Merge tag 'pci-v6.8-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  */
776                 if (bio->bi_iter.bi_size != nbytes)
777                         bio->bi_status = BLK_STS_IOERR;
778                 else
779                         bio->bi_iter.bi_sector = rq->__sector;
780         }
781
782         bio_advance(bio, nbytes);
783
784         if (unlikely(rq->rq_flags & RQF_QUIET))
785                 bio_set_flag(bio, BIO_QUIET);
786         /* don't actually finish bio if it's part of flush sequence */
787         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788                 bio_endio(bio);
789 }
790
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793         if (req->part && blk_do_io_stat(req)) {
794                 const int sgrp = op_stat_group(req_op(req));
795
796                 part_stat_lock();
797                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798                 part_stat_unlock();
799         }
800 }
801
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804         printk_ratelimited(KERN_ERR
805                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806                 "phys_seg %u prio class %u\n",
807                 blk_status_to_str(status),
808                 req->q->disk ? req->q->disk->disk_name : "?",
809                 blk_rq_pos(req), (__force u32)req_op(req),
810                 blk_op_str(req_op(req)),
811                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812                 req->nr_phys_segments,
813                 IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823         int total_bytes = blk_rq_bytes(req);
824         struct bio *bio = req->bio;
825
826         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827
828         if (!bio)
829                 return;
830
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833                 req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835
836         /*
837          * Upper layers may call blk_crypto_evict_key() anytime after the last
838          * bio_endio().  Therefore, the keyslot must be released before that.
839          */
840         blk_crypto_rq_put_keyslot(req);
841
842         blk_account_io_completion(req, total_bytes);
843
844         do {
845                 struct bio *next = bio->bi_next;
846
847                 /* Completion has already been traced */
848                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850                 if (req_op(req) == REQ_OP_ZONE_APPEND)
851                         bio->bi_iter.bi_sector = req->__sector;
852
853                 if (!is_flush)
854                         bio_endio(bio);
855                 bio = next;
856         } while (bio);
857
858         /*
859          * Reset counters so that the request stacking driver
860          * can find how many bytes remain in the request
861          * later.
862          */
863         if (!req->end_io) {
864                 req->bio = NULL;
865                 req->__data_len = 0;
866         }
867 }
868
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892                 unsigned int nr_bytes)
893 {
894         int total_bytes;
895
896         trace_block_rq_complete(req, error, nr_bytes);
897
898         if (!req->bio)
899                 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903             error == BLK_STS_OK)
904                 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907         /*
908          * Upper layers may call blk_crypto_evict_key() anytime after the last
909          * bio_endio().  Therefore, the keyslot must be released before that.
910          */
911         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912                 __blk_crypto_rq_put_keyslot(req);
913
914         if (unlikely(error && !blk_rq_is_passthrough(req) &&
915                      !(req->rq_flags & RQF_QUIET)) &&
916                      !test_bit(GD_DEAD, &req->q->disk->state)) {
917                 blk_print_req_error(req, error);
918                 trace_block_rq_error(req, error, nr_bytes);
919         }
920
921         blk_account_io_completion(req, nr_bytes);
922
923         total_bytes = 0;
924         while (req->bio) {
925                 struct bio *bio = req->bio;
926                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927
928                 if (bio_bytes == bio->bi_iter.bi_size)
929                         req->bio = bio->bi_next;
930
931                 /* Completion has already been traced */
932                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933                 req_bio_endio(req, bio, bio_bytes, error);
934
935                 total_bytes += bio_bytes;
936                 nr_bytes -= bio_bytes;
937
938                 if (!nr_bytes)
939                         break;
940         }
941
942         /*
943          * completely done
944          */
945         if (!req->bio) {
946                 /*
947                  * Reset counters so that the request stacking driver
948                  * can find how many bytes remain in the request
949                  * later.
950                  */
951                 req->__data_len = 0;
952                 return false;
953         }
954
955         req->__data_len -= total_bytes;
956
957         /* update sector only for requests with clear definition of sector */
958         if (!blk_rq_is_passthrough(req))
959                 req->__sector += total_bytes >> 9;
960
961         /* mixed attributes always follow the first bio */
962         if (req->rq_flags & RQF_MIXED_MERGE) {
963                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
964                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965         }
966
967         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968                 /*
969                  * If total number of sectors is less than the first segment
970                  * size, something has gone terribly wrong.
971                  */
972                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973                         blk_dump_rq_flags(req, "request botched");
974                         req->__data_len = blk_rq_cur_bytes(req);
975                 }
976
977                 /* recalculate the number of segments */
978                 req->nr_phys_segments = blk_recalc_rq_segments(req);
979         }
980
981         return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987         trace_block_io_done(req);
988
989         /*
990          * Account IO completion.  flush_rq isn't accounted as a
991          * normal IO on queueing nor completion.  Accounting the
992          * containing request is enough.
993          */
994         if (blk_do_io_stat(req) && req->part &&
995             !(req->rq_flags & RQF_FLUSH_SEQ)) {
996                 const int sgrp = op_stat_group(req_op(req));
997
998                 part_stat_lock();
999                 update_io_ticks(req->part, jiffies, true);
1000                 part_stat_inc(req->part, ios[sgrp]);
1001                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008         trace_block_io_start(req);
1009
1010         if (blk_do_io_stat(req)) {
1011                 /*
1012                  * All non-passthrough requests are created from a bio with one
1013                  * exception: when a flush command that is part of a flush sequence
1014                  * generated by the state machine in blk-flush.c is cloned onto the
1015                  * lower device by dm-multipath we can get here without a bio.
1016                  */
1017                 if (req->bio)
1018                         req->part = req->bio->bi_bdev;
1019                 else
1020                         req->part = req->q->disk->part0;
1021
1022                 part_stat_lock();
1023                 update_io_ticks(req->part, jiffies, false);
1024                 part_stat_unlock();
1025         }
1026 }
1027
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030         if (rq->rq_flags & RQF_STATS)
1031                 blk_stat_add(rq, now);
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         blk_mq_finish_request(rq);
1043
1044         if (rq->end_io) {
1045                 rq_qos_done(rq->q, rq);
1046                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047                         blk_mq_free_request(rq);
1048         } else {
1049                 blk_mq_free_request(rq);
1050         }
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057                 BUG();
1058         __blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061
1062 #define TAG_COMP_BATCH          32
1063
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065                                           int *tag_array, int nr_tags)
1066 {
1067         struct request_queue *q = hctx->queue;
1068
1069         blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1252             !blk_rq_is_passthrough(rq)) {
1253                 rq->io_start_time_ns = ktime_get_ns();
1254                 rq->stats_sectors = blk_rq_sectors(rq);
1255                 rq->rq_flags |= RQF_STATS;
1256                 rq_qos_issue(q, rq);
1257         }
1258
1259         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1260
1261         blk_add_timer(rq);
1262         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1263         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1264
1265 #ifdef CONFIG_BLK_DEV_INTEGRITY
1266         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1267                 q->integrity.profile->prepare_fn(rq);
1268 #endif
1269         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1270                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1271 }
1272 EXPORT_SYMBOL(blk_mq_start_request);
1273
1274 /*
1275  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1276  * queues. This is important for md arrays to benefit from merging
1277  * requests.
1278  */
1279 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1280 {
1281         if (plug->multiple_queues)
1282                 return BLK_MAX_REQUEST_COUNT * 2;
1283         return BLK_MAX_REQUEST_COUNT;
1284 }
1285
1286 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1287 {
1288         struct request *last = rq_list_peek(&plug->mq_list);
1289
1290         if (!plug->rq_count) {
1291                 trace_block_plug(rq->q);
1292         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1293                    (!blk_queue_nomerges(rq->q) &&
1294                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1295                 blk_mq_flush_plug_list(plug, false);
1296                 last = NULL;
1297                 trace_block_plug(rq->q);
1298         }
1299
1300         if (!plug->multiple_queues && last && last->q != rq->q)
1301                 plug->multiple_queues = true;
1302         /*
1303          * Any request allocated from sched tags can't be issued to
1304          * ->queue_rqs() directly
1305          */
1306         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1307                 plug->has_elevator = true;
1308         rq->rq_next = NULL;
1309         rq_list_add(&plug->mq_list, rq);
1310         plug->rq_count++;
1311 }
1312
1313 /**
1314  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1315  * @rq:         request to insert
1316  * @at_head:    insert request at head or tail of queue
1317  *
1318  * Description:
1319  *    Insert a fully prepared request at the back of the I/O scheduler queue
1320  *    for execution.  Don't wait for completion.
1321  *
1322  * Note:
1323  *    This function will invoke @done directly if the queue is dead.
1324  */
1325 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1326 {
1327         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1328
1329         WARN_ON(irqs_disabled());
1330         WARN_ON(!blk_rq_is_passthrough(rq));
1331
1332         blk_account_io_start(rq);
1333
1334         /*
1335          * As plugging can be enabled for passthrough requests on a zoned
1336          * device, directly accessing the plug instead of using blk_mq_plug()
1337          * should not have any consequences.
1338          */
1339         if (current->plug && !at_head) {
1340                 blk_add_rq_to_plug(current->plug, rq);
1341                 return;
1342         }
1343
1344         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1345         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1346 }
1347 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1348
1349 struct blk_rq_wait {
1350         struct completion done;
1351         blk_status_t ret;
1352 };
1353
1354 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1355 {
1356         struct blk_rq_wait *wait = rq->end_io_data;
1357
1358         wait->ret = ret;
1359         complete(&wait->done);
1360         return RQ_END_IO_NONE;
1361 }
1362
1363 bool blk_rq_is_poll(struct request *rq)
1364 {
1365         if (!rq->mq_hctx)
1366                 return false;
1367         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1368                 return false;
1369         return true;
1370 }
1371 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1372
1373 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1374 {
1375         do {
1376                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1377                 cond_resched();
1378         } while (!completion_done(wait));
1379 }
1380
1381 /**
1382  * blk_execute_rq - insert a request into queue for execution
1383  * @rq:         request to insert
1384  * @at_head:    insert request at head or tail of queue
1385  *
1386  * Description:
1387  *    Insert a fully prepared request at the back of the I/O scheduler queue
1388  *    for execution and wait for completion.
1389  * Return: The blk_status_t result provided to blk_mq_end_request().
1390  */
1391 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1392 {
1393         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1394         struct blk_rq_wait wait = {
1395                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1396         };
1397
1398         WARN_ON(irqs_disabled());
1399         WARN_ON(!blk_rq_is_passthrough(rq));
1400
1401         rq->end_io_data = &wait;
1402         rq->end_io = blk_end_sync_rq;
1403
1404         blk_account_io_start(rq);
1405         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1406         blk_mq_run_hw_queue(hctx, false);
1407
1408         if (blk_rq_is_poll(rq)) {
1409                 blk_rq_poll_completion(rq, &wait.done);
1410         } else {
1411                 /*
1412                  * Prevent hang_check timer from firing at us during very long
1413                  * I/O
1414                  */
1415                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1416
1417                 if (hang_check)
1418                         while (!wait_for_completion_io_timeout(&wait.done,
1419                                         hang_check * (HZ/2)))
1420                                 ;
1421                 else
1422                         wait_for_completion_io(&wait.done);
1423         }
1424
1425         return wait.ret;
1426 }
1427 EXPORT_SYMBOL(blk_execute_rq);
1428
1429 static void __blk_mq_requeue_request(struct request *rq)
1430 {
1431         struct request_queue *q = rq->q;
1432
1433         blk_mq_put_driver_tag(rq);
1434
1435         trace_block_rq_requeue(rq);
1436         rq_qos_requeue(q, rq);
1437
1438         if (blk_mq_request_started(rq)) {
1439                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1440                 rq->rq_flags &= ~RQF_TIMED_OUT;
1441         }
1442 }
1443
1444 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1445 {
1446         struct request_queue *q = rq->q;
1447         unsigned long flags;
1448
1449         __blk_mq_requeue_request(rq);
1450
1451         /* this request will be re-inserted to io scheduler queue */
1452         blk_mq_sched_requeue_request(rq);
1453
1454         spin_lock_irqsave(&q->requeue_lock, flags);
1455         list_add_tail(&rq->queuelist, &q->requeue_list);
1456         spin_unlock_irqrestore(&q->requeue_lock, flags);
1457
1458         if (kick_requeue_list)
1459                 blk_mq_kick_requeue_list(q);
1460 }
1461 EXPORT_SYMBOL(blk_mq_requeue_request);
1462
1463 static void blk_mq_requeue_work(struct work_struct *work)
1464 {
1465         struct request_queue *q =
1466                 container_of(work, struct request_queue, requeue_work.work);
1467         LIST_HEAD(rq_list);
1468         LIST_HEAD(flush_list);
1469         struct request *rq;
1470
1471         spin_lock_irq(&q->requeue_lock);
1472         list_splice_init(&q->requeue_list, &rq_list);
1473         list_splice_init(&q->flush_list, &flush_list);
1474         spin_unlock_irq(&q->requeue_lock);
1475
1476         while (!list_empty(&rq_list)) {
1477                 rq = list_entry(rq_list.next, struct request, queuelist);
1478                 /*
1479                  * If RQF_DONTPREP ist set, the request has been started by the
1480                  * driver already and might have driver-specific data allocated
1481                  * already.  Insert it into the hctx dispatch list to avoid
1482                  * block layer merges for the request.
1483                  */
1484                 if (rq->rq_flags & RQF_DONTPREP) {
1485                         list_del_init(&rq->queuelist);
1486                         blk_mq_request_bypass_insert(rq, 0);
1487                 } else {
1488                         list_del_init(&rq->queuelist);
1489                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1490                 }
1491         }
1492
1493         while (!list_empty(&flush_list)) {
1494                 rq = list_entry(flush_list.next, struct request, queuelist);
1495                 list_del_init(&rq->queuelist);
1496                 blk_mq_insert_request(rq, 0);
1497         }
1498
1499         blk_mq_run_hw_queues(q, false);
1500 }
1501
1502 void blk_mq_kick_requeue_list(struct request_queue *q)
1503 {
1504         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1505 }
1506 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1507
1508 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1509                                     unsigned long msecs)
1510 {
1511         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1512                                     msecs_to_jiffies(msecs));
1513 }
1514 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1515
1516 static bool blk_is_flush_data_rq(struct request *rq)
1517 {
1518         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1519 }
1520
1521 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1522 {
1523         /*
1524          * If we find a request that isn't idle we know the queue is busy
1525          * as it's checked in the iter.
1526          * Return false to stop the iteration.
1527          *
1528          * In case of queue quiesce, if one flush data request is completed,
1529          * don't count it as inflight given the flush sequence is suspended,
1530          * and the original flush data request is invisible to driver, just
1531          * like other pending requests because of quiesce
1532          */
1533         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1534                                 blk_is_flush_data_rq(rq) &&
1535                                 blk_mq_request_completed(rq))) {
1536                 bool *busy = priv;
1537
1538                 *busy = true;
1539                 return false;
1540         }
1541
1542         return true;
1543 }
1544
1545 bool blk_mq_queue_inflight(struct request_queue *q)
1546 {
1547         bool busy = false;
1548
1549         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1550         return busy;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1553
1554 static void blk_mq_rq_timed_out(struct request *req)
1555 {
1556         req->rq_flags |= RQF_TIMED_OUT;
1557         if (req->q->mq_ops->timeout) {
1558                 enum blk_eh_timer_return ret;
1559
1560                 ret = req->q->mq_ops->timeout(req);
1561                 if (ret == BLK_EH_DONE)
1562                         return;
1563                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1564         }
1565
1566         blk_add_timer(req);
1567 }
1568
1569 struct blk_expired_data {
1570         bool has_timedout_rq;
1571         unsigned long next;
1572         unsigned long timeout_start;
1573 };
1574
1575 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1576 {
1577         unsigned long deadline;
1578
1579         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1580                 return false;
1581         if (rq->rq_flags & RQF_TIMED_OUT)
1582                 return false;
1583
1584         deadline = READ_ONCE(rq->deadline);
1585         if (time_after_eq(expired->timeout_start, deadline))
1586                 return true;
1587
1588         if (expired->next == 0)
1589                 expired->next = deadline;
1590         else if (time_after(expired->next, deadline))
1591                 expired->next = deadline;
1592         return false;
1593 }
1594
1595 void blk_mq_put_rq_ref(struct request *rq)
1596 {
1597         if (is_flush_rq(rq)) {
1598                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1599                         blk_mq_free_request(rq);
1600         } else if (req_ref_put_and_test(rq)) {
1601                 __blk_mq_free_request(rq);
1602         }
1603 }
1604
1605 static bool blk_mq_check_expired(struct request *rq, void *priv)
1606 {
1607         struct blk_expired_data *expired = priv;
1608
1609         /*
1610          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1611          * be reallocated underneath the timeout handler's processing, then
1612          * the expire check is reliable. If the request is not expired, then
1613          * it was completed and reallocated as a new request after returning
1614          * from blk_mq_check_expired().
1615          */
1616         if (blk_mq_req_expired(rq, expired)) {
1617                 expired->has_timedout_rq = true;
1618                 return false;
1619         }
1620         return true;
1621 }
1622
1623 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1624 {
1625         struct blk_expired_data *expired = priv;
1626
1627         if (blk_mq_req_expired(rq, expired))
1628                 blk_mq_rq_timed_out(rq);
1629         return true;
1630 }
1631
1632 static void blk_mq_timeout_work(struct work_struct *work)
1633 {
1634         struct request_queue *q =
1635                 container_of(work, struct request_queue, timeout_work);
1636         struct blk_expired_data expired = {
1637                 .timeout_start = jiffies,
1638         };
1639         struct blk_mq_hw_ctx *hctx;
1640         unsigned long i;
1641
1642         /* A deadlock might occur if a request is stuck requiring a
1643          * timeout at the same time a queue freeze is waiting
1644          * completion, since the timeout code would not be able to
1645          * acquire the queue reference here.
1646          *
1647          * That's why we don't use blk_queue_enter here; instead, we use
1648          * percpu_ref_tryget directly, because we need to be able to
1649          * obtain a reference even in the short window between the queue
1650          * starting to freeze, by dropping the first reference in
1651          * blk_freeze_queue_start, and the moment the last request is
1652          * consumed, marked by the instant q_usage_counter reaches
1653          * zero.
1654          */
1655         if (!percpu_ref_tryget(&q->q_usage_counter))
1656                 return;
1657
1658         /* check if there is any timed-out request */
1659         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1660         if (expired.has_timedout_rq) {
1661                 /*
1662                  * Before walking tags, we must ensure any submit started
1663                  * before the current time has finished. Since the submit
1664                  * uses srcu or rcu, wait for a synchronization point to
1665                  * ensure all running submits have finished
1666                  */
1667                 blk_mq_wait_quiesce_done(q->tag_set);
1668
1669                 expired.next = 0;
1670                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1671         }
1672
1673         if (expired.next != 0) {
1674                 mod_timer(&q->timeout, expired.next);
1675         } else {
1676                 /*
1677                  * Request timeouts are handled as a forward rolling timer. If
1678                  * we end up here it means that no requests are pending and
1679                  * also that no request has been pending for a while. Mark
1680                  * each hctx as idle.
1681                  */
1682                 queue_for_each_hw_ctx(q, hctx, i) {
1683                         /* the hctx may be unmapped, so check it here */
1684                         if (blk_mq_hw_queue_mapped(hctx))
1685                                 blk_mq_tag_idle(hctx);
1686                 }
1687         }
1688         blk_queue_exit(q);
1689 }
1690
1691 struct flush_busy_ctx_data {
1692         struct blk_mq_hw_ctx *hctx;
1693         struct list_head *list;
1694 };
1695
1696 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1697 {
1698         struct flush_busy_ctx_data *flush_data = data;
1699         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1700         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1701         enum hctx_type type = hctx->type;
1702
1703         spin_lock(&ctx->lock);
1704         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1705         sbitmap_clear_bit(sb, bitnr);
1706         spin_unlock(&ctx->lock);
1707         return true;
1708 }
1709
1710 /*
1711  * Process software queues that have been marked busy, splicing them
1712  * to the for-dispatch
1713  */
1714 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1715 {
1716         struct flush_busy_ctx_data data = {
1717                 .hctx = hctx,
1718                 .list = list,
1719         };
1720
1721         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1722 }
1723 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1724
1725 struct dispatch_rq_data {
1726         struct blk_mq_hw_ctx *hctx;
1727         struct request *rq;
1728 };
1729
1730 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1731                 void *data)
1732 {
1733         struct dispatch_rq_data *dispatch_data = data;
1734         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1735         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1736         enum hctx_type type = hctx->type;
1737
1738         spin_lock(&ctx->lock);
1739         if (!list_empty(&ctx->rq_lists[type])) {
1740                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1741                 list_del_init(&dispatch_data->rq->queuelist);
1742                 if (list_empty(&ctx->rq_lists[type]))
1743                         sbitmap_clear_bit(sb, bitnr);
1744         }
1745         spin_unlock(&ctx->lock);
1746
1747         return !dispatch_data->rq;
1748 }
1749
1750 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1751                                         struct blk_mq_ctx *start)
1752 {
1753         unsigned off = start ? start->index_hw[hctx->type] : 0;
1754         struct dispatch_rq_data data = {
1755                 .hctx = hctx,
1756                 .rq   = NULL,
1757         };
1758
1759         __sbitmap_for_each_set(&hctx->ctx_map, off,
1760                                dispatch_rq_from_ctx, &data);
1761
1762         return data.rq;
1763 }
1764
1765 bool __blk_mq_alloc_driver_tag(struct request *rq)
1766 {
1767         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1768         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1769         int tag;
1770
1771         blk_mq_tag_busy(rq->mq_hctx);
1772
1773         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1774                 bt = &rq->mq_hctx->tags->breserved_tags;
1775                 tag_offset = 0;
1776         } else {
1777                 if (!hctx_may_queue(rq->mq_hctx, bt))
1778                         return false;
1779         }
1780
1781         tag = __sbitmap_queue_get(bt);
1782         if (tag == BLK_MQ_NO_TAG)
1783                 return false;
1784
1785         rq->tag = tag + tag_offset;
1786         blk_mq_inc_active_requests(rq->mq_hctx);
1787         return true;
1788 }
1789
1790 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1791                                 int flags, void *key)
1792 {
1793         struct blk_mq_hw_ctx *hctx;
1794
1795         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1796
1797         spin_lock(&hctx->dispatch_wait_lock);
1798         if (!list_empty(&wait->entry)) {
1799                 struct sbitmap_queue *sbq;
1800
1801                 list_del_init(&wait->entry);
1802                 sbq = &hctx->tags->bitmap_tags;
1803                 atomic_dec(&sbq->ws_active);
1804         }
1805         spin_unlock(&hctx->dispatch_wait_lock);
1806
1807         blk_mq_run_hw_queue(hctx, true);
1808         return 1;
1809 }
1810
1811 /*
1812  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1813  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1814  * restart. For both cases, take care to check the condition again after
1815  * marking us as waiting.
1816  */
1817 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1818                                  struct request *rq)
1819 {
1820         struct sbitmap_queue *sbq;
1821         struct wait_queue_head *wq;
1822         wait_queue_entry_t *wait;
1823         bool ret;
1824
1825         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1826             !(blk_mq_is_shared_tags(hctx->flags))) {
1827                 blk_mq_sched_mark_restart_hctx(hctx);
1828
1829                 /*
1830                  * It's possible that a tag was freed in the window between the
1831                  * allocation failure and adding the hardware queue to the wait
1832                  * queue.
1833                  *
1834                  * Don't clear RESTART here, someone else could have set it.
1835                  * At most this will cost an extra queue run.
1836                  */
1837                 return blk_mq_get_driver_tag(rq);
1838         }
1839
1840         wait = &hctx->dispatch_wait;
1841         if (!list_empty_careful(&wait->entry))
1842                 return false;
1843
1844         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1845                 sbq = &hctx->tags->breserved_tags;
1846         else
1847                 sbq = &hctx->tags->bitmap_tags;
1848         wq = &bt_wait_ptr(sbq, hctx)->wait;
1849
1850         spin_lock_irq(&wq->lock);
1851         spin_lock(&hctx->dispatch_wait_lock);
1852         if (!list_empty(&wait->entry)) {
1853                 spin_unlock(&hctx->dispatch_wait_lock);
1854                 spin_unlock_irq(&wq->lock);
1855                 return false;
1856         }
1857
1858         atomic_inc(&sbq->ws_active);
1859         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1860         __add_wait_queue(wq, wait);
1861
1862         /*
1863          * It's possible that a tag was freed in the window between the
1864          * allocation failure and adding the hardware queue to the wait
1865          * queue.
1866          */
1867         ret = blk_mq_get_driver_tag(rq);
1868         if (!ret) {
1869                 spin_unlock(&hctx->dispatch_wait_lock);
1870                 spin_unlock_irq(&wq->lock);
1871                 return false;
1872         }
1873
1874         /*
1875          * We got a tag, remove ourselves from the wait queue to ensure
1876          * someone else gets the wakeup.
1877          */
1878         list_del_init(&wait->entry);
1879         atomic_dec(&sbq->ws_active);
1880         spin_unlock(&hctx->dispatch_wait_lock);
1881         spin_unlock_irq(&wq->lock);
1882
1883         return true;
1884 }
1885
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1887 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1888 /*
1889  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1890  * - EWMA is one simple way to compute running average value
1891  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1892  * - take 4 as factor for avoiding to get too small(0) result, and this
1893  *   factor doesn't matter because EWMA decreases exponentially
1894  */
1895 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1896 {
1897         unsigned int ewma;
1898
1899         ewma = hctx->dispatch_busy;
1900
1901         if (!ewma && !busy)
1902                 return;
1903
1904         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1905         if (busy)
1906                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1907         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1908
1909         hctx->dispatch_busy = ewma;
1910 }
1911
1912 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1913
1914 static void blk_mq_handle_dev_resource(struct request *rq,
1915                                        struct list_head *list)
1916 {
1917         list_add(&rq->queuelist, list);
1918         __blk_mq_requeue_request(rq);
1919 }
1920
1921 static void blk_mq_handle_zone_resource(struct request *rq,
1922                                         struct list_head *zone_list)
1923 {
1924         /*
1925          * If we end up here it is because we cannot dispatch a request to a
1926          * specific zone due to LLD level zone-write locking or other zone
1927          * related resource not being available. In this case, set the request
1928          * aside in zone_list for retrying it later.
1929          */
1930         list_add(&rq->queuelist, zone_list);
1931         __blk_mq_requeue_request(rq);
1932 }
1933
1934 enum prep_dispatch {
1935         PREP_DISPATCH_OK,
1936         PREP_DISPATCH_NO_TAG,
1937         PREP_DISPATCH_NO_BUDGET,
1938 };
1939
1940 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1941                                                   bool need_budget)
1942 {
1943         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1944         int budget_token = -1;
1945
1946         if (need_budget) {
1947                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1948                 if (budget_token < 0) {
1949                         blk_mq_put_driver_tag(rq);
1950                         return PREP_DISPATCH_NO_BUDGET;
1951                 }
1952                 blk_mq_set_rq_budget_token(rq, budget_token);
1953         }
1954
1955         if (!blk_mq_get_driver_tag(rq)) {
1956                 /*
1957                  * The initial allocation attempt failed, so we need to
1958                  * rerun the hardware queue when a tag is freed. The
1959                  * waitqueue takes care of that. If the queue is run
1960                  * before we add this entry back on the dispatch list,
1961                  * we'll re-run it below.
1962                  */
1963                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1964                         /*
1965                          * All budgets not got from this function will be put
1966                          * together during handling partial dispatch
1967                          */
1968                         if (need_budget)
1969                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1970                         return PREP_DISPATCH_NO_TAG;
1971                 }
1972         }
1973
1974         return PREP_DISPATCH_OK;
1975 }
1976
1977 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1978 static void blk_mq_release_budgets(struct request_queue *q,
1979                 struct list_head *list)
1980 {
1981         struct request *rq;
1982
1983         list_for_each_entry(rq, list, queuelist) {
1984                 int budget_token = blk_mq_get_rq_budget_token(rq);
1985
1986                 if (budget_token >= 0)
1987                         blk_mq_put_dispatch_budget(q, budget_token);
1988         }
1989 }
1990
1991 /*
1992  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1993  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1994  * details)
1995  * Attention, we should explicitly call this in unusual cases:
1996  *  1) did not queue everything initially scheduled to queue
1997  *  2) the last attempt to queue a request failed
1998  */
1999 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2000                               bool from_schedule)
2001 {
2002         if (hctx->queue->mq_ops->commit_rqs && queued) {
2003                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2004                 hctx->queue->mq_ops->commit_rqs(hctx);
2005         }
2006 }
2007
2008 /*
2009  * Returns true if we did some work AND can potentially do more.
2010  */
2011 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2012                              unsigned int nr_budgets)
2013 {
2014         enum prep_dispatch prep;
2015         struct request_queue *q = hctx->queue;
2016         struct request *rq;
2017         int queued;
2018         blk_status_t ret = BLK_STS_OK;
2019         LIST_HEAD(zone_list);
2020         bool needs_resource = false;
2021
2022         if (list_empty(list))
2023                 return false;
2024
2025         /*
2026          * Now process all the entries, sending them to the driver.
2027          */
2028         queued = 0;
2029         do {
2030                 struct blk_mq_queue_data bd;
2031
2032                 rq = list_first_entry(list, struct request, queuelist);
2033
2034                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2035                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2036                 if (prep != PREP_DISPATCH_OK)
2037                         break;
2038
2039                 list_del_init(&rq->queuelist);
2040
2041                 bd.rq = rq;
2042                 bd.last = list_empty(list);
2043
2044                 /*
2045                  * once the request is queued to lld, no need to cover the
2046                  * budget any more
2047                  */
2048                 if (nr_budgets)
2049                         nr_budgets--;
2050                 ret = q->mq_ops->queue_rq(hctx, &bd);
2051                 switch (ret) {
2052                 case BLK_STS_OK:
2053                         queued++;
2054                         break;
2055                 case BLK_STS_RESOURCE:
2056                         needs_resource = true;
2057                         fallthrough;
2058                 case BLK_STS_DEV_RESOURCE:
2059                         blk_mq_handle_dev_resource(rq, list);
2060                         goto out;
2061                 case BLK_STS_ZONE_RESOURCE:
2062                         /*
2063                          * Move the request to zone_list and keep going through
2064                          * the dispatch list to find more requests the drive can
2065                          * accept.
2066                          */
2067                         blk_mq_handle_zone_resource(rq, &zone_list);
2068                         needs_resource = true;
2069                         break;
2070                 default:
2071                         blk_mq_end_request(rq, ret);
2072                 }
2073         } while (!list_empty(list));
2074 out:
2075         if (!list_empty(&zone_list))
2076                 list_splice_tail_init(&zone_list, list);
2077
2078         /* If we didn't flush the entire list, we could have told the driver
2079          * there was more coming, but that turned out to be a lie.
2080          */
2081         if (!list_empty(list) || ret != BLK_STS_OK)
2082                 blk_mq_commit_rqs(hctx, queued, false);
2083
2084         /*
2085          * Any items that need requeuing? Stuff them into hctx->dispatch,
2086          * that is where we will continue on next queue run.
2087          */
2088         if (!list_empty(list)) {
2089                 bool needs_restart;
2090                 /* For non-shared tags, the RESTART check will suffice */
2091                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2092                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2093                         blk_mq_is_shared_tags(hctx->flags));
2094
2095                 if (nr_budgets)
2096                         blk_mq_release_budgets(q, list);
2097
2098                 spin_lock(&hctx->lock);
2099                 list_splice_tail_init(list, &hctx->dispatch);
2100                 spin_unlock(&hctx->lock);
2101
2102                 /*
2103                  * Order adding requests to hctx->dispatch and checking
2104                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2105                  * in blk_mq_sched_restart(). Avoid restart code path to
2106                  * miss the new added requests to hctx->dispatch, meantime
2107                  * SCHED_RESTART is observed here.
2108                  */
2109                 smp_mb();
2110
2111                 /*
2112                  * If SCHED_RESTART was set by the caller of this function and
2113                  * it is no longer set that means that it was cleared by another
2114                  * thread and hence that a queue rerun is needed.
2115                  *
2116                  * If 'no_tag' is set, that means that we failed getting
2117                  * a driver tag with an I/O scheduler attached. If our dispatch
2118                  * waitqueue is no longer active, ensure that we run the queue
2119                  * AFTER adding our entries back to the list.
2120                  *
2121                  * If no I/O scheduler has been configured it is possible that
2122                  * the hardware queue got stopped and restarted before requests
2123                  * were pushed back onto the dispatch list. Rerun the queue to
2124                  * avoid starvation. Notes:
2125                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2126                  *   been stopped before rerunning a queue.
2127                  * - Some but not all block drivers stop a queue before
2128                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2129                  *   and dm-rq.
2130                  *
2131                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2132                  * bit is set, run queue after a delay to avoid IO stalls
2133                  * that could otherwise occur if the queue is idle.  We'll do
2134                  * similar if we couldn't get budget or couldn't lock a zone
2135                  * and SCHED_RESTART is set.
2136                  */
2137                 needs_restart = blk_mq_sched_needs_restart(hctx);
2138                 if (prep == PREP_DISPATCH_NO_BUDGET)
2139                         needs_resource = true;
2140                 if (!needs_restart ||
2141                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2142                         blk_mq_run_hw_queue(hctx, true);
2143                 else if (needs_resource)
2144                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2145
2146                 blk_mq_update_dispatch_busy(hctx, true);
2147                 return false;
2148         }
2149
2150         blk_mq_update_dispatch_busy(hctx, false);
2151         return true;
2152 }
2153
2154 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2157
2158         if (cpu >= nr_cpu_ids)
2159                 cpu = cpumask_first(hctx->cpumask);
2160         return cpu;
2161 }
2162
2163 /*
2164  * It'd be great if the workqueue API had a way to pass
2165  * in a mask and had some smarts for more clever placement.
2166  * For now we just round-robin here, switching for every
2167  * BLK_MQ_CPU_WORK_BATCH queued items.
2168  */
2169 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2170 {
2171         bool tried = false;
2172         int next_cpu = hctx->next_cpu;
2173
2174         if (hctx->queue->nr_hw_queues == 1)
2175                 return WORK_CPU_UNBOUND;
2176
2177         if (--hctx->next_cpu_batch <= 0) {
2178 select_cpu:
2179                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2180                                 cpu_online_mask);
2181                 if (next_cpu >= nr_cpu_ids)
2182                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2183                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2184         }
2185
2186         /*
2187          * Do unbound schedule if we can't find a online CPU for this hctx,
2188          * and it should only happen in the path of handling CPU DEAD.
2189          */
2190         if (!cpu_online(next_cpu)) {
2191                 if (!tried) {
2192                         tried = true;
2193                         goto select_cpu;
2194                 }
2195
2196                 /*
2197                  * Make sure to re-select CPU next time once after CPUs
2198                  * in hctx->cpumask become online again.
2199                  */
2200                 hctx->next_cpu = next_cpu;
2201                 hctx->next_cpu_batch = 1;
2202                 return WORK_CPU_UNBOUND;
2203         }
2204
2205         hctx->next_cpu = next_cpu;
2206         return next_cpu;
2207 }
2208
2209 /**
2210  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2211  * @hctx: Pointer to the hardware queue to run.
2212  * @msecs: Milliseconds of delay to wait before running the queue.
2213  *
2214  * Run a hardware queue asynchronously with a delay of @msecs.
2215  */
2216 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2217 {
2218         if (unlikely(blk_mq_hctx_stopped(hctx)))
2219                 return;
2220         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2221                                     msecs_to_jiffies(msecs));
2222 }
2223 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2224
2225 /**
2226  * blk_mq_run_hw_queue - Start to run a hardware queue.
2227  * @hctx: Pointer to the hardware queue to run.
2228  * @async: If we want to run the queue asynchronously.
2229  *
2230  * Check if the request queue is not in a quiesced state and if there are
2231  * pending requests to be sent. If this is true, run the queue to send requests
2232  * to hardware.
2233  */
2234 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2235 {
2236         bool need_run;
2237
2238         /*
2239          * We can't run the queue inline with interrupts disabled.
2240          */
2241         WARN_ON_ONCE(!async && in_interrupt());
2242
2243         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2244
2245         /*
2246          * When queue is quiesced, we may be switching io scheduler, or
2247          * updating nr_hw_queues, or other things, and we can't run queue
2248          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2249          *
2250          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2251          * quiesced.
2252          */
2253         __blk_mq_run_dispatch_ops(hctx->queue, false,
2254                 need_run = !blk_queue_quiesced(hctx->queue) &&
2255                 blk_mq_hctx_has_pending(hctx));
2256
2257         if (!need_run)
2258                 return;
2259
2260         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2261                 blk_mq_delay_run_hw_queue(hctx, 0);
2262                 return;
2263         }
2264
2265         blk_mq_run_dispatch_ops(hctx->queue,
2266                                 blk_mq_sched_dispatch_requests(hctx));
2267 }
2268 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2269
2270 /*
2271  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2272  * scheduler.
2273  */
2274 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2275 {
2276         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2277         /*
2278          * If the IO scheduler does not respect hardware queues when
2279          * dispatching, we just don't bother with multiple HW queues and
2280          * dispatch from hctx for the current CPU since running multiple queues
2281          * just causes lock contention inside the scheduler and pointless cache
2282          * bouncing.
2283          */
2284         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2285
2286         if (!blk_mq_hctx_stopped(hctx))
2287                 return hctx;
2288         return NULL;
2289 }
2290
2291 /**
2292  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2293  * @q: Pointer to the request queue to run.
2294  * @async: If we want to run the queue asynchronously.
2295  */
2296 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2297 {
2298         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2299         unsigned long i;
2300
2301         sq_hctx = NULL;
2302         if (blk_queue_sq_sched(q))
2303                 sq_hctx = blk_mq_get_sq_hctx(q);
2304         queue_for_each_hw_ctx(q, hctx, i) {
2305                 if (blk_mq_hctx_stopped(hctx))
2306                         continue;
2307                 /*
2308                  * Dispatch from this hctx either if there's no hctx preferred
2309                  * by IO scheduler or if it has requests that bypass the
2310                  * scheduler.
2311                  */
2312                 if (!sq_hctx || sq_hctx == hctx ||
2313                     !list_empty_careful(&hctx->dispatch))
2314                         blk_mq_run_hw_queue(hctx, async);
2315         }
2316 }
2317 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2318
2319 /**
2320  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2321  * @q: Pointer to the request queue to run.
2322  * @msecs: Milliseconds of delay to wait before running the queues.
2323  */
2324 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2325 {
2326         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2327         unsigned long i;
2328
2329         sq_hctx = NULL;
2330         if (blk_queue_sq_sched(q))
2331                 sq_hctx = blk_mq_get_sq_hctx(q);
2332         queue_for_each_hw_ctx(q, hctx, i) {
2333                 if (blk_mq_hctx_stopped(hctx))
2334                         continue;
2335                 /*
2336                  * If there is already a run_work pending, leave the
2337                  * pending delay untouched. Otherwise, a hctx can stall
2338                  * if another hctx is re-delaying the other's work
2339                  * before the work executes.
2340                  */
2341                 if (delayed_work_pending(&hctx->run_work))
2342                         continue;
2343                 /*
2344                  * Dispatch from this hctx either if there's no hctx preferred
2345                  * by IO scheduler or if it has requests that bypass the
2346                  * scheduler.
2347                  */
2348                 if (!sq_hctx || sq_hctx == hctx ||
2349                     !list_empty_careful(&hctx->dispatch))
2350                         blk_mq_delay_run_hw_queue(hctx, msecs);
2351         }
2352 }
2353 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2354
2355 /*
2356  * This function is often used for pausing .queue_rq() by driver when
2357  * there isn't enough resource or some conditions aren't satisfied, and
2358  * BLK_STS_RESOURCE is usually returned.
2359  *
2360  * We do not guarantee that dispatch can be drained or blocked
2361  * after blk_mq_stop_hw_queue() returns. Please use
2362  * blk_mq_quiesce_queue() for that requirement.
2363  */
2364 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2365 {
2366         cancel_delayed_work(&hctx->run_work);
2367
2368         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2369 }
2370 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2371
2372 /*
2373  * This function is often used for pausing .queue_rq() by driver when
2374  * there isn't enough resource or some conditions aren't satisfied, and
2375  * BLK_STS_RESOURCE is usually returned.
2376  *
2377  * We do not guarantee that dispatch can be drained or blocked
2378  * after blk_mq_stop_hw_queues() returns. Please use
2379  * blk_mq_quiesce_queue() for that requirement.
2380  */
2381 void blk_mq_stop_hw_queues(struct request_queue *q)
2382 {
2383         struct blk_mq_hw_ctx *hctx;
2384         unsigned long i;
2385
2386         queue_for_each_hw_ctx(q, hctx, i)
2387                 blk_mq_stop_hw_queue(hctx);
2388 }
2389 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2390
2391 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2392 {
2393         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2394
2395         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2396 }
2397 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2398
2399 void blk_mq_start_hw_queues(struct request_queue *q)
2400 {
2401         struct blk_mq_hw_ctx *hctx;
2402         unsigned long i;
2403
2404         queue_for_each_hw_ctx(q, hctx, i)
2405                 blk_mq_start_hw_queue(hctx);
2406 }
2407 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2408
2409 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2410 {
2411         if (!blk_mq_hctx_stopped(hctx))
2412                 return;
2413
2414         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415         blk_mq_run_hw_queue(hctx, async);
2416 }
2417 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2418
2419 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2420 {
2421         struct blk_mq_hw_ctx *hctx;
2422         unsigned long i;
2423
2424         queue_for_each_hw_ctx(q, hctx, i)
2425                 blk_mq_start_stopped_hw_queue(hctx, async ||
2426                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2429
2430 static void blk_mq_run_work_fn(struct work_struct *work)
2431 {
2432         struct blk_mq_hw_ctx *hctx =
2433                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2434
2435         blk_mq_run_dispatch_ops(hctx->queue,
2436                                 blk_mq_sched_dispatch_requests(hctx));
2437 }
2438
2439 /**
2440  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2441  * @rq: Pointer to request to be inserted.
2442  * @flags: BLK_MQ_INSERT_*
2443  *
2444  * Should only be used carefully, when the caller knows we want to
2445  * bypass a potential IO scheduler on the target device.
2446  */
2447 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2448 {
2449         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2450
2451         spin_lock(&hctx->lock);
2452         if (flags & BLK_MQ_INSERT_AT_HEAD)
2453                 list_add(&rq->queuelist, &hctx->dispatch);
2454         else
2455                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2456         spin_unlock(&hctx->lock);
2457 }
2458
2459 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2460                 struct blk_mq_ctx *ctx, struct list_head *list,
2461                 bool run_queue_async)
2462 {
2463         struct request *rq;
2464         enum hctx_type type = hctx->type;
2465
2466         /*
2467          * Try to issue requests directly if the hw queue isn't busy to save an
2468          * extra enqueue & dequeue to the sw queue.
2469          */
2470         if (!hctx->dispatch_busy && !run_queue_async) {
2471                 blk_mq_run_dispatch_ops(hctx->queue,
2472                         blk_mq_try_issue_list_directly(hctx, list));
2473                 if (list_empty(list))
2474                         goto out;
2475         }
2476
2477         /*
2478          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2479          * offline now
2480          */
2481         list_for_each_entry(rq, list, queuelist) {
2482                 BUG_ON(rq->mq_ctx != ctx);
2483                 trace_block_rq_insert(rq);
2484                 if (rq->cmd_flags & REQ_NOWAIT)
2485                         run_queue_async = true;
2486         }
2487
2488         spin_lock(&ctx->lock);
2489         list_splice_tail_init(list, &ctx->rq_lists[type]);
2490         blk_mq_hctx_mark_pending(hctx, ctx);
2491         spin_unlock(&ctx->lock);
2492 out:
2493         blk_mq_run_hw_queue(hctx, run_queue_async);
2494 }
2495
2496 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2497 {
2498         struct request_queue *q = rq->q;
2499         struct blk_mq_ctx *ctx = rq->mq_ctx;
2500         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2501
2502         if (blk_rq_is_passthrough(rq)) {
2503                 /*
2504                  * Passthrough request have to be added to hctx->dispatch
2505                  * directly.  The device may be in a situation where it can't
2506                  * handle FS request, and always returns BLK_STS_RESOURCE for
2507                  * them, which gets them added to hctx->dispatch.
2508                  *
2509                  * If a passthrough request is required to unblock the queues,
2510                  * and it is added to the scheduler queue, there is no chance to
2511                  * dispatch it given we prioritize requests in hctx->dispatch.
2512                  */
2513                 blk_mq_request_bypass_insert(rq, flags);
2514         } else if (req_op(rq) == REQ_OP_FLUSH) {
2515                 /*
2516                  * Firstly normal IO request is inserted to scheduler queue or
2517                  * sw queue, meantime we add flush request to dispatch queue(
2518                  * hctx->dispatch) directly and there is at most one in-flight
2519                  * flush request for each hw queue, so it doesn't matter to add
2520                  * flush request to tail or front of the dispatch queue.
2521                  *
2522                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2523                  * command, and queueing it will fail when there is any
2524                  * in-flight normal IO request(NCQ command). When adding flush
2525                  * rq to the front of hctx->dispatch, it is easier to introduce
2526                  * extra time to flush rq's latency because of S_SCHED_RESTART
2527                  * compared with adding to the tail of dispatch queue, then
2528                  * chance of flush merge is increased, and less flush requests
2529                  * will be issued to controller. It is observed that ~10% time
2530                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2531                  * drive when adding flush rq to the front of hctx->dispatch.
2532                  *
2533                  * Simply queue flush rq to the front of hctx->dispatch so that
2534                  * intensive flush workloads can benefit in case of NCQ HW.
2535                  */
2536                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2537         } else if (q->elevator) {
2538                 LIST_HEAD(list);
2539
2540                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2541
2542                 list_add(&rq->queuelist, &list);
2543                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2544         } else {
2545                 trace_block_rq_insert(rq);
2546
2547                 spin_lock(&ctx->lock);
2548                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2549                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2550                 else
2551                         list_add_tail(&rq->queuelist,
2552                                       &ctx->rq_lists[hctx->type]);
2553                 blk_mq_hctx_mark_pending(hctx, ctx);
2554                 spin_unlock(&ctx->lock);
2555         }
2556 }
2557
2558 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2559                 unsigned int nr_segs)
2560 {
2561         int err;
2562
2563         if (bio->bi_opf & REQ_RAHEAD)
2564                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2565
2566         rq->__sector = bio->bi_iter.bi_sector;
2567         blk_rq_bio_prep(rq, bio, nr_segs);
2568
2569         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2570         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2571         WARN_ON_ONCE(err);
2572
2573         blk_account_io_start(rq);
2574 }
2575
2576 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2577                                             struct request *rq, bool last)
2578 {
2579         struct request_queue *q = rq->q;
2580         struct blk_mq_queue_data bd = {
2581                 .rq = rq,
2582                 .last = last,
2583         };
2584         blk_status_t ret;
2585
2586         /*
2587          * For OK queue, we are done. For error, caller may kill it.
2588          * Any other error (busy), just add it to our list as we
2589          * previously would have done.
2590          */
2591         ret = q->mq_ops->queue_rq(hctx, &bd);
2592         switch (ret) {
2593         case BLK_STS_OK:
2594                 blk_mq_update_dispatch_busy(hctx, false);
2595                 break;
2596         case BLK_STS_RESOURCE:
2597         case BLK_STS_DEV_RESOURCE:
2598                 blk_mq_update_dispatch_busy(hctx, true);
2599                 __blk_mq_requeue_request(rq);
2600                 break;
2601         default:
2602                 blk_mq_update_dispatch_busy(hctx, false);
2603                 break;
2604         }
2605
2606         return ret;
2607 }
2608
2609 static bool blk_mq_get_budget_and_tag(struct request *rq)
2610 {
2611         int budget_token;
2612
2613         budget_token = blk_mq_get_dispatch_budget(rq->q);
2614         if (budget_token < 0)
2615                 return false;
2616         blk_mq_set_rq_budget_token(rq, budget_token);
2617         if (!blk_mq_get_driver_tag(rq)) {
2618                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2619                 return false;
2620         }
2621         return true;
2622 }
2623
2624 /**
2625  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2626  * @hctx: Pointer of the associated hardware queue.
2627  * @rq: Pointer to request to be sent.
2628  *
2629  * If the device has enough resources to accept a new request now, send the
2630  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2631  * we can try send it another time in the future. Requests inserted at this
2632  * queue have higher priority.
2633  */
2634 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2635                 struct request *rq)
2636 {
2637         blk_status_t ret;
2638
2639         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2640                 blk_mq_insert_request(rq, 0);
2641                 return;
2642         }
2643
2644         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2645                 blk_mq_insert_request(rq, 0);
2646                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2647                 return;
2648         }
2649
2650         ret = __blk_mq_issue_directly(hctx, rq, true);
2651         switch (ret) {
2652         case BLK_STS_OK:
2653                 break;
2654         case BLK_STS_RESOURCE:
2655         case BLK_STS_DEV_RESOURCE:
2656                 blk_mq_request_bypass_insert(rq, 0);
2657                 blk_mq_run_hw_queue(hctx, false);
2658                 break;
2659         default:
2660                 blk_mq_end_request(rq, ret);
2661                 break;
2662         }
2663 }
2664
2665 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2666 {
2667         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2668
2669         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2670                 blk_mq_insert_request(rq, 0);
2671                 return BLK_STS_OK;
2672         }
2673
2674         if (!blk_mq_get_budget_and_tag(rq))
2675                 return BLK_STS_RESOURCE;
2676         return __blk_mq_issue_directly(hctx, rq, last);
2677 }
2678
2679 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2680 {
2681         struct blk_mq_hw_ctx *hctx = NULL;
2682         struct request *rq;
2683         int queued = 0;
2684         blk_status_t ret = BLK_STS_OK;
2685
2686         while ((rq = rq_list_pop(&plug->mq_list))) {
2687                 bool last = rq_list_empty(plug->mq_list);
2688
2689                 if (hctx != rq->mq_hctx) {
2690                         if (hctx) {
2691                                 blk_mq_commit_rqs(hctx, queued, false);
2692                                 queued = 0;
2693                         }
2694                         hctx = rq->mq_hctx;
2695                 }
2696
2697                 ret = blk_mq_request_issue_directly(rq, last);
2698                 switch (ret) {
2699                 case BLK_STS_OK:
2700                         queued++;
2701                         break;
2702                 case BLK_STS_RESOURCE:
2703                 case BLK_STS_DEV_RESOURCE:
2704                         blk_mq_request_bypass_insert(rq, 0);
2705                         blk_mq_run_hw_queue(hctx, false);
2706                         goto out;
2707                 default:
2708                         blk_mq_end_request(rq, ret);
2709                         break;
2710                 }
2711         }
2712
2713 out:
2714         if (ret != BLK_STS_OK)
2715                 blk_mq_commit_rqs(hctx, queued, false);
2716 }
2717
2718 static void __blk_mq_flush_plug_list(struct request_queue *q,
2719                                      struct blk_plug *plug)
2720 {
2721         if (blk_queue_quiesced(q))
2722                 return;
2723         q->mq_ops->queue_rqs(&plug->mq_list);
2724 }
2725
2726 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2727 {
2728         struct blk_mq_hw_ctx *this_hctx = NULL;
2729         struct blk_mq_ctx *this_ctx = NULL;
2730         struct request *requeue_list = NULL;
2731         struct request **requeue_lastp = &requeue_list;
2732         unsigned int depth = 0;
2733         bool is_passthrough = false;
2734         LIST_HEAD(list);
2735
2736         do {
2737                 struct request *rq = rq_list_pop(&plug->mq_list);
2738
2739                 if (!this_hctx) {
2740                         this_hctx = rq->mq_hctx;
2741                         this_ctx = rq->mq_ctx;
2742                         is_passthrough = blk_rq_is_passthrough(rq);
2743                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2744                            is_passthrough != blk_rq_is_passthrough(rq)) {
2745                         rq_list_add_tail(&requeue_lastp, rq);
2746                         continue;
2747                 }
2748                 list_add(&rq->queuelist, &list);
2749                 depth++;
2750         } while (!rq_list_empty(plug->mq_list));
2751
2752         plug->mq_list = requeue_list;
2753         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2754
2755         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2756         /* passthrough requests should never be issued to the I/O scheduler */
2757         if (is_passthrough) {
2758                 spin_lock(&this_hctx->lock);
2759                 list_splice_tail_init(&list, &this_hctx->dispatch);
2760                 spin_unlock(&this_hctx->lock);
2761                 blk_mq_run_hw_queue(this_hctx, from_sched);
2762         } else if (this_hctx->queue->elevator) {
2763                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2764                                 &list, 0);
2765                 blk_mq_run_hw_queue(this_hctx, from_sched);
2766         } else {
2767                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2768         }
2769         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2770 }
2771
2772 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2773 {
2774         struct request *rq;
2775
2776         /*
2777          * We may have been called recursively midway through handling
2778          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2779          * To avoid mq_list changing under our feet, clear rq_count early and
2780          * bail out specifically if rq_count is 0 rather than checking
2781          * whether the mq_list is empty.
2782          */
2783         if (plug->rq_count == 0)
2784                 return;
2785         plug->rq_count = 0;
2786
2787         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2788                 struct request_queue *q;
2789
2790                 rq = rq_list_peek(&plug->mq_list);
2791                 q = rq->q;
2792
2793                 /*
2794                  * Peek first request and see if we have a ->queue_rqs() hook.
2795                  * If we do, we can dispatch the whole plug list in one go. We
2796                  * already know at this point that all requests belong to the
2797                  * same queue, caller must ensure that's the case.
2798                  */
2799                 if (q->mq_ops->queue_rqs) {
2800                         blk_mq_run_dispatch_ops(q,
2801                                 __blk_mq_flush_plug_list(q, plug));
2802                         if (rq_list_empty(plug->mq_list))
2803                                 return;
2804                 }
2805
2806                 blk_mq_run_dispatch_ops(q,
2807                                 blk_mq_plug_issue_direct(plug));
2808                 if (rq_list_empty(plug->mq_list))
2809                         return;
2810         }
2811
2812         do {
2813                 blk_mq_dispatch_plug_list(plug, from_schedule);
2814         } while (!rq_list_empty(plug->mq_list));
2815 }
2816
2817 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2818                 struct list_head *list)
2819 {
2820         int queued = 0;
2821         blk_status_t ret = BLK_STS_OK;
2822
2823         while (!list_empty(list)) {
2824                 struct request *rq = list_first_entry(list, struct request,
2825                                 queuelist);
2826
2827                 list_del_init(&rq->queuelist);
2828                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2829                 switch (ret) {
2830                 case BLK_STS_OK:
2831                         queued++;
2832                         break;
2833                 case BLK_STS_RESOURCE:
2834                 case BLK_STS_DEV_RESOURCE:
2835                         blk_mq_request_bypass_insert(rq, 0);
2836                         if (list_empty(list))
2837                                 blk_mq_run_hw_queue(hctx, false);
2838                         goto out;
2839                 default:
2840                         blk_mq_end_request(rq, ret);
2841                         break;
2842                 }
2843         }
2844
2845 out:
2846         if (ret != BLK_STS_OK)
2847                 blk_mq_commit_rqs(hctx, queued, false);
2848 }
2849
2850 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2851                                      struct bio *bio, unsigned int nr_segs)
2852 {
2853         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2854                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2855                         return true;
2856                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2857                         return true;
2858         }
2859         return false;
2860 }
2861
2862 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2863                                                struct blk_plug *plug,
2864                                                struct bio *bio,
2865                                                unsigned int nsegs)
2866 {
2867         struct blk_mq_alloc_data data = {
2868                 .q              = q,
2869                 .nr_tags        = 1,
2870                 .cmd_flags      = bio->bi_opf,
2871         };
2872         struct request *rq;
2873
2874         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2875                 return NULL;
2876
2877         rq_qos_throttle(q, bio);
2878
2879         if (plug) {
2880                 data.nr_tags = plug->nr_ios;
2881                 plug->nr_ios = 1;
2882                 data.cached_rq = &plug->cached_rq;
2883         }
2884
2885         rq = __blk_mq_alloc_requests(&data);
2886         if (rq)
2887                 return rq;
2888         rq_qos_cleanup(q, bio);
2889         if (bio->bi_opf & REQ_NOWAIT)
2890                 bio_wouldblock_error(bio);
2891         return NULL;
2892 }
2893
2894 /* return true if this @rq can be used for @bio */
2895 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2896                 struct bio *bio)
2897 {
2898         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2899         enum hctx_type hctx_type = rq->mq_hctx->type;
2900
2901         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2902
2903         if (type != hctx_type &&
2904             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2905                 return false;
2906         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2907                 return false;
2908
2909         /*
2910          * If any qos ->throttle() end up blocking, we will have flushed the
2911          * plug and hence killed the cached_rq list as well. Pop this entry
2912          * before we throttle.
2913          */
2914         plug->cached_rq = rq_list_next(rq);
2915         rq_qos_throttle(rq->q, bio);
2916
2917         blk_mq_rq_time_init(rq, 0);
2918         rq->cmd_flags = bio->bi_opf;
2919         INIT_LIST_HEAD(&rq->queuelist);
2920         return true;
2921 }
2922
2923 static void bio_set_ioprio(struct bio *bio)
2924 {
2925         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2926         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2927                 bio->bi_ioprio = get_current_ioprio();
2928         blkcg_set_ioprio(bio);
2929 }
2930
2931 /**
2932  * blk_mq_submit_bio - Create and send a request to block device.
2933  * @bio: Bio pointer.
2934  *
2935  * Builds up a request structure from @q and @bio and send to the device. The
2936  * request may not be queued directly to hardware if:
2937  * * This request can be merged with another one
2938  * * We want to place request at plug queue for possible future merging
2939  * * There is an IO scheduler active at this queue
2940  *
2941  * It will not queue the request if there is an error with the bio, or at the
2942  * request creation.
2943  */
2944 void blk_mq_submit_bio(struct bio *bio)
2945 {
2946         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2947         struct blk_plug *plug = blk_mq_plug(bio);
2948         const int is_sync = op_is_sync(bio->bi_opf);
2949         struct blk_mq_hw_ctx *hctx;
2950         struct request *rq = NULL;
2951         unsigned int nr_segs = 1;
2952         blk_status_t ret;
2953
2954         bio = blk_queue_bounce(bio, q);
2955         if (bio_may_exceed_limits(bio, &q->limits)) {
2956                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2957                 if (!bio)
2958                         return;
2959         }
2960
2961         bio_set_ioprio(bio);
2962
2963         if (plug) {
2964                 rq = rq_list_peek(&plug->cached_rq);
2965                 if (rq && rq->q != q)
2966                         rq = NULL;
2967         }
2968         if (rq) {
2969                 if (!bio_integrity_prep(bio))
2970                         return;
2971                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2972                         return;
2973                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2974                         goto done;
2975                 percpu_ref_get(&q->q_usage_counter);
2976         } else {
2977                 if (unlikely(bio_queue_enter(bio)))
2978                         return;
2979                 if (!bio_integrity_prep(bio))
2980                         goto fail;
2981         }
2982
2983         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2984         if (unlikely(!rq)) {
2985 fail:
2986                 blk_queue_exit(q);
2987                 return;
2988         }
2989
2990 done:
2991         trace_block_getrq(bio);
2992
2993         rq_qos_track(q, rq, bio);
2994
2995         blk_mq_bio_to_request(rq, bio, nr_segs);
2996
2997         ret = blk_crypto_rq_get_keyslot(rq);
2998         if (ret != BLK_STS_OK) {
2999                 bio->bi_status = ret;
3000                 bio_endio(bio);
3001                 blk_mq_free_request(rq);
3002                 return;
3003         }
3004
3005         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3006                 return;
3007
3008         if (plug) {
3009                 blk_add_rq_to_plug(plug, rq);
3010                 return;
3011         }
3012
3013         hctx = rq->mq_hctx;
3014         if ((rq->rq_flags & RQF_USE_SCHED) ||
3015             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3016                 blk_mq_insert_request(rq, 0);
3017                 blk_mq_run_hw_queue(hctx, true);
3018         } else {
3019                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3020         }
3021 }
3022
3023 #ifdef CONFIG_BLK_MQ_STACKING
3024 /**
3025  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3026  * @rq: the request being queued
3027  */
3028 blk_status_t blk_insert_cloned_request(struct request *rq)
3029 {
3030         struct request_queue *q = rq->q;
3031         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3032         unsigned int max_segments = blk_rq_get_max_segments(rq);
3033         blk_status_t ret;
3034
3035         if (blk_rq_sectors(rq) > max_sectors) {
3036                 /*
3037                  * SCSI device does not have a good way to return if
3038                  * Write Same/Zero is actually supported. If a device rejects
3039                  * a non-read/write command (discard, write same,etc.) the
3040                  * low-level device driver will set the relevant queue limit to
3041                  * 0 to prevent blk-lib from issuing more of the offending
3042                  * operations. Commands queued prior to the queue limit being
3043                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3044                  * errors being propagated to upper layers.
3045                  */
3046                 if (max_sectors == 0)
3047                         return BLK_STS_NOTSUPP;
3048
3049                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3050                         __func__, blk_rq_sectors(rq), max_sectors);
3051                 return BLK_STS_IOERR;
3052         }
3053
3054         /*
3055          * The queue settings related to segment counting may differ from the
3056          * original queue.
3057          */
3058         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3059         if (rq->nr_phys_segments > max_segments) {
3060                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3061                         __func__, rq->nr_phys_segments, max_segments);
3062                 return BLK_STS_IOERR;
3063         }
3064
3065         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3066                 return BLK_STS_IOERR;
3067
3068         ret = blk_crypto_rq_get_keyslot(rq);
3069         if (ret != BLK_STS_OK)
3070                 return ret;
3071
3072         blk_account_io_start(rq);
3073
3074         /*
3075          * Since we have a scheduler attached on the top device,
3076          * bypass a potential scheduler on the bottom device for
3077          * insert.
3078          */
3079         blk_mq_run_dispatch_ops(q,
3080                         ret = blk_mq_request_issue_directly(rq, true));
3081         if (ret)
3082                 blk_account_io_done(rq, ktime_get_ns());
3083         return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3086
3087 /**
3088  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3089  * @rq: the clone request to be cleaned up
3090  *
3091  * Description:
3092  *     Free all bios in @rq for a cloned request.
3093  */
3094 void blk_rq_unprep_clone(struct request *rq)
3095 {
3096         struct bio *bio;
3097
3098         while ((bio = rq->bio) != NULL) {
3099                 rq->bio = bio->bi_next;
3100
3101                 bio_put(bio);
3102         }
3103 }
3104 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3105
3106 /**
3107  * blk_rq_prep_clone - Helper function to setup clone request
3108  * @rq: the request to be setup
3109  * @rq_src: original request to be cloned
3110  * @bs: bio_set that bios for clone are allocated from
3111  * @gfp_mask: memory allocation mask for bio
3112  * @bio_ctr: setup function to be called for each clone bio.
3113  *           Returns %0 for success, non %0 for failure.
3114  * @data: private data to be passed to @bio_ctr
3115  *
3116  * Description:
3117  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3118  *     Also, pages which the original bios are pointing to are not copied
3119  *     and the cloned bios just point same pages.
3120  *     So cloned bios must be completed before original bios, which means
3121  *     the caller must complete @rq before @rq_src.
3122  */
3123 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3124                       struct bio_set *bs, gfp_t gfp_mask,
3125                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3126                       void *data)
3127 {
3128         struct bio *bio, *bio_src;
3129
3130         if (!bs)
3131                 bs = &fs_bio_set;
3132
3133         __rq_for_each_bio(bio_src, rq_src) {
3134                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3135                                       bs);
3136                 if (!bio)
3137                         goto free_and_out;
3138
3139                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3140                         goto free_and_out;
3141
3142                 if (rq->bio) {
3143                         rq->biotail->bi_next = bio;
3144                         rq->biotail = bio;
3145                 } else {
3146                         rq->bio = rq->biotail = bio;
3147                 }
3148                 bio = NULL;
3149         }
3150
3151         /* Copy attributes of the original request to the clone request. */
3152         rq->__sector = blk_rq_pos(rq_src);
3153         rq->__data_len = blk_rq_bytes(rq_src);
3154         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3155                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3156                 rq->special_vec = rq_src->special_vec;
3157         }
3158         rq->nr_phys_segments = rq_src->nr_phys_segments;
3159         rq->ioprio = rq_src->ioprio;
3160
3161         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3162                 goto free_and_out;
3163
3164         return 0;
3165
3166 free_and_out:
3167         if (bio)
3168                 bio_put(bio);
3169         blk_rq_unprep_clone(rq);
3170
3171         return -ENOMEM;
3172 }
3173 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3174 #endif /* CONFIG_BLK_MQ_STACKING */
3175
3176 /*
3177  * Steal bios from a request and add them to a bio list.
3178  * The request must not have been partially completed before.
3179  */
3180 void blk_steal_bios(struct bio_list *list, struct request *rq)
3181 {
3182         if (rq->bio) {
3183                 if (list->tail)
3184                         list->tail->bi_next = rq->bio;
3185                 else
3186                         list->head = rq->bio;
3187                 list->tail = rq->biotail;
3188
3189                 rq->bio = NULL;
3190                 rq->biotail = NULL;
3191         }
3192
3193         rq->__data_len = 0;
3194 }
3195 EXPORT_SYMBOL_GPL(blk_steal_bios);
3196
3197 static size_t order_to_size(unsigned int order)
3198 {
3199         return (size_t)PAGE_SIZE << order;
3200 }
3201
3202 /* called before freeing request pool in @tags */
3203 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3204                                     struct blk_mq_tags *tags)
3205 {
3206         struct page *page;
3207         unsigned long flags;
3208
3209         /*
3210          * There is no need to clear mapping if driver tags is not initialized
3211          * or the mapping belongs to the driver tags.
3212          */
3213         if (!drv_tags || drv_tags == tags)
3214                 return;
3215
3216         list_for_each_entry(page, &tags->page_list, lru) {
3217                 unsigned long start = (unsigned long)page_address(page);
3218                 unsigned long end = start + order_to_size(page->private);
3219                 int i;
3220
3221                 for (i = 0; i < drv_tags->nr_tags; i++) {
3222                         struct request *rq = drv_tags->rqs[i];
3223                         unsigned long rq_addr = (unsigned long)rq;
3224
3225                         if (rq_addr >= start && rq_addr < end) {
3226                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3227                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3228                         }
3229                 }
3230         }
3231
3232         /*
3233          * Wait until all pending iteration is done.
3234          *
3235          * Request reference is cleared and it is guaranteed to be observed
3236          * after the ->lock is released.
3237          */
3238         spin_lock_irqsave(&drv_tags->lock, flags);
3239         spin_unlock_irqrestore(&drv_tags->lock, flags);
3240 }
3241
3242 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3243                      unsigned int hctx_idx)
3244 {
3245         struct blk_mq_tags *drv_tags;
3246         struct page *page;
3247
3248         if (list_empty(&tags->page_list))
3249                 return;
3250
3251         if (blk_mq_is_shared_tags(set->flags))
3252                 drv_tags = set->shared_tags;
3253         else
3254                 drv_tags = set->tags[hctx_idx];
3255
3256         if (tags->static_rqs && set->ops->exit_request) {
3257                 int i;
3258
3259                 for (i = 0; i < tags->nr_tags; i++) {
3260                         struct request *rq = tags->static_rqs[i];
3261
3262                         if (!rq)
3263                                 continue;
3264                         set->ops->exit_request(set, rq, hctx_idx);
3265                         tags->static_rqs[i] = NULL;
3266                 }
3267         }
3268
3269         blk_mq_clear_rq_mapping(drv_tags, tags);
3270
3271         while (!list_empty(&tags->page_list)) {
3272                 page = list_first_entry(&tags->page_list, struct page, lru);
3273                 list_del_init(&page->lru);
3274                 /*
3275                  * Remove kmemleak object previously allocated in
3276                  * blk_mq_alloc_rqs().
3277                  */
3278                 kmemleak_free(page_address(page));
3279                 __free_pages(page, page->private);
3280         }
3281 }
3282
3283 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3284 {
3285         kfree(tags->rqs);
3286         tags->rqs = NULL;
3287         kfree(tags->static_rqs);
3288         tags->static_rqs = NULL;
3289
3290         blk_mq_free_tags(tags);
3291 }
3292
3293 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3294                 unsigned int hctx_idx)
3295 {
3296         int i;
3297
3298         for (i = 0; i < set->nr_maps; i++) {
3299                 unsigned int start = set->map[i].queue_offset;
3300                 unsigned int end = start + set->map[i].nr_queues;
3301
3302                 if (hctx_idx >= start && hctx_idx < end)
3303                         break;
3304         }
3305
3306         if (i >= set->nr_maps)
3307                 i = HCTX_TYPE_DEFAULT;
3308
3309         return i;
3310 }
3311
3312 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3313                 unsigned int hctx_idx)
3314 {
3315         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3316
3317         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3318 }
3319
3320 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3321                                                unsigned int hctx_idx,
3322                                                unsigned int nr_tags,
3323                                                unsigned int reserved_tags)
3324 {
3325         int node = blk_mq_get_hctx_node(set, hctx_idx);
3326         struct blk_mq_tags *tags;
3327
3328         if (node == NUMA_NO_NODE)
3329                 node = set->numa_node;
3330
3331         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3332                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3333         if (!tags)
3334                 return NULL;
3335
3336         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3337                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3338                                  node);
3339         if (!tags->rqs)
3340                 goto err_free_tags;
3341
3342         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3343                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3344                                         node);
3345         if (!tags->static_rqs)
3346                 goto err_free_rqs;
3347
3348         return tags;
3349
3350 err_free_rqs:
3351         kfree(tags->rqs);
3352 err_free_tags:
3353         blk_mq_free_tags(tags);
3354         return NULL;
3355 }
3356
3357 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3358                                unsigned int hctx_idx, int node)
3359 {
3360         int ret;
3361
3362         if (set->ops->init_request) {
3363                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3364                 if (ret)
3365                         return ret;
3366         }
3367
3368         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3369         return 0;
3370 }
3371
3372 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3373                             struct blk_mq_tags *tags,
3374                             unsigned int hctx_idx, unsigned int depth)
3375 {
3376         unsigned int i, j, entries_per_page, max_order = 4;
3377         int node = blk_mq_get_hctx_node(set, hctx_idx);
3378         size_t rq_size, left;
3379
3380         if (node == NUMA_NO_NODE)
3381                 node = set->numa_node;
3382
3383         INIT_LIST_HEAD(&tags->page_list);
3384
3385         /*
3386          * rq_size is the size of the request plus driver payload, rounded
3387          * to the cacheline size
3388          */
3389         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3390                                 cache_line_size());
3391         left = rq_size * depth;
3392
3393         for (i = 0; i < depth; ) {
3394                 int this_order = max_order;
3395                 struct page *page;
3396                 int to_do;
3397                 void *p;
3398
3399                 while (this_order && left < order_to_size(this_order - 1))
3400                         this_order--;
3401
3402                 do {
3403                         page = alloc_pages_node(node,
3404                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3405                                 this_order);
3406                         if (page)
3407                                 break;
3408                         if (!this_order--)
3409                                 break;
3410                         if (order_to_size(this_order) < rq_size)
3411                                 break;
3412                 } while (1);
3413
3414                 if (!page)
3415                         goto fail;
3416
3417                 page->private = this_order;
3418                 list_add_tail(&page->lru, &tags->page_list);
3419
3420                 p = page_address(page);
3421                 /*
3422                  * Allow kmemleak to scan these pages as they contain pointers
3423                  * to additional allocations like via ops->init_request().
3424                  */
3425                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3426                 entries_per_page = order_to_size(this_order) / rq_size;
3427                 to_do = min(entries_per_page, depth - i);
3428                 left -= to_do * rq_size;
3429                 for (j = 0; j < to_do; j++) {
3430                         struct request *rq = p;
3431
3432                         tags->static_rqs[i] = rq;
3433                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3434                                 tags->static_rqs[i] = NULL;
3435                                 goto fail;
3436                         }
3437
3438                         p += rq_size;
3439                         i++;
3440                 }
3441         }
3442         return 0;
3443
3444 fail:
3445         blk_mq_free_rqs(set, tags, hctx_idx);
3446         return -ENOMEM;
3447 }
3448
3449 struct rq_iter_data {
3450         struct blk_mq_hw_ctx *hctx;
3451         bool has_rq;
3452 };
3453
3454 static bool blk_mq_has_request(struct request *rq, void *data)
3455 {
3456         struct rq_iter_data *iter_data = data;
3457
3458         if (rq->mq_hctx != iter_data->hctx)
3459                 return true;
3460         iter_data->has_rq = true;
3461         return false;
3462 }
3463
3464 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3465 {
3466         struct blk_mq_tags *tags = hctx->sched_tags ?
3467                         hctx->sched_tags : hctx->tags;
3468         struct rq_iter_data data = {
3469                 .hctx   = hctx,
3470         };
3471
3472         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3473         return data.has_rq;
3474 }
3475
3476 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3477                 struct blk_mq_hw_ctx *hctx)
3478 {
3479         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3480                 return false;
3481         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3482                 return false;
3483         return true;
3484 }
3485
3486 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3487 {
3488         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3489                         struct blk_mq_hw_ctx, cpuhp_online);
3490
3491         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3492             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3493                 return 0;
3494
3495         /*
3496          * Prevent new request from being allocated on the current hctx.
3497          *
3498          * The smp_mb__after_atomic() Pairs with the implied barrier in
3499          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3500          * seen once we return from the tag allocator.
3501          */
3502         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3503         smp_mb__after_atomic();
3504
3505         /*
3506          * Try to grab a reference to the queue and wait for any outstanding
3507          * requests.  If we could not grab a reference the queue has been
3508          * frozen and there are no requests.
3509          */
3510         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3511                 while (blk_mq_hctx_has_requests(hctx))
3512                         msleep(5);
3513                 percpu_ref_put(&hctx->queue->q_usage_counter);
3514         }
3515
3516         return 0;
3517 }
3518
3519 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3520 {
3521         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3522                         struct blk_mq_hw_ctx, cpuhp_online);
3523
3524         if (cpumask_test_cpu(cpu, hctx->cpumask))
3525                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3526         return 0;
3527 }
3528
3529 /*
3530  * 'cpu' is going away. splice any existing rq_list entries from this
3531  * software queue to the hw queue dispatch list, and ensure that it
3532  * gets run.
3533  */
3534 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3535 {
3536         struct blk_mq_hw_ctx *hctx;
3537         struct blk_mq_ctx *ctx;
3538         LIST_HEAD(tmp);
3539         enum hctx_type type;
3540
3541         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3542         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3543                 return 0;
3544
3545         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3546         type = hctx->type;
3547
3548         spin_lock(&ctx->lock);
3549         if (!list_empty(&ctx->rq_lists[type])) {
3550                 list_splice_init(&ctx->rq_lists[type], &tmp);
3551                 blk_mq_hctx_clear_pending(hctx, ctx);
3552         }
3553         spin_unlock(&ctx->lock);
3554
3555         if (list_empty(&tmp))
3556                 return 0;
3557
3558         spin_lock(&hctx->lock);
3559         list_splice_tail_init(&tmp, &hctx->dispatch);
3560         spin_unlock(&hctx->lock);
3561
3562         blk_mq_run_hw_queue(hctx, true);
3563         return 0;
3564 }
3565
3566 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3567 {
3568         if (!(hctx->flags & BLK_MQ_F_STACKING))
3569                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3570                                                     &hctx->cpuhp_online);
3571         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3572                                             &hctx->cpuhp_dead);
3573 }
3574
3575 /*
3576  * Before freeing hw queue, clearing the flush request reference in
3577  * tags->rqs[] for avoiding potential UAF.
3578  */
3579 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3580                 unsigned int queue_depth, struct request *flush_rq)
3581 {
3582         int i;
3583         unsigned long flags;
3584
3585         /* The hw queue may not be mapped yet */
3586         if (!tags)
3587                 return;
3588
3589         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3590
3591         for (i = 0; i < queue_depth; i++)
3592                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3593
3594         /*
3595          * Wait until all pending iteration is done.
3596          *
3597          * Request reference is cleared and it is guaranteed to be observed
3598          * after the ->lock is released.
3599          */
3600         spin_lock_irqsave(&tags->lock, flags);
3601         spin_unlock_irqrestore(&tags->lock, flags);
3602 }
3603
3604 /* hctx->ctxs will be freed in queue's release handler */
3605 static void blk_mq_exit_hctx(struct request_queue *q,
3606                 struct blk_mq_tag_set *set,
3607                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3608 {
3609         struct request *flush_rq = hctx->fq->flush_rq;
3610
3611         if (blk_mq_hw_queue_mapped(hctx))
3612                 blk_mq_tag_idle(hctx);
3613
3614         if (blk_queue_init_done(q))
3615                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3616                                 set->queue_depth, flush_rq);
3617         if (set->ops->exit_request)
3618                 set->ops->exit_request(set, flush_rq, hctx_idx);
3619
3620         if (set->ops->exit_hctx)
3621                 set->ops->exit_hctx(hctx, hctx_idx);
3622
3623         blk_mq_remove_cpuhp(hctx);
3624
3625         xa_erase(&q->hctx_table, hctx_idx);
3626
3627         spin_lock(&q->unused_hctx_lock);
3628         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3629         spin_unlock(&q->unused_hctx_lock);
3630 }
3631
3632 static void blk_mq_exit_hw_queues(struct request_queue *q,
3633                 struct blk_mq_tag_set *set, int nr_queue)
3634 {
3635         struct blk_mq_hw_ctx *hctx;
3636         unsigned long i;
3637
3638         queue_for_each_hw_ctx(q, hctx, i) {
3639                 if (i == nr_queue)
3640                         break;
3641                 blk_mq_exit_hctx(q, set, hctx, i);
3642         }
3643 }
3644
3645 static int blk_mq_init_hctx(struct request_queue *q,
3646                 struct blk_mq_tag_set *set,
3647                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3648 {
3649         hctx->queue_num = hctx_idx;
3650
3651         if (!(hctx->flags & BLK_MQ_F_STACKING))
3652                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3653                                 &hctx->cpuhp_online);
3654         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3655
3656         hctx->tags = set->tags[hctx_idx];
3657
3658         if (set->ops->init_hctx &&
3659             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3660                 goto unregister_cpu_notifier;
3661
3662         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3663                                 hctx->numa_node))
3664                 goto exit_hctx;
3665
3666         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3667                 goto exit_flush_rq;
3668
3669         return 0;
3670
3671  exit_flush_rq:
3672         if (set->ops->exit_request)
3673                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3674  exit_hctx:
3675         if (set->ops->exit_hctx)
3676                 set->ops->exit_hctx(hctx, hctx_idx);
3677  unregister_cpu_notifier:
3678         blk_mq_remove_cpuhp(hctx);
3679         return -1;
3680 }
3681
3682 static struct blk_mq_hw_ctx *
3683 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3684                 int node)
3685 {
3686         struct blk_mq_hw_ctx *hctx;
3687         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3688
3689         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3690         if (!hctx)
3691                 goto fail_alloc_hctx;
3692
3693         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3694                 goto free_hctx;
3695
3696         atomic_set(&hctx->nr_active, 0);
3697         if (node == NUMA_NO_NODE)
3698                 node = set->numa_node;
3699         hctx->numa_node = node;
3700
3701         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3702         spin_lock_init(&hctx->lock);
3703         INIT_LIST_HEAD(&hctx->dispatch);
3704         hctx->queue = q;
3705         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3706
3707         INIT_LIST_HEAD(&hctx->hctx_list);
3708
3709         /*
3710          * Allocate space for all possible cpus to avoid allocation at
3711          * runtime
3712          */
3713         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3714                         gfp, node);
3715         if (!hctx->ctxs)
3716                 goto free_cpumask;
3717
3718         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3719                                 gfp, node, false, false))
3720                 goto free_ctxs;
3721         hctx->nr_ctx = 0;
3722
3723         spin_lock_init(&hctx->dispatch_wait_lock);
3724         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3725         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3726
3727         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3728         if (!hctx->fq)
3729                 goto free_bitmap;
3730
3731         blk_mq_hctx_kobj_init(hctx);
3732
3733         return hctx;
3734
3735  free_bitmap:
3736         sbitmap_free(&hctx->ctx_map);
3737  free_ctxs:
3738         kfree(hctx->ctxs);
3739  free_cpumask:
3740         free_cpumask_var(hctx->cpumask);
3741  free_hctx:
3742         kfree(hctx);
3743  fail_alloc_hctx:
3744         return NULL;
3745 }
3746
3747 static void blk_mq_init_cpu_queues(struct request_queue *q,
3748                                    unsigned int nr_hw_queues)
3749 {
3750         struct blk_mq_tag_set *set = q->tag_set;
3751         unsigned int i, j;
3752
3753         for_each_possible_cpu(i) {
3754                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3755                 struct blk_mq_hw_ctx *hctx;
3756                 int k;
3757
3758                 __ctx->cpu = i;
3759                 spin_lock_init(&__ctx->lock);
3760                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3761                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3762
3763                 __ctx->queue = q;
3764
3765                 /*
3766                  * Set local node, IFF we have more than one hw queue. If
3767                  * not, we remain on the home node of the device
3768                  */
3769                 for (j = 0; j < set->nr_maps; j++) {
3770                         hctx = blk_mq_map_queue_type(q, j, i);
3771                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3772                                 hctx->numa_node = cpu_to_node(i);
3773                 }
3774         }
3775 }
3776
3777 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3778                                              unsigned int hctx_idx,
3779                                              unsigned int depth)
3780 {
3781         struct blk_mq_tags *tags;
3782         int ret;
3783
3784         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3785         if (!tags)
3786                 return NULL;
3787
3788         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3789         if (ret) {
3790                 blk_mq_free_rq_map(tags);
3791                 return NULL;
3792         }
3793
3794         return tags;
3795 }
3796
3797 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3798                                        int hctx_idx)
3799 {
3800         if (blk_mq_is_shared_tags(set->flags)) {
3801                 set->tags[hctx_idx] = set->shared_tags;
3802
3803                 return true;
3804         }
3805
3806         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3807                                                        set->queue_depth);
3808
3809         return set->tags[hctx_idx];
3810 }
3811
3812 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3813                              struct blk_mq_tags *tags,
3814                              unsigned int hctx_idx)
3815 {
3816         if (tags) {
3817                 blk_mq_free_rqs(set, tags, hctx_idx);
3818                 blk_mq_free_rq_map(tags);
3819         }
3820 }
3821
3822 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3823                                       unsigned int hctx_idx)
3824 {
3825         if (!blk_mq_is_shared_tags(set->flags))
3826                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3827
3828         set->tags[hctx_idx] = NULL;
3829 }
3830
3831 static void blk_mq_map_swqueue(struct request_queue *q)
3832 {
3833         unsigned int j, hctx_idx;
3834         unsigned long i;
3835         struct blk_mq_hw_ctx *hctx;
3836         struct blk_mq_ctx *ctx;
3837         struct blk_mq_tag_set *set = q->tag_set;
3838
3839         queue_for_each_hw_ctx(q, hctx, i) {
3840                 cpumask_clear(hctx->cpumask);
3841                 hctx->nr_ctx = 0;
3842                 hctx->dispatch_from = NULL;
3843         }
3844
3845         /*
3846          * Map software to hardware queues.
3847          *
3848          * If the cpu isn't present, the cpu is mapped to first hctx.
3849          */
3850         for_each_possible_cpu(i) {
3851
3852                 ctx = per_cpu_ptr(q->queue_ctx, i);
3853                 for (j = 0; j < set->nr_maps; j++) {
3854                         if (!set->map[j].nr_queues) {
3855                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3856                                                 HCTX_TYPE_DEFAULT, i);
3857                                 continue;
3858                         }
3859                         hctx_idx = set->map[j].mq_map[i];
3860                         /* unmapped hw queue can be remapped after CPU topo changed */
3861                         if (!set->tags[hctx_idx] &&
3862                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3863                                 /*
3864                                  * If tags initialization fail for some hctx,
3865                                  * that hctx won't be brought online.  In this
3866                                  * case, remap the current ctx to hctx[0] which
3867                                  * is guaranteed to always have tags allocated
3868                                  */
3869                                 set->map[j].mq_map[i] = 0;
3870                         }
3871
3872                         hctx = blk_mq_map_queue_type(q, j, i);
3873                         ctx->hctxs[j] = hctx;
3874                         /*
3875                          * If the CPU is already set in the mask, then we've
3876                          * mapped this one already. This can happen if
3877                          * devices share queues across queue maps.
3878                          */
3879                         if (cpumask_test_cpu(i, hctx->cpumask))
3880                                 continue;
3881
3882                         cpumask_set_cpu(i, hctx->cpumask);
3883                         hctx->type = j;
3884                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3885                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3886
3887                         /*
3888                          * If the nr_ctx type overflows, we have exceeded the
3889                          * amount of sw queues we can support.
3890                          */
3891                         BUG_ON(!hctx->nr_ctx);
3892                 }
3893
3894                 for (; j < HCTX_MAX_TYPES; j++)
3895                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3896                                         HCTX_TYPE_DEFAULT, i);
3897         }
3898
3899         queue_for_each_hw_ctx(q, hctx, i) {
3900                 /*
3901                  * If no software queues are mapped to this hardware queue,
3902                  * disable it and free the request entries.
3903                  */
3904                 if (!hctx->nr_ctx) {
3905                         /* Never unmap queue 0.  We need it as a
3906                          * fallback in case of a new remap fails
3907                          * allocation
3908                          */
3909                         if (i)
3910                                 __blk_mq_free_map_and_rqs(set, i);
3911
3912                         hctx->tags = NULL;
3913                         continue;
3914                 }
3915
3916                 hctx->tags = set->tags[i];
3917                 WARN_ON(!hctx->tags);
3918
3919                 /*
3920                  * Set the map size to the number of mapped software queues.
3921                  * This is more accurate and more efficient than looping
3922                  * over all possibly mapped software queues.
3923                  */
3924                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3925
3926                 /*
3927                  * Initialize batch roundrobin counts
3928                  */
3929                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3930                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3931         }
3932 }
3933
3934 /*
3935  * Caller needs to ensure that we're either frozen/quiesced, or that
3936  * the queue isn't live yet.
3937  */
3938 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3939 {
3940         struct blk_mq_hw_ctx *hctx;
3941         unsigned long i;
3942
3943         queue_for_each_hw_ctx(q, hctx, i) {
3944                 if (shared) {
3945                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3946                 } else {
3947                         blk_mq_tag_idle(hctx);
3948                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3949                 }
3950         }
3951 }
3952
3953 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3954                                          bool shared)
3955 {
3956         struct request_queue *q;
3957
3958         lockdep_assert_held(&set->tag_list_lock);
3959
3960         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3961                 blk_mq_freeze_queue(q);
3962                 queue_set_hctx_shared(q, shared);
3963                 blk_mq_unfreeze_queue(q);
3964         }
3965 }
3966
3967 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3968 {
3969         struct blk_mq_tag_set *set = q->tag_set;
3970
3971         mutex_lock(&set->tag_list_lock);
3972         list_del(&q->tag_set_list);
3973         if (list_is_singular(&set->tag_list)) {
3974                 /* just transitioned to unshared */
3975                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3976                 /* update existing queue */
3977                 blk_mq_update_tag_set_shared(set, false);
3978         }
3979         mutex_unlock(&set->tag_list_lock);
3980         INIT_LIST_HEAD(&q->tag_set_list);
3981 }
3982
3983 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3984                                      struct request_queue *q)
3985 {
3986         mutex_lock(&set->tag_list_lock);
3987
3988         /*
3989          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3990          */
3991         if (!list_empty(&set->tag_list) &&
3992             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3993                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3994                 /* update existing queue */
3995                 blk_mq_update_tag_set_shared(set, true);
3996         }
3997         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3998                 queue_set_hctx_shared(q, true);
3999         list_add_tail(&q->tag_set_list, &set->tag_list);
4000
4001         mutex_unlock(&set->tag_list_lock);
4002 }
4003
4004 /* All allocations will be freed in release handler of q->mq_kobj */
4005 static int blk_mq_alloc_ctxs(struct request_queue *q)
4006 {
4007         struct blk_mq_ctxs *ctxs;
4008         int cpu;
4009
4010         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4011         if (!ctxs)
4012                 return -ENOMEM;
4013
4014         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4015         if (!ctxs->queue_ctx)
4016                 goto fail;
4017
4018         for_each_possible_cpu(cpu) {
4019                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4020                 ctx->ctxs = ctxs;
4021         }
4022
4023         q->mq_kobj = &ctxs->kobj;
4024         q->queue_ctx = ctxs->queue_ctx;
4025
4026         return 0;
4027  fail:
4028         kfree(ctxs);
4029         return -ENOMEM;
4030 }
4031
4032 /*
4033  * It is the actual release handler for mq, but we do it from
4034  * request queue's release handler for avoiding use-after-free
4035  * and headache because q->mq_kobj shouldn't have been introduced,
4036  * but we can't group ctx/kctx kobj without it.
4037  */
4038 void blk_mq_release(struct request_queue *q)
4039 {
4040         struct blk_mq_hw_ctx *hctx, *next;
4041         unsigned long i;
4042
4043         queue_for_each_hw_ctx(q, hctx, i)
4044                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4045
4046         /* all hctx are in .unused_hctx_list now */
4047         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4048                 list_del_init(&hctx->hctx_list);
4049                 kobject_put(&hctx->kobj);
4050         }
4051
4052         xa_destroy(&q->hctx_table);
4053
4054         /*
4055          * release .mq_kobj and sw queue's kobject now because
4056          * both share lifetime with request queue.
4057          */
4058         blk_mq_sysfs_deinit(q);
4059 }
4060
4061 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4062                 void *queuedata)
4063 {
4064         struct request_queue *q;
4065         int ret;
4066
4067         q = blk_alloc_queue(set->numa_node);
4068         if (!q)
4069                 return ERR_PTR(-ENOMEM);
4070         q->queuedata = queuedata;
4071         ret = blk_mq_init_allocated_queue(set, q);
4072         if (ret) {
4073                 blk_put_queue(q);
4074                 return ERR_PTR(ret);
4075         }
4076         return q;
4077 }
4078
4079 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4080 {
4081         return blk_mq_init_queue_data(set, NULL);
4082 }
4083 EXPORT_SYMBOL(blk_mq_init_queue);
4084
4085 /**
4086  * blk_mq_destroy_queue - shutdown a request queue
4087  * @q: request queue to shutdown
4088  *
4089  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4090  * requests will be failed with -ENODEV. The caller is responsible for dropping
4091  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4092  *
4093  * Context: can sleep
4094  */
4095 void blk_mq_destroy_queue(struct request_queue *q)
4096 {
4097         WARN_ON_ONCE(!queue_is_mq(q));
4098         WARN_ON_ONCE(blk_queue_registered(q));
4099
4100         might_sleep();
4101
4102         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4103         blk_queue_start_drain(q);
4104         blk_mq_freeze_queue_wait(q);
4105
4106         blk_sync_queue(q);
4107         blk_mq_cancel_work_sync(q);
4108         blk_mq_exit_queue(q);
4109 }
4110 EXPORT_SYMBOL(blk_mq_destroy_queue);
4111
4112 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4113                 struct lock_class_key *lkclass)
4114 {
4115         struct request_queue *q;
4116         struct gendisk *disk;
4117
4118         q = blk_mq_init_queue_data(set, queuedata);
4119         if (IS_ERR(q))
4120                 return ERR_CAST(q);
4121
4122         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4123         if (!disk) {
4124                 blk_mq_destroy_queue(q);
4125                 blk_put_queue(q);
4126                 return ERR_PTR(-ENOMEM);
4127         }
4128         set_bit(GD_OWNS_QUEUE, &disk->state);
4129         return disk;
4130 }
4131 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4132
4133 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4134                 struct lock_class_key *lkclass)
4135 {
4136         struct gendisk *disk;
4137
4138         if (!blk_get_queue(q))
4139                 return NULL;
4140         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4141         if (!disk)
4142                 blk_put_queue(q);
4143         return disk;
4144 }
4145 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4146
4147 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4148                 struct blk_mq_tag_set *set, struct request_queue *q,
4149                 int hctx_idx, int node)
4150 {
4151         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4152
4153         /* reuse dead hctx first */
4154         spin_lock(&q->unused_hctx_lock);
4155         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4156                 if (tmp->numa_node == node) {
4157                         hctx = tmp;
4158                         break;
4159                 }
4160         }
4161         if (hctx)
4162                 list_del_init(&hctx->hctx_list);
4163         spin_unlock(&q->unused_hctx_lock);
4164
4165         if (!hctx)
4166                 hctx = blk_mq_alloc_hctx(q, set, node);
4167         if (!hctx)
4168                 goto fail;
4169
4170         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4171                 goto free_hctx;
4172
4173         return hctx;
4174
4175  free_hctx:
4176         kobject_put(&hctx->kobj);
4177  fail:
4178         return NULL;
4179 }
4180
4181 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4182                                                 struct request_queue *q)
4183 {
4184         struct blk_mq_hw_ctx *hctx;
4185         unsigned long i, j;
4186
4187         /* protect against switching io scheduler  */
4188         mutex_lock(&q->sysfs_lock);
4189         for (i = 0; i < set->nr_hw_queues; i++) {
4190                 int old_node;
4191                 int node = blk_mq_get_hctx_node(set, i);
4192                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4193
4194                 if (old_hctx) {
4195                         old_node = old_hctx->numa_node;
4196                         blk_mq_exit_hctx(q, set, old_hctx, i);
4197                 }
4198
4199                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4200                         if (!old_hctx)
4201                                 break;
4202                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4203                                         node, old_node);
4204                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4205                         WARN_ON_ONCE(!hctx);
4206                 }
4207         }
4208         /*
4209          * Increasing nr_hw_queues fails. Free the newly allocated
4210          * hctxs and keep the previous q->nr_hw_queues.
4211          */
4212         if (i != set->nr_hw_queues) {
4213                 j = q->nr_hw_queues;
4214         } else {
4215                 j = i;
4216                 q->nr_hw_queues = set->nr_hw_queues;
4217         }
4218
4219         xa_for_each_start(&q->hctx_table, j, hctx, j)
4220                 blk_mq_exit_hctx(q, set, hctx, j);
4221         mutex_unlock(&q->sysfs_lock);
4222 }
4223
4224 static void blk_mq_update_poll_flag(struct request_queue *q)
4225 {
4226         struct blk_mq_tag_set *set = q->tag_set;
4227
4228         if (set->nr_maps > HCTX_TYPE_POLL &&
4229             set->map[HCTX_TYPE_POLL].nr_queues)
4230                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4231         else
4232                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4233 }
4234
4235 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4236                 struct request_queue *q)
4237 {
4238         /* mark the queue as mq asap */
4239         q->mq_ops = set->ops;
4240
4241         if (blk_mq_alloc_ctxs(q))
4242                 goto err_exit;
4243
4244         /* init q->mq_kobj and sw queues' kobjects */
4245         blk_mq_sysfs_init(q);
4246
4247         INIT_LIST_HEAD(&q->unused_hctx_list);
4248         spin_lock_init(&q->unused_hctx_lock);
4249
4250         xa_init(&q->hctx_table);
4251
4252         blk_mq_realloc_hw_ctxs(set, q);
4253         if (!q->nr_hw_queues)
4254                 goto err_hctxs;
4255
4256         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4257         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4258
4259         q->tag_set = set;
4260
4261         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4262         blk_mq_update_poll_flag(q);
4263
4264         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4265         INIT_LIST_HEAD(&q->flush_list);
4266         INIT_LIST_HEAD(&q->requeue_list);
4267         spin_lock_init(&q->requeue_lock);
4268
4269         q->nr_requests = set->queue_depth;
4270
4271         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4272         blk_mq_add_queue_tag_set(set, q);
4273         blk_mq_map_swqueue(q);
4274         return 0;
4275
4276 err_hctxs:
4277         blk_mq_release(q);
4278 err_exit:
4279         q->mq_ops = NULL;
4280         return -ENOMEM;
4281 }
4282 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4283
4284 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4285 void blk_mq_exit_queue(struct request_queue *q)
4286 {
4287         struct blk_mq_tag_set *set = q->tag_set;
4288
4289         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4290         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4291         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4292         blk_mq_del_queue_tag_set(q);
4293 }
4294
4295 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4296 {
4297         int i;
4298
4299         if (blk_mq_is_shared_tags(set->flags)) {
4300                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4301                                                 BLK_MQ_NO_HCTX_IDX,
4302                                                 set->queue_depth);
4303                 if (!set->shared_tags)
4304                         return -ENOMEM;
4305         }
4306
4307         for (i = 0; i < set->nr_hw_queues; i++) {
4308                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4309                         goto out_unwind;
4310                 cond_resched();
4311         }
4312
4313         return 0;
4314
4315 out_unwind:
4316         while (--i >= 0)
4317                 __blk_mq_free_map_and_rqs(set, i);
4318
4319         if (blk_mq_is_shared_tags(set->flags)) {
4320                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4321                                         BLK_MQ_NO_HCTX_IDX);
4322         }
4323
4324         return -ENOMEM;
4325 }
4326
4327 /*
4328  * Allocate the request maps associated with this tag_set. Note that this
4329  * may reduce the depth asked for, if memory is tight. set->queue_depth
4330  * will be updated to reflect the allocated depth.
4331  */
4332 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4333 {
4334         unsigned int depth;
4335         int err;
4336
4337         depth = set->queue_depth;
4338         do {
4339                 err = __blk_mq_alloc_rq_maps(set);
4340                 if (!err)
4341                         break;
4342
4343                 set->queue_depth >>= 1;
4344                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4345                         err = -ENOMEM;
4346                         break;
4347                 }
4348         } while (set->queue_depth);
4349
4350         if (!set->queue_depth || err) {
4351                 pr_err("blk-mq: failed to allocate request map\n");
4352                 return -ENOMEM;
4353         }
4354
4355         if (depth != set->queue_depth)
4356                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4357                                                 depth, set->queue_depth);
4358
4359         return 0;
4360 }
4361
4362 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4363 {
4364         /*
4365          * blk_mq_map_queues() and multiple .map_queues() implementations
4366          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4367          * number of hardware queues.
4368          */
4369         if (set->nr_maps == 1)
4370                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4371
4372         if (set->ops->map_queues && !is_kdump_kernel()) {
4373                 int i;
4374
4375                 /*
4376                  * transport .map_queues is usually done in the following
4377                  * way:
4378                  *
4379                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4380                  *      mask = get_cpu_mask(queue)
4381                  *      for_each_cpu(cpu, mask)
4382                  *              set->map[x].mq_map[cpu] = queue;
4383                  * }
4384                  *
4385                  * When we need to remap, the table has to be cleared for
4386                  * killing stale mapping since one CPU may not be mapped
4387                  * to any hw queue.
4388                  */
4389                 for (i = 0; i < set->nr_maps; i++)
4390                         blk_mq_clear_mq_map(&set->map[i]);
4391
4392                 set->ops->map_queues(set);
4393         } else {
4394                 BUG_ON(set->nr_maps > 1);
4395                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4396         }
4397 }
4398
4399 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4400                                        int new_nr_hw_queues)
4401 {
4402         struct blk_mq_tags **new_tags;
4403         int i;
4404
4405         if (set->nr_hw_queues >= new_nr_hw_queues)
4406                 goto done;
4407
4408         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4409                                 GFP_KERNEL, set->numa_node);
4410         if (!new_tags)
4411                 return -ENOMEM;
4412
4413         if (set->tags)
4414                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4415                        sizeof(*set->tags));
4416         kfree(set->tags);
4417         set->tags = new_tags;
4418
4419         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4420                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4421                         while (--i >= set->nr_hw_queues)
4422                                 __blk_mq_free_map_and_rqs(set, i);
4423                         return -ENOMEM;
4424                 }
4425                 cond_resched();
4426         }
4427
4428 done:
4429         set->nr_hw_queues = new_nr_hw_queues;
4430         return 0;
4431 }
4432
4433 /*
4434  * Alloc a tag set to be associated with one or more request queues.
4435  * May fail with EINVAL for various error conditions. May adjust the
4436  * requested depth down, if it's too large. In that case, the set
4437  * value will be stored in set->queue_depth.
4438  */
4439 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4440 {
4441         int i, ret;
4442
4443         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4444
4445         if (!set->nr_hw_queues)
4446                 return -EINVAL;
4447         if (!set->queue_depth)
4448                 return -EINVAL;
4449         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4450                 return -EINVAL;
4451
4452         if (!set->ops->queue_rq)
4453                 return -EINVAL;
4454
4455         if (!set->ops->get_budget ^ !set->ops->put_budget)
4456                 return -EINVAL;
4457
4458         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4459                 pr_info("blk-mq: reduced tag depth to %u\n",
4460                         BLK_MQ_MAX_DEPTH);
4461                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4462         }
4463
4464         if (!set->nr_maps)
4465                 set->nr_maps = 1;
4466         else if (set->nr_maps > HCTX_MAX_TYPES)
4467                 return -EINVAL;
4468
4469         /*
4470          * If a crashdump is active, then we are potentially in a very
4471          * memory constrained environment. Limit us to 1 queue and
4472          * 64 tags to prevent using too much memory.
4473          */
4474         if (is_kdump_kernel()) {
4475                 set->nr_hw_queues = 1;
4476                 set->nr_maps = 1;
4477                 set->queue_depth = min(64U, set->queue_depth);
4478         }
4479         /*
4480          * There is no use for more h/w queues than cpus if we just have
4481          * a single map
4482          */
4483         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4484                 set->nr_hw_queues = nr_cpu_ids;
4485
4486         if (set->flags & BLK_MQ_F_BLOCKING) {
4487                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4488                 if (!set->srcu)
4489                         return -ENOMEM;
4490                 ret = init_srcu_struct(set->srcu);
4491                 if (ret)
4492                         goto out_free_srcu;
4493         }
4494
4495         ret = -ENOMEM;
4496         set->tags = kcalloc_node(set->nr_hw_queues,
4497                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4498                                  set->numa_node);
4499         if (!set->tags)
4500                 goto out_cleanup_srcu;
4501
4502         for (i = 0; i < set->nr_maps; i++) {
4503                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4504                                                   sizeof(set->map[i].mq_map[0]),
4505                                                   GFP_KERNEL, set->numa_node);
4506                 if (!set->map[i].mq_map)
4507                         goto out_free_mq_map;
4508                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4509         }
4510
4511         blk_mq_update_queue_map(set);
4512
4513         ret = blk_mq_alloc_set_map_and_rqs(set);
4514         if (ret)
4515                 goto out_free_mq_map;
4516
4517         mutex_init(&set->tag_list_lock);
4518         INIT_LIST_HEAD(&set->tag_list);
4519
4520         return 0;
4521
4522 out_free_mq_map:
4523         for (i = 0; i < set->nr_maps; i++) {
4524                 kfree(set->map[i].mq_map);
4525                 set->map[i].mq_map = NULL;
4526         }
4527         kfree(set->tags);
4528         set->tags = NULL;
4529 out_cleanup_srcu:
4530         if (set->flags & BLK_MQ_F_BLOCKING)
4531                 cleanup_srcu_struct(set->srcu);
4532 out_free_srcu:
4533         if (set->flags & BLK_MQ_F_BLOCKING)
4534                 kfree(set->srcu);
4535         return ret;
4536 }
4537 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4538
4539 /* allocate and initialize a tagset for a simple single-queue device */
4540 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4541                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4542                 unsigned int set_flags)
4543 {
4544         memset(set, 0, sizeof(*set));
4545         set->ops = ops;
4546         set->nr_hw_queues = 1;
4547         set->nr_maps = 1;
4548         set->queue_depth = queue_depth;
4549         set->numa_node = NUMA_NO_NODE;
4550         set->flags = set_flags;
4551         return blk_mq_alloc_tag_set(set);
4552 }
4553 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4554
4555 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4556 {
4557         int i, j;
4558
4559         for (i = 0; i < set->nr_hw_queues; i++)
4560                 __blk_mq_free_map_and_rqs(set, i);
4561
4562         if (blk_mq_is_shared_tags(set->flags)) {
4563                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4564                                         BLK_MQ_NO_HCTX_IDX);
4565         }
4566
4567         for (j = 0; j < set->nr_maps; j++) {
4568                 kfree(set->map[j].mq_map);
4569                 set->map[j].mq_map = NULL;
4570         }
4571
4572         kfree(set->tags);
4573         set->tags = NULL;
4574         if (set->flags & BLK_MQ_F_BLOCKING) {
4575                 cleanup_srcu_struct(set->srcu);
4576                 kfree(set->srcu);
4577         }
4578 }
4579 EXPORT_SYMBOL(blk_mq_free_tag_set);
4580
4581 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4582 {
4583         struct blk_mq_tag_set *set = q->tag_set;
4584         struct blk_mq_hw_ctx *hctx;
4585         int ret;
4586         unsigned long i;
4587
4588         if (!set)
4589                 return -EINVAL;
4590
4591         if (q->nr_requests == nr)
4592                 return 0;
4593
4594         blk_mq_freeze_queue(q);
4595         blk_mq_quiesce_queue(q);
4596
4597         ret = 0;
4598         queue_for_each_hw_ctx(q, hctx, i) {
4599                 if (!hctx->tags)
4600                         continue;
4601                 /*
4602                  * If we're using an MQ scheduler, just update the scheduler
4603                  * queue depth. This is similar to what the old code would do.
4604                  */
4605                 if (hctx->sched_tags) {
4606                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4607                                                       nr, true);
4608                 } else {
4609                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4610                                                       false);
4611                 }
4612                 if (ret)
4613                         break;
4614                 if (q->elevator && q->elevator->type->ops.depth_updated)
4615                         q->elevator->type->ops.depth_updated(hctx);
4616         }
4617         if (!ret) {
4618                 q->nr_requests = nr;
4619                 if (blk_mq_is_shared_tags(set->flags)) {
4620                         if (q->elevator)
4621                                 blk_mq_tag_update_sched_shared_tags(q);
4622                         else
4623                                 blk_mq_tag_resize_shared_tags(set, nr);
4624                 }
4625         }
4626
4627         blk_mq_unquiesce_queue(q);
4628         blk_mq_unfreeze_queue(q);
4629
4630         return ret;
4631 }
4632
4633 /*
4634  * request_queue and elevator_type pair.
4635  * It is just used by __blk_mq_update_nr_hw_queues to cache
4636  * the elevator_type associated with a request_queue.
4637  */
4638 struct blk_mq_qe_pair {
4639         struct list_head node;
4640         struct request_queue *q;
4641         struct elevator_type *type;
4642 };
4643
4644 /*
4645  * Cache the elevator_type in qe pair list and switch the
4646  * io scheduler to 'none'
4647  */
4648 static bool blk_mq_elv_switch_none(struct list_head *head,
4649                 struct request_queue *q)
4650 {
4651         struct blk_mq_qe_pair *qe;
4652
4653         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4654         if (!qe)
4655                 return false;
4656
4657         /* q->elevator needs protection from ->sysfs_lock */
4658         mutex_lock(&q->sysfs_lock);
4659
4660         /* the check has to be done with holding sysfs_lock */
4661         if (!q->elevator) {
4662                 kfree(qe);
4663                 goto unlock;
4664         }
4665
4666         INIT_LIST_HEAD(&qe->node);
4667         qe->q = q;
4668         qe->type = q->elevator->type;
4669         /* keep a reference to the elevator module as we'll switch back */
4670         __elevator_get(qe->type);
4671         list_add(&qe->node, head);
4672         elevator_disable(q);
4673 unlock:
4674         mutex_unlock(&q->sysfs_lock);
4675
4676         return true;
4677 }
4678
4679 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4680                                                 struct request_queue *q)
4681 {
4682         struct blk_mq_qe_pair *qe;
4683
4684         list_for_each_entry(qe, head, node)
4685                 if (qe->q == q)
4686                         return qe;
4687
4688         return NULL;
4689 }
4690
4691 static void blk_mq_elv_switch_back(struct list_head *head,
4692                                   struct request_queue *q)
4693 {
4694         struct blk_mq_qe_pair *qe;
4695         struct elevator_type *t;
4696
4697         qe = blk_lookup_qe_pair(head, q);
4698         if (!qe)
4699                 return;
4700         t = qe->type;
4701         list_del(&qe->node);
4702         kfree(qe);
4703
4704         mutex_lock(&q->sysfs_lock);
4705         elevator_switch(q, t);
4706         /* drop the reference acquired in blk_mq_elv_switch_none */
4707         elevator_put(t);
4708         mutex_unlock(&q->sysfs_lock);
4709 }
4710
4711 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4712                                                         int nr_hw_queues)
4713 {
4714         struct request_queue *q;
4715         LIST_HEAD(head);
4716         int prev_nr_hw_queues = set->nr_hw_queues;
4717         int i;
4718
4719         lockdep_assert_held(&set->tag_list_lock);
4720
4721         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4722                 nr_hw_queues = nr_cpu_ids;
4723         if (nr_hw_queues < 1)
4724                 return;
4725         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4726                 return;
4727
4728         list_for_each_entry(q, &set->tag_list, tag_set_list)
4729                 blk_mq_freeze_queue(q);
4730         /*
4731          * Switch IO scheduler to 'none', cleaning up the data associated
4732          * with the previous scheduler. We will switch back once we are done
4733          * updating the new sw to hw queue mappings.
4734          */
4735         list_for_each_entry(q, &set->tag_list, tag_set_list)
4736                 if (!blk_mq_elv_switch_none(&head, q))
4737                         goto switch_back;
4738
4739         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4740                 blk_mq_debugfs_unregister_hctxs(q);
4741                 blk_mq_sysfs_unregister_hctxs(q);
4742         }
4743
4744         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4745                 goto reregister;
4746
4747 fallback:
4748         blk_mq_update_queue_map(set);
4749         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750                 blk_mq_realloc_hw_ctxs(set, q);
4751                 blk_mq_update_poll_flag(q);
4752                 if (q->nr_hw_queues != set->nr_hw_queues) {
4753                         int i = prev_nr_hw_queues;
4754
4755                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4756                                         nr_hw_queues, prev_nr_hw_queues);
4757                         for (; i < set->nr_hw_queues; i++)
4758                                 __blk_mq_free_map_and_rqs(set, i);
4759
4760                         set->nr_hw_queues = prev_nr_hw_queues;
4761                         goto fallback;
4762                 }
4763                 blk_mq_map_swqueue(q);
4764         }
4765
4766 reregister:
4767         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768                 blk_mq_sysfs_register_hctxs(q);
4769                 blk_mq_debugfs_register_hctxs(q);
4770         }
4771
4772 switch_back:
4773         list_for_each_entry(q, &set->tag_list, tag_set_list)
4774                 blk_mq_elv_switch_back(&head, q);
4775
4776         list_for_each_entry(q, &set->tag_list, tag_set_list)
4777                 blk_mq_unfreeze_queue(q);
4778
4779         /* Free the excess tags when nr_hw_queues shrink. */
4780         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4781                 __blk_mq_free_map_and_rqs(set, i);
4782 }
4783
4784 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4785 {
4786         mutex_lock(&set->tag_list_lock);
4787         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4788         mutex_unlock(&set->tag_list_lock);
4789 }
4790 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4791
4792 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4793                          struct io_comp_batch *iob, unsigned int flags)
4794 {
4795         long state = get_current_state();
4796         int ret;
4797
4798         do {
4799                 ret = q->mq_ops->poll(hctx, iob);
4800                 if (ret > 0) {
4801                         __set_current_state(TASK_RUNNING);
4802                         return ret;
4803                 }
4804
4805                 if (signal_pending_state(state, current))
4806                         __set_current_state(TASK_RUNNING);
4807                 if (task_is_running(current))
4808                         return 1;
4809
4810                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4811                         break;
4812                 cpu_relax();
4813         } while (!need_resched());
4814
4815         __set_current_state(TASK_RUNNING);
4816         return 0;
4817 }
4818
4819 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4820                 struct io_comp_batch *iob, unsigned int flags)
4821 {
4822         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4823
4824         return blk_hctx_poll(q, hctx, iob, flags);
4825 }
4826
4827 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4828                 unsigned int poll_flags)
4829 {
4830         struct request_queue *q = rq->q;
4831         int ret;
4832
4833         if (!blk_rq_is_poll(rq))
4834                 return 0;
4835         if (!percpu_ref_tryget(&q->q_usage_counter))
4836                 return 0;
4837
4838         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4839         blk_queue_exit(q);
4840
4841         return ret;
4842 }
4843 EXPORT_SYMBOL_GPL(blk_rq_poll);
4844
4845 unsigned int blk_mq_rq_cpu(struct request *rq)
4846 {
4847         return rq->mq_ctx->cpu;
4848 }
4849 EXPORT_SYMBOL(blk_mq_rq_cpu);
4850
4851 void blk_mq_cancel_work_sync(struct request_queue *q)
4852 {
4853         struct blk_mq_hw_ctx *hctx;
4854         unsigned long i;
4855
4856         cancel_delayed_work_sync(&q->requeue_work);
4857
4858         queue_for_each_hw_ctx(q, hctx, i)
4859                 cancel_delayed_work_sync(&hctx->run_work);
4860 }
4861
4862 static int __init blk_mq_init(void)
4863 {
4864         int i;
4865
4866         for_each_possible_cpu(i)
4867                 init_llist_head(&per_cpu(blk_cpu_done, i));
4868         for_each_possible_cpu(i)
4869                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4870                          __blk_mq_complete_request_remote, NULL);
4871         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4872
4873         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4874                                   "block/softirq:dead", NULL,
4875                                   blk_softirq_cpu_dead);
4876         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4877                                 blk_mq_hctx_notify_dead);
4878         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4879                                 blk_mq_hctx_notify_online,
4880                                 blk_mq_hctx_notify_offline);
4881         return 0;
4882 }
4883 subsys_initcall(blk_mq_init);