
1680                  *
1681                  * Don't clear RESTART here, someone else could have set it.
1682                  * At most this will cost an extra queue run.
1683                  */
1684                 return blk_mq_get_driver_tag(rq);
1685         }
1686
1687         wait = &hctx->dispatch_wait;
1688         if (!list_empty_careful(&wait->entry))
1689                 return false;
1690
1691         wq = &bt_wait_ptr(sbq, hctx)->wait;
1692
1693         spin_lock_irq(&wq->lock);
1694         spin_lock(&hctx->dispatch_wait_lock);
1695         if (!list_empty(&wait->entry)) {
1696                 spin_unlock(&hctx->dispatch_wait_lock);
1697                 spin_unlock_irq(&wq->lock);
1698                 return false;
1699         }
1700
1701         atomic_inc(&sbq->ws_active);
1702         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1703         __add_wait_queue(wq, wait);
1704
1705         /*
1706          * It's possible that a tag was freed in the window between the
1707          * allocation failure and adding the hardware queue to the wait
1708          * queue.
1709          */
1710         ret = blk_mq_get_driver_tag(rq);
1711         if (!ret) {
1712                 spin_unlock(&hctx->dispatch_wait_lock);
1713                 spin_unlock_irq(&wq->lock);
1714                 return false;
1715         }
1716
1717         /*
1718          * We got a tag, remove ourselves from the wait queue to ensure
1719          * someone else gets the wakeup.
1720          */
1721         list_del_init(&wait->entry);
1722         atomic_dec(&sbq->ws_active);
1723         spin_unlock(&hctx->dispatch_wait_lock);
1724         spin_unlock_irq(&wq->lock);
1725
1726         return true;
1727 }
1728
1729 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1730 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1731 /*
1732  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1733  * - EWMA is one simple way to compute running average value
1734  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1735  * - take 4 as factor for avoiding to get too small(0) result, and this
1736  *   factor doesn't matter because EWMA decreases exponentially
1737  */
1738 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1739 {
1740         unsigned int ewma;
1741
1742         ewma = hctx->dispatch_busy;
1743
1744         if (!ewma && !busy)
1745                 return;
1746
1747         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1748         if (busy)
1749                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1750         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1751
1752         hctx->dispatch_busy = ewma;
1753 }
1754
1755 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1756
1757 static void blk_mq_handle_dev_resource(struct request *rq,
1758                                        struct list_head *list)
1759 {
1760         struct request *next =
1761                 list_first_entry_or_null(list, struct request, queuelist);
1762
1763         /*
1764          * If an I/O scheduler has been configured and we got a driver tag for
1765          * the next request already, free it.
1766          */
1767         if (next)
1768                 blk_mq_put_driver_tag(next);
1769
1770         list_add(&rq->queuelist, list);
1771         __blk_mq_requeue_request(rq);
1772 }
1773
1774 static void blk_mq_handle_zone_resource(struct request *rq,
1775                                         struct list_head *zone_list)
1776 {
1777         /*
1778          * If we end up here it is because we cannot dispatch a request to a
1779          * specific zone due to LLD level zone-write locking or other zone
1780          * related resource not being available. In this case, set the request
1781          * aside in zone_list for retrying it later.
1782          */
1783         list_add(&rq->queuelist, zone_list);
1784         __blk_mq_requeue_request(rq);
1785 }
1786
1787 enum prep_dispatch {
1788         PREP_DISPATCH_OK,
1789         PREP_DISPATCH_NO_TAG,
1790         PREP_DISPATCH_NO_BUDGET,
1791 };
1792
1793 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1794                                                   bool need_budget)
1795 {
1796         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1797         int budget_token = -1;
1798
1799         if (need_budget) {
1800                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1801                 if (budget_token < 0) {
1802                         blk_mq_put_driver_tag(rq);
1803                         return PREP_DISPATCH_NO_BUDGET;
1804                 }
1805                 blk_mq_set_rq_budget_token(rq, budget_token);
1806         }
1807
1808         if (!blk_mq_get_driver_tag(rq)) {
1809                 /*
1810                  * The initial allocation attempt failed, so we need to
1811                  * rerun the hardware queue when a tag is freed. The
1812                  * waitqueue takes care of that. If the queue is run
1813                  * before we add this entry back on the dispatch list,
1814                  * we'll re-run it below.
1815                  */
1816                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1817                         /*
1818                          * All budgets not got from this function will be put
1819                          * together during handling partial dispatch
1820                          */
1821                         if (need_budget)
1822                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1823                         return PREP_DISPATCH_NO_TAG;
1824                 }
1825         }
1826
1827         return PREP_DISPATCH_OK;
1828 }
1829
1830 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1831 static void blk_mq_release_budgets(struct request_queue *q,
1832                 struct list_head *list)
1833 {
1834         struct request *rq;
1835
1836         list_for_each_entry(rq, list, queuelist) {
1837                 int budget_token = blk_mq_get_rq_budget_token(rq);
1838
1839                 if (budget_token >= 0)
1840                         blk_mq_put_dispatch_budget(q, budget_token);
1841         }
1842 }
1843
1844 /*
1845  * Returns true if we did some work AND can potentially do more.
1846  */
1847 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1848                              unsigned int nr_budgets)
1849 {
1850         enum prep_dispatch prep;
1851         struct request_queue *q = hctx->queue;
1852         struct request *rq, *nxt;
1853         int errors, queued;
1854         blk_status_t ret = BLK_STS_OK;
1855         LIST_HEAD(zone_list);
1856         bool needs_resource = false;
1857
1858         if (list_empty(list))
1859                 return false;
1860
1861         /*
1862          * Now process all the entries, sending them to the driver.
1863          */
1864         errors = queued = 0;
1865         do {
1866                 struct blk_mq_queue_data bd;
1867
1868                 rq = list_first_entry(list, struct request, queuelist);
1869
1870                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1871                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1872                 if (prep != PREP_DISPATCH_OK)
1873                         break;
1874
1875                 list_del_init(&rq->queuelist);
1876
1877                 bd.rq = rq;
1878
1879                 /*
1880                  * Flag last if we have no more requests, or if we have more
1881                  * but can't assign a driver tag to it.
1882                  */
1883                 if (list_empty(list))
1884                         bd.last = true;
1885                 else {
1886                         nxt = list_first_entry(list, struct request, queuelist);
1887                         bd.last = !blk_mq_get_driver_tag(nxt);
1888                 }
1889
1890                 /*
1891                  * once the request is queued to lld, no need to cover the
1892                  * budget any more
1893                  */
1894                 if (nr_budgets)
1895                         nr_budgets--;
1896                 ret = q->mq_ops->queue_rq(hctx, &bd);
1897                 switch (ret) {
1898                 case BLK_STS_OK:
1899                         queued++;
1900                         break;
1901                 case BLK_STS_RESOURCE:
1902                         needs_resource = true;
1903                         fallthrough;
1904                 case BLK_STS_DEV_RESOURCE:
1905                         blk_mq_handle_dev_resource(rq, list);
1906                         goto out;
1907                 case BLK_STS_ZONE_RESOURCE:
1908                         /*
1909                          * Move the request to zone_list and keep going through
1910                          * the dispatch list to find more requests the drive can
1911                          * accept.
1912                          */
1913                         blk_mq_handle_zone_resource(rq, &zone_list);
1914                         needs_resource = true;
1915                         break;
1916                 default:
1917                         errors++;
1918                         blk_mq_end_request(rq, ret);
1919                 }
1920         } while (!list_empty(list));
1921 out:
1922         if (!list_empty(&zone_list))
1923                 list_splice_tail_init(&zone_list, list);
1924
1925         /* If we didn't flush the entire list, we could have told the driver
1926          * there was more coming, but that turned out to be a lie.
1927          */
1928         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1929                 q->mq_ops->commit_rqs(hctx);
1930         /*
1931          * Any items that need requeuing? Stuff them into hctx->dispatch,
1932          * that is where we will continue on next queue run.
1933          */
1934         if (!list_empty(list)) {
1935                 bool needs_restart;
1936                 /* For non-shared tags, the RESTART check will suffice */
1937                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1938                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1939
1940                 if (nr_budgets)
1941                         blk_mq_release_budgets(q, list);
1942
1943                 spin_lock(&hctx->lock);
1944                 list_splice_tail_init(list, &hctx->dispatch);
1945                 spin_unlock(&hctx->lock);
1946
1947                 /*
1948                  * Order adding requests to hctx->dispatch and checking
1949                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1950                  * in blk_mq_sched_restart(). Avoid restart code path to
1951                  * miss the new added requests to hctx->dispatch, meantime
1952                  * SCHED_RESTART is observed here.
1953                  */
1954                 smp_mb();
1955
1956                 /*
1957                  * If SCHED_RESTART was set by the caller of this function and
1958                  * it is no longer set that means that it was cleared by another
1959                  * thread and hence that a queue rerun is needed.
1960                  *
1961                  * If 'no_tag' is set, that means that we failed getting
1962                  * a driver tag with an I/O scheduler attached. If our dispatch
1963                  * waitqueue is no longer active, ensure that we run the queue
1964                  * AFTER adding our entries back to the list.
1965                  *
1966                  * If no I/O scheduler has been configured it is possible that
1967                  * the hardware queue got stopped and restarted before requests
1968                  * were pushed back onto the dispatch list. Rerun the queue to
1969                  * avoid starvation. Notes:
1970                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1971                  *   been stopped before rerunning a queue.
1972                  * - Some but not all block drivers stop a queue before
1973                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1974                  *   and dm-rq.
1975                  *
1976                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1977                  * bit is set, run queue after a delay to avoid IO stalls
1978                  * that could otherwise occur if the queue is idle.  We'll do
1979                  * similar if we couldn't get budget or couldn't lock a zone
1980                  * and SCHED_RESTART is set.
1981                  */
1982                 needs_restart = blk_mq_sched_needs_restart(hctx);
1983                 if (prep == PREP_DISPATCH_NO_BUDGET)
1984                         needs_resource = true;
1985                 if (!needs_restart ||
1986                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1987                         blk_mq_run_hw_queue(hctx, true);
1988                 else if (needs_restart && needs_resource)
1989                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1990
1991                 blk_mq_update_dispatch_busy(hctx, true);
1992                 return false;
1993         } else
1994                 blk_mq_update_dispatch_busy(hctx, false);
1995
1996         return (queued + errors) != 0;
1997 }
1998
1999 /**
2000  * __blk_mq_run_hw_queue - Run a hardware queue.
2001  * @hctx: Pointer to the hardware queue to run.
2002  *
2003  * Send pending requests to the hardware.
2004  */
2005 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2006 {
2007         /*
2008          * We can't run the queue inline with ints disabled. Ensure that
2009          * we catch bad users of this early.
2010          */
2011         WARN_ON_ONCE(in_interrupt());
2012
2013         blk_mq_run_dispatch_ops(hctx->queue,
2014                         blk_mq_sched_dispatch_requests(hctx));
2015 }
2016
2017 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2018 {
2019         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2020
2021         if (cpu >= nr_cpu_ids)
2022                 cpu = cpumask_first(hctx->cpumask);
2023         return cpu;
2024 }
2025
2026 /*
2027  * It'd be great if the workqueue API had a way to pass
2028  * in a mask and had some smarts for more clever placement.
2029  * For now we just round-robin here, switching for every
2030  * BLK_MQ_CPU_WORK_BATCH queued items.
2031  */
2032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2033 {
2034         bool tried = false;
2035         int next_cpu = hctx->next_cpu;
2036
2037         if (hctx->queue->nr_hw_queues == 1)
2038                 return WORK_CPU_UNBOUND;
2039
2040         if (--hctx->next_cpu_batch <= 0) {
2041 select_cpu:
2042                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2043                                 cpu_online_mask);
2044                 if (next_cpu >= nr_cpu_ids)
2045                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2046                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2047         }
2048
2049         /*
2050          * Do unbound schedule if we can't find a online CPU for this hctx,
2051          * and it should only happen in the path of handling CPU DEAD.
2052          */
2053         if (!cpu_online(next_cpu)) {
2054                 if (!tried) {
2055                         tried = true;
2056                         goto select_cpu;
2057                 }
2058
2059                 /*
2060                  * Make sure to re-select CPU next time once after CPUs
2061                  * in hctx->cpumask become online again.
2062                  */
2063                 hctx->next_cpu = next_cpu;
2064                 hctx->next_cpu_batch = 1;
2065                 return WORK_CPU_UNBOUND;
2066         }
2067
2068         hctx->next_cpu = next_cpu;
2069         return next_cpu;
2070 }
2071
2072 /**
2073  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2074  * @hctx: Pointer to the hardware queue to run.
2075  * @async: If we want to run the queue asynchronously.
2076  * @msecs: Milliseconds of delay to wait before running the queue.
2077  *
2078  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2079  * with a delay of @msecs.
2080  */
2081 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2082                                         unsigned long msecs)
2083 {
2084         if (unlikely(blk_mq_hctx_stopped(hctx)))
2085                 return;
2086
2087         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2088                 int cpu = get_cpu();
2089                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2090                         __blk_mq_run_hw_queue(hctx);
2091                         put_cpu();
2092                         return;
2093                 }
2094
2095                 put_cpu();
2096         }
2097
2098         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2099                                     msecs_to_jiffies(msecs));
2100 }
2101
2102 /**
2103  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2104  * @hctx: Pointer to the hardware queue to run.
2105  * @msecs: Milliseconds of delay to wait before running the queue.
2106  *
2107  * Run a hardware queue asynchronously with a delay of @msecs.
2108  */
2109 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2110 {
2111         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2112 }
2113 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2114
2115 /**
2116  * blk_mq_run_hw_queue - Start to run a hardware queue.
2117  * @hctx: Pointer to the hardware queue to run.
2118  * @async: If we want to run the queue asynchronously.
2119  *
2120  * Check if the request queue is not in a quiesced state and if there are
2121  * pending requests to be sent. If this is true, run the queue to send requests
2122  * to hardware.
2123  */
2124 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2125 {
2126         bool need_run;
2127
2128         /*
2129          * When queue is quiesced, we may be switching io scheduler, or
2130          * updating nr_hw_queues, or other things, and we can't run queue
2131          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2132          *
2133          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2134          * quiesced.
2135          */
2136         __blk_mq_run_dispatch_ops(hctx->queue, false,
2137                 need_run = !blk_queue_quiesced(hctx->queue) &&
2138                 blk_mq_hctx_has_pending(hctx));
2139
2140         if (need_run)
2141                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2142 }
2143 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2144
2145 /*
2146  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2147  * scheduler.
2148  */
2149 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2150 {
2151         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2152         /*
2153          * If the IO scheduler does not respect hardware queues when
2154          * dispatching, we just don't bother with multiple HW queues and
2155          * dispatch from hctx for the current CPU since running multiple queues
2156          * just causes lock contention inside the scheduler and pointless cache
2157          * bouncing.
2158          */
2159         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2160
2161         if (!blk_mq_hctx_stopped(hctx))
2162                 return hctx;
2163         return NULL;
2164 }
2165
2166 /**
2167  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2168  * @q: Pointer to the request queue to run.
2169  * @async: If we want to run the queue asynchronously.
2170  */
2171 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2172 {
2173         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2174         unsigned long i;
2175
2176         sq_hctx = NULL;
2177         if (blk_queue_sq_sched(q))
2178                 sq_hctx = blk_mq_get_sq_hctx(q);
2179         queue_for_each_hw_ctx(q, hctx, i) {
2180                 if (blk_mq_hctx_stopped(hctx))
2181                         continue;
2182                 /*
2183                  * Dispatch from this hctx either if there's no hctx preferred
2184                  * by IO scheduler or if it has requests that bypass the
2185                  * scheduler.
2186                  */
2187                 if (!sq_hctx || sq_hctx == hctx ||
2188                     !list_empty_careful(&hctx->dispatch))
2189                         blk_mq_run_hw_queue(hctx, async);
2190         }
2191 }
2192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2193
2194 /**
2195  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2196  * @q: Pointer to the request queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queues.
2198  */
2199 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2200 {
2201         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2202         unsigned long i;
2203
2204         sq_hctx = NULL;
2205         if (blk_queue_sq_sched(q))
2206                 sq_hctx = blk_mq_get_sq_hctx(q);
2207         queue_for_each_hw_ctx(q, hctx, i) {
2208                 if (blk_mq_hctx_stopped(hctx))
2209                         continue;
2210                 /*
2211                  * If there is already a run_work pending, leave the
2212                  * pending delay untouched. Otherwise, a hctx can stall
2213                  * if another hctx is re-delaying the other's work
2214                  * before the work executes.
2215                  */
2216                 if (delayed_work_pending(&hctx->run_work))
2217                         continue;
2218                 /*
2219                  * Dispatch from this hctx either if there's no hctx preferred
2220                  * by IO scheduler or if it has requests that bypass the
2221                  * scheduler.
2222                  */
2223                 if (!sq_hctx || sq_hctx == hctx ||
2224                     !list_empty_careful(&hctx->dispatch))
2225                         blk_mq_delay_run_hw_queue(hctx, msecs);
2226         }
2227 }
2228 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2229
2230 /**
2231  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2232  * @q: request queue.
2233  *
2234  * The caller is responsible for serializing this function against
2235  * blk_mq_{start,stop}_hw_queue().
2236  */
2237 bool blk_mq_queue_stopped(struct request_queue *q)
2238 {
2239         struct blk_mq_hw_ctx *hctx;
2240         unsigned long i;
2241
2242         queue_for_each_hw_ctx(q, hctx, i)
2243                 if (blk_mq_hctx_stopped(hctx))
2244                         return true;
2245
2246         return false;
2247 }
2248 EXPORT_SYMBOL(blk_mq_queue_stopped);
2249
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queue() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2260 {
2261         cancel_delayed_work(&hctx->run_work);
2262
2263         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2264 }
2265 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2266
2267 /*
2268  * This function is often used for pausing .queue_rq() by driver when
2269  * there isn't enough resource or some conditions aren't satisfied, and
2270  * BLK_STS_RESOURCE is usually returned.
2271  *
2272  * We do not guarantee that dispatch can be drained or blocked
2273  * after blk_mq_stop_hw_queues() returns. Please use
2274  * blk_mq_quiesce_queue() for that requirement.
2275  */
2276 void blk_mq_stop_hw_queues(struct request_queue *q)
2277 {
2278         struct blk_mq_hw_ctx *hctx;
2279         unsigned long i;
2280
2281         queue_for_each_hw_ctx(q, hctx, i)
2282                 blk_mq_stop_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2285
2286 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2289
2290         blk_mq_run_hw_queue(hctx, false);
2291 }
2292 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2293
2294 void blk_mq_start_hw_queues(struct request_queue *q)
2295 {
2296         struct blk_mq_hw_ctx *hctx;
2297         unsigned long i;
2298
2299         queue_for_each_hw_ctx(q, hctx, i)
2300                 blk_mq_start_hw_queue(hctx);
2301 }
2302 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2303
2304 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2305 {
2306         if (!blk_mq_hctx_stopped(hctx))
2307                 return;
2308
2309         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2310         blk_mq_run_hw_queue(hctx, async);
2311 }
2312 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2313
2314 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2315 {
2316         struct blk_mq_hw_ctx *hctx;
2317         unsigned long i;
2318
2319         queue_for_each_hw_ctx(q, hctx, i)
2320                 blk_mq_start_stopped_hw_queue(hctx, async);
2321 }
2322 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2323
2324 static void blk_mq_run_work_fn(struct work_struct *work)
2325 {
2326         struct blk_mq_hw_ctx *hctx;
2327
2328         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2329
2330         /*
2331          * If we are stopped, don't run the queue.
2332          */
2333         if (blk_mq_hctx_stopped(hctx))
2334                 return;
2335
2336         __blk_mq_run_hw_queue(hctx);
2337 }
2338
2339 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2340                                             struct request *rq,
2341                                             bool at_head)
2342 {
2343         struct blk_mq_ctx *ctx = rq->mq_ctx;
2344         enum hctx_type type = hctx->type;
2345
2346         lockdep_assert_held(&ctx->lock);
2347
2348         trace_block_rq_insert(rq);
2349
2350         if (at_head)
2351                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2352         else
2353                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2354 }
2355
2356 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2357                              bool at_head)
2358 {
2359         struct blk_mq_ctx *ctx = rq->mq_ctx;
2360
2361         lockdep_assert_held(&ctx->lock);
2362
2363         __blk_mq_insert_req_list(hctx, rq, at_head);
2364         blk_mq_hctx_mark_pending(hctx, ctx);
2365 }
2366
2367 /**
2368  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2369  * @rq: Pointer to request to be inserted.
2370  * @at_head: true if the request should be inserted at the head of the list.
2371  * @run_queue: If we should run the hardware queue after inserting the request.
2372  *
2373  * Should only be used carefully, when the caller knows we want to
2374  * bypass a potential IO scheduler on the target device.
2375  */
2376 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2377                                   bool run_queue)
2378 {
2379         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2380
2381         spin_lock(&hctx->lock);
2382         if (at_head)
2383                 list_add(&rq->queuelist, &hctx->dispatch);
2384         else
2385                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2386         spin_unlock(&hctx->lock);
2387
2388         if (run_queue)
2389                 blk_mq_run_hw_queue(hctx, false);
2390 }
2391
2392 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2393                             struct list_head *list)
2394
2395 {
2396         struct request *rq;
2397         enum hctx_type type = hctx->type;
2398
2399         /*
2400          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2401          * offline now
2402          */
2403         list_for_each_entry(rq, list, queuelist) {
2404                 BUG_ON(rq->mq_ctx != ctx);
2405                 trace_block_rq_insert(rq);
2406         }
2407
2408         spin_lock(&ctx->lock);
2409         list_splice_tail_init(list, &ctx->rq_lists[type]);
2410         blk_mq_hctx_mark_pending(hctx, ctx);
2411         spin_unlock(&ctx->lock);
2412 }
2413
2414 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2415                               bool from_schedule)
2416 {
2417         if (hctx->queue->mq_ops->commit_rqs) {
2418                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2419                 hctx->queue->mq_ops->commit_rqs(hctx);
2420         }
2421         *queued = 0;
2422 }
2423
2424 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2425                 unsigned int nr_segs)
2426 {
2427         int err;
2428
2429         if (bio->bi_opf & REQ_RAHEAD)
2430                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2431
2432         rq->__sector = bio->bi_iter.bi_sector;
2433         blk_rq_bio_prep(rq, bio, nr_segs);
2434
2435         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2436         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2437         WARN_ON_ONCE(err);
2438
2439         blk_account_io_start(rq);
2440 }
2441
2442 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2443                                             struct request *rq, bool last)
2444 {
2445         struct request_queue *q = rq->q;
2446         struct blk_mq_queue_data bd = {
2447                 .rq = rq,
2448                 .last = last,
2449         };
2450         blk_status_t ret;
2451
2452         /*
2453          * For OK queue, we are done. For error, caller may kill it.
2454          * Any other error (busy), just add it to our list as we
2455          * previously would have done.
2456          */
2457         ret = q->mq_ops->queue_rq(hctx, &bd);
2458         switch (ret) {
2459         case BLK_STS_OK:
2460                 blk_mq_update_dispatch_busy(hctx, false);
2461                 break;
2462         case BLK_STS_RESOURCE:
2463         case BLK_STS_DEV_RESOURCE:
2464                 blk_mq_update_dispatch_busy(hctx, true);
2465                 __blk_mq_requeue_request(rq);
2466                 break;
2467         default:
2468                 blk_mq_update_dispatch_busy(hctx, false);
2469                 break;
2470         }
2471
2472         return ret;
2473 }
2474
2475 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2476                                                 struct request *rq,
2477                                                 bool bypass_insert, bool last)
2478 {
2479         struct request_queue *q = rq->q;
2480         bool run_queue = true;
2481         int budget_token;
2482
2483         /*
2484          * RCU or SRCU read lock is needed before checking quiesced flag.
2485          *
2486          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2487          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2488          * and avoid driver to try to dispatch again.
2489          */
2490         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2491                 run_queue = false;
2492                 bypass_insert = false;
2493                 goto insert;
2494         }
2495
2496         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2497                 goto insert;
2498
2499         budget_token = blk_mq_get_dispatch_budget(q);
2500         if (budget_token < 0)
2501                 goto insert;
2502
2503         blk_mq_set_rq_budget_token(rq, budget_token);
2504
2505         if (!blk_mq_get_driver_tag(rq)) {
2506                 blk_mq_put_dispatch_budget(q, budget_token);
2507                 goto insert;
2508         }
2509
2510         return __blk_mq_issue_directly(hctx, rq, last);
2511 insert:
2512         if (bypass_insert)
2513                 return BLK_STS_RESOURCE;
2514
2515         blk_mq_sched_insert_request(rq, false, run_queue, false);
2516
2517         return BLK_STS_OK;
2518 }
2519
2520 /**
2521  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2522  * @hctx: Pointer of the associated hardware queue.
2523  * @rq: Pointer to request to be sent.
2524  *
2525  * If the device has enough resources to accept a new request now, send the
2526  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2527  * we can try send it another time in the future. Requests inserted at this
2528  * queue have higher priority.
2529  */
2530 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2531                 struct request *rq)
2532 {
2533         blk_status_t ret =
2534                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2535
2536         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2537                 blk_mq_request_bypass_insert(rq, false, true);
2538         else if (ret != BLK_STS_OK)
2539                 blk_mq_end_request(rq, ret);
2540 }
2541
2542 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2543 {
2544         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2545 }
2546
2547 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2548 {
2549         struct blk_mq_hw_ctx *hctx = NULL;
2550         struct request *rq;
2551         int queued = 0;
2552         int errors = 0;
2553
2554         while ((rq = rq_list_pop(&plug->mq_list))) {
2555                 bool last = rq_list_empty(plug->mq_list);
2556                 blk_status_t ret;
2557
2558                 if (hctx != rq->mq_hctx) {
2559                         if (hctx)
2560                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2561                         hctx = rq->mq_hctx;
2562                 }
2563
2564                 ret = blk_mq_request_issue_directly(rq, last);
2565                 switch (ret) {
2566                 case BLK_STS_OK:
2567                         queued++;
2568                         break;
2569                 case BLK_STS_RESOURCE:
2570                 case BLK_STS_DEV_RESOURCE:
2571                         blk_mq_request_bypass_insert(rq, false, last);
2572                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2573                         return;
2574                 default:
2575                         blk_mq_end_request(rq, ret);
2576                         errors++;
2577                         break;
2578                 }
2579         }
2580
2581         /*
2582          * If we didn't flush the entire list, we could have told the driver
2583          * there was more coming, but that turned out to be a lie.
2584          */
2585         if (errors)
2586                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2587 }
2588
2589 static void __blk_mq_flush_plug_list(struct request_queue *q,
2590                                      struct blk_plug *plug)
2591 {
2592         if (blk_queue_quiesced(q))
2593                 return;
2594         q->mq_ops->queue_rqs(&plug->mq_list);
2595 }
2596
2597 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2598 {
2599         struct blk_mq_hw_ctx *this_hctx = NULL;
2600         struct blk_mq_ctx *this_ctx = NULL;
2601         struct request *requeue_list = NULL;
2602         unsigned int depth = 0;
2603         LIST_HEAD(list);
2604
2605         do {
2606                 struct request *rq = rq_list_pop(&plug->mq_list);
2607
2608                 if (!this_hctx) {
2609                         this_hctx = rq->mq_hctx;
2610                         this_ctx = rq->mq_ctx;
2611                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2612                         rq_list_add(&requeue_list, rq);
2613                         continue;
2614                 }
2615                 list_add_tail(&rq->queuelist, &list);
2616                 depth++;
2617         } while (!rq_list_empty(plug->mq_list));
2618
2619         plug->mq_list = requeue_list;
2620         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2621         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2622 }
2623
2624 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2625 {
2626         struct request *rq;
2627
2628         if (rq_list_empty(plug->mq_list))
2629                 return;
2630         plug->rq_count = 0;
2631
2632         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2633                 struct request_queue *q;
2634
2635                 rq = rq_list_peek(&plug->mq_list);
2636                 q = rq->q;
2637
2638                 /*
2639                  * Peek first request and see if we have a ->queue_rqs() hook.
2640                  * If we do, we can dispatch the whole plug list in one go. We
2641                  * already know at this point that all requests belong to the
2642                  * same queue, caller must ensure that's the case.
2643                  *
2644                  * Since we pass off the full list to the driver at this point,
2645                  * we do not increment the active request count for the queue.
2646                  * Bypass shared tags for now because of that.
2647                  */
2648                 if (q->mq_ops->queue_rqs &&
2649                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2650                         blk_mq_run_dispatch_ops(q,
2651                                 __blk_mq_flush_plug_list(q, plug));
2652                         if (rq_list_empty(plug->mq_list))
2653                                 return;
2654                 }
2655
2656                 blk_mq_run_dispatch_ops(q,
2657                                 blk_mq_plug_issue_direct(plug, false));
2658                 if (rq_list_empty(plug->mq_list))
2659                         return;
2660         }
2661
2662         do {
2663                 blk_mq_dispatch_plug_list(plug, from_schedule);
2664         } while (!rq_list_empty(plug->mq_list));
2665 }
2666
2667 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2668                 struct list_head *list)
2669 {
2670         int queued = 0;
2671         int errors = 0;
2672
2673         while (!list_empty(list)) {
2674                 blk_status_t ret;
2675                 struct request *rq = list_first_entry(list, struct request,
2676                                 queuelist);
2677
2678                 list_del_init(&rq->queuelist);
2679                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2680                 if (ret != BLK_STS_OK) {
2681                         if (ret == BLK_STS_RESOURCE ||
2682                                         ret == BLK_STS_DEV_RESOURCE) {
2683                                 blk_mq_request_bypass_insert(rq, false,
2684                                                         list_empty(list));
2685                                 break;
2686                         }
2687                         blk_mq_end_request(rq, ret);
2688                         errors++;
2689                 } else
2690                         queued++;
2691         }
2692
2693         /*
2694          * If we didn't flush the entire list, we could have told
2695          * the driver there was more coming, but that turned out to
2696          * be a lie.
2697          */
2698         if ((!list_empty(list) || errors) &&
2699              hctx->queue->mq_ops->commit_rqs && queued)
2700                 hctx->queue->mq_ops->commit_rqs(hctx);
2701 }
2702
2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2704                                      struct bio *bio, unsigned int nr_segs)
2705 {
2706         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2707                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2708                         return true;
2709                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2710                         return true;
2711         }
2712         return false;
2713 }
2714
2715 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2716                                                struct blk_plug *plug,
2717                                                struct bio *bio,
2718                                                unsigned int nsegs)
2719 {
2720         struct blk_mq_alloc_data data = {
2721                 .q              = q,
2722                 .nr_tags        = 1,
2723                 .cmd_flags      = bio->bi_opf,
2724         };
2725         struct request *rq;
2726
2727         if (unlikely(bio_queue_enter(bio)))
2728                 return NULL;
2729
2730         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2731                 goto queue_exit;
2732
2733         rq_qos_throttle(q, bio);
2734
2735         if (plug) {
2736                 data.nr_tags = plug->nr_ios;
2737                 plug->nr_ios = 1;
2738                 data.cached_rq = &plug->cached_rq;
2739         }
2740
2741         rq = __blk_mq_alloc_requests(&data);
2742         if (rq)
2743                 return rq;
2744         rq_qos_cleanup(q, bio);
2745         if (bio->bi_opf & REQ_NOWAIT)
2746                 bio_wouldblock_error(bio);
2747 queue_exit:
2748         blk_queue_exit(q);
2749         return NULL;
2750 }
2751
2752 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2753                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2754 {
2755         struct request *rq;
2756
2757         if (!plug)
2758                 return NULL;
2759         rq = rq_list_peek(&plug->cached_rq);
2760         if (!rq || rq->q != q)
2761                 return NULL;
2762
2763         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2764                 *bio = NULL;
2765                 return NULL;
2766         }
2767
2768         rq_qos_throttle(q, *bio);
2769
2770         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2771                 return NULL;
2772         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2773                 return NULL;
2774
2775         rq->cmd_flags = (*bio)->bi_opf;
2776         plug->cached_rq = rq_list_next(rq);
2777         INIT_LIST_HEAD(&rq->queuelist);
2778         return rq;
2779 }
2780
2781 /**
2782  * blk_mq_submit_bio - Create and send a request to block device.
2783  * @bio: Bio pointer.
2784  *
2785  * Builds up a request structure from @q and @bio and send to the device. The
2786  * request may not be queued directly to hardware if:
2787  * * This request can be merged with another one
2788  * * We want to place request at plug queue for possible future merging
2789  * * There is an IO scheduler active at this queue
2790  *
2791  * It will not queue the request if there is an error with the bio, or at the
2792  * request creation.
2793  */
2794 void blk_mq_submit_bio(struct bio *bio)
2795 {
2796         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2797         struct blk_plug *plug = blk_mq_plug(q, bio);
2798         const int is_sync = op_is_sync(bio->bi_opf);
2799         struct request *rq;
2800         unsigned int nr_segs = 1;
2801         blk_status_t ret;
2802
2803         blk_queue_bounce(q, &bio);
2804         if (blk_may_split(q, bio))
2805                 __blk_queue_split(q, &bio, &nr_segs);
2806
2807         if (!bio_integrity_prep(bio))
2808                 return;
2809
2810         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2811         if (!rq) {
2812                 if (!bio)
2813                         return;
2814                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2815                 if (unlikely(!rq))
2816                         return;
2817         }
2818
2819         trace_block_getrq(bio);
2820
2821         rq_qos_track(q, rq, bio);
2822
2823         blk_mq_bio_to_request(rq, bio, nr_segs);
2824
2825         ret = blk_crypto_init_request(rq);
2826         if (ret != BLK_STS_OK) {
2827                 bio->bi_status = ret;
2828                 bio_endio(bio);
2829                 blk_mq_free_request(rq);
2830                 return;
2831         }
2832
2833         if (op_is_flush(bio->bi_opf)) {
2834                 blk_insert_flush(rq);
2835                 return;
2836         }
2837
2838         if (plug)
2839                 blk_add_rq_to_plug(plug, rq);
2840         else if ((rq->rq_flags & RQF_ELV) ||
2841                  (rq->mq_hctx->dispatch_busy &&
2842                   (q->nr_hw_queues == 1 || !is_sync)))
2843                 blk_mq_sched_insert_request(rq, false, true, true);
2844         else
2845                 blk_mq_run_dispatch_ops(rq->q,
2846                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2847 }
2848
2849 #ifdef CONFIG_BLK_MQ_STACKING
2850 /**
2851  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2852  * @rq: the request being queued
2853  */
2854 blk_status_t blk_insert_cloned_request(struct request *rq)
2855 {
2856         struct request_queue *q = rq->q;
2857         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2858         blk_status_t ret;
2859
2860         if (blk_rq_sectors(rq) > max_sectors) {
2861                 /*
2862                  * SCSI device does not have a good way to return if
2863                  * Write Same/Zero is actually supported. If a device rejects
2864                  * a non-read/write command (discard, write same,etc.) the
2865                  * low-level device driver will set the relevant queue limit to
2866                  * 0 to prevent blk-lib from issuing more of the offending
2867                  * operations. Commands queued prior to the queue limit being
2868                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2869                  * errors being propagated to upper layers.
2870                  */
2871                 if (max_sectors == 0)
2872                         return BLK_STS_NOTSUPP;
2873
2874                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2875                         __func__, blk_rq_sectors(rq), max_sectors);
2876                 return BLK_STS_IOERR;
2877         }
2878
2879         /*
2880          * The queue settings related to segment counting may differ from the
2881          * original queue.
2882          */
2883         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2884         if (rq->nr_phys_segments > queue_max_segments(q)) {
2885                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2886                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2887                 return BLK_STS_IOERR;
2888         }
2889
2890         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2891                 return BLK_STS_IOERR;
2892
2893         if (blk_crypto_insert_cloned_request(rq))
2894                 return BLK_STS_IOERR;
2895
2896         blk_account_io_start(rq);
2897
2898         /*
2899          * Since we have a scheduler attached on the top device,
2900          * bypass a potential scheduler on the bottom device for
2901          * insert.
2902          */
2903         blk_mq_run_dispatch_ops(q,
2904                         ret = blk_mq_request_issue_directly(rq, true));
2905         if (ret)
2906                 blk_account_io_done(rq, ktime_get_ns());
2907         return ret;
2908 }
2909 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2910
2911 /**
2912  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2913  * @rq: the clone request to be cleaned up
2914  *
2915  * Description:
2916  *     Free all bios in @rq for a cloned request.
2917  */
2918 void blk_rq_unprep_clone(struct request *rq)
2919 {
2920         struct bio *bio;
2921
2922         while ((bio = rq->bio) != NULL) {
2923                 rq->bio = bio->bi_next;
2924
2925                 bio_put(bio);
2926         }
2927 }
2928 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2929
2930 /**
2931  * blk_rq_prep_clone - Helper function to setup clone request
2932  * @rq: the request to be setup
2933  * @rq_src: original request to be cloned
2934  * @bs: bio_set that bios for clone are allocated from
2935  * @gfp_mask: memory allocation mask for bio
2936  * @bio_ctr: setup function to be called for each clone bio.
2937  *           Returns %0 for success, non %0 for failure.
2938  * @data: private data to be passed to @bio_ctr
2939  *
2940  * Description:
2941  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2942  *     Also, pages which the original bios are pointing to are not copied
2943  *     and the cloned bios just point same pages.
2944  *     So cloned bios must be completed before original bios, which means
2945  *     the caller must complete @rq before @rq_src.
2946  */
2947 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2948                       struct bio_set *bs, gfp_t gfp_mask,
2949                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2950                       void *data)
2951 {
2952         struct bio *bio, *bio_src;
2953
2954         if (!bs)
2955                 bs = &fs_bio_set;
2956
2957         __rq_for_each_bio(bio_src, rq_src) {
2958                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2959                                       bs);
2960                 if (!bio)
2961                         goto free_and_out;
2962
2963                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2964                         goto free_and_out;
2965
2966                 if (rq->bio) {
2967                         rq->biotail->bi_next = bio;
2968                         rq->biotail = bio;
2969                 } else {
2970                         rq->bio = rq->biotail = bio;
2971                 }
2972                 bio = NULL;
2973         }
2974
2975         /* Copy attributes of the original request to the clone request. */
2976         rq->__sector = blk_rq_pos(rq_src);
2977         rq->__data_len = blk_rq_bytes(rq_src);
2978         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2979                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2980                 rq->special_vec = rq_src->special_vec;
2981         }
2982         rq->nr_phys_segments = rq_src->nr_phys_segments;
2983         rq->ioprio = rq_src->ioprio;
2984
2985         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2986                 goto free_and_out;
2987
2988         return 0;
2989
2990 free_and_out:
2991         if (bio)
2992                 bio_put(bio);
2993         blk_rq_unprep_clone(rq);
2994
2995         return -ENOMEM;
2996 }
2997 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2998 #endif /* CONFIG_BLK_MQ_STACKING */
2999
3000 /*
3001  * Steal bios from a request and add them to a bio list.
3002  * The request must not have been partially completed before.
3003  */
3004 void blk_steal_bios(struct bio_list *list, struct request *rq)
3005 {
3006         if (rq->bio) {
3007                 if (list->tail)
3008                         list->tail->bi_next = rq->bio;
3009                 else
3010                         list->head = rq->bio;
3011                 list->tail = rq->biotail;
3012
3013                 rq->bio = NULL;
3014                 rq->biotail = NULL;
3015         }
3016
3017         rq->__data_len = 0;
3018 }
3019 EXPORT_SYMBOL_GPL(blk_steal_bios);
3020
3021 static size_t order_to_size(unsigned int order)
3022 {
3023         return (size_t)PAGE_SIZE << order;
3024 }
3025
3026 /* called before freeing request pool in @tags */
3027 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3028                                     struct blk_mq_tags *tags)
3029 {
3030         struct page *page;
3031         unsigned long flags;
3032
3033         /* There is no need to clear a driver tags own mapping */
3034         if (drv_tags == tags)
3035                 return;
3036
3037         list_for_each_entry(page, &tags->page_list, lru) {
3038                 unsigned long start = (unsigned long)page_address(page);
3039                 unsigned long end = start + order_to_size(page->private);
3040                 int i;
3041
3042                 for (i = 0; i < drv_tags->nr_tags; i++) {
3043                         struct request *rq = drv_tags->rqs[i];
3044                         unsigned long rq_addr = (unsigned long)rq;
3045
3046                         if (rq_addr >= start && rq_addr < end) {
3047                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3048                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3049                         }
3050                 }
3051         }
3052
3053         /*
3054          * Wait until all pending iteration is done.
3055          *
3056          * Request reference is cleared and it is guaranteed to be observed
3057          * after the ->lock is released.
3058          */
3059         spin_lock_irqsave(&drv_tags->lock, flags);
3060         spin_unlock_irqrestore(&drv_tags->lock, flags);
3061 }
3062
3063 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3064                      unsigned int hctx_idx)
3065 {
3066         struct blk_mq_tags *drv_tags;
3067         struct page *page;
3068
3069         if (list_empty(&tags->page_list))
3070                 return;
3071
3072         if (blk_mq_is_shared_tags(set->flags))
3073                 drv_tags = set->shared_tags;
3074         else
3075                 drv_tags = set->tags[hctx_idx];
3076
3077         if (tags->static_rqs && set->ops->exit_request) {
3078                 int i;
3079
3080                 for (i = 0; i < tags->nr_tags; i++) {
3081                         struct request *rq = tags->static_rqs[i];
3082
3083                         if (!rq)
3084                                 continue;
3085                         set->ops->exit_request(set, rq, hctx_idx);
3086                         tags->static_rqs[i] = NULL;
3087                 }
3088         }
3089
3090         blk_mq_clear_rq_mapping(drv_tags, tags);
3091
3092         while (!list_empty(&tags->page_list)) {
3093                 page = list_first_entry(&tags->page_list, struct page, lru);
3094                 list_del_init(&page->lru);
3095                 /*
3096                  * Remove kmemleak object previously allocated in
3097                  * blk_mq_alloc_rqs().
3098                  */
3099                 kmemleak_free(page_address(page));
3100                 __free_pages(page, page->private);
3101         }
3102 }
3103
3104 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3105 {
3106         kfree(tags->rqs);
3107         tags->rqs = NULL;
3108         kfree(tags->static_rqs);
3109         tags->static_rqs = NULL;
3110
3111         blk_mq_free_tags(tags);
3112 }
3113
3114 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3115                 unsigned int hctx_idx)
3116 {
3117         int i;
3118
3119         for (i = 0; i < set->nr_maps; i++) {
3120                 unsigned int start = set->map[i].queue_offset;
3121                 unsigned int end = start + set->map[i].nr_queues;
3122
3123                 if (hctx_idx >= start && hctx_idx < end)
3124                         break;
3125         }
3126
3127         if (i >= set->nr_maps)
3128                 i = HCTX_TYPE_DEFAULT;
3129
3130         return i;
3131 }
3132
3133 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3134                 unsigned int hctx_idx)
3135 {
3136         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3137
3138         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3139 }
3140
3141 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3142                                                unsigned int hctx_idx,
3143                                                unsigned int nr_tags,
3144                                                unsigned int reserved_tags)
3145 {
3146         int node = blk_mq_get_hctx_node(set, hctx_idx);
3147         struct blk_mq_tags *tags;
3148
3149         if (node == NUMA_NO_NODE)
3150                 node = set->numa_node;
3151
3152         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3153                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3154         if (!tags)
3155                 return NULL;
3156
3157         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3158                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3159                                  node);
3160         if (!tags->rqs) {
3161                 blk_mq_free_tags(tags);
3162                 return NULL;
3163         }
3164
3165         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3166                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3167                                         node);
3168         if (!tags->static_rqs) {
3169                 kfree(tags->rqs);
3170                 blk_mq_free_tags(tags);
3171                 return NULL;
3172         }
3173
3174         return tags;
3175 }
3176
3177 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3178                                unsigned int hctx_idx, int node)
3179 {
3180         int ret;
3181
3182         if (set->ops->init_request) {
3183                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3184                 if (ret)
3185                         return ret;
3186         }
3187
3188         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3189         return 0;
3190 }
3191
3192 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3193                             struct blk_mq_tags *tags,
3194                             unsigned int hctx_idx, unsigned int depth)
3195 {
3196         unsigned int i, j, entries_per_page, max_order = 4;
3197         int node = blk_mq_get_hctx_node(set, hctx_idx);
3198         size_t rq_size, left;
3199
3200         if (node == NUMA_NO_NODE)
3201                 node = set->numa_node;
3202
3203         INIT_LIST_HEAD(&tags->page_list);
3204
3205         /*
3206          * rq_size is the size of the request plus driver payload, rounded
3207          * to the cacheline size
3208          */
3209         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3210                                 cache_line_size());
3211         left = rq_size * depth;
3212
3213         for (i = 0; i < depth; ) {
3214                 int this_order = max_order;
3215                 struct page *page;
3216                 int to_do;
3217                 void *p;
3218
3219                 while (this_order && left < order_to_size(this_order - 1))
3220                         this_order--;
3221
3222                 do {
3223                         page = alloc_pages_node(node,
3224                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3225                                 this_order);
3226                         if (page)
3227                                 break;
3228                         if (!this_order--)
3229                                 break;
3230                         if (order_to_size(this_order) < rq_size)
3231                                 break;
3232                 } while (1);
3233
3234                 if (!page)
3235                         goto fail;
3236
3237                 page->private = this_order;
3238                 list_add_tail(&page->lru, &tags->page_list);
3239
3240                 p = page_address(page);
3241                 /*
3242                  * Allow kmemleak to scan these pages as they contain pointers
3243                  * to additional allocations like via ops->init_request().
3244                  */
3245                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3246                 entries_per_page = order_to_size(this_order) / rq_size;
3247                 to_do = min(entries_per_page, depth - i);
3248                 left -= to_do * rq_size;
3249                 for (j = 0; j < to_do; j++) {
3250                         struct request *rq = p;
3251
3252                         tags->static_rqs[i] = rq;
3253                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3254                                 tags->static_rqs[i] = NULL;
3255                                 goto fail;
3256                         }
3257
3258                         p += rq_size;
3259                         i++;
3260                 }
3261         }
3262         return 0;
3263
3264 fail:
3265         blk_mq_free_rqs(set, tags, hctx_idx);
3266         return -ENOMEM;
3267 }
3268
3269 struct rq_iter_data {
3270         struct blk_mq_hw_ctx *hctx;
3271         bool has_rq;
3272 };
3273
3274 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3275 {
3276         struct rq_iter_data *iter_data = data;
3277
3278         if (rq->mq_hctx != iter_data->hctx)
3279                 return true;
3280         iter_data->has_rq = true;
3281         return false;
3282 }
3283
3284 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3285 {
3286         struct blk_mq_tags *tags = hctx->sched_tags ?
3287                         hctx->sched_tags : hctx->tags;
3288         struct rq_iter_data data = {
3289                 .hctx   = hctx,
3290         };
3291
3292         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3293         return data.has_rq;
3294 }
3295
3296 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3297                 struct blk_mq_hw_ctx *hctx)
3298 {
3299         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3300                 return false;
3301         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3302                 return false;
3303         return true;
3304 }
3305
3306 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3307 {
3308         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3309                         struct blk_mq_hw_ctx, cpuhp_online);
3310
3311         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3312             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3313                 return 0;
3314
3315         /*
3316          * Prevent new request from being allocated on the current hctx.
3317          *
3318          * The smp_mb__after_atomic() Pairs with the implied barrier in
3319          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3320          * seen once we return from the tag allocator.
3321          */
3322         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3323         smp_mb__after_atomic();
3324
3325         /*
3326          * Try to grab a reference to the queue and wait for any outstanding
3327          * requests.  If we could not grab a reference the queue has been
3328          * frozen and there are no requests.
3329          */
3330         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3331                 while (blk_mq_hctx_has_requests(hctx))
3332                         msleep(5);
3333                 percpu_ref_put(&hctx->queue->q_usage_counter);
3334         }
3335
3336         return 0;
3337 }
3338
3339 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3340 {
3341         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3342                         struct blk_mq_hw_ctx, cpuhp_online);
3343
3344         if (cpumask_test_cpu(cpu, hctx->cpumask))
3345                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3346         return 0;
3347 }
3348
3349 /*
3350  * 'cpu' is going away. splice any existing rq_list entries from this
3351  * software queue to the hw queue dispatch list, and ensure that it
3352  * gets run.
3353  */
3354 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3355 {
3356         struct blk_mq_hw_ctx *hctx;
3357         struct blk_mq_ctx *ctx;
3358         LIST_HEAD(tmp);
3359         enum hctx_type type;
3360
3361         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3362         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3363                 return 0;
3364
3365         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3366         type = hctx->type;
3367
3368         spin_lock(&ctx->lock);
3369         if (!list_empty(&ctx->rq_lists[type])) {
3370                 list_splice_init(&ctx->rq_lists[type], &tmp);
3371                 blk_mq_hctx_clear_pending(hctx, ctx);
3372         }
3373         spin_unlock(&ctx->lock);
3374
3375         if (list_empty(&tmp))
3376                 return 0;
3377
3378         spin_lock(&hctx->lock);
3379         list_splice_tail_init(&tmp, &hctx->dispatch);
3380         spin_unlock(&hctx->lock);
3381
3382         blk_mq_run_hw_queue(hctx, true);
3383         return 0;
3384 }
3385
3386 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3387 {
3388         if (!(hctx->flags & BLK_MQ_F_STACKING))
3389                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3390                                                     &hctx->cpuhp_online);
3391         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3392                                             &hctx->cpuhp_dead);
3393 }
3394
3395 /*
3396  * Before freeing hw queue, clearing the flush request reference in
3397  * tags->rqs[] for avoiding potential UAF.
3398  */
3399 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3400                 unsigned int queue_depth, struct request *flush_rq)
3401 {
3402         int i;
3403         unsigned long flags;
3404
3405         /* The hw queue may not be mapped yet */
3406         if (!tags)
3407                 return;
3408
3409         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3410
3411         for (i = 0; i < queue_depth; i++)
3412                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3413
3414         /*
3415          * Wait until all pending iteration is done.
3416          *
3417          * Request reference is cleared and it is guaranteed to be observed
3418          * after the ->lock is released.
3419          */
3420         spin_lock_irqsave(&tags->lock, flags);
3421         spin_unlock_irqrestore(&tags->lock, flags);
3422 }
3423
3424 /* hctx->ctxs will be freed in queue's release handler */
3425 static void blk_mq_exit_hctx(struct request_queue *q,
3426                 struct blk_mq_tag_set *set,
3427                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3428 {
3429         struct request *flush_rq = hctx->fq->flush_rq;
3430
3431         if (blk_mq_hw_queue_mapped(hctx))
3432                 blk_mq_tag_idle(hctx);
3433
3434         if (blk_queue_init_done(q))
3435                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3436                                 set->queue_depth, flush_rq);
3437         if (set->ops->exit_request)
3438                 set->ops->exit_request(set, flush_rq, hctx_idx);
3439
3440         if (set->ops->exit_hctx)
3441                 set->ops->exit_hctx(hctx, hctx_idx);
3442
3443         blk_mq_remove_cpuhp(hctx);
3444
3445         xa_erase(&q->hctx_table, hctx_idx);
3446
3447         spin_lock(&q->unused_hctx_lock);
3448         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3449         spin_unlock(&q->unused_hctx_lock);
3450 }
3451
3452 static void blk_mq_exit_hw_queues(struct request_queue *q,
3453                 struct blk_mq_tag_set *set, int nr_queue)
3454 {
3455         struct blk_mq_hw_ctx *hctx;
3456         unsigned long i;
3457
3458         queue_for_each_hw_ctx(q, hctx, i) {
3459                 if (i == nr_queue)
3460                         break;
3461                 blk_mq_exit_hctx(q, set, hctx, i);
3462         }
3463 }
3464
3465 static int blk_mq_init_hctx(struct request_queue *q,
3466                 struct blk_mq_tag_set *set,
3467                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3468 {
3469         hctx->queue_num = hctx_idx;
3470
3471         if (!(hctx->flags & BLK_MQ_F_STACKING))
3472                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3473                                 &hctx->cpuhp_online);
3474         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3475
3476         hctx->tags = set->tags[hctx_idx];
3477
3478         if (set->ops->init_hctx &&
3479             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3480                 goto unregister_cpu_notifier;
3481
3482         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3483                                 hctx->numa_node))
3484                 goto exit_hctx;
3485
3486         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3487                 goto exit_flush_rq;
3488
3489         return 0;
3490
3491  exit_flush_rq:
3492         if (set->ops->exit_request)
3493                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3494  exit_hctx:
3495         if (set->ops->exit_hctx)
3496                 set->ops->exit_hctx(hctx, hctx_idx);
3497  unregister_cpu_notifier:
3498         blk_mq_remove_cpuhp(hctx);
3499         return -1;
3500 }
3501
3502 static struct blk_mq_hw_ctx *
3503 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3504                 int node)
3505 {
3506         struct blk_mq_hw_ctx *hctx;
3507         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3508
3509         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3510         if (!hctx)
3511                 goto fail_alloc_hctx;
3512
3513         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3514                 goto free_hctx;
3515
3516         atomic_set(&hctx->nr_active, 0);
3517         if (node == NUMA_NO_NODE)
3518                 node = set->numa_node;
3519         hctx->numa_node = node;
3520
3521         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3522         spin_lock_init(&hctx->lock);
3523         INIT_LIST_HEAD(&hctx->dispatch);
3524         hctx->queue = q;
3525         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3526
3527         INIT_LIST_HEAD(&hctx->hctx_list);
3528
3529         /*
3530          * Allocate space for all possible cpus to avoid allocation at
3531          * runtime
3532          */
3533         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3534                         gfp, node);
3535         if (!hctx->ctxs)
3536                 goto free_cpumask;
3537
3538         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3539                                 gfp, node, false, false))
3540                 goto free_ctxs;
3541         hctx->nr_ctx = 0;
3542
3543         spin_lock_init(&hctx->dispatch_wait_lock);
3544         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3545         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3546
3547         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3548         if (!hctx->fq)
3549                 goto free_bitmap;
3550
3551         blk_mq_hctx_kobj_init(hctx);
3552
3553         return hctx;
3554
3555  free_bitmap:
3556         sbitmap_free(&hctx->ctx_map);
3557  free_ctxs:
3558         kfree(hctx->ctxs);
3559  free_cpumask:
3560         free_cpumask_var(hctx->cpumask);
3561  free_hctx:
3562         kfree(hctx);
3563  fail_alloc_hctx:
3564         return NULL;
3565 }
3566
3567 static void blk_mq_init_cpu_queues(struct request_queue *q,
3568                                    unsigned int nr_hw_queues)
3569 {
3570         struct blk_mq_tag_set *set = q->tag_set;
3571         unsigned int i, j;
3572
3573         for_each_possible_cpu(i) {
3574                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3575                 struct blk_mq_hw_ctx *hctx;
3576                 int k;
3577
3578                 __ctx->cpu = i;
3579                 spin_lock_init(&__ctx->lock);
3580                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3581                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3582
3583                 __ctx->queue = q;
3584
3585                 /*
3586                  * Set local node, IFF we have more than one hw queue. If
3587                  * not, we remain on the home node of the device
3588                  */
3589                 for (j = 0; j < set->nr_maps; j++) {
3590                         hctx = blk_mq_map_queue_type(q, j, i);
3591                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3592                                 hctx->numa_node = cpu_to_node(i);
3593                 }
3594         }
3595 }
3596
3597 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3598                                              unsigned int hctx_idx,
3599                                              unsigned int depth)
3600 {
3601         struct blk_mq_tags *tags;
3602         int ret;
3603
3604         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3605         if (!tags)
3606                 return NULL;
3607
3608         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3609         if (ret) {
3610                 blk_mq_free_rq_map(tags);
3611                 return NULL;
3612         }
3613
3614         return tags;
3615 }
3616
3617 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3618                                        int hctx_idx)
3619 {
3620         if (blk_mq_is_shared_tags(set->flags)) {
3621                 set->tags[hctx_idx] = set->shared_tags;
3622
3623                 return true;
3624         }
3625
3626         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3627                                                        set->queue_depth);
3628
3629         return set->tags[hctx_idx];
3630 }
3631
3632 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3633                              struct blk_mq_tags *tags,
3634                              unsigned int hctx_idx)
3635 {
3636         if (tags) {
3637                 blk_mq_free_rqs(set, tags, hctx_idx);
3638                 blk_mq_free_rq_map(tags);
3639         }
3640 }
3641
3642 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3643                                       unsigned int hctx_idx)
3644 {
3645         if (!blk_mq_is_shared_tags(set->flags))
3646                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3647
3648         set->tags[hctx_idx] = NULL;
3649 }
3650
3651 static void blk_mq_map_swqueue(struct request_queue *q)
3652 {
3653         unsigned int j, hctx_idx;
3654         unsigned long i;
3655         struct blk_mq_hw_ctx *hctx;
3656         struct blk_mq_ctx *ctx;
3657         struct blk_mq_tag_set *set = q->tag_set;
3658
3659         queue_for_each_hw_ctx(q, hctx, i) {
3660                 cpumask_clear(hctx->cpumask);
3661                 hctx->nr_ctx = 0;
3662                 hctx->dispatch_from = NULL;
3663         }
3664
3665         /*
3666          * Map software to hardware queues.
3667          *
3668          * If the cpu isn't present, the cpu is mapped to first hctx.
3669          */
3670         for_each_possible_cpu(i) {
3671
3672                 ctx = per_cpu_ptr(q->queue_ctx, i);
3673                 for (j = 0; j < set->nr_maps; j++) {
3674                         if (!set->map[j].nr_queues) {
3675                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3676                                                 HCTX_TYPE_DEFAULT, i);
3677                                 continue;
3678                         }
3679                         hctx_idx = set->map[j].mq_map[i];
3680                         /* unmapped hw queue can be remapped after CPU topo changed */
3681                         if (!set->tags[hctx_idx] &&
3682                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3683                                 /*
3684                                  * If tags initialization fail for some hctx,
3685                                  * that hctx won't be brought online.  In this
3686                                  * case, remap the current ctx to hctx[0] which
3687                                  * is guaranteed to always have tags allocated
3688                                  */
3689                                 set->map[j].mq_map[i] = 0;
3690                         }
3691
3692                         hctx = blk_mq_map_queue_type(q, j, i);
3693                         ctx->hctxs[j] = hctx;
3694                         /*
3695                          * If the CPU is already set in the mask, then we've
3696                          * mapped this one already. This can happen if
3697                          * devices share queues across queue maps.
3698                          */
3699                         if (cpumask_test_cpu(i, hctx->cpumask))
3700                                 continue;
3701
3702                         cpumask_set_cpu(i, hctx->cpumask);
3703                         hctx->type = j;
3704                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3705                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3706
3707                         /*
3708                          * If the nr_ctx type overflows, we have exceeded the
3709                          * amount of sw queues we can support.
3710                          */
3711                         BUG_ON(!hctx->nr_ctx);
3712                 }
3713
3714                 for (; j < HCTX_MAX_TYPES; j++)
3715                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3716                                         HCTX_TYPE_DEFAULT, i);
3717         }
3718
3719         queue_for_each_hw_ctx(q, hctx, i) {
3720                 /*
3721                  * If no software queues are mapped to this hardware queue,
3722                  * disable it and free the request entries.
3723                  */
3724                 if (!hctx->nr_ctx) {
3725                         /* Never unmap queue 0.  We need it as a
3726                          * fallback in case of a new remap fails
3727                          * allocation
3728                          */
3729                         if (i)
3730                                 __blk_mq_free_map_and_rqs(set, i);
3731
3732                         hctx->tags = NULL;
3733                         continue;
3734                 }
3735
3736                 hctx->tags = set->tags[i];
3737                 WARN_ON(!hctx->tags);
3738
3739                 /*
3740                  * Set the map size to the number of mapped software queues.
3741                  * This is more accurate and more efficient than looping
3742                  * over all possibly mapped software queues.
3743                  */
3744                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3745
3746                 /*
3747                  * Initialize batch roundrobin counts
3748                  */
3749                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3750                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3751         }
3752 }
3753
3754 /*
3755  * Caller needs to ensure that we're either frozen/quiesced, or that
3756  * the queue isn't live yet.
3757  */
3758 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3759 {
3760         struct blk_mq_hw_ctx *hctx;
3761         unsigned long i;
3762
3763         queue_for_each_hw_ctx(q, hctx, i) {
3764                 if (shared) {
3765                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3766                 } else {
3767                         blk_mq_tag_idle(hctx);
3768                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3769                 }
3770         }
3771 }
3772
3773 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3774                                          bool shared)
3775 {
3776         struct request_queue *q;
3777
3778         lockdep_assert_held(&set->tag_list_lock);
3779
3780         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3781                 blk_mq_freeze_queue(q);
3782                 queue_set_hctx_shared(q, shared);
3783                 blk_mq_unfreeze_queue(q);
3784         }
3785 }
3786
3787 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3788 {
3789         struct blk_mq_tag_set *set = q->tag_set;
3790
3791         mutex_lock(&set->tag_list_lock);
3792         list_del(&q->tag_set_list);
3793         if (list_is_singular(&set->tag_list)) {
3794                 /* just transitioned to unshared */
3795                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3796                 /* update existing queue */
3797                 blk_mq_update_tag_set_shared(set, false);
3798         }
3799         mutex_unlock(&set->tag_list_lock);
3800         INIT_LIST_HEAD(&q->tag_set_list);
3801 }
3802
3803 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3804                                      struct request_queue *q)
3805 {
3806         mutex_lock(&set->tag_list_lock);
3807
3808         /*
3809          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3810          */
3811         if (!list_empty(&set->tag_list) &&
3812             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3813                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3814                 /* update existing queue */
3815                 blk_mq_update_tag_set_shared(set, true);
3816         }
3817         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3818                 queue_set_hctx_shared(q, true);
3819         list_add_tail(&q->tag_set_list, &set->tag_list);
3820
3821         mutex_unlock(&set->tag_list_lock);
3822 }
3823
3824 /* All allocations will be freed in release handler of q->mq_kobj */
3825 static int blk_mq_alloc_ctxs(struct request_queue *q)
3826 {
3827         struct blk_mq_ctxs *ctxs;
3828         int cpu;
3829
3830         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3831         if (!ctxs)
3832                 return -ENOMEM;
3833
3834         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3835         if (!ctxs->queue_ctx)
3836                 goto fail;
3837
3838         for_each_possible_cpu(cpu) {
3839                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3840                 ctx->ctxs = ctxs;
3841         }
3842
3843         q->mq_kobj = &ctxs->kobj;
3844         q->queue_ctx = ctxs->queue_ctx;
3845
3846         return 0;
3847  fail:
3848         kfree(ctxs);
3849         return -ENOMEM;
3850 }
3851
3852 /*
3853  * It is the actual release handler for mq, but we do it from
3854  * request queue's release handler for avoiding use-after-free
3855  * and headache because q->mq_kobj shouldn't have been introduced,
3856  * but we can't group ctx/kctx kobj without it.
3857  */
3858 void blk_mq_release(struct request_queue *q)
3859 {
3860         struct blk_mq_hw_ctx *hctx, *next;
3861         unsigned long i;
3862
3863         queue_for_each_hw_ctx(q, hctx, i)
3864                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3865
3866         /* all hctx are in .unused_hctx_list now */
3867         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3868                 list_del_init(&hctx->hctx_list);
3869                 kobject_put(&hctx->kobj);
3870         }
3871
3872         xa_destroy(&q->hctx_table);
3873
3874         /*
3875          * release .mq_kobj and sw queue's kobject now because
3876          * both share lifetime with request queue.
3877          */
3878         blk_mq_sysfs_deinit(q);
3879 }
3880
3881 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3882                 void *queuedata)
3883 {
3884         struct request_queue *q;
3885         int ret;
3886
3887         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3888         if (!q)
3889                 return ERR_PTR(-ENOMEM);
3890         q->queuedata = queuedata;
3891         ret = blk_mq_init_allocated_queue(set, q);
3892         if (ret) {
3893                 blk_cleanup_queue(q);
3894                 return ERR_PTR(ret);
3895         }
3896         return q;
3897 }
3898
3899 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3900 {
3901         return blk_mq_init_queue_data(set, NULL);
3902 }
3903 EXPORT_SYMBOL(blk_mq_init_queue);
3904
3905 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3906                 struct lock_class_key *lkclass)
3907 {
3908         struct request_queue *q;
3909         struct gendisk *disk;
3910
3911         q = blk_mq_init_queue_data(set, queuedata);
3912         if (IS_ERR(q))
3913                 return ERR_CAST(q);
3914
3915         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3916         if (!disk) {
3917                 blk_cleanup_queue(q);
3918                 return ERR_PTR(-ENOMEM);
3919         }
3920         return disk;
3921 }
3922 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3923
3924 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3925                 struct blk_mq_tag_set *set, struct request_queue *q,
3926                 int hctx_idx, int node)
3927 {
3928         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3929
3930         /* reuse dead hctx first */
3931         spin_lock(&q->unused_hctx_lock);
3932         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3933                 if (tmp->numa_node == node) {
3934                         hctx = tmp;
3935                         break;
3936                 }
3937         }
3938         if (hctx)
3939                 list_del_init(&hctx->hctx_list);
3940         spin_unlock(&q->unused_hctx_lock);
3941
3942         if (!hctx)
3943                 hctx = blk_mq_alloc_hctx(q, set, node);
3944         if (!hctx)
3945                 goto fail;
3946
3947         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3948                 goto free_hctx;
3949
3950         return hctx;
3951
3952  free_hctx:
3953         kobject_put(&hctx->kobj);
3954  fail:
3955         return NULL;
3956 }
3957
3958 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3959                                                 struct request_queue *q)
3960 {
3961         struct blk_mq_hw_ctx *hctx;
3962         unsigned long i, j;
3963
3964         /* protect against switching io scheduler  */
3965         mutex_lock(&q->sysfs_lock);
3966         for (i = 0; i < set->nr_hw_queues; i++) {
3967                 int old_node;
3968                 int node = blk_mq_get_hctx_node(set, i);
3969                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3970
3971                 if (old_hctx) {
3972                         old_node = old_hctx->numa_node;
3973                         blk_mq_exit_hctx(q, set, old_hctx, i);
3974                 }
3975
3976                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3977                         if (!old_hctx)
3978                                 break;
3979                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3980                                         node, old_node);
3981                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3982                         WARN_ON_ONCE(!hctx);
3983                 }
3984         }
3985         /*
3986          * Increasing nr_hw_queues fails. Free the newly allocated
3987          * hctxs and keep the previous q->nr_hw_queues.
3988          */
3989         if (i != set->nr_hw_queues) {
3990                 j = q->nr_hw_queues;
3991         } else {
3992                 j = i;
3993                 q->nr_hw_queues = set->nr_hw_queues;
3994         }
3995
3996         xa_for_each_start(&q->hctx_table, j, hctx, j)
3997                 blk_mq_exit_hctx(q, set, hctx, j);
3998         mutex_unlock(&q->sysfs_lock);
3999 }
4000
4001 static void blk_mq_update_poll_flag(struct request_queue *q)
4002 {
4003         struct blk_mq_tag_set *set = q->tag_set;
4004
4005         if (set->nr_maps > HCTX_TYPE_POLL &&
4006             set->map[HCTX_TYPE_POLL].nr_queues)
4007                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4008         else
4009                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4010 }
4011
4012 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4013                 struct request_queue *q)
4014 {
4015         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4016                         !!(set->flags & BLK_MQ_F_BLOCKING));
4017
4018         /* mark the queue as mq asap */
4019         q->mq_ops = set->ops;
4020
4021         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4022                                              blk_mq_poll_stats_bkt,
4023                                              BLK_MQ_POLL_STATS_BKTS, q);
4024         if (!q->poll_cb)
4025                 goto err_exit;
4026
4027         if (blk_mq_alloc_ctxs(q))
4028                 goto err_poll;
4029
4030         /* init q->mq_kobj and sw queues' kobjects */
4031         blk_mq_sysfs_init(q);
4032
4033         INIT_LIST_HEAD(&q->unused_hctx_list);
4034         spin_lock_init(&q->unused_hctx_lock);
4035
4036         xa_init(&q->hctx_table);
4037
4038         blk_mq_realloc_hw_ctxs(set, q);
4039         if (!q->nr_hw_queues)
4040                 goto err_hctxs;
4041
4042         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4043         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4044
4045         q->tag_set = set;
4046
4047         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4048         blk_mq_update_poll_flag(q);
4049
4050         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4051         INIT_LIST_HEAD(&q->requeue_list);
4052         spin_lock_init(&q->requeue_lock);
4053
4054         q->nr_requests = set->queue_depth;
4055
4056         /*
4057          * Default to classic polling
4058          */
4059         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4060
4061         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4062         blk_mq_add_queue_tag_set(set, q);
4063         blk_mq_map_swqueue(q);
4064         return 0;
4065
4066 err_hctxs:
4067         xa_destroy(&q->hctx_table);
4068         q->nr_hw_queues = 0;
4069         blk_mq_sysfs_deinit(q);
4070 err_poll:
4071         blk_stat_free_callback(q->poll_cb);
4072         q->poll_cb = NULL;
4073 err_exit:
4074         q->mq_ops = NULL;
4075         return -ENOMEM;
4076 }
4077 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4078
4079 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4080 void blk_mq_exit_queue(struct request_queue *q)
4081 {
4082         struct blk_mq_tag_set *set = q->tag_set;
4083
4084         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4085         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4086         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4087         blk_mq_del_queue_tag_set(q);
4088 }
4089
4090 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4091 {
4092         int i;
4093
4094         if (blk_mq_is_shared_tags(set->flags)) {
4095                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4096                                                 BLK_MQ_NO_HCTX_IDX,
4097                                                 set->queue_depth);
4098                 if (!set->shared_tags)
4099                         return -ENOMEM;
4100         }
4101
4102         for (i = 0; i < set->nr_hw_queues; i++) {
4103                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4104                         goto out_unwind;
4105                 cond_resched();
4106         }
4107
4108         return 0;
4109
4110 out_unwind:
4111         while (--i >= 0)
4112                 __blk_mq_free_map_and_rqs(set, i);
4113
4114         if (blk_mq_is_shared_tags(set->flags)) {
4115                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4116                                         BLK_MQ_NO_HCTX_IDX);
4117         }
4118
4119         return -ENOMEM;
4120 }
4121
4122 /*
4123  * Allocate the request maps associated with this tag_set. Note that this
4124  * may reduce the depth asked for, if memory is tight. set->queue_depth
4125  * will be updated to reflect the allocated depth.
4126  */
4127 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4128 {
4129         unsigned int depth;
4130         int err;
4131
4132         depth = set->queue_depth;
4133         do {
4134                 err = __blk_mq_alloc_rq_maps(set);
4135                 if (!err)
4136                         break;
4137
4138                 set->queue_depth >>= 1;
4139                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4140                         err = -ENOMEM;
4141                         break;
4142                 }
4143         } while (set->queue_depth);
4144
4145         if (!set->queue_depth || err) {
4146                 pr_err("blk-mq: failed to allocate request map\n");
4147                 return -ENOMEM;
4148         }
4149
4150         if (depth != set->queue_depth)
4151                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4152                                                 depth, set->queue_depth);
4153
4154         return 0;
4155 }
4156
4157 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4158 {
4159         /*
4160          * blk_mq_map_queues() and multiple .map_queues() implementations
4161          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4162          * number of hardware queues.
4163          */
4164         if (set->nr_maps == 1)
4165                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4166
4167         if (set->ops->map_queues && !is_kdump_kernel()) {
4168                 int i;
4169
4170                 /*
4171                  * transport .map_queues is usually done in the following
4172                  * way:
4173                  *
4174                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4175                  *      mask = get_cpu_mask(queue)
4176                  *      for_each_cpu(cpu, mask)
4177                  *              set->map[x].mq_map[cpu] = queue;
4178                  * }
4179                  *
4180                  * When we need to remap, the table has to be cleared for
4181                  * killing stale mapping since one CPU may not be mapped
4182                  * to any hw queue.
4183                  */
4184                 for (i = 0; i < set->nr_maps; i++)
4185                         blk_mq_clear_mq_map(&set->map[i]);
4186
4187                 return set->ops->map_queues(set);
4188         } else {
4189                 BUG_ON(set->nr_maps > 1);
4190                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4191         }
4192 }
4193
4194 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4195                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4196 {
4197         struct blk_mq_tags **new_tags;
4198
4199         if (cur_nr_hw_queues >= new_nr_hw_queues)
4200                 return 0;
4201
4202         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4203                                 GFP_KERNEL, set->numa_node);
4204         if (!new_tags)
4205                 return -ENOMEM;
4206
4207         if (set->tags)
4208                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4209                        sizeof(*set->tags));
4210         kfree(set->tags);
4211         set->tags = new_tags;
4212         set->nr_hw_queues = new_nr_hw_queues;
4213
4214         return 0;
4215 }
4216
4217 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4218                                 int new_nr_hw_queues)
4219 {
4220         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4221 }
4222
4223 /*
4224  * Alloc a tag set to be associated with one or more request queues.
4225  * May fail with EINVAL for various error conditions. May adjust the
4226  * requested depth down, if it's too large. In that case, the set
4227  * value will be stored in set->queue_depth.
4228  */
4229 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4230 {
4231         int i, ret;
4232
4233         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4234
4235         if (!set->nr_hw_queues)
4236                 return -EINVAL;
4237         if (!set->queue_depth)
4238                 return -EINVAL;
4239         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4240                 return -EINVAL;
4241
4242         if (!set->ops->queue_rq)
4243                 return -EINVAL;
4244
4245         if (!set->ops->get_budget ^ !set->ops->put_budget)
4246                 return -EINVAL;
4247
4248         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4249                 pr_info("blk-mq: reduced tag depth to %u\n",
4250                         BLK_MQ_MAX_DEPTH);
4251                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4252         }
4253
4254         if (!set->nr_maps)
4255                 set->nr_maps = 1;
4256         else if (set->nr_maps > HCTX_MAX_TYPES)
4257                 return -EINVAL;
4258
4259         /*
4260          * If a crashdump is active, then we are potentially in a very
4261          * memory constrained environment. Limit us to 1 queue and
4262          * 64 tags to prevent using too much memory.
4263          */
4264         if (is_kdump_kernel()) {
4265                 set->nr_hw_queues = 1;
4266                 set->nr_maps = 1;
4267                 set->queue_depth = min(64U, set->queue_depth);
4268         }
4269         /*
4270          * There is no use for more h/w queues than cpus if we just have
4271          * a single map
4272          */
4273         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4274                 set->nr_hw_queues = nr_cpu_ids;
4275
4276         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4277                 return -ENOMEM;
4278
4279         ret = -ENOMEM;
4280         for (i = 0; i < set->nr_maps; i++) {
4281                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4282                                                   sizeof(set->map[i].mq_map[0]),
4283                                                   GFP_KERNEL, set->numa_node);
4284                 if (!set->map[i].mq_map)
4285                         goto out_free_mq_map;
4286                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4287         }
4288
4289         ret = blk_mq_update_queue_map(set);
4290         if (ret)
4291                 goto out_free_mq_map;
4292
4293         ret = blk_mq_alloc_set_map_and_rqs(set);
4294         if (ret)
4295                 goto out_free_mq_map;
4296
4297         mutex_init(&set->tag_list_lock);
4298         INIT_LIST_HEAD(&set->tag_list);
4299
4300         return 0;
4301
4302 out_free_mq_map:
4303         for (i = 0; i < set->nr_maps; i++) {
4304                 kfree(set->map[i].mq_map);
4305                 set->map[i].mq_map = NULL;
4306         }
4307         kfree(set->tags);
4308         set->tags = NULL;
4309         return ret;
4310 }
4311 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4312
4313 /* allocate and initialize a tagset for a simple single-queue device */
4314 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4315                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4316                 unsigned int set_flags)
4317 {
4318         memset(set, 0, sizeof(*set));
4319         set->ops = ops;
4320         set->nr_hw_queues = 1;
4321         set->nr_maps = 1;
4322         set->queue_depth = queue_depth;
4323         set->numa_node = NUMA_NO_NODE;
4324         set->flags = set_flags;
4325         return blk_mq_alloc_tag_set(set);
4326 }
4327 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4328
4329 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4330 {
4331         int i, j;
4332
4333         for (i = 0; i < set->nr_hw_queues; i++)
4334                 __blk_mq_free_map_and_rqs(set, i);
4335
4336         if (blk_mq_is_shared_tags(set->flags)) {
4337                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4338                                         BLK_MQ_NO_HCTX_IDX);
4339         }
4340
4341         for (j = 0; j < set->nr_maps; j++) {
4342                 kfree(set->map[j].mq_map);
4343                 set->map[j].mq_map = NULL;
4344         }
4345
4346         kfree(set->tags);
4347         set->tags = NULL;
4348 }
4349 EXPORT_SYMBOL(blk_mq_free_tag_set);
4350
4351 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4352 {
4353         struct blk_mq_tag_set *set = q->tag_set;
4354         struct blk_mq_hw_ctx *hctx;
4355         int ret;
4356         unsigned long i;
4357
4358         if (!set)
4359                 return -EINVAL;
4360
4361         if (q->nr_requests == nr)
4362                 return 0;
4363
4364         blk_mq_freeze_queue(q);
4365         blk_mq_quiesce_queue(q);
4366
4367         ret = 0;
4368         queue_for_each_hw_ctx(q, hctx, i) {
4369                 if (!hctx->tags)
4370                         continue;
4371                 /*
4372                  * If we're using an MQ scheduler, just update the scheduler
4373                  * queue depth. This is similar to what the old code would do.
4374                  */
4375                 if (hctx->sched_tags) {
4376                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4377                                                       nr, true);
4378                 } else {
4379                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4380                                                       false);
4381                 }
4382                 if (ret)
4383                         break;
4384                 if (q->elevator && q->elevator->type->ops.depth_updated)
4385                         q->elevator->type->ops.depth_updated(hctx);
4386         }
4387         if (!ret) {
4388                 q->nr_requests = nr;
4389                 if (blk_mq_is_shared_tags(set->flags)) {
4390                         if (q->elevator)
4391                                 blk_mq_tag_update_sched_shared_tags(q);
4392                         else
4393                                 blk_mq_tag_resize_shared_tags(set, nr);
4394                 }
4395         }
4396
4397         blk_mq_unquiesce_queue(q);
4398         blk_mq_unfreeze_queue(q);
4399
4400         return ret;
4401 }
4402
4403 /*
4404  * request_queue and elevator_type pair.
4405  * It is just used by __blk_mq_update_nr_hw_queues to cache
4406  * the elevator_type associated with a request_queue.
4407  */
4408 struct blk_mq_qe_pair {
4409         struct list_head node;
4410         struct request_queue *q;
4411         struct elevator_type *type;
4412 };
4413
4414 /*
4415  * Cache the elevator_type in qe pair list and switch the
4416  * io scheduler to 'none'
4417  */
4418 static bool blk_mq_elv_switch_none(struct list_head *head,
4419                 struct request_queue *q)
4420 {
4421         struct blk_mq_qe_pair *qe;
4422
4423         if (!q->elevator)
4424                 return true;
4425
4426         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4427         if (!qe)
4428                 return false;
4429
4430         /* q->elevator needs protection from ->sysfs_lock */
4431         mutex_lock(&q->sysfs_lock);
4432
4433         INIT_LIST_HEAD(&qe->node);
4434         qe->q = q;
4435         qe->type = q->elevator->type;
4436         list_add(&qe->node, head);
4437
4438         /*
4439          * After elevator_switch_mq, the previous elevator_queue will be
4440          * released by elevator_release. The reference of the io scheduler
4441          * module get by elevator_get will also be put. So we need to get
4442          * a reference of the io scheduler module here to prevent it to be
4443          * removed.
4444          */
4445         __module_get(qe->type->elevator_owner);
4446         elevator_switch_mq(q, NULL);
4447         mutex_unlock(&q->sysfs_lock);
4448
4449         return true;
4450 }
4451
4452 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4453                                                 struct request_queue *q)
4454 {
4455         struct blk_mq_qe_pair *qe;
4456
4457         list_for_each_entry(qe, head, node)
4458                 if (qe->q == q)
4459                         return qe;
4460
4461         return NULL;
4462 }
4463
4464 static void blk_mq_elv_switch_back(struct list_head *head,
4465                                   struct request_queue *q)
4466 {
4467         struct blk_mq_qe_pair *qe;
4468         struct elevator_type *t;
4469
4470         qe = blk_lookup_qe_pair(head, q);
4471         if (!qe)
4472                 return;
4473         t = qe->type;
4474         list_del(&qe->node);
4475         kfree(qe);
4476
4477         mutex_lock(&q->sysfs_lock);
4478         elevator_switch_mq(q, t);
4479         mutex_unlock(&q->sysfs_lock);
4480 }
4481
4482 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4483                                                         int nr_hw_queues)
4484 {
4485         struct request_queue *q;
4486         LIST_HEAD(head);
4487         int prev_nr_hw_queues;
4488
4489         lockdep_assert_held(&set->tag_list_lock);
4490
4491         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4492                 nr_hw_queues = nr_cpu_ids;
4493         if (nr_hw_queues < 1)
4494                 return;
4495         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4496                 return;
4497
4498         list_for_each_entry(q, &set->tag_list, tag_set_list)
4499                 blk_mq_freeze_queue(q);
4500         /*
4501          * Switch IO scheduler to 'none', cleaning up the data associated
4502          * with the previous scheduler. We will switch back once we are done
4503          * updating the new sw to hw queue mappings.
4504          */
4505         list_for_each_entry(q, &set->tag_list, tag_set_list)
4506                 if (!blk_mq_elv_switch_none(&head, q))
4507                         goto switch_back;
4508
4509         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4510                 blk_mq_debugfs_unregister_hctxs(q);
4511                 blk_mq_sysfs_unregister(q);
4512         }
4513
4514         prev_nr_hw_queues = set->nr_hw_queues;
4515         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4516             0)
4517                 goto reregister;
4518
4519         set->nr_hw_queues = nr_hw_queues;
4520 fallback:
4521         blk_mq_update_queue_map(set);
4522         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4523                 blk_mq_realloc_hw_ctxs(set, q);
4524                 blk_mq_update_poll_flag(q);
4525                 if (q->nr_hw_queues != set->nr_hw_queues) {
4526                         int i = prev_nr_hw_queues;
4527
4528                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4529                                         nr_hw_queues, prev_nr_hw_queues);
4530                         for (; i < set->nr_hw_queues; i++)
4531                                 __blk_mq_free_map_and_rqs(set, i);
4532
4533                         set->nr_hw_queues = prev_nr_hw_queues;
4534                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4535                         goto fallback;
4536                 }
4537                 blk_mq_map_swqueue(q);
4538         }
4539
4540 reregister:
4541         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4542                 blk_mq_sysfs_register(q);
4543                 blk_mq_debugfs_register_hctxs(q);
4544         }
4545
4546 switch_back:
4547         list_for_each_entry(q, &set->tag_list, tag_set_list)
4548                 blk_mq_elv_switch_back(&head, q);
4549
4550         list_for_each_entry(q, &set->tag_list, tag_set_list)
4551                 blk_mq_unfreeze_queue(q);
4552 }
4553
4554 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4555 {
4556         mutex_lock(&set->tag_list_lock);
4557         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4558         mutex_unlock(&set->tag_list_lock);
4559 }
4560 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4561
4562 /* Enable polling stats and return whether they were already enabled. */
4563 static bool blk_poll_stats_enable(struct request_queue *q)
4564 {
4565         if (q->poll_stat)
4566                 return true;
4567
4568         return blk_stats_alloc_enable(q);
4569 }
4570
4571 static void blk_mq_poll_stats_start(struct request_queue *q)
4572 {
4573         /*
4574          * We don't arm the callback if polling stats are not enabled or the
4575          * callback is already active.
4576          */
4577         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4578                 return;
4579
4580         blk_stat_activate_msecs(q->poll_cb, 100);
4581 }
4582
4583 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4584 {
4585         struct request_queue *q = cb->data;
4586         int bucket;
4587
4588         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4589                 if (cb->stat[bucket].nr_samples)
4590                         q->poll_stat[bucket] = cb->stat[bucket];
4591         }
4592 }
4593
4594 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4595                                        struct request *rq)
4596 {
4597         unsigned long ret = 0;
4598         int bucket;
4599
4600         /*
4601          * If stats collection isn't on, don't sleep but turn it on for
4602          * future users
4603          */
4604         if (!blk_poll_stats_enable(q))
4605                 return 0;
4606
4607         /*
4608          * As an optimistic guess, use half of the mean service time
4609          * for this type of request. We can (and should) make this smarter.
4610          * For instance, if the completion latencies are tight, we can
4611          * get closer than just half the mean. This is especially
4612          * important on devices where the completion latencies are longer
4613          * than ~10 usec. We do use the stats for the relevant IO size
4614          * if available which does lead to better estimates.
4615          */
4616         bucket = blk_mq_poll_stats_bkt(rq);
4617         if (bucket < 0)
4618                 return ret;
4619
4620         if (q->poll_stat[bucket].nr_samples)
4621                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4622
4623         return ret;
4624 }
4625
4626 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4627 {
4628         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4629         struct request *rq = blk_qc_to_rq(hctx, qc);
4630         struct hrtimer_sleeper hs;
4631         enum hrtimer_mode mode;
4632         unsigned int nsecs;
4633         ktime_t kt;
4634
4635         /*
4636          * If a request has completed on queue that uses an I/O scheduler, we
4637          * won't get back a request from blk_qc_to_rq.
4638          */
4639         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4640                 return false;
4641
4642         /*
4643          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4644          *
4645          *  0:  use half of prev avg
4646          * >0:  use this specific value
4647          */
4648         if (q->poll_nsec > 0)
4649                 nsecs = q->poll_nsec;
4650         else
4651                 nsecs = blk_mq_poll_nsecs(q, rq);
4652
4653         if (!nsecs)
4654                 return false;
4655
4656         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4657
4658         /*
4659          * This will be replaced with the stats tracking code, using
4660          * 'avg_completion_time / 2' as the pre-sleep target.
4661          */
4662         kt = nsecs;
4663
4664         mode = HRTIMER_MODE_REL;
4665         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4666         hrtimer_set_expires(&hs.timer, kt);
4667
4668         do {
4669                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4670                         break;
4671                 set_current_state(TASK_UNINTERRUPTIBLE);
4672                 hrtimer_sleeper_start_expires(&hs, mode);
4673                 if (hs.task)
4674                         io_schedule();
4675                 hrtimer_cancel(&hs.timer);
4676                 mode = HRTIMER_MODE_ABS;
4677         } while (hs.task && !signal_pending(current));
4678
4679         __set_current_state(TASK_RUNNING);
4680         destroy_hrtimer_on_stack(&hs.timer);
4681
4682         /*
4683          * If we sleep, have the caller restart the poll loop to reset the
4684          * state.  Like for the other success return cases, the caller is
4685          * responsible for checking if the IO completed.  If the IO isn't
4686          * complete, we'll get called again and will go straight to the busy
4687          * poll loop.
4688          */
4689         return true;
4690 }
4691
4692 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4693                                struct io_comp_batch *iob, unsigned int flags)
4694 {
4695         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4696         long state = get_current_state();
4697         int ret;
4698
4699         do {
4700                 ret = q->mq_ops->poll(hctx, iob);
4701                 if (ret > 0) {
4702                         __set_current_state(TASK_RUNNING);
4703                         return ret;
4704                 }
4705
4706                 if (signal_pending_state(state, current))
4707                         __set_current_state(TASK_RUNNING);
4708                 if (task_is_running(current))
4709                         return 1;
4710
4711                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4712                         break;
4713                 cpu_relax();
4714         } while (!need_resched());
4715
4716         __set_current_state(TASK_RUNNING);
4717         return 0;
4718 }
4719
4720 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4721                 unsigned int flags)
4722 {
4723         if (!(flags & BLK_POLL_NOSLEEP) &&
4724             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4725                 if (blk_mq_poll_hybrid(q, cookie))
4726                         return 1;
4727         }
4728         return blk_mq_poll_classic(q, cookie, iob, flags);
4729 }
4730
4731 unsigned int blk_mq_rq_cpu(struct request *rq)
4732 {
4733         return rq->mq_ctx->cpu;
4734 }
4735 EXPORT_SYMBOL(blk_mq_rq_cpu);
4736
4737 void blk_mq_cancel_work_sync(struct request_queue *q)
4738 {
4739         if (queue_is_mq(q)) {
4740                 struct blk_mq_hw_ctx *hctx;
4741                 unsigned long i;
4742
4743                 cancel_delayed_work_sync(&q->requeue_work);
4744
4745                 queue_for_each_hw_ctx(q, hctx, i)
4746                         cancel_delayed_work_sync(&hctx->run_work);
4747         }
4748 }
4749
4750 static int __init blk_mq_init(void)
4751 {
4752         int i;
4753
4754         for_each_possible_cpu(i)
4755                 init_llist_head(&per_cpu(blk_cpu_done, i));
4756         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4757
4758         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4759                                   "block/softirq:dead", NULL,
4760                                   blk_softirq_cpu_dead);
4761         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4762                                 blk_mq_hctx_notify_dead);
4763         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4764                                 blk_mq_hctx_notify_online,
4765                                 blk_mq_hctx_notify_offline);
4766         return 0;
4767 }
4768 subsys_initcall(blk_mq_init);