Merge tag 'for-v5.18-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if ((!mi->part->bd_partno || rq->part == mi->part) &&
137             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138                 mi->inflight[rq_data_dir(rq)]++;
139
140         return true;
141 }
142
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144                 struct block_device *part)
145 {
146         struct mq_inflight mi = { .part = part };
147
148         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149
150         return mi.inflight[0] + mi.inflight[1];
151 }
152
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154                 unsigned int inflight[2])
155 {
156         struct mq_inflight mi = { .part = part };
157
158         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159         inflight[0] = mi.inflight[0];
160         inflight[1] = mi.inflight[1];
161 }
162
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165         mutex_lock(&q->mq_freeze_lock);
166         if (++q->mq_freeze_depth == 1) {
167                 percpu_ref_kill(&q->q_usage_counter);
168                 mutex_unlock(&q->mq_freeze_lock);
169                 if (queue_is_mq(q))
170                         blk_mq_run_hw_queues(q, false);
171         } else {
172                 mutex_unlock(&q->mq_freeze_lock);
173         }
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184                                      unsigned long timeout)
185 {
186         return wait_event_timeout(q->mq_freeze_wq,
187                                         percpu_ref_is_zero(&q->q_usage_counter),
188                                         timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198         /*
199          * In the !blk_mq case we are only calling this to kill the
200          * q_usage_counter, otherwise this increases the freeze depth
201          * and waits for it to return to zero.  For this reason there is
202          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203          * exported to drivers as the only user for unfreeze is blk_mq.
204          */
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211         /*
212          * ...just an alias to keep freeze and unfreeze actions balanced
213          * in the blk_mq_* namespace
214          */
215         blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221         mutex_lock(&q->mq_freeze_lock);
222         if (force_atomic)
223                 q->q_usage_counter.data->force_atomic = true;
224         q->mq_freeze_depth--;
225         WARN_ON_ONCE(q->mq_freeze_depth < 0);
226         if (!q->mq_freeze_depth) {
227                 percpu_ref_resurrect(&q->q_usage_counter);
228                 wake_up_all(&q->mq_freeze_wq);
229         }
230         mutex_unlock(&q->mq_freeze_lock);
231 }
232
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235         __blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245         unsigned long flags;
246
247         spin_lock_irqsave(&q->queue_lock, flags);
248         if (!q->quiesce_depth++)
249                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250         spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263         if (blk_queue_has_srcu(q))
264                 synchronize_srcu(q->srcu);
265         else
266                 synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281         blk_mq_quiesce_queue_nowait(q);
282         blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295         unsigned long flags;
296         bool run_queue = false;
297
298         spin_lock_irqsave(&q->queue_lock, flags);
299         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300                 ;
301         } else if (!--q->quiesce_depth) {
302                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303                 run_queue = true;
304         }
305         spin_unlock_irqrestore(&q->queue_lock, flags);
306
307         /* dispatch requests which are inserted during quiescing */
308         if (run_queue)
309                 blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (!(data->rq_flags & RQF_ELV)) {
360                 rq->tag = tag;
361                 rq->internal_tag = BLK_MQ_NO_TAG;
362         } else {
363                 rq->tag = BLK_MQ_NO_TAG;
364                 rq->internal_tag = tag;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_ELV) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (!op_is_flush(data->cmd_flags) &&
398                     e->type->ops.prepare_request) {
399                         e->type->ops.prepare_request(rq);
400                         rq->rq_flags |= RQF_ELVPRIV;
401                 }
402         }
403
404         return rq;
405 }
406
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409                 u64 alloc_time_ns)
410 {
411         unsigned int tag, tag_offset;
412         struct blk_mq_tags *tags;
413         struct request *rq;
414         unsigned long tag_mask;
415         int i, nr = 0;
416
417         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418         if (unlikely(!tag_mask))
419                 return NULL;
420
421         tags = blk_mq_tags_from_data(data);
422         for (i = 0; tag_mask; i++) {
423                 if (!(tag_mask & (1UL << i)))
424                         continue;
425                 tag = tag_offset + i;
426                 prefetch(tags->static_rqs[tag]);
427                 tag_mask &= ~(1UL << i);
428                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429                 rq_list_add(data->cached_rq, rq);
430                 nr++;
431         }
432         /* caller already holds a reference, add for remainder */
433         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434         data->nr_tags -= nr;
435
436         return rq_list_pop(data->cached_rq);
437 }
438
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441         struct request_queue *q = data->q;
442         u64 alloc_time_ns = 0;
443         struct request *rq;
444         unsigned int tag;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         if (data->cmd_flags & REQ_NOWAIT)
451                 data->flags |= BLK_MQ_REQ_NOWAIT;
452
453         if (q->elevator) {
454                 struct elevator_queue *e = q->elevator;
455
456                 data->rq_flags |= RQF_ELV;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list. Don't include reserved tags in the
461                  * limiting, as it isn't useful.
462                  */
463                 if (!op_is_flush(data->cmd_flags) &&
464                     !blk_op_is_passthrough(data->cmd_flags) &&
465                     e->type->ops.limit_depth &&
466                     !(data->flags & BLK_MQ_REQ_RESERVED))
467                         e->type->ops.limit_depth(data->cmd_flags, data);
468         }
469
470 retry:
471         data->ctx = blk_mq_get_ctx(q);
472         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473         if (!(data->rq_flags & RQF_ELV))
474                 blk_mq_tag_busy(data->hctx);
475
476         /*
477          * Try batched alloc if we want more than 1 tag.
478          */
479         if (data->nr_tags > 1) {
480                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481                 if (rq)
482                         return rq;
483                 data->nr_tags = 1;
484         }
485
486         /*
487          * Waiting allocations only fail because of an inactive hctx.  In that
488          * case just retry the hctx assignment and tag allocation as CPU hotplug
489          * should have migrated us to an online CPU by now.
490          */
491         tag = blk_mq_get_tag(data);
492         if (tag == BLK_MQ_NO_TAG) {
493                 if (data->flags & BLK_MQ_REQ_NOWAIT)
494                         return NULL;
495                 /*
496                  * Give up the CPU and sleep for a random short time to
497                  * ensure that thread using a realtime scheduling class
498                  * are migrated off the CPU, and thus off the hctx that
499                  * is going away.
500                  */
501                 msleep(3);
502                 goto retry;
503         }
504
505         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506                                         alloc_time_ns);
507 }
508
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510                 blk_mq_req_flags_t flags)
511 {
512         struct blk_mq_alloc_data data = {
513                 .q              = q,
514                 .flags          = flags,
515                 .cmd_flags      = op,
516                 .nr_tags        = 1,
517         };
518         struct request *rq;
519         int ret;
520
521         ret = blk_queue_enter(q, flags);
522         if (ret)
523                 return ERR_PTR(ret);
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (!rq)
527                 goto out_queue_exit;
528         rq->__data_len = 0;
529         rq->__sector = (sector_t) -1;
530         rq->bio = rq->biotail = NULL;
531         return rq;
532 out_queue_exit:
533         blk_queue_exit(q);
534         return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541         struct blk_mq_alloc_data data = {
542                 .q              = q,
543                 .flags          = flags,
544                 .cmd_flags      = op,
545                 .nr_tags        = 1,
546         };
547         u64 alloc_time_ns = 0;
548         unsigned int cpu;
549         unsigned int tag;
550         int ret;
551
552         /* alloc_time includes depth and tag waits */
553         if (blk_queue_rq_alloc_time(q))
554                 alloc_time_ns = ktime_get_ns();
555
556         /*
557          * If the tag allocator sleeps we could get an allocation for a
558          * different hardware context.  No need to complicate the low level
559          * allocator for this for the rare use case of a command tied to
560          * a specific queue.
561          */
562         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563                 return ERR_PTR(-EINVAL);
564
565         if (hctx_idx >= q->nr_hw_queues)
566                 return ERR_PTR(-EIO);
567
568         ret = blk_queue_enter(q, flags);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         /*
573          * Check if the hardware context is actually mapped to anything.
574          * If not tell the caller that it should skip this queue.
575          */
576         ret = -EXDEV;
577         data.hctx = xa_load(&q->hctx_table, hctx_idx);
578         if (!blk_mq_hw_queue_mapped(data.hctx))
579                 goto out_queue_exit;
580         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581         data.ctx = __blk_mq_get_ctx(q, cpu);
582
583         if (!q->elevator)
584                 blk_mq_tag_busy(data.hctx);
585         else
586                 data.rq_flags |= RQF_ELV;
587
588         ret = -EWOULDBLOCK;
589         tag = blk_mq_get_tag(&data);
590         if (tag == BLK_MQ_NO_TAG)
591                 goto out_queue_exit;
592         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593                                         alloc_time_ns);
594
595 out_queue_exit:
596         blk_queue_exit(q);
597         return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
601 static void __blk_mq_free_request(struct request *rq)
602 {
603         struct request_queue *q = rq->q;
604         struct blk_mq_ctx *ctx = rq->mq_ctx;
605         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606         const int sched_tag = rq->internal_tag;
607
608         blk_crypto_free_request(rq);
609         blk_pm_mark_last_busy(rq);
610         rq->mq_hctx = NULL;
611         if (rq->tag != BLK_MQ_NO_TAG)
612                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613         if (sched_tag != BLK_MQ_NO_TAG)
614                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615         blk_mq_sched_restart(hctx);
616         blk_queue_exit(q);
617 }
618
619 void blk_mq_free_request(struct request *rq)
620 {
621         struct request_queue *q = rq->q;
622         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623
624         if ((rq->rq_flags & RQF_ELVPRIV) &&
625             q->elevator->type->ops.finish_request)
626                 q->elevator->type->ops.finish_request(rq);
627
628         if (rq->rq_flags & RQF_MQ_INFLIGHT)
629                 __blk_mq_dec_active_requests(hctx);
630
631         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632                 laptop_io_completion(q->disk->bdi);
633
634         rq_qos_done(q, rq);
635
636         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637         if (req_ref_put_and_test(rq))
638                 __blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644         struct request *rq;
645
646         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647                 blk_mq_free_request(rq);
648 }
649
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653                 rq->q->disk ? rq->q->disk->disk_name : "?",
654                 (unsigned long long) rq->cmd_flags);
655
656         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657                (unsigned long long)blk_rq_pos(rq),
658                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660                rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665                           unsigned int nbytes, blk_status_t error)
666 {
667         if (unlikely(error)) {
668                 bio->bi_status = error;
669         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670                 /*
671                  * Partial zone append completions cannot be supported as the
672                  * BIO fragments may end up not being written sequentially.
673                  */
674                 if (bio->bi_iter.bi_size != nbytes)
675                         bio->bi_status = BLK_STS_IOERR;
676                 else
677                         bio->bi_iter.bi_sector = rq->__sector;
678         }
679
680         bio_advance(bio, nbytes);
681
682         if (unlikely(rq->rq_flags & RQF_QUIET))
683                 bio_set_flag(bio, BIO_QUIET);
684         /* don't actually finish bio if it's part of flush sequence */
685         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686                 bio_endio(bio);
687 }
688
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691         if (req->part && blk_do_io_stat(req)) {
692                 const int sgrp = op_stat_group(req_op(req));
693
694                 part_stat_lock();
695                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696                 part_stat_unlock();
697         }
698 }
699
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702         printk_ratelimited(KERN_ERR
703                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704                 "phys_seg %u prio class %u\n",
705                 blk_status_to_str(status),
706                 req->q->disk ? req->q->disk->disk_name : "?",
707                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708                 req->cmd_flags & ~REQ_OP_MASK,
709                 req->nr_phys_segments,
710                 IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720         int total_bytes = blk_rq_bytes(req);
721         struct bio *bio = req->bio;
722
723         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725         if (!bio)
726                 return;
727
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730                 req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732
733         blk_account_io_completion(req, total_bytes);
734
735         do {
736                 struct bio *next = bio->bi_next;
737
738                 /* Completion has already been traced */
739                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740
741                 if (req_op(req) == REQ_OP_ZONE_APPEND)
742                         bio->bi_iter.bi_sector = req->__sector;
743
744                 if (!is_flush)
745                         bio_endio(bio);
746                 bio = next;
747         } while (bio);
748
749         /*
750          * Reset counters so that the request stacking driver
751          * can find how many bytes remain in the request
752          * later.
753          */
754         req->bio = NULL;
755         req->__data_len = 0;
756 }
757
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781                 unsigned int nr_bytes)
782 {
783         int total_bytes;
784
785         trace_block_rq_complete(req, error, nr_bytes);
786
787         if (!req->bio)
788                 return false;
789
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792             error == BLK_STS_OK)
793                 req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795
796         if (unlikely(error && !blk_rq_is_passthrough(req) &&
797                      !(req->rq_flags & RQF_QUIET)) &&
798                      !test_bit(GD_DEAD, &req->q->disk->state)) {
799                 blk_print_req_error(req, error);
800                 trace_block_rq_error(req, error, nr_bytes);
801         }
802
803         blk_account_io_completion(req, nr_bytes);
804
805         total_bytes = 0;
806         while (req->bio) {
807                 struct bio *bio = req->bio;
808                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809
810                 if (bio_bytes == bio->bi_iter.bi_size)
811                         req->bio = bio->bi_next;
812
813                 /* Completion has already been traced */
814                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815                 req_bio_endio(req, bio, bio_bytes, error);
816
817                 total_bytes += bio_bytes;
818                 nr_bytes -= bio_bytes;
819
820                 if (!nr_bytes)
821                         break;
822         }
823
824         /*
825          * completely done
826          */
827         if (!req->bio) {
828                 /*
829                  * Reset counters so that the request stacking driver
830                  * can find how many bytes remain in the request
831                  * later.
832                  */
833                 req->__data_len = 0;
834                 return false;
835         }
836
837         req->__data_len -= total_bytes;
838
839         /* update sector only for requests with clear definition of sector */
840         if (!blk_rq_is_passthrough(req))
841                 req->__sector += total_bytes >> 9;
842
843         /* mixed attributes always follow the first bio */
844         if (req->rq_flags & RQF_MIXED_MERGE) {
845                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
846                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847         }
848
849         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850                 /*
851                  * If total number of sectors is less than the first segment
852                  * size, something has gone terribly wrong.
853                  */
854                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855                         blk_dump_rq_flags(req, "request botched");
856                         req->__data_len = blk_rq_cur_bytes(req);
857                 }
858
859                 /* recalculate the number of segments */
860                 req->nr_phys_segments = blk_recalc_rq_segments(req);
861         }
862
863         return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869         const int sgrp = op_stat_group(req_op(req));
870
871         part_stat_lock();
872         update_io_ticks(req->part, jiffies, true);
873         part_stat_inc(req->part, ios[sgrp]);
874         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875         part_stat_unlock();
876 }
877
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880         /*
881          * Account IO completion.  flush_rq isn't accounted as a
882          * normal IO on queueing nor completion.  Accounting the
883          * containing request is enough.
884          */
885         if (blk_do_io_stat(req) && req->part &&
886             !(req->rq_flags & RQF_FLUSH_SEQ))
887                 __blk_account_io_done(req, now);
888 }
889
890 static void __blk_account_io_start(struct request *rq)
891 {
892         /*
893          * All non-passthrough requests are created from a bio with one
894          * exception: when a flush command that is part of a flush sequence
895          * generated by the state machine in blk-flush.c is cloned onto the
896          * lower device by dm-multipath we can get here without a bio.
897          */
898         if (rq->bio)
899                 rq->part = rq->bio->bi_bdev;
900         else
901                 rq->part = rq->q->disk->part0;
902
903         part_stat_lock();
904         update_io_ticks(rq->part, jiffies, false);
905         part_stat_unlock();
906 }
907
908 static inline void blk_account_io_start(struct request *req)
909 {
910         if (blk_do_io_stat(req))
911                 __blk_account_io_start(req);
912 }
913
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916         if (rq->rq_flags & RQF_STATS) {
917                 blk_mq_poll_stats_start(rq->q);
918                 blk_stat_add(rq, now);
919         }
920
921         blk_mq_sched_completed_request(rq, now);
922         blk_account_io_done(rq, now);
923 }
924
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927         if (blk_mq_need_time_stamp(rq))
928                 __blk_mq_end_request_acct(rq, ktime_get_ns());
929
930         if (rq->end_io) {
931                 rq_qos_done(rq->q, rq);
932                 rq->end_io(rq, error);
933         } else {
934                 blk_mq_free_request(rq);
935         }
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942                 BUG();
943         __blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946
947 #define TAG_COMP_BATCH          32
948
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950                                           int *tag_array, int nr_tags)
951 {
952         struct request_queue *q = hctx->queue;
953
954         /*
955          * All requests should have been marked as RQF_MQ_INFLIGHT, so
956          * update hctx->nr_active in batch
957          */
958         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959                 __blk_mq_sub_active_requests(hctx, nr_tags);
960
961         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967         int tags[TAG_COMP_BATCH], nr_tags = 0;
968         struct blk_mq_hw_ctx *cur_hctx = NULL;
969         struct request *rq;
970         u64 now = 0;
971
972         if (iob->need_ts)
973                 now = ktime_get_ns();
974
975         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976                 prefetch(rq->bio);
977                 prefetch(rq->rq_next);
978
979                 blk_complete_request(rq);
980                 if (iob->need_ts)
981                         __blk_mq_end_request_acct(rq, now);
982
983                 rq_qos_done(rq->q, rq);
984
985                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986                 if (!req_ref_put_and_test(rq))
987                         continue;
988
989                 blk_crypto_free_request(rq);
990                 blk_pm_mark_last_busy(rq);
991
992                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993                         if (cur_hctx)
994                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995                         nr_tags = 0;
996                         cur_hctx = rq->mq_hctx;
997                 }
998                 tags[nr_tags++] = rq->tag;
999         }
1000
1001         if (nr_tags)
1002                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009         struct request *rq, *next;
1010
1011         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012                 rq->q->mq_ops->complete(rq);
1013 }
1014
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023         return 0;
1024 }
1025
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033         int cpu = raw_smp_processor_id();
1034
1035         if (!IS_ENABLED(CONFIG_SMP) ||
1036             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037                 return false;
1038         /*
1039          * With force threaded interrupts enabled, raising softirq from an SMP
1040          * function call will always result in waking the ksoftirqd thread.
1041          * This is probably worse than completing the request on a different
1042          * cache domain.
1043          */
1044         if (force_irqthreads())
1045                 return false;
1046
1047         /* same CPU or cache domain?  Complete locally */
1048         if (cpu == rq->mq_ctx->cpu ||
1049             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051                 return false;
1052
1053         /* don't try to IPI to an offline CPU */
1054         return cpu_online(rq->mq_ctx->cpu);
1055 }
1056
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059         struct llist_head *list;
1060         unsigned int cpu;
1061
1062         cpu = rq->mq_ctx->cpu;
1063         list = &per_cpu(blk_cpu_done, cpu);
1064         if (llist_add(&rq->ipi_list, list)) {
1065                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066                 smp_call_function_single_async(cpu, &rq->csd);
1067         }
1068 }
1069
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072         struct llist_head *list;
1073
1074         preempt_disable();
1075         list = this_cpu_ptr(&blk_cpu_done);
1076         if (llist_add(&rq->ipi_list, list))
1077                 raise_softirq(BLOCK_SOFTIRQ);
1078         preempt_enable();
1079 }
1080
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084
1085         /*
1086          * For a polled request, always complete locallly, it's pointless
1087          * to redirect the completion.
1088          */
1089         if (rq->cmd_flags & REQ_POLLED)
1090                 return false;
1091
1092         if (blk_mq_complete_need_ipi(rq)) {
1093                 blk_mq_complete_send_ipi(rq);
1094                 return true;
1095         }
1096
1097         if (rq->q->nr_hw_queues == 1) {
1098                 blk_mq_raise_softirq(rq);
1099                 return true;
1100         }
1101         return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:         the request being processed
1108  *
1109  * Description:
1110  *      Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114         if (!blk_mq_complete_request_remote(rq))
1115                 rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129         struct request_queue *q = rq->q;
1130
1131         trace_block_rq_issue(rq);
1132
1133         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134                 u64 start_time;
1135 #ifdef CONFIG_BLK_CGROUP
1136                 if (rq->bio)
1137                         start_time = bio_issue_time(&rq->bio->bi_issue);
1138                 else
1139 #endif
1140                         start_time = ktime_get_ns();
1141                 rq->io_start_time_ns = start_time;
1142                 rq->stats_sectors = blk_rq_sectors(rq);
1143                 rq->rq_flags |= RQF_STATS;
1144                 rq_qos_issue(q, rq);
1145         }
1146
1147         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1148
1149         blk_add_timer(rq);
1150         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1151
1152 #ifdef CONFIG_BLK_DEV_INTEGRITY
1153         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1154                 q->integrity.profile->prepare_fn(rq);
1155 #endif
1156         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1157                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1158 }
1159 EXPORT_SYMBOL(blk_mq_start_request);
1160
1161 /**
1162  * blk_end_sync_rq - executes a completion event on a request
1163  * @rq: request to complete
1164  * @error: end I/O status of the request
1165  */
1166 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1167 {
1168         struct completion *waiting = rq->end_io_data;
1169
1170         rq->end_io_data = (void *)(uintptr_t)error;
1171
1172         /*
1173          * complete last, if this is a stack request the process (and thus
1174          * the rq pointer) could be invalid right after this complete()
1175          */
1176         complete(waiting);
1177 }
1178
1179 /**
1180  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1181  * @rq:         request to insert
1182  * @at_head:    insert request at head or tail of queue
1183  * @done:       I/O completion handler
1184  *
1185  * Description:
1186  *    Insert a fully prepared request at the back of the I/O scheduler queue
1187  *    for execution.  Don't wait for completion.
1188  *
1189  * Note:
1190  *    This function will invoke @done directly if the queue is dead.
1191  */
1192 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1193 {
1194         WARN_ON(irqs_disabled());
1195         WARN_ON(!blk_rq_is_passthrough(rq));
1196
1197         rq->end_io = done;
1198
1199         blk_account_io_start(rq);
1200
1201         /*
1202          * don't check dying flag for MQ because the request won't
1203          * be reused after dying flag is set
1204          */
1205         blk_mq_sched_insert_request(rq, at_head, true, false);
1206 }
1207 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1208
1209 static bool blk_rq_is_poll(struct request *rq)
1210 {
1211         if (!rq->mq_hctx)
1212                 return false;
1213         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1214                 return false;
1215         if (WARN_ON_ONCE(!rq->bio))
1216                 return false;
1217         return true;
1218 }
1219
1220 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1221 {
1222         do {
1223                 bio_poll(rq->bio, NULL, 0);
1224                 cond_resched();
1225         } while (!completion_done(wait));
1226 }
1227
1228 /**
1229  * blk_execute_rq - insert a request into queue for execution
1230  * @rq:         request to insert
1231  * @at_head:    insert request at head or tail of queue
1232  *
1233  * Description:
1234  *    Insert a fully prepared request at the back of the I/O scheduler queue
1235  *    for execution and wait for completion.
1236  * Return: The blk_status_t result provided to blk_mq_end_request().
1237  */
1238 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1239 {
1240         DECLARE_COMPLETION_ONSTACK(wait);
1241         unsigned long hang_check;
1242
1243         rq->end_io_data = &wait;
1244         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1245
1246         /* Prevent hang_check timer from firing at us during very long I/O */
1247         hang_check = sysctl_hung_task_timeout_secs;
1248
1249         if (blk_rq_is_poll(rq))
1250                 blk_rq_poll_completion(rq, &wait);
1251         else if (hang_check)
1252                 while (!wait_for_completion_io_timeout(&wait,
1253                                 hang_check * (HZ/2)))
1254                         ;
1255         else
1256                 wait_for_completion_io(&wait);
1257
1258         return (blk_status_t)(uintptr_t)rq->end_io_data;
1259 }
1260 EXPORT_SYMBOL(blk_execute_rq);
1261
1262 static void __blk_mq_requeue_request(struct request *rq)
1263 {
1264         struct request_queue *q = rq->q;
1265
1266         blk_mq_put_driver_tag(rq);
1267
1268         trace_block_rq_requeue(rq);
1269         rq_qos_requeue(q, rq);
1270
1271         if (blk_mq_request_started(rq)) {
1272                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1273                 rq->rq_flags &= ~RQF_TIMED_OUT;
1274         }
1275 }
1276
1277 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1278 {
1279         __blk_mq_requeue_request(rq);
1280
1281         /* this request will be re-inserted to io scheduler queue */
1282         blk_mq_sched_requeue_request(rq);
1283
1284         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1285 }
1286 EXPORT_SYMBOL(blk_mq_requeue_request);
1287
1288 static void blk_mq_requeue_work(struct work_struct *work)
1289 {
1290         struct request_queue *q =
1291                 container_of(work, struct request_queue, requeue_work.work);
1292         LIST_HEAD(rq_list);
1293         struct request *rq, *next;
1294
1295         spin_lock_irq(&q->requeue_lock);
1296         list_splice_init(&q->requeue_list, &rq_list);
1297         spin_unlock_irq(&q->requeue_lock);
1298
1299         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1300                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1301                         continue;
1302
1303                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1304                 list_del_init(&rq->queuelist);
1305                 /*
1306                  * If RQF_DONTPREP, rq has contained some driver specific
1307                  * data, so insert it to hctx dispatch list to avoid any
1308                  * merge.
1309                  */
1310                 if (rq->rq_flags & RQF_DONTPREP)
1311                         blk_mq_request_bypass_insert(rq, false, false);
1312                 else
1313                         blk_mq_sched_insert_request(rq, true, false, false);
1314         }
1315
1316         while (!list_empty(&rq_list)) {
1317                 rq = list_entry(rq_list.next, struct request, queuelist);
1318                 list_del_init(&rq->queuelist);
1319                 blk_mq_sched_insert_request(rq, false, false, false);
1320         }
1321
1322         blk_mq_run_hw_queues(q, false);
1323 }
1324
1325 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1326                                 bool kick_requeue_list)
1327 {
1328         struct request_queue *q = rq->q;
1329         unsigned long flags;
1330
1331         /*
1332          * We abuse this flag that is otherwise used by the I/O scheduler to
1333          * request head insertion from the workqueue.
1334          */
1335         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1336
1337         spin_lock_irqsave(&q->requeue_lock, flags);
1338         if (at_head) {
1339                 rq->rq_flags |= RQF_SOFTBARRIER;
1340                 list_add(&rq->queuelist, &q->requeue_list);
1341         } else {
1342                 list_add_tail(&rq->queuelist, &q->requeue_list);
1343         }
1344         spin_unlock_irqrestore(&q->requeue_lock, flags);
1345
1346         if (kick_requeue_list)
1347                 blk_mq_kick_requeue_list(q);
1348 }
1349
1350 void blk_mq_kick_requeue_list(struct request_queue *q)
1351 {
1352         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1353 }
1354 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1355
1356 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1357                                     unsigned long msecs)
1358 {
1359         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1360                                     msecs_to_jiffies(msecs));
1361 }
1362 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1363
1364 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1365                                bool reserved)
1366 {
1367         /*
1368          * If we find a request that isn't idle we know the queue is busy
1369          * as it's checked in the iter.
1370          * Return false to stop the iteration.
1371          */
1372         if (blk_mq_request_started(rq)) {
1373                 bool *busy = priv;
1374
1375                 *busy = true;
1376                 return false;
1377         }
1378
1379         return true;
1380 }
1381
1382 bool blk_mq_queue_inflight(struct request_queue *q)
1383 {
1384         bool busy = false;
1385
1386         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1387         return busy;
1388 }
1389 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1390
1391 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1392 {
1393         req->rq_flags |= RQF_TIMED_OUT;
1394         if (req->q->mq_ops->timeout) {
1395                 enum blk_eh_timer_return ret;
1396
1397                 ret = req->q->mq_ops->timeout(req, reserved);
1398                 if (ret == BLK_EH_DONE)
1399                         return;
1400                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1401         }
1402
1403         blk_add_timer(req);
1404 }
1405
1406 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1407 {
1408         unsigned long deadline;
1409
1410         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1411                 return false;
1412         if (rq->rq_flags & RQF_TIMED_OUT)
1413                 return false;
1414
1415         deadline = READ_ONCE(rq->deadline);
1416         if (time_after_eq(jiffies, deadline))
1417                 return true;
1418
1419         if (*next == 0)
1420                 *next = deadline;
1421         else if (time_after(*next, deadline))
1422                 *next = deadline;
1423         return false;
1424 }
1425
1426 void blk_mq_put_rq_ref(struct request *rq)
1427 {
1428         if (is_flush_rq(rq))
1429                 rq->end_io(rq, 0);
1430         else if (req_ref_put_and_test(rq))
1431                 __blk_mq_free_request(rq);
1432 }
1433
1434 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1435 {
1436         unsigned long *next = priv;
1437
1438         /*
1439          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1440          * be reallocated underneath the timeout handler's processing, then
1441          * the expire check is reliable. If the request is not expired, then
1442          * it was completed and reallocated as a new request after returning
1443          * from blk_mq_check_expired().
1444          */
1445         if (blk_mq_req_expired(rq, next))
1446                 blk_mq_rq_timed_out(rq, reserved);
1447         return true;
1448 }
1449
1450 static void blk_mq_timeout_work(struct work_struct *work)
1451 {
1452         struct request_queue *q =
1453                 container_of(work, struct request_queue, timeout_work);
1454         unsigned long next = 0;
1455         struct blk_mq_hw_ctx *hctx;
1456         unsigned long i;
1457
1458         /* A deadlock might occur if a request is stuck requiring a
1459          * timeout at the same time a queue freeze is waiting
1460          * completion, since the timeout code would not be able to
1461          * acquire the queue reference here.
1462          *
1463          * That's why we don't use blk_queue_enter here; instead, we use
1464          * percpu_ref_tryget directly, because we need to be able to
1465          * obtain a reference even in the short window between the queue
1466          * starting to freeze, by dropping the first reference in
1467          * blk_freeze_queue_start, and the moment the last request is
1468          * consumed, marked by the instant q_usage_counter reaches
1469          * zero.
1470          */
1471         if (!percpu_ref_tryget(&q->q_usage_counter))
1472                 return;
1473
1474         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1475
1476         if (next != 0) {
1477                 mod_timer(&q->timeout, next);
1478         } else {
1479                 /*
1480                  * Request timeouts are handled as a forward rolling timer. If
1481                  * we end up here it means that no requests are pending and
1482                  * also that no request has been pending for a while. Mark
1483                  * each hctx as idle.
1484                  */
1485                 queue_for_each_hw_ctx(q, hctx, i) {
1486                         /* the hctx may be unmapped, so check it here */
1487                         if (blk_mq_hw_queue_mapped(hctx))
1488                                 blk_mq_tag_idle(hctx);
1489                 }
1490         }
1491         blk_queue_exit(q);
1492 }
1493
1494 struct flush_busy_ctx_data {
1495         struct blk_mq_hw_ctx *hctx;
1496         struct list_head *list;
1497 };
1498
1499 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1500 {
1501         struct flush_busy_ctx_data *flush_data = data;
1502         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1503         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1504         enum hctx_type type = hctx->type;
1505
1506         spin_lock(&ctx->lock);
1507         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1508         sbitmap_clear_bit(sb, bitnr);
1509         spin_unlock(&ctx->lock);
1510         return true;
1511 }
1512
1513 /*
1514  * Process software queues that have been marked busy, splicing them
1515  * to the for-dispatch
1516  */
1517 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1518 {
1519         struct flush_busy_ctx_data data = {
1520                 .hctx = hctx,
1521                 .list = list,
1522         };
1523
1524         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1525 }
1526 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1527
1528 struct dispatch_rq_data {
1529         struct blk_mq_hw_ctx *hctx;
1530         struct request *rq;
1531 };
1532
1533 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1534                 void *data)
1535 {
1536         struct dispatch_rq_data *dispatch_data = data;
1537         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1538         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1539         enum hctx_type type = hctx->type;
1540
1541         spin_lock(&ctx->lock);
1542         if (!list_empty(&ctx->rq_lists[type])) {
1543                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1544                 list_del_init(&dispatch_data->rq->queuelist);
1545                 if (list_empty(&ctx->rq_lists[type]))
1546                         sbitmap_clear_bit(sb, bitnr);
1547         }
1548         spin_unlock(&ctx->lock);
1549
1550         return !dispatch_data->rq;
1551 }
1552
1553 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1554                                         struct blk_mq_ctx *start)
1555 {
1556         unsigned off = start ? start->index_hw[hctx->type] : 0;
1557         struct dispatch_rq_data data = {
1558                 .hctx = hctx,
1559                 .rq   = NULL,
1560         };
1561
1562         __sbitmap_for_each_set(&hctx->ctx_map, off,
1563                                dispatch_rq_from_ctx, &data);
1564
1565         return data.rq;
1566 }
1567
1568 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1569 {
1570         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1571         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1572         int tag;
1573
1574         blk_mq_tag_busy(rq->mq_hctx);
1575
1576         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1577                 bt = &rq->mq_hctx->tags->breserved_tags;
1578                 tag_offset = 0;
1579         } else {
1580                 if (!hctx_may_queue(rq->mq_hctx, bt))
1581                         return false;
1582         }
1583
1584         tag = __sbitmap_queue_get(bt);
1585         if (tag == BLK_MQ_NO_TAG)
1586                 return false;
1587
1588         rq->tag = tag + tag_offset;
1589         return true;
1590 }
1591
1592 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1593 {
1594         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1595                 return false;
1596
1597         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1598                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1599                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1600                 __blk_mq_inc_active_requests(hctx);
1601         }
1602         hctx->tags->rqs[rq->tag] = rq;
1603         return true;
1604 }
1605
1606 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1607                                 int flags, void *key)
1608 {
1609         struct blk_mq_hw_ctx *hctx;
1610
1611         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1612
1613         spin_lock(&hctx->dispatch_wait_lock);
1614         if (!list_empty(&wait->entry)) {
1615                 struct sbitmap_queue *sbq;
1616
1617                 list_del_init(&wait->entry);
1618                 sbq = &hctx->tags->bitmap_tags;
1619                 atomic_dec(&sbq->ws_active);
1620         }
1621         spin_unlock(&hctx->dispatch_wait_lock);
1622
1623         blk_mq_run_hw_queue(hctx, true);
1624         return 1;
1625 }
1626
1627 /*
1628  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1629  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1630  * restart. For both cases, take care to check the condition again after
1631  * marking us as waiting.
1632  */
1633 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1634                                  struct request *rq)
1635 {
1636         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1637         struct wait_queue_head *wq;
1638         wait_queue_entry_t *wait;
1639         bool ret;
1640
1641         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1642                 blk_mq_sched_mark_restart_hctx(hctx);
1643
1644                 /*
1645                  * It's possible that a tag was freed in the window between the
1646                  * allocation failure and adding the hardware queue to the wait
1647                  * queue.
1648                  *
1649                  * Don't clear RESTART here, someone else could have set it.
1650                  * At most this will cost an extra queue run.
1651                  */
1652                 return blk_mq_get_driver_tag(rq);
1653         }
1654
1655         wait = &hctx->dispatch_wait;
1656         if (!list_empty_careful(&wait->entry))
1657                 return false;
1658
1659         wq = &bt_wait_ptr(sbq, hctx)->wait;
1660
1661         spin_lock_irq(&wq->lock);
1662         spin_lock(&hctx->dispatch_wait_lock);
1663         if (!list_empty(&wait->entry)) {
1664                 spin_unlock(&hctx->dispatch_wait_lock);
1665                 spin_unlock_irq(&wq->lock);
1666                 return false;
1667         }
1668
1669         atomic_inc(&sbq->ws_active);
1670         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1671         __add_wait_queue(wq, wait);
1672
1673         /*
1674          * It's possible that a tag was freed in the window between the
1675          * allocation failure and adding the hardware queue to the wait
1676          * queue.
1677          */
1678         ret = blk_mq_get_driver_tag(rq);
1679         if (!ret) {
1680                 spin_unlock(&hctx->dispatch_wait_lock);
1681                 spin_unlock_irq(&wq->lock);
1682                 return false;
1683         }
1684
1685         /*
1686          * We got a tag, remove ourselves from the wait queue to ensure
1687          * someone else gets the wakeup.
1688          */
1689         list_del_init(&wait->entry);
1690         atomic_dec(&sbq->ws_active);
1691         spin_unlock(&hctx->dispatch_wait_lock);
1692         spin_unlock_irq(&wq->lock);
1693
1694         return true;
1695 }
1696
1697 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1698 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1699 /*
1700  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1701  * - EWMA is one simple way to compute running average value
1702  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1703  * - take 4 as factor for avoiding to get too small(0) result, and this
1704  *   factor doesn't matter because EWMA decreases exponentially
1705  */
1706 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1707 {
1708         unsigned int ewma;
1709
1710         ewma = hctx->dispatch_busy;
1711
1712         if (!ewma && !busy)
1713                 return;
1714
1715         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1716         if (busy)
1717                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1718         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1719
1720         hctx->dispatch_busy = ewma;
1721 }
1722
1723 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1724
1725 static void blk_mq_handle_dev_resource(struct request *rq,
1726                                        struct list_head *list)
1727 {
1728         struct request *next =
1729                 list_first_entry_or_null(list, struct request, queuelist);
1730
1731         /*
1732          * If an I/O scheduler has been configured and we got a driver tag for
1733          * the next request already, free it.
1734          */
1735         if (next)
1736                 blk_mq_put_driver_tag(next);
1737
1738         list_add(&rq->queuelist, list);
1739         __blk_mq_requeue_request(rq);
1740 }
1741
1742 static void blk_mq_handle_zone_resource(struct request *rq,
1743                                         struct list_head *zone_list)
1744 {
1745         /*
1746          * If we end up here it is because we cannot dispatch a request to a
1747          * specific zone due to LLD level zone-write locking or other zone
1748          * related resource not being available. In this case, set the request
1749          * aside in zone_list for retrying it later.
1750          */
1751         list_add(&rq->queuelist, zone_list);
1752         __blk_mq_requeue_request(rq);
1753 }
1754
1755 enum prep_dispatch {
1756         PREP_DISPATCH_OK,
1757         PREP_DISPATCH_NO_TAG,
1758         PREP_DISPATCH_NO_BUDGET,
1759 };
1760
1761 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1762                                                   bool need_budget)
1763 {
1764         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1765         int budget_token = -1;
1766
1767         if (need_budget) {
1768                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1769                 if (budget_token < 0) {
1770                         blk_mq_put_driver_tag(rq);
1771                         return PREP_DISPATCH_NO_BUDGET;
1772                 }
1773                 blk_mq_set_rq_budget_token(rq, budget_token);
1774         }
1775
1776         if (!blk_mq_get_driver_tag(rq)) {
1777                 /*
1778                  * The initial allocation attempt failed, so we need to
1779                  * rerun the hardware queue when a tag is freed. The
1780                  * waitqueue takes care of that. If the queue is run
1781                  * before we add this entry back on the dispatch list,
1782                  * we'll re-run it below.
1783                  */
1784                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1785                         /*
1786                          * All budgets not got from this function will be put
1787                          * together during handling partial dispatch
1788                          */
1789                         if (need_budget)
1790                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1791                         return PREP_DISPATCH_NO_TAG;
1792                 }
1793         }
1794
1795         return PREP_DISPATCH_OK;
1796 }
1797
1798 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1799 static void blk_mq_release_budgets(struct request_queue *q,
1800                 struct list_head *list)
1801 {
1802         struct request *rq;
1803
1804         list_for_each_entry(rq, list, queuelist) {
1805                 int budget_token = blk_mq_get_rq_budget_token(rq);
1806
1807                 if (budget_token >= 0)
1808                         blk_mq_put_dispatch_budget(q, budget_token);
1809         }
1810 }
1811
1812 /*
1813  * Returns true if we did some work AND can potentially do more.
1814  */
1815 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1816                              unsigned int nr_budgets)
1817 {
1818         enum prep_dispatch prep;
1819         struct request_queue *q = hctx->queue;
1820         struct request *rq, *nxt;
1821         int errors, queued;
1822         blk_status_t ret = BLK_STS_OK;
1823         LIST_HEAD(zone_list);
1824         bool needs_resource = false;
1825
1826         if (list_empty(list))
1827                 return false;
1828
1829         /*
1830          * Now process all the entries, sending them to the driver.
1831          */
1832         errors = queued = 0;
1833         do {
1834                 struct blk_mq_queue_data bd;
1835
1836                 rq = list_first_entry(list, struct request, queuelist);
1837
1838                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1839                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1840                 if (prep != PREP_DISPATCH_OK)
1841                         break;
1842
1843                 list_del_init(&rq->queuelist);
1844
1845                 bd.rq = rq;
1846
1847                 /*
1848                  * Flag last if we have no more requests, or if we have more
1849                  * but can't assign a driver tag to it.
1850                  */
1851                 if (list_empty(list))
1852                         bd.last = true;
1853                 else {
1854                         nxt = list_first_entry(list, struct request, queuelist);
1855                         bd.last = !blk_mq_get_driver_tag(nxt);
1856                 }
1857
1858                 /*
1859                  * once the request is queued to lld, no need to cover the
1860                  * budget any more
1861                  */
1862                 if (nr_budgets)
1863                         nr_budgets--;
1864                 ret = q->mq_ops->queue_rq(hctx, &bd);
1865                 switch (ret) {
1866                 case BLK_STS_OK:
1867                         queued++;
1868                         break;
1869                 case BLK_STS_RESOURCE:
1870                         needs_resource = true;
1871                         fallthrough;
1872                 case BLK_STS_DEV_RESOURCE:
1873                         blk_mq_handle_dev_resource(rq, list);
1874                         goto out;
1875                 case BLK_STS_ZONE_RESOURCE:
1876                         /*
1877                          * Move the request to zone_list and keep going through
1878                          * the dispatch list to find more requests the drive can
1879                          * accept.
1880                          */
1881                         blk_mq_handle_zone_resource(rq, &zone_list);
1882                         needs_resource = true;
1883                         break;
1884                 default:
1885                         errors++;
1886                         blk_mq_end_request(rq, ret);
1887                 }
1888         } while (!list_empty(list));
1889 out:
1890         if (!list_empty(&zone_list))
1891                 list_splice_tail_init(&zone_list, list);
1892
1893         /* If we didn't flush the entire list, we could have told the driver
1894          * there was more coming, but that turned out to be a lie.
1895          */
1896         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1897                 q->mq_ops->commit_rqs(hctx);
1898         /*
1899          * Any items that need requeuing? Stuff them into hctx->dispatch,
1900          * that is where we will continue on next queue run.
1901          */
1902         if (!list_empty(list)) {
1903                 bool needs_restart;
1904                 /* For non-shared tags, the RESTART check will suffice */
1905                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1906                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1907
1908                 if (nr_budgets)
1909                         blk_mq_release_budgets(q, list);
1910
1911                 spin_lock(&hctx->lock);
1912                 list_splice_tail_init(list, &hctx->dispatch);
1913                 spin_unlock(&hctx->lock);
1914
1915                 /*
1916                  * Order adding requests to hctx->dispatch and checking
1917                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1918                  * in blk_mq_sched_restart(). Avoid restart code path to
1919                  * miss the new added requests to hctx->dispatch, meantime
1920                  * SCHED_RESTART is observed here.
1921                  */
1922                 smp_mb();
1923
1924                 /*
1925                  * If SCHED_RESTART was set by the caller of this function and
1926                  * it is no longer set that means that it was cleared by another
1927                  * thread and hence that a queue rerun is needed.
1928                  *
1929                  * If 'no_tag' is set, that means that we failed getting
1930                  * a driver tag with an I/O scheduler attached. If our dispatch
1931                  * waitqueue is no longer active, ensure that we run the queue
1932                  * AFTER adding our entries back to the list.
1933                  *
1934                  * If no I/O scheduler has been configured it is possible that
1935                  * the hardware queue got stopped and restarted before requests
1936                  * were pushed back onto the dispatch list. Rerun the queue to
1937                  * avoid starvation. Notes:
1938                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1939                  *   been stopped before rerunning a queue.
1940                  * - Some but not all block drivers stop a queue before
1941                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1942                  *   and dm-rq.
1943                  *
1944                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1945                  * bit is set, run queue after a delay to avoid IO stalls
1946                  * that could otherwise occur if the queue is idle.  We'll do
1947                  * similar if we couldn't get budget or couldn't lock a zone
1948                  * and SCHED_RESTART is set.
1949                  */
1950                 needs_restart = blk_mq_sched_needs_restart(hctx);
1951                 if (prep == PREP_DISPATCH_NO_BUDGET)
1952                         needs_resource = true;
1953                 if (!needs_restart ||
1954                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1955                         blk_mq_run_hw_queue(hctx, true);
1956                 else if (needs_restart && needs_resource)
1957                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1958
1959                 blk_mq_update_dispatch_busy(hctx, true);
1960                 return false;
1961         } else
1962                 blk_mq_update_dispatch_busy(hctx, false);
1963
1964         return (queued + errors) != 0;
1965 }
1966
1967 /**
1968  * __blk_mq_run_hw_queue - Run a hardware queue.
1969  * @hctx: Pointer to the hardware queue to run.
1970  *
1971  * Send pending requests to the hardware.
1972  */
1973 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1974 {
1975         /*
1976          * We can't run the queue inline with ints disabled. Ensure that
1977          * we catch bad users of this early.
1978          */
1979         WARN_ON_ONCE(in_interrupt());
1980
1981         blk_mq_run_dispatch_ops(hctx->queue,
1982                         blk_mq_sched_dispatch_requests(hctx));
1983 }
1984
1985 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1986 {
1987         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1988
1989         if (cpu >= nr_cpu_ids)
1990                 cpu = cpumask_first(hctx->cpumask);
1991         return cpu;
1992 }
1993
1994 /*
1995  * It'd be great if the workqueue API had a way to pass
1996  * in a mask and had some smarts for more clever placement.
1997  * For now we just round-robin here, switching for every
1998  * BLK_MQ_CPU_WORK_BATCH queued items.
1999  */
2000 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2001 {
2002         bool tried = false;
2003         int next_cpu = hctx->next_cpu;
2004
2005         if (hctx->queue->nr_hw_queues == 1)
2006                 return WORK_CPU_UNBOUND;
2007
2008         if (--hctx->next_cpu_batch <= 0) {
2009 select_cpu:
2010                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2011                                 cpu_online_mask);
2012                 if (next_cpu >= nr_cpu_ids)
2013                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2014                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2015         }
2016
2017         /*
2018          * Do unbound schedule if we can't find a online CPU for this hctx,
2019          * and it should only happen in the path of handling CPU DEAD.
2020          */
2021         if (!cpu_online(next_cpu)) {
2022                 if (!tried) {
2023                         tried = true;
2024                         goto select_cpu;
2025                 }
2026
2027                 /*
2028                  * Make sure to re-select CPU next time once after CPUs
2029                  * in hctx->cpumask become online again.
2030                  */
2031                 hctx->next_cpu = next_cpu;
2032                 hctx->next_cpu_batch = 1;
2033                 return WORK_CPU_UNBOUND;
2034         }
2035
2036         hctx->next_cpu = next_cpu;
2037         return next_cpu;
2038 }
2039
2040 /**
2041  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2042  * @hctx: Pointer to the hardware queue to run.
2043  * @async: If we want to run the queue asynchronously.
2044  * @msecs: Milliseconds of delay to wait before running the queue.
2045  *
2046  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2047  * with a delay of @msecs.
2048  */
2049 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2050                                         unsigned long msecs)
2051 {
2052         if (unlikely(blk_mq_hctx_stopped(hctx)))
2053                 return;
2054
2055         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2056                 int cpu = get_cpu();
2057                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2058                         __blk_mq_run_hw_queue(hctx);
2059                         put_cpu();
2060                         return;
2061                 }
2062
2063                 put_cpu();
2064         }
2065
2066         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2067                                     msecs_to_jiffies(msecs));
2068 }
2069
2070 /**
2071  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2072  * @hctx: Pointer to the hardware queue to run.
2073  * @msecs: Milliseconds of delay to wait before running the queue.
2074  *
2075  * Run a hardware queue asynchronously with a delay of @msecs.
2076  */
2077 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2078 {
2079         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2080 }
2081 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2082
2083 /**
2084  * blk_mq_run_hw_queue - Start to run a hardware queue.
2085  * @hctx: Pointer to the hardware queue to run.
2086  * @async: If we want to run the queue asynchronously.
2087  *
2088  * Check if the request queue is not in a quiesced state and if there are
2089  * pending requests to be sent. If this is true, run the queue to send requests
2090  * to hardware.
2091  */
2092 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2093 {
2094         bool need_run;
2095
2096         /*
2097          * When queue is quiesced, we may be switching io scheduler, or
2098          * updating nr_hw_queues, or other things, and we can't run queue
2099          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2100          *
2101          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2102          * quiesced.
2103          */
2104         __blk_mq_run_dispatch_ops(hctx->queue, false,
2105                 need_run = !blk_queue_quiesced(hctx->queue) &&
2106                 blk_mq_hctx_has_pending(hctx));
2107
2108         if (need_run)
2109                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2110 }
2111 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2112
2113 /*
2114  * Is the request queue handled by an IO scheduler that does not respect
2115  * hardware queues when dispatching?
2116  */
2117 static bool blk_mq_has_sqsched(struct request_queue *q)
2118 {
2119         struct elevator_queue *e = q->elevator;
2120
2121         if (e && e->type->ops.dispatch_request &&
2122             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2123                 return true;
2124         return false;
2125 }
2126
2127 /*
2128  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2129  * scheduler.
2130  */
2131 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2132 {
2133         struct blk_mq_hw_ctx *hctx;
2134
2135         /*
2136          * If the IO scheduler does not respect hardware queues when
2137          * dispatching, we just don't bother with multiple HW queues and
2138          * dispatch from hctx for the current CPU since running multiple queues
2139          * just causes lock contention inside the scheduler and pointless cache
2140          * bouncing.
2141          */
2142         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2143                                      raw_smp_processor_id());
2144         if (!blk_mq_hctx_stopped(hctx))
2145                 return hctx;
2146         return NULL;
2147 }
2148
2149 /**
2150  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2151  * @q: Pointer to the request queue to run.
2152  * @async: If we want to run the queue asynchronously.
2153  */
2154 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2155 {
2156         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2157         unsigned long i;
2158
2159         sq_hctx = NULL;
2160         if (blk_mq_has_sqsched(q))
2161                 sq_hctx = blk_mq_get_sq_hctx(q);
2162         queue_for_each_hw_ctx(q, hctx, i) {
2163                 if (blk_mq_hctx_stopped(hctx))
2164                         continue;
2165                 /*
2166                  * Dispatch from this hctx either if there's no hctx preferred
2167                  * by IO scheduler or if it has requests that bypass the
2168                  * scheduler.
2169                  */
2170                 if (!sq_hctx || sq_hctx == hctx ||
2171                     !list_empty_careful(&hctx->dispatch))
2172                         blk_mq_run_hw_queue(hctx, async);
2173         }
2174 }
2175 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2176
2177 /**
2178  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2179  * @q: Pointer to the request queue to run.
2180  * @msecs: Milliseconds of delay to wait before running the queues.
2181  */
2182 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2183 {
2184         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2185         unsigned long i;
2186
2187         sq_hctx = NULL;
2188         if (blk_mq_has_sqsched(q))
2189                 sq_hctx = blk_mq_get_sq_hctx(q);
2190         queue_for_each_hw_ctx(q, hctx, i) {
2191                 if (blk_mq_hctx_stopped(hctx))
2192                         continue;
2193                 /*
2194                  * If there is already a run_work pending, leave the
2195                  * pending delay untouched. Otherwise, a hctx can stall
2196                  * if another hctx is re-delaying the other's work
2197                  * before the work executes.
2198                  */
2199                 if (delayed_work_pending(&hctx->run_work))
2200                         continue;
2201                 /*
2202                  * Dispatch from this hctx either if there's no hctx preferred
2203                  * by IO scheduler or if it has requests that bypass the
2204                  * scheduler.
2205                  */
2206                 if (!sq_hctx || sq_hctx == hctx ||
2207                     !list_empty_careful(&hctx->dispatch))
2208                         blk_mq_delay_run_hw_queue(hctx, msecs);
2209         }
2210 }
2211 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2212
2213 /**
2214  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2215  * @q: request queue.
2216  *
2217  * The caller is responsible for serializing this function against
2218  * blk_mq_{start,stop}_hw_queue().
2219  */
2220 bool blk_mq_queue_stopped(struct request_queue *q)
2221 {
2222         struct blk_mq_hw_ctx *hctx;
2223         unsigned long i;
2224
2225         queue_for_each_hw_ctx(q, hctx, i)
2226                 if (blk_mq_hctx_stopped(hctx))
2227                         return true;
2228
2229         return false;
2230 }
2231 EXPORT_SYMBOL(blk_mq_queue_stopped);
2232
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queue() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2243 {
2244         cancel_delayed_work(&hctx->run_work);
2245
2246         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2247 }
2248 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2249
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queues() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queues(struct request_queue *q)
2260 {
2261         struct blk_mq_hw_ctx *hctx;
2262         unsigned long i;
2263
2264         queue_for_each_hw_ctx(q, hctx, i)
2265                 blk_mq_stop_hw_queue(hctx);
2266 }
2267 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2268
2269 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2270 {
2271         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272
2273         blk_mq_run_hw_queue(hctx, false);
2274 }
2275 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2276
2277 void blk_mq_start_hw_queues(struct request_queue *q)
2278 {
2279         struct blk_mq_hw_ctx *hctx;
2280         unsigned long i;
2281
2282         queue_for_each_hw_ctx(q, hctx, i)
2283                 blk_mq_start_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2286
2287 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2288 {
2289         if (!blk_mq_hctx_stopped(hctx))
2290                 return;
2291
2292         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2293         blk_mq_run_hw_queue(hctx, async);
2294 }
2295 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2296
2297 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2298 {
2299         struct blk_mq_hw_ctx *hctx;
2300         unsigned long i;
2301
2302         queue_for_each_hw_ctx(q, hctx, i)
2303                 blk_mq_start_stopped_hw_queue(hctx, async);
2304 }
2305 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2306
2307 static void blk_mq_run_work_fn(struct work_struct *work)
2308 {
2309         struct blk_mq_hw_ctx *hctx;
2310
2311         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2312
2313         /*
2314          * If we are stopped, don't run the queue.
2315          */
2316         if (blk_mq_hctx_stopped(hctx))
2317                 return;
2318
2319         __blk_mq_run_hw_queue(hctx);
2320 }
2321
2322 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2323                                             struct request *rq,
2324                                             bool at_head)
2325 {
2326         struct blk_mq_ctx *ctx = rq->mq_ctx;
2327         enum hctx_type type = hctx->type;
2328
2329         lockdep_assert_held(&ctx->lock);
2330
2331         trace_block_rq_insert(rq);
2332
2333         if (at_head)
2334                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2335         else
2336                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2337 }
2338
2339 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2340                              bool at_head)
2341 {
2342         struct blk_mq_ctx *ctx = rq->mq_ctx;
2343
2344         lockdep_assert_held(&ctx->lock);
2345
2346         __blk_mq_insert_req_list(hctx, rq, at_head);
2347         blk_mq_hctx_mark_pending(hctx, ctx);
2348 }
2349
2350 /**
2351  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2352  * @rq: Pointer to request to be inserted.
2353  * @at_head: true if the request should be inserted at the head of the list.
2354  * @run_queue: If we should run the hardware queue after inserting the request.
2355  *
2356  * Should only be used carefully, when the caller knows we want to
2357  * bypass a potential IO scheduler on the target device.
2358  */
2359 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2360                                   bool run_queue)
2361 {
2362         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2363
2364         spin_lock(&hctx->lock);
2365         if (at_head)
2366                 list_add(&rq->queuelist, &hctx->dispatch);
2367         else
2368                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2369         spin_unlock(&hctx->lock);
2370
2371         if (run_queue)
2372                 blk_mq_run_hw_queue(hctx, false);
2373 }
2374
2375 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2376                             struct list_head *list)
2377
2378 {
2379         struct request *rq;
2380         enum hctx_type type = hctx->type;
2381
2382         /*
2383          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2384          * offline now
2385          */
2386         list_for_each_entry(rq, list, queuelist) {
2387                 BUG_ON(rq->mq_ctx != ctx);
2388                 trace_block_rq_insert(rq);
2389         }
2390
2391         spin_lock(&ctx->lock);
2392         list_splice_tail_init(list, &ctx->rq_lists[type]);
2393         blk_mq_hctx_mark_pending(hctx, ctx);
2394         spin_unlock(&ctx->lock);
2395 }
2396
2397 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2398                               bool from_schedule)
2399 {
2400         if (hctx->queue->mq_ops->commit_rqs) {
2401                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2402                 hctx->queue->mq_ops->commit_rqs(hctx);
2403         }
2404         *queued = 0;
2405 }
2406
2407 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2408                 unsigned int nr_segs)
2409 {
2410         int err;
2411
2412         if (bio->bi_opf & REQ_RAHEAD)
2413                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2414
2415         rq->__sector = bio->bi_iter.bi_sector;
2416         blk_rq_bio_prep(rq, bio, nr_segs);
2417
2418         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420         WARN_ON_ONCE(err);
2421
2422         blk_account_io_start(rq);
2423 }
2424
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426                                             struct request *rq, bool last)
2427 {
2428         struct request_queue *q = rq->q;
2429         struct blk_mq_queue_data bd = {
2430                 .rq = rq,
2431                 .last = last,
2432         };
2433         blk_status_t ret;
2434
2435         /*
2436          * For OK queue, we are done. For error, caller may kill it.
2437          * Any other error (busy), just add it to our list as we
2438          * previously would have done.
2439          */
2440         ret = q->mq_ops->queue_rq(hctx, &bd);
2441         switch (ret) {
2442         case BLK_STS_OK:
2443                 blk_mq_update_dispatch_busy(hctx, false);
2444                 break;
2445         case BLK_STS_RESOURCE:
2446         case BLK_STS_DEV_RESOURCE:
2447                 blk_mq_update_dispatch_busy(hctx, true);
2448                 __blk_mq_requeue_request(rq);
2449                 break;
2450         default:
2451                 blk_mq_update_dispatch_busy(hctx, false);
2452                 break;
2453         }
2454
2455         return ret;
2456 }
2457
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459                                                 struct request *rq,
2460                                                 bool bypass_insert, bool last)
2461 {
2462         struct request_queue *q = rq->q;
2463         bool run_queue = true;
2464         int budget_token;
2465
2466         /*
2467          * RCU or SRCU read lock is needed before checking quiesced flag.
2468          *
2469          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471          * and avoid driver to try to dispatch again.
2472          */
2473         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474                 run_queue = false;
2475                 bypass_insert = false;
2476                 goto insert;
2477         }
2478
2479         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480                 goto insert;
2481
2482         budget_token = blk_mq_get_dispatch_budget(q);
2483         if (budget_token < 0)
2484                 goto insert;
2485
2486         blk_mq_set_rq_budget_token(rq, budget_token);
2487
2488         if (!blk_mq_get_driver_tag(rq)) {
2489                 blk_mq_put_dispatch_budget(q, budget_token);
2490                 goto insert;
2491         }
2492
2493         return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495         if (bypass_insert)
2496                 return BLK_STS_RESOURCE;
2497
2498         blk_mq_sched_insert_request(rq, false, run_queue, false);
2499
2500         return BLK_STS_OK;
2501 }
2502
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514                 struct request *rq)
2515 {
2516         blk_status_t ret =
2517                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2518
2519         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520                 blk_mq_request_bypass_insert(rq, false, true);
2521         else if (ret != BLK_STS_OK)
2522                 blk_mq_end_request(rq, ret);
2523 }
2524
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532         struct blk_mq_hw_ctx *hctx = NULL;
2533         struct request *rq;
2534         int queued = 0;
2535         int errors = 0;
2536
2537         while ((rq = rq_list_pop(&plug->mq_list))) {
2538                 bool last = rq_list_empty(plug->mq_list);
2539                 blk_status_t ret;
2540
2541                 if (hctx != rq->mq_hctx) {
2542                         if (hctx)
2543                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544                         hctx = rq->mq_hctx;
2545                 }
2546
2547                 ret = blk_mq_request_issue_directly(rq, last);
2548                 switch (ret) {
2549                 case BLK_STS_OK:
2550                         queued++;
2551                         break;
2552                 case BLK_STS_RESOURCE:
2553                 case BLK_STS_DEV_RESOURCE:
2554                         blk_mq_request_bypass_insert(rq, false, last);
2555                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556                         return;
2557                 default:
2558                         blk_mq_end_request(rq, ret);
2559                         errors++;
2560                         break;
2561                 }
2562         }
2563
2564         /*
2565          * If we didn't flush the entire list, we could have told the driver
2566          * there was more coming, but that turned out to be a lie.
2567          */
2568         if (errors)
2569                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573                                      struct blk_plug *plug)
2574 {
2575         if (blk_queue_quiesced(q))
2576                 return;
2577         q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582         struct blk_mq_hw_ctx *this_hctx = NULL;
2583         struct blk_mq_ctx *this_ctx = NULL;
2584         struct request *requeue_list = NULL;
2585         unsigned int depth = 0;
2586         LIST_HEAD(list);
2587
2588         do {
2589                 struct request *rq = rq_list_pop(&plug->mq_list);
2590
2591                 if (!this_hctx) {
2592                         this_hctx = rq->mq_hctx;
2593                         this_ctx = rq->mq_ctx;
2594                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595                         rq_list_add(&requeue_list, rq);
2596                         continue;
2597                 }
2598                 list_add_tail(&rq->queuelist, &list);
2599                 depth++;
2600         } while (!rq_list_empty(plug->mq_list));
2601
2602         plug->mq_list = requeue_list;
2603         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609         struct request *rq;
2610
2611         if (rq_list_empty(plug->mq_list))
2612                 return;
2613         plug->rq_count = 0;
2614
2615         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616                 struct request_queue *q;
2617
2618                 rq = rq_list_peek(&plug->mq_list);
2619                 q = rq->q;
2620
2621                 /*
2622                  * Peek first request and see if we have a ->queue_rqs() hook.
2623                  * If we do, we can dispatch the whole plug list in one go. We
2624                  * already know at this point that all requests belong to the
2625                  * same queue, caller must ensure that's the case.
2626                  *
2627                  * Since we pass off the full list to the driver at this point,
2628                  * we do not increment the active request count for the queue.
2629                  * Bypass shared tags for now because of that.
2630                  */
2631                 if (q->mq_ops->queue_rqs &&
2632                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633                         blk_mq_run_dispatch_ops(q,
2634                                 __blk_mq_flush_plug_list(q, plug));
2635                         if (rq_list_empty(plug->mq_list))
2636                                 return;
2637                 }
2638
2639                 blk_mq_run_dispatch_ops(q,
2640                                 blk_mq_plug_issue_direct(plug, false));
2641                 if (rq_list_empty(plug->mq_list))
2642                         return;
2643         }
2644
2645         do {
2646                 blk_mq_dispatch_plug_list(plug, from_schedule);
2647         } while (!rq_list_empty(plug->mq_list));
2648 }
2649
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651                 struct list_head *list)
2652 {
2653         int queued = 0;
2654         int errors = 0;
2655
2656         while (!list_empty(list)) {
2657                 blk_status_t ret;
2658                 struct request *rq = list_first_entry(list, struct request,
2659                                 queuelist);
2660
2661                 list_del_init(&rq->queuelist);
2662                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663                 if (ret != BLK_STS_OK) {
2664                         if (ret == BLK_STS_RESOURCE ||
2665                                         ret == BLK_STS_DEV_RESOURCE) {
2666                                 blk_mq_request_bypass_insert(rq, false,
2667                                                         list_empty(list));
2668                                 break;
2669                         }
2670                         blk_mq_end_request(rq, ret);
2671                         errors++;
2672                 } else
2673                         queued++;
2674         }
2675
2676         /*
2677          * If we didn't flush the entire list, we could have told
2678          * the driver there was more coming, but that turned out to
2679          * be a lie.
2680          */
2681         if ((!list_empty(list) || errors) &&
2682              hctx->queue->mq_ops->commit_rqs && queued)
2683                 hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685
2686 /*
2687  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2688  * queues. This is important for md arrays to benefit from merging
2689  * requests.
2690  */
2691 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2692 {
2693         if (plug->multiple_queues)
2694                 return BLK_MAX_REQUEST_COUNT * 2;
2695         return BLK_MAX_REQUEST_COUNT;
2696 }
2697
2698 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2699 {
2700         struct request *last = rq_list_peek(&plug->mq_list);
2701
2702         if (!plug->rq_count) {
2703                 trace_block_plug(rq->q);
2704         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2705                    (!blk_queue_nomerges(rq->q) &&
2706                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2707                 blk_mq_flush_plug_list(plug, false);
2708                 trace_block_plug(rq->q);
2709         }
2710
2711         if (!plug->multiple_queues && last && last->q != rq->q)
2712                 plug->multiple_queues = true;
2713         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2714                 plug->has_elevator = true;
2715         rq->rq_next = NULL;
2716         rq_list_add(&plug->mq_list, rq);
2717         plug->rq_count++;
2718 }
2719
2720 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2721                                      struct bio *bio, unsigned int nr_segs)
2722 {
2723         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2724                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2725                         return true;
2726                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2727                         return true;
2728         }
2729         return false;
2730 }
2731
2732 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2733                                                struct blk_plug *plug,
2734                                                struct bio *bio,
2735                                                unsigned int nsegs)
2736 {
2737         struct blk_mq_alloc_data data = {
2738                 .q              = q,
2739                 .nr_tags        = 1,
2740                 .cmd_flags      = bio->bi_opf,
2741         };
2742         struct request *rq;
2743
2744         if (unlikely(bio_queue_enter(bio)))
2745                 return NULL;
2746
2747         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2748                 goto queue_exit;
2749
2750         rq_qos_throttle(q, bio);
2751
2752         if (plug) {
2753                 data.nr_tags = plug->nr_ios;
2754                 plug->nr_ios = 1;
2755                 data.cached_rq = &plug->cached_rq;
2756         }
2757
2758         rq = __blk_mq_alloc_requests(&data);
2759         if (rq)
2760                 return rq;
2761         rq_qos_cleanup(q, bio);
2762         if (bio->bi_opf & REQ_NOWAIT)
2763                 bio_wouldblock_error(bio);
2764 queue_exit:
2765         blk_queue_exit(q);
2766         return NULL;
2767 }
2768
2769 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2770                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2771 {
2772         struct request *rq;
2773
2774         if (!plug)
2775                 return NULL;
2776         rq = rq_list_peek(&plug->cached_rq);
2777         if (!rq || rq->q != q)
2778                 return NULL;
2779
2780         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2781                 *bio = NULL;
2782                 return NULL;
2783         }
2784
2785         rq_qos_throttle(q, *bio);
2786
2787         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2788                 return NULL;
2789         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2790                 return NULL;
2791
2792         rq->cmd_flags = (*bio)->bi_opf;
2793         plug->cached_rq = rq_list_next(rq);
2794         INIT_LIST_HEAD(&rq->queuelist);
2795         return rq;
2796 }
2797
2798 /**
2799  * blk_mq_submit_bio - Create and send a request to block device.
2800  * @bio: Bio pointer.
2801  *
2802  * Builds up a request structure from @q and @bio and send to the device. The
2803  * request may not be queued directly to hardware if:
2804  * * This request can be merged with another one
2805  * * We want to place request at plug queue for possible future merging
2806  * * There is an IO scheduler active at this queue
2807  *
2808  * It will not queue the request if there is an error with the bio, or at the
2809  * request creation.
2810  */
2811 void blk_mq_submit_bio(struct bio *bio)
2812 {
2813         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2814         struct blk_plug *plug = blk_mq_plug(q, bio);
2815         const int is_sync = op_is_sync(bio->bi_opf);
2816         struct request *rq;
2817         unsigned int nr_segs = 1;
2818         blk_status_t ret;
2819
2820         blk_queue_bounce(q, &bio);
2821         if (blk_may_split(q, bio))
2822                 __blk_queue_split(q, &bio, &nr_segs);
2823
2824         if (!bio_integrity_prep(bio))
2825                 return;
2826
2827         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2828         if (!rq) {
2829                 if (!bio)
2830                         return;
2831                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2832                 if (unlikely(!rq))
2833                         return;
2834         }
2835
2836         trace_block_getrq(bio);
2837
2838         rq_qos_track(q, rq, bio);
2839
2840         blk_mq_bio_to_request(rq, bio, nr_segs);
2841
2842         ret = blk_crypto_init_request(rq);
2843         if (ret != BLK_STS_OK) {
2844                 bio->bi_status = ret;
2845                 bio_endio(bio);
2846                 blk_mq_free_request(rq);
2847                 return;
2848         }
2849
2850         if (op_is_flush(bio->bi_opf)) {
2851                 blk_insert_flush(rq);
2852                 return;
2853         }
2854
2855         if (plug)
2856                 blk_add_rq_to_plug(plug, rq);
2857         else if ((rq->rq_flags & RQF_ELV) ||
2858                  (rq->mq_hctx->dispatch_busy &&
2859                   (q->nr_hw_queues == 1 || !is_sync)))
2860                 blk_mq_sched_insert_request(rq, false, true, true);
2861         else
2862                 blk_mq_run_dispatch_ops(rq->q,
2863                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2864 }
2865
2866 #ifdef CONFIG_BLK_MQ_STACKING
2867 /**
2868  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2869  * @rq: the request being queued
2870  */
2871 blk_status_t blk_insert_cloned_request(struct request *rq)
2872 {
2873         struct request_queue *q = rq->q;
2874         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2875         blk_status_t ret;
2876
2877         if (blk_rq_sectors(rq) > max_sectors) {
2878                 /*
2879                  * SCSI device does not have a good way to return if
2880                  * Write Same/Zero is actually supported. If a device rejects
2881                  * a non-read/write command (discard, write same,etc.) the
2882                  * low-level device driver will set the relevant queue limit to
2883                  * 0 to prevent blk-lib from issuing more of the offending
2884                  * operations. Commands queued prior to the queue limit being
2885                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2886                  * errors being propagated to upper layers.
2887                  */
2888                 if (max_sectors == 0)
2889                         return BLK_STS_NOTSUPP;
2890
2891                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2892                         __func__, blk_rq_sectors(rq), max_sectors);
2893                 return BLK_STS_IOERR;
2894         }
2895
2896         /*
2897          * The queue settings related to segment counting may differ from the
2898          * original queue.
2899          */
2900         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2901         if (rq->nr_phys_segments > queue_max_segments(q)) {
2902                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2903                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2904                 return BLK_STS_IOERR;
2905         }
2906
2907         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2908                 return BLK_STS_IOERR;
2909
2910         if (blk_crypto_insert_cloned_request(rq))
2911                 return BLK_STS_IOERR;
2912
2913         blk_account_io_start(rq);
2914
2915         /*
2916          * Since we have a scheduler attached on the top device,
2917          * bypass a potential scheduler on the bottom device for
2918          * insert.
2919          */
2920         blk_mq_run_dispatch_ops(q,
2921                         ret = blk_mq_request_issue_directly(rq, true));
2922         if (ret)
2923                 blk_account_io_done(rq, ktime_get_ns());
2924         return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2927
2928 /**
2929  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2930  * @rq: the clone request to be cleaned up
2931  *
2932  * Description:
2933  *     Free all bios in @rq for a cloned request.
2934  */
2935 void blk_rq_unprep_clone(struct request *rq)
2936 {
2937         struct bio *bio;
2938
2939         while ((bio = rq->bio) != NULL) {
2940                 rq->bio = bio->bi_next;
2941
2942                 bio_put(bio);
2943         }
2944 }
2945 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2946
2947 /**
2948  * blk_rq_prep_clone - Helper function to setup clone request
2949  * @rq: the request to be setup
2950  * @rq_src: original request to be cloned
2951  * @bs: bio_set that bios for clone are allocated from
2952  * @gfp_mask: memory allocation mask for bio
2953  * @bio_ctr: setup function to be called for each clone bio.
2954  *           Returns %0 for success, non %0 for failure.
2955  * @data: private data to be passed to @bio_ctr
2956  *
2957  * Description:
2958  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2959  *     Also, pages which the original bios are pointing to are not copied
2960  *     and the cloned bios just point same pages.
2961  *     So cloned bios must be completed before original bios, which means
2962  *     the caller must complete @rq before @rq_src.
2963  */
2964 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2965                       struct bio_set *bs, gfp_t gfp_mask,
2966                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2967                       void *data)
2968 {
2969         struct bio *bio, *bio_src;
2970
2971         if (!bs)
2972                 bs = &fs_bio_set;
2973
2974         __rq_for_each_bio(bio_src, rq_src) {
2975                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2976                                       bs);
2977                 if (!bio)
2978                         goto free_and_out;
2979
2980                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2981                         goto free_and_out;
2982
2983                 if (rq->bio) {
2984                         rq->biotail->bi_next = bio;
2985                         rq->biotail = bio;
2986                 } else {
2987                         rq->bio = rq->biotail = bio;
2988                 }
2989                 bio = NULL;
2990         }
2991
2992         /* Copy attributes of the original request to the clone request. */
2993         rq->__sector = blk_rq_pos(rq_src);
2994         rq->__data_len = blk_rq_bytes(rq_src);
2995         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2996                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2997                 rq->special_vec = rq_src->special_vec;
2998         }
2999         rq->nr_phys_segments = rq_src->nr_phys_segments;
3000         rq->ioprio = rq_src->ioprio;
3001
3002         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3003                 goto free_and_out;
3004
3005         return 0;
3006
3007 free_and_out:
3008         if (bio)
3009                 bio_put(bio);
3010         blk_rq_unprep_clone(rq);
3011
3012         return -ENOMEM;
3013 }
3014 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3015 #endif /* CONFIG_BLK_MQ_STACKING */
3016
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023         if (rq->bio) {
3024                 if (list->tail)
3025                         list->tail->bi_next = rq->bio;
3026                 else
3027                         list->head = rq->bio;
3028                 list->tail = rq->biotail;
3029
3030                 rq->bio = NULL;
3031                 rq->biotail = NULL;
3032         }
3033
3034         rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037
3038 static size_t order_to_size(unsigned int order)
3039 {
3040         return (size_t)PAGE_SIZE << order;
3041 }
3042
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045                                     struct blk_mq_tags *tags)
3046 {
3047         struct page *page;
3048         unsigned long flags;
3049
3050         /* There is no need to clear a driver tags own mapping */
3051         if (drv_tags == tags)
3052                 return;
3053
3054         list_for_each_entry(page, &tags->page_list, lru) {
3055                 unsigned long start = (unsigned long)page_address(page);
3056                 unsigned long end = start + order_to_size(page->private);
3057                 int i;
3058
3059                 for (i = 0; i < drv_tags->nr_tags; i++) {
3060                         struct request *rq = drv_tags->rqs[i];
3061                         unsigned long rq_addr = (unsigned long)rq;
3062
3063                         if (rq_addr >= start && rq_addr < end) {
3064                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3065                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066                         }
3067                 }
3068         }
3069
3070         /*
3071          * Wait until all pending iteration is done.
3072          *
3073          * Request reference is cleared and it is guaranteed to be observed
3074          * after the ->lock is released.
3075          */
3076         spin_lock_irqsave(&drv_tags->lock, flags);
3077         spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081                      unsigned int hctx_idx)
3082 {
3083         struct blk_mq_tags *drv_tags;
3084         struct page *page;
3085
3086         if (list_empty(&tags->page_list))
3087                 return;
3088
3089         if (blk_mq_is_shared_tags(set->flags))
3090                 drv_tags = set->shared_tags;
3091         else
3092                 drv_tags = set->tags[hctx_idx];
3093
3094         if (tags->static_rqs && set->ops->exit_request) {
3095                 int i;
3096
3097                 for (i = 0; i < tags->nr_tags; i++) {
3098                         struct request *rq = tags->static_rqs[i];
3099
3100                         if (!rq)
3101                                 continue;
3102                         set->ops->exit_request(set, rq, hctx_idx);
3103                         tags->static_rqs[i] = NULL;
3104                 }
3105         }
3106
3107         blk_mq_clear_rq_mapping(drv_tags, tags);
3108
3109         while (!list_empty(&tags->page_list)) {
3110                 page = list_first_entry(&tags->page_list, struct page, lru);
3111                 list_del_init(&page->lru);
3112                 /*
3113                  * Remove kmemleak object previously allocated in
3114                  * blk_mq_alloc_rqs().
3115                  */
3116                 kmemleak_free(page_address(page));
3117                 __free_pages(page, page->private);
3118         }
3119 }
3120
3121 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3122 {
3123         kfree(tags->rqs);
3124         tags->rqs = NULL;
3125         kfree(tags->static_rqs);
3126         tags->static_rqs = NULL;
3127
3128         blk_mq_free_tags(tags);
3129 }
3130
3131 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3132                 unsigned int hctx_idx)
3133 {
3134         int i;
3135
3136         for (i = 0; i < set->nr_maps; i++) {
3137                 unsigned int start = set->map[i].queue_offset;
3138                 unsigned int end = start + set->map[i].nr_queues;
3139
3140                 if (hctx_idx >= start && hctx_idx < end)
3141                         break;
3142         }
3143
3144         if (i >= set->nr_maps)
3145                 i = HCTX_TYPE_DEFAULT;
3146
3147         return i;
3148 }
3149
3150 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3151                 unsigned int hctx_idx)
3152 {
3153         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3154
3155         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3156 }
3157
3158 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3159                                                unsigned int hctx_idx,
3160                                                unsigned int nr_tags,
3161                                                unsigned int reserved_tags)
3162 {
3163         int node = blk_mq_get_hctx_node(set, hctx_idx);
3164         struct blk_mq_tags *tags;
3165
3166         if (node == NUMA_NO_NODE)
3167                 node = set->numa_node;
3168
3169         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3170                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3171         if (!tags)
3172                 return NULL;
3173
3174         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3175                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3176                                  node);
3177         if (!tags->rqs) {
3178                 blk_mq_free_tags(tags);
3179                 return NULL;
3180         }
3181
3182         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3183                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3184                                         node);
3185         if (!tags->static_rqs) {
3186                 kfree(tags->rqs);
3187                 blk_mq_free_tags(tags);
3188                 return NULL;
3189         }
3190
3191         return tags;
3192 }
3193
3194 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3195                                unsigned int hctx_idx, int node)
3196 {
3197         int ret;
3198
3199         if (set->ops->init_request) {
3200                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3201                 if (ret)
3202                         return ret;
3203         }
3204
3205         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3206         return 0;
3207 }
3208
3209 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3210                             struct blk_mq_tags *tags,
3211                             unsigned int hctx_idx, unsigned int depth)
3212 {
3213         unsigned int i, j, entries_per_page, max_order = 4;
3214         int node = blk_mq_get_hctx_node(set, hctx_idx);
3215         size_t rq_size, left;
3216
3217         if (node == NUMA_NO_NODE)
3218                 node = set->numa_node;
3219
3220         INIT_LIST_HEAD(&tags->page_list);
3221
3222         /*
3223          * rq_size is the size of the request plus driver payload, rounded
3224          * to the cacheline size
3225          */
3226         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3227                                 cache_line_size());
3228         left = rq_size * depth;
3229
3230         for (i = 0; i < depth; ) {
3231                 int this_order = max_order;
3232                 struct page *page;
3233                 int to_do;
3234                 void *p;
3235
3236                 while (this_order && left < order_to_size(this_order - 1))
3237                         this_order--;
3238
3239                 do {
3240                         page = alloc_pages_node(node,
3241                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3242                                 this_order);
3243                         if (page)
3244                                 break;
3245                         if (!this_order--)
3246                                 break;
3247                         if (order_to_size(this_order) < rq_size)
3248                                 break;
3249                 } while (1);
3250
3251                 if (!page)
3252                         goto fail;
3253
3254                 page->private = this_order;
3255                 list_add_tail(&page->lru, &tags->page_list);
3256
3257                 p = page_address(page);
3258                 /*
3259                  * Allow kmemleak to scan these pages as they contain pointers
3260                  * to additional allocations like via ops->init_request().
3261                  */
3262                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3263                 entries_per_page = order_to_size(this_order) / rq_size;
3264                 to_do = min(entries_per_page, depth - i);
3265                 left -= to_do * rq_size;
3266                 for (j = 0; j < to_do; j++) {
3267                         struct request *rq = p;
3268
3269                         tags->static_rqs[i] = rq;
3270                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3271                                 tags->static_rqs[i] = NULL;
3272                                 goto fail;
3273                         }
3274
3275                         p += rq_size;
3276                         i++;
3277                 }
3278         }
3279         return 0;
3280
3281 fail:
3282         blk_mq_free_rqs(set, tags, hctx_idx);
3283         return -ENOMEM;
3284 }
3285
3286 struct rq_iter_data {
3287         struct blk_mq_hw_ctx *hctx;
3288         bool has_rq;
3289 };
3290
3291 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3292 {
3293         struct rq_iter_data *iter_data = data;
3294
3295         if (rq->mq_hctx != iter_data->hctx)
3296                 return true;
3297         iter_data->has_rq = true;
3298         return false;
3299 }
3300
3301 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3302 {
3303         struct blk_mq_tags *tags = hctx->sched_tags ?
3304                         hctx->sched_tags : hctx->tags;
3305         struct rq_iter_data data = {
3306                 .hctx   = hctx,
3307         };
3308
3309         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3310         return data.has_rq;
3311 }
3312
3313 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3314                 struct blk_mq_hw_ctx *hctx)
3315 {
3316         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3317                 return false;
3318         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3319                 return false;
3320         return true;
3321 }
3322
3323 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3324 {
3325         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3326                         struct blk_mq_hw_ctx, cpuhp_online);
3327
3328         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3329             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3330                 return 0;
3331
3332         /*
3333          * Prevent new request from being allocated on the current hctx.
3334          *
3335          * The smp_mb__after_atomic() Pairs with the implied barrier in
3336          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3337          * seen once we return from the tag allocator.
3338          */
3339         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3340         smp_mb__after_atomic();
3341
3342         /*
3343          * Try to grab a reference to the queue and wait for any outstanding
3344          * requests.  If we could not grab a reference the queue has been
3345          * frozen and there are no requests.
3346          */
3347         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3348                 while (blk_mq_hctx_has_requests(hctx))
3349                         msleep(5);
3350                 percpu_ref_put(&hctx->queue->q_usage_counter);
3351         }
3352
3353         return 0;
3354 }
3355
3356 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3357 {
3358         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3359                         struct blk_mq_hw_ctx, cpuhp_online);
3360
3361         if (cpumask_test_cpu(cpu, hctx->cpumask))
3362                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3363         return 0;
3364 }
3365
3366 /*
3367  * 'cpu' is going away. splice any existing rq_list entries from this
3368  * software queue to the hw queue dispatch list, and ensure that it
3369  * gets run.
3370  */
3371 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3372 {
3373         struct blk_mq_hw_ctx *hctx;
3374         struct blk_mq_ctx *ctx;
3375         LIST_HEAD(tmp);
3376         enum hctx_type type;
3377
3378         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3379         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3380                 return 0;
3381
3382         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3383         type = hctx->type;
3384
3385         spin_lock(&ctx->lock);
3386         if (!list_empty(&ctx->rq_lists[type])) {
3387                 list_splice_init(&ctx->rq_lists[type], &tmp);
3388                 blk_mq_hctx_clear_pending(hctx, ctx);
3389         }
3390         spin_unlock(&ctx->lock);
3391
3392         if (list_empty(&tmp))
3393                 return 0;
3394
3395         spin_lock(&hctx->lock);
3396         list_splice_tail_init(&tmp, &hctx->dispatch);
3397         spin_unlock(&hctx->lock);
3398
3399         blk_mq_run_hw_queue(hctx, true);
3400         return 0;
3401 }
3402
3403 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3404 {
3405         if (!(hctx->flags & BLK_MQ_F_STACKING))
3406                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3407                                                     &hctx->cpuhp_online);
3408         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3409                                             &hctx->cpuhp_dead);
3410 }
3411
3412 /*
3413  * Before freeing hw queue, clearing the flush request reference in
3414  * tags->rqs[] for avoiding potential UAF.
3415  */
3416 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3417                 unsigned int queue_depth, struct request *flush_rq)
3418 {
3419         int i;
3420         unsigned long flags;
3421
3422         /* The hw queue may not be mapped yet */
3423         if (!tags)
3424                 return;
3425
3426         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3427
3428         for (i = 0; i < queue_depth; i++)
3429                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3430
3431         /*
3432          * Wait until all pending iteration is done.
3433          *
3434          * Request reference is cleared and it is guaranteed to be observed
3435          * after the ->lock is released.
3436          */
3437         spin_lock_irqsave(&tags->lock, flags);
3438         spin_unlock_irqrestore(&tags->lock, flags);
3439 }
3440
3441 /* hctx->ctxs will be freed in queue's release handler */
3442 static void blk_mq_exit_hctx(struct request_queue *q,
3443                 struct blk_mq_tag_set *set,
3444                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3445 {
3446         struct request *flush_rq = hctx->fq->flush_rq;
3447
3448         if (blk_mq_hw_queue_mapped(hctx))
3449                 blk_mq_tag_idle(hctx);
3450
3451         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3452                         set->queue_depth, flush_rq);
3453         if (set->ops->exit_request)
3454                 set->ops->exit_request(set, flush_rq, hctx_idx);
3455
3456         if (set->ops->exit_hctx)
3457                 set->ops->exit_hctx(hctx, hctx_idx);
3458
3459         blk_mq_remove_cpuhp(hctx);
3460
3461         xa_erase(&q->hctx_table, hctx_idx);
3462
3463         spin_lock(&q->unused_hctx_lock);
3464         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3465         spin_unlock(&q->unused_hctx_lock);
3466 }
3467
3468 static void blk_mq_exit_hw_queues(struct request_queue *q,
3469                 struct blk_mq_tag_set *set, int nr_queue)
3470 {
3471         struct blk_mq_hw_ctx *hctx;
3472         unsigned long i;
3473
3474         queue_for_each_hw_ctx(q, hctx, i) {
3475                 if (i == nr_queue)
3476                         break;
3477                 blk_mq_exit_hctx(q, set, hctx, i);
3478         }
3479 }
3480
3481 static int blk_mq_init_hctx(struct request_queue *q,
3482                 struct blk_mq_tag_set *set,
3483                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3484 {
3485         hctx->queue_num = hctx_idx;
3486
3487         if (!(hctx->flags & BLK_MQ_F_STACKING))
3488                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3489                                 &hctx->cpuhp_online);
3490         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3491
3492         hctx->tags = set->tags[hctx_idx];
3493
3494         if (set->ops->init_hctx &&
3495             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3496                 goto unregister_cpu_notifier;
3497
3498         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3499                                 hctx->numa_node))
3500                 goto exit_hctx;
3501
3502         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3503                 goto exit_flush_rq;
3504
3505         return 0;
3506
3507  exit_flush_rq:
3508         if (set->ops->exit_request)
3509                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3510  exit_hctx:
3511         if (set->ops->exit_hctx)
3512                 set->ops->exit_hctx(hctx, hctx_idx);
3513  unregister_cpu_notifier:
3514         blk_mq_remove_cpuhp(hctx);
3515         return -1;
3516 }
3517
3518 static struct blk_mq_hw_ctx *
3519 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3520                 int node)
3521 {
3522         struct blk_mq_hw_ctx *hctx;
3523         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3524
3525         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3526         if (!hctx)
3527                 goto fail_alloc_hctx;
3528
3529         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3530                 goto free_hctx;
3531
3532         atomic_set(&hctx->nr_active, 0);
3533         if (node == NUMA_NO_NODE)
3534                 node = set->numa_node;
3535         hctx->numa_node = node;
3536
3537         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3538         spin_lock_init(&hctx->lock);
3539         INIT_LIST_HEAD(&hctx->dispatch);
3540         hctx->queue = q;
3541         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3542
3543         INIT_LIST_HEAD(&hctx->hctx_list);
3544
3545         /*
3546          * Allocate space for all possible cpus to avoid allocation at
3547          * runtime
3548          */
3549         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3550                         gfp, node);
3551         if (!hctx->ctxs)
3552                 goto free_cpumask;
3553
3554         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3555                                 gfp, node, false, false))
3556                 goto free_ctxs;
3557         hctx->nr_ctx = 0;
3558
3559         spin_lock_init(&hctx->dispatch_wait_lock);
3560         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3561         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3562
3563         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3564         if (!hctx->fq)
3565                 goto free_bitmap;
3566
3567         blk_mq_hctx_kobj_init(hctx);
3568
3569         return hctx;
3570
3571  free_bitmap:
3572         sbitmap_free(&hctx->ctx_map);
3573  free_ctxs:
3574         kfree(hctx->ctxs);
3575  free_cpumask:
3576         free_cpumask_var(hctx->cpumask);
3577  free_hctx:
3578         kfree(hctx);
3579  fail_alloc_hctx:
3580         return NULL;
3581 }
3582
3583 static void blk_mq_init_cpu_queues(struct request_queue *q,
3584                                    unsigned int nr_hw_queues)
3585 {
3586         struct blk_mq_tag_set *set = q->tag_set;
3587         unsigned int i, j;
3588
3589         for_each_possible_cpu(i) {
3590                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3591                 struct blk_mq_hw_ctx *hctx;
3592                 int k;
3593
3594                 __ctx->cpu = i;
3595                 spin_lock_init(&__ctx->lock);
3596                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3597                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3598
3599                 __ctx->queue = q;
3600
3601                 /*
3602                  * Set local node, IFF we have more than one hw queue. If
3603                  * not, we remain on the home node of the device
3604                  */
3605                 for (j = 0; j < set->nr_maps; j++) {
3606                         hctx = blk_mq_map_queue_type(q, j, i);
3607                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3608                                 hctx->numa_node = cpu_to_node(i);
3609                 }
3610         }
3611 }
3612
3613 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3614                                              unsigned int hctx_idx,
3615                                              unsigned int depth)
3616 {
3617         struct blk_mq_tags *tags;
3618         int ret;
3619
3620         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3621         if (!tags)
3622                 return NULL;
3623
3624         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3625         if (ret) {
3626                 blk_mq_free_rq_map(tags);
3627                 return NULL;
3628         }
3629
3630         return tags;
3631 }
3632
3633 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3634                                        int hctx_idx)
3635 {
3636         if (blk_mq_is_shared_tags(set->flags)) {
3637                 set->tags[hctx_idx] = set->shared_tags;
3638
3639                 return true;
3640         }
3641
3642         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3643                                                        set->queue_depth);
3644
3645         return set->tags[hctx_idx];
3646 }
3647
3648 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3649                              struct blk_mq_tags *tags,
3650                              unsigned int hctx_idx)
3651 {
3652         if (tags) {
3653                 blk_mq_free_rqs(set, tags, hctx_idx);
3654                 blk_mq_free_rq_map(tags);
3655         }
3656 }
3657
3658 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659                                       unsigned int hctx_idx)
3660 {
3661         if (!blk_mq_is_shared_tags(set->flags))
3662                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3663
3664         set->tags[hctx_idx] = NULL;
3665 }
3666
3667 static void blk_mq_map_swqueue(struct request_queue *q)
3668 {
3669         unsigned int j, hctx_idx;
3670         unsigned long i;
3671         struct blk_mq_hw_ctx *hctx;
3672         struct blk_mq_ctx *ctx;
3673         struct blk_mq_tag_set *set = q->tag_set;
3674
3675         queue_for_each_hw_ctx(q, hctx, i) {
3676                 cpumask_clear(hctx->cpumask);
3677                 hctx->nr_ctx = 0;
3678                 hctx->dispatch_from = NULL;
3679         }
3680
3681         /*
3682          * Map software to hardware queues.
3683          *
3684          * If the cpu isn't present, the cpu is mapped to first hctx.
3685          */
3686         for_each_possible_cpu(i) {
3687
3688                 ctx = per_cpu_ptr(q->queue_ctx, i);
3689                 for (j = 0; j < set->nr_maps; j++) {
3690                         if (!set->map[j].nr_queues) {
3691                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3692                                                 HCTX_TYPE_DEFAULT, i);
3693                                 continue;
3694                         }
3695                         hctx_idx = set->map[j].mq_map[i];
3696                         /* unmapped hw queue can be remapped after CPU topo changed */
3697                         if (!set->tags[hctx_idx] &&
3698                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3699                                 /*
3700                                  * If tags initialization fail for some hctx,
3701                                  * that hctx won't be brought online.  In this
3702                                  * case, remap the current ctx to hctx[0] which
3703                                  * is guaranteed to always have tags allocated
3704                                  */
3705                                 set->map[j].mq_map[i] = 0;
3706                         }
3707
3708                         hctx = blk_mq_map_queue_type(q, j, i);
3709                         ctx->hctxs[j] = hctx;
3710                         /*
3711                          * If the CPU is already set in the mask, then we've
3712                          * mapped this one already. This can happen if
3713                          * devices share queues across queue maps.
3714                          */
3715                         if (cpumask_test_cpu(i, hctx->cpumask))
3716                                 continue;
3717
3718                         cpumask_set_cpu(i, hctx->cpumask);
3719                         hctx->type = j;
3720                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3721                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3722
3723                         /*
3724                          * If the nr_ctx type overflows, we have exceeded the
3725                          * amount of sw queues we can support.
3726                          */
3727                         BUG_ON(!hctx->nr_ctx);
3728                 }
3729
3730                 for (; j < HCTX_MAX_TYPES; j++)
3731                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3732                                         HCTX_TYPE_DEFAULT, i);
3733         }
3734
3735         queue_for_each_hw_ctx(q, hctx, i) {
3736                 /*
3737                  * If no software queues are mapped to this hardware queue,
3738                  * disable it and free the request entries.
3739                  */
3740                 if (!hctx->nr_ctx) {
3741                         /* Never unmap queue 0.  We need it as a
3742                          * fallback in case of a new remap fails
3743                          * allocation
3744                          */
3745                         if (i)
3746                                 __blk_mq_free_map_and_rqs(set, i);
3747
3748                         hctx->tags = NULL;
3749                         continue;
3750                 }
3751
3752                 hctx->tags = set->tags[i];
3753                 WARN_ON(!hctx->tags);
3754
3755                 /*
3756                  * Set the map size to the number of mapped software queues.
3757                  * This is more accurate and more efficient than looping
3758                  * over all possibly mapped software queues.
3759                  */
3760                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3761
3762                 /*
3763                  * Initialize batch roundrobin counts
3764                  */
3765                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3766                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3767         }
3768 }
3769
3770 /*
3771  * Caller needs to ensure that we're either frozen/quiesced, or that
3772  * the queue isn't live yet.
3773  */
3774 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3775 {
3776         struct blk_mq_hw_ctx *hctx;
3777         unsigned long i;
3778
3779         queue_for_each_hw_ctx(q, hctx, i) {
3780                 if (shared) {
3781                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3782                 } else {
3783                         blk_mq_tag_idle(hctx);
3784                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3785                 }
3786         }
3787 }
3788
3789 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3790                                          bool shared)
3791 {
3792         struct request_queue *q;
3793
3794         lockdep_assert_held(&set->tag_list_lock);
3795
3796         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3797                 blk_mq_freeze_queue(q);
3798                 queue_set_hctx_shared(q, shared);
3799                 blk_mq_unfreeze_queue(q);
3800         }
3801 }
3802
3803 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3804 {
3805         struct blk_mq_tag_set *set = q->tag_set;
3806
3807         mutex_lock(&set->tag_list_lock);
3808         list_del(&q->tag_set_list);
3809         if (list_is_singular(&set->tag_list)) {
3810                 /* just transitioned to unshared */
3811                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3812                 /* update existing queue */
3813                 blk_mq_update_tag_set_shared(set, false);
3814         }
3815         mutex_unlock(&set->tag_list_lock);
3816         INIT_LIST_HEAD(&q->tag_set_list);
3817 }
3818
3819 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3820                                      struct request_queue *q)
3821 {
3822         mutex_lock(&set->tag_list_lock);
3823
3824         /*
3825          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3826          */
3827         if (!list_empty(&set->tag_list) &&
3828             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3829                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3830                 /* update existing queue */
3831                 blk_mq_update_tag_set_shared(set, true);
3832         }
3833         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3834                 queue_set_hctx_shared(q, true);
3835         list_add_tail(&q->tag_set_list, &set->tag_list);
3836
3837         mutex_unlock(&set->tag_list_lock);
3838 }
3839
3840 /* All allocations will be freed in release handler of q->mq_kobj */
3841 static int blk_mq_alloc_ctxs(struct request_queue *q)
3842 {
3843         struct blk_mq_ctxs *ctxs;
3844         int cpu;
3845
3846         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3847         if (!ctxs)
3848                 return -ENOMEM;
3849
3850         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3851         if (!ctxs->queue_ctx)
3852                 goto fail;
3853
3854         for_each_possible_cpu(cpu) {
3855                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3856                 ctx->ctxs = ctxs;
3857         }
3858
3859         q->mq_kobj = &ctxs->kobj;
3860         q->queue_ctx = ctxs->queue_ctx;
3861
3862         return 0;
3863  fail:
3864         kfree(ctxs);
3865         return -ENOMEM;
3866 }
3867
3868 /*
3869  * It is the actual release handler for mq, but we do it from
3870  * request queue's release handler for avoiding use-after-free
3871  * and headache because q->mq_kobj shouldn't have been introduced,
3872  * but we can't group ctx/kctx kobj without it.
3873  */
3874 void blk_mq_release(struct request_queue *q)
3875 {
3876         struct blk_mq_hw_ctx *hctx, *next;
3877         unsigned long i;
3878
3879         queue_for_each_hw_ctx(q, hctx, i)
3880                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3881
3882         /* all hctx are in .unused_hctx_list now */
3883         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3884                 list_del_init(&hctx->hctx_list);
3885                 kobject_put(&hctx->kobj);
3886         }
3887
3888         xa_destroy(&q->hctx_table);
3889
3890         /*
3891          * release .mq_kobj and sw queue's kobject now because
3892          * both share lifetime with request queue.
3893          */
3894         blk_mq_sysfs_deinit(q);
3895 }
3896
3897 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3898                 void *queuedata)
3899 {
3900         struct request_queue *q;
3901         int ret;
3902
3903         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3904         if (!q)
3905                 return ERR_PTR(-ENOMEM);
3906         q->queuedata = queuedata;
3907         ret = blk_mq_init_allocated_queue(set, q);
3908         if (ret) {
3909                 blk_cleanup_queue(q);
3910                 return ERR_PTR(ret);
3911         }
3912         return q;
3913 }
3914
3915 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3916 {
3917         return blk_mq_init_queue_data(set, NULL);
3918 }
3919 EXPORT_SYMBOL(blk_mq_init_queue);
3920
3921 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3922                 struct lock_class_key *lkclass)
3923 {
3924         struct request_queue *q;
3925         struct gendisk *disk;
3926
3927         q = blk_mq_init_queue_data(set, queuedata);
3928         if (IS_ERR(q))
3929                 return ERR_CAST(q);
3930
3931         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3932         if (!disk) {
3933                 blk_cleanup_queue(q);
3934                 return ERR_PTR(-ENOMEM);
3935         }
3936         return disk;
3937 }
3938 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3939
3940 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3941                 struct blk_mq_tag_set *set, struct request_queue *q,
3942                 int hctx_idx, int node)
3943 {
3944         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3945
3946         /* reuse dead hctx first */
3947         spin_lock(&q->unused_hctx_lock);
3948         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3949                 if (tmp->numa_node == node) {
3950                         hctx = tmp;
3951                         break;
3952                 }
3953         }
3954         if (hctx)
3955                 list_del_init(&hctx->hctx_list);
3956         spin_unlock(&q->unused_hctx_lock);
3957
3958         if (!hctx)
3959                 hctx = blk_mq_alloc_hctx(q, set, node);
3960         if (!hctx)
3961                 goto fail;
3962
3963         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3964                 goto free_hctx;
3965
3966         return hctx;
3967
3968  free_hctx:
3969         kobject_put(&hctx->kobj);
3970  fail:
3971         return NULL;
3972 }
3973
3974 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3975                                                 struct request_queue *q)
3976 {
3977         struct blk_mq_hw_ctx *hctx;
3978         unsigned long i, j;
3979
3980         /* protect against switching io scheduler  */
3981         mutex_lock(&q->sysfs_lock);
3982         for (i = 0; i < set->nr_hw_queues; i++) {
3983                 int old_node;
3984                 int node = blk_mq_get_hctx_node(set, i);
3985                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3986
3987                 if (old_hctx) {
3988                         old_node = old_hctx->numa_node;
3989                         blk_mq_exit_hctx(q, set, old_hctx, i);
3990                 }
3991
3992                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3993                         if (!old_hctx)
3994                                 break;
3995                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3996                                         node, old_node);
3997                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3998                         WARN_ON_ONCE(!hctx);
3999                 }
4000         }
4001         /*
4002          * Increasing nr_hw_queues fails. Free the newly allocated
4003          * hctxs and keep the previous q->nr_hw_queues.
4004          */
4005         if (i != set->nr_hw_queues) {
4006                 j = q->nr_hw_queues;
4007         } else {
4008                 j = i;
4009                 q->nr_hw_queues = set->nr_hw_queues;
4010         }
4011
4012         xa_for_each_start(&q->hctx_table, j, hctx, j)
4013                 blk_mq_exit_hctx(q, set, hctx, j);
4014         mutex_unlock(&q->sysfs_lock);
4015 }
4016
4017 static void blk_mq_update_poll_flag(struct request_queue *q)
4018 {
4019         struct blk_mq_tag_set *set = q->tag_set;
4020
4021         if (set->nr_maps > HCTX_TYPE_POLL &&
4022             set->map[HCTX_TYPE_POLL].nr_queues)
4023                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4024         else
4025                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4026 }
4027
4028 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4029                 struct request_queue *q)
4030 {
4031         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4032                         !!(set->flags & BLK_MQ_F_BLOCKING));
4033
4034         /* mark the queue as mq asap */
4035         q->mq_ops = set->ops;
4036
4037         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4038                                              blk_mq_poll_stats_bkt,
4039                                              BLK_MQ_POLL_STATS_BKTS, q);
4040         if (!q->poll_cb)
4041                 goto err_exit;
4042
4043         if (blk_mq_alloc_ctxs(q))
4044                 goto err_poll;
4045
4046         /* init q->mq_kobj and sw queues' kobjects */
4047         blk_mq_sysfs_init(q);
4048
4049         INIT_LIST_HEAD(&q->unused_hctx_list);
4050         spin_lock_init(&q->unused_hctx_lock);
4051
4052         xa_init(&q->hctx_table);
4053
4054         blk_mq_realloc_hw_ctxs(set, q);
4055         if (!q->nr_hw_queues)
4056                 goto err_hctxs;
4057
4058         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4059         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4060
4061         q->tag_set = set;
4062
4063         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4064         blk_mq_update_poll_flag(q);
4065
4066         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4067         INIT_LIST_HEAD(&q->requeue_list);
4068         spin_lock_init(&q->requeue_lock);
4069
4070         q->nr_requests = set->queue_depth;
4071
4072         /*
4073          * Default to classic polling
4074          */
4075         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4076
4077         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4078         blk_mq_add_queue_tag_set(set, q);
4079         blk_mq_map_swqueue(q);
4080         return 0;
4081
4082 err_hctxs:
4083         xa_destroy(&q->hctx_table);
4084         q->nr_hw_queues = 0;
4085         blk_mq_sysfs_deinit(q);
4086 err_poll:
4087         blk_stat_free_callback(q->poll_cb);
4088         q->poll_cb = NULL;
4089 err_exit:
4090         q->mq_ops = NULL;
4091         return -ENOMEM;
4092 }
4093 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4094
4095 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4096 void blk_mq_exit_queue(struct request_queue *q)
4097 {
4098         struct blk_mq_tag_set *set = q->tag_set;
4099
4100         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4101         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4102         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4103         blk_mq_del_queue_tag_set(q);
4104 }
4105
4106 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4107 {
4108         int i;
4109
4110         if (blk_mq_is_shared_tags(set->flags)) {
4111                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4112                                                 BLK_MQ_NO_HCTX_IDX,
4113                                                 set->queue_depth);
4114                 if (!set->shared_tags)
4115                         return -ENOMEM;
4116         }
4117
4118         for (i = 0; i < set->nr_hw_queues; i++) {
4119                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4120                         goto out_unwind;
4121                 cond_resched();
4122         }
4123
4124         return 0;
4125
4126 out_unwind:
4127         while (--i >= 0)
4128                 __blk_mq_free_map_and_rqs(set, i);
4129
4130         if (blk_mq_is_shared_tags(set->flags)) {
4131                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4132                                         BLK_MQ_NO_HCTX_IDX);
4133         }
4134
4135         return -ENOMEM;
4136 }
4137
4138 /*
4139  * Allocate the request maps associated with this tag_set. Note that this
4140  * may reduce the depth asked for, if memory is tight. set->queue_depth
4141  * will be updated to reflect the allocated depth.
4142  */
4143 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4144 {
4145         unsigned int depth;
4146         int err;
4147
4148         depth = set->queue_depth;
4149         do {
4150                 err = __blk_mq_alloc_rq_maps(set);
4151                 if (!err)
4152                         break;
4153
4154                 set->queue_depth >>= 1;
4155                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4156                         err = -ENOMEM;
4157                         break;
4158                 }
4159         } while (set->queue_depth);
4160
4161         if (!set->queue_depth || err) {
4162                 pr_err("blk-mq: failed to allocate request map\n");
4163                 return -ENOMEM;
4164         }
4165
4166         if (depth != set->queue_depth)
4167                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4168                                                 depth, set->queue_depth);
4169
4170         return 0;
4171 }
4172
4173 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4174 {
4175         /*
4176          * blk_mq_map_queues() and multiple .map_queues() implementations
4177          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4178          * number of hardware queues.
4179          */
4180         if (set->nr_maps == 1)
4181                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4182
4183         if (set->ops->map_queues && !is_kdump_kernel()) {
4184                 int i;
4185
4186                 /*
4187                  * transport .map_queues is usually done in the following
4188                  * way:
4189                  *
4190                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4191                  *      mask = get_cpu_mask(queue)
4192                  *      for_each_cpu(cpu, mask)
4193                  *              set->map[x].mq_map[cpu] = queue;
4194                  * }
4195                  *
4196                  * When we need to remap, the table has to be cleared for
4197                  * killing stale mapping since one CPU may not be mapped
4198                  * to any hw queue.
4199                  */
4200                 for (i = 0; i < set->nr_maps; i++)
4201                         blk_mq_clear_mq_map(&set->map[i]);
4202
4203                 return set->ops->map_queues(set);
4204         } else {
4205                 BUG_ON(set->nr_maps > 1);
4206                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4207         }
4208 }
4209
4210 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4211                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4212 {
4213         struct blk_mq_tags **new_tags;
4214
4215         if (cur_nr_hw_queues >= new_nr_hw_queues)
4216                 return 0;
4217
4218         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4219                                 GFP_KERNEL, set->numa_node);
4220         if (!new_tags)
4221                 return -ENOMEM;
4222
4223         if (set->tags)
4224                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4225                        sizeof(*set->tags));
4226         kfree(set->tags);
4227         set->tags = new_tags;
4228         set->nr_hw_queues = new_nr_hw_queues;
4229
4230         return 0;
4231 }
4232
4233 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4234                                 int new_nr_hw_queues)
4235 {
4236         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4237 }
4238
4239 /*
4240  * Alloc a tag set to be associated with one or more request queues.
4241  * May fail with EINVAL for various error conditions. May adjust the
4242  * requested depth down, if it's too large. In that case, the set
4243  * value will be stored in set->queue_depth.
4244  */
4245 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4246 {
4247         int i, ret;
4248
4249         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4250
4251         if (!set->nr_hw_queues)
4252                 return -EINVAL;
4253         if (!set->queue_depth)
4254                 return -EINVAL;
4255         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4256                 return -EINVAL;
4257
4258         if (!set->ops->queue_rq)
4259                 return -EINVAL;
4260
4261         if (!set->ops->get_budget ^ !set->ops->put_budget)
4262                 return -EINVAL;
4263
4264         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4265                 pr_info("blk-mq: reduced tag depth to %u\n",
4266                         BLK_MQ_MAX_DEPTH);
4267                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4268         }
4269
4270         if (!set->nr_maps)
4271                 set->nr_maps = 1;
4272         else if (set->nr_maps > HCTX_MAX_TYPES)
4273                 return -EINVAL;
4274
4275         /*
4276          * If a crashdump is active, then we are potentially in a very
4277          * memory constrained environment. Limit us to 1 queue and
4278          * 64 tags to prevent using too much memory.
4279          */
4280         if (is_kdump_kernel()) {
4281                 set->nr_hw_queues = 1;
4282                 set->nr_maps = 1;
4283                 set->queue_depth = min(64U, set->queue_depth);
4284         }
4285         /*
4286          * There is no use for more h/w queues than cpus if we just have
4287          * a single map
4288          */
4289         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4290                 set->nr_hw_queues = nr_cpu_ids;
4291
4292         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4293                 return -ENOMEM;
4294
4295         ret = -ENOMEM;
4296         for (i = 0; i < set->nr_maps; i++) {
4297                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4298                                                   sizeof(set->map[i].mq_map[0]),
4299                                                   GFP_KERNEL, set->numa_node);
4300                 if (!set->map[i].mq_map)
4301                         goto out_free_mq_map;
4302                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4303         }
4304
4305         ret = blk_mq_update_queue_map(set);
4306         if (ret)
4307                 goto out_free_mq_map;
4308
4309         ret = blk_mq_alloc_set_map_and_rqs(set);
4310         if (ret)
4311                 goto out_free_mq_map;
4312
4313         mutex_init(&set->tag_list_lock);
4314         INIT_LIST_HEAD(&set->tag_list);
4315
4316         return 0;
4317
4318 out_free_mq_map:
4319         for (i = 0; i < set->nr_maps; i++) {
4320                 kfree(set->map[i].mq_map);
4321                 set->map[i].mq_map = NULL;
4322         }
4323         kfree(set->tags);
4324         set->tags = NULL;
4325         return ret;
4326 }
4327 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4328
4329 /* allocate and initialize a tagset for a simple single-queue device */
4330 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4331                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4332                 unsigned int set_flags)
4333 {
4334         memset(set, 0, sizeof(*set));
4335         set->ops = ops;
4336         set->nr_hw_queues = 1;
4337         set->nr_maps = 1;
4338         set->queue_depth = queue_depth;
4339         set->numa_node = NUMA_NO_NODE;
4340         set->flags = set_flags;
4341         return blk_mq_alloc_tag_set(set);
4342 }
4343 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4344
4345 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4346 {
4347         int i, j;
4348
4349         for (i = 0; i < set->nr_hw_queues; i++)
4350                 __blk_mq_free_map_and_rqs(set, i);
4351
4352         if (blk_mq_is_shared_tags(set->flags)) {
4353                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4354                                         BLK_MQ_NO_HCTX_IDX);
4355         }
4356
4357         for (j = 0; j < set->nr_maps; j++) {
4358                 kfree(set->map[j].mq_map);
4359                 set->map[j].mq_map = NULL;
4360         }
4361
4362         kfree(set->tags);
4363         set->tags = NULL;
4364 }
4365 EXPORT_SYMBOL(blk_mq_free_tag_set);
4366
4367 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4368 {
4369         struct blk_mq_tag_set *set = q->tag_set;
4370         struct blk_mq_hw_ctx *hctx;
4371         int ret;
4372         unsigned long i;
4373
4374         if (!set)
4375                 return -EINVAL;
4376
4377         if (q->nr_requests == nr)
4378                 return 0;
4379
4380         blk_mq_freeze_queue(q);
4381         blk_mq_quiesce_queue(q);
4382
4383         ret = 0;
4384         queue_for_each_hw_ctx(q, hctx, i) {
4385                 if (!hctx->tags)
4386                         continue;
4387                 /*
4388                  * If we're using an MQ scheduler, just update the scheduler
4389                  * queue depth. This is similar to what the old code would do.
4390                  */
4391                 if (hctx->sched_tags) {
4392                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4393                                                       nr, true);
4394                 } else {
4395                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4396                                                       false);
4397                 }
4398                 if (ret)
4399                         break;
4400                 if (q->elevator && q->elevator->type->ops.depth_updated)
4401                         q->elevator->type->ops.depth_updated(hctx);
4402         }
4403         if (!ret) {
4404                 q->nr_requests = nr;
4405                 if (blk_mq_is_shared_tags(set->flags)) {
4406                         if (q->elevator)
4407                                 blk_mq_tag_update_sched_shared_tags(q);
4408                         else
4409                                 blk_mq_tag_resize_shared_tags(set, nr);
4410                 }
4411         }
4412
4413         blk_mq_unquiesce_queue(q);
4414         blk_mq_unfreeze_queue(q);
4415
4416         return ret;
4417 }
4418
4419 /*
4420  * request_queue and elevator_type pair.
4421  * It is just used by __blk_mq_update_nr_hw_queues to cache
4422  * the elevator_type associated with a request_queue.
4423  */
4424 struct blk_mq_qe_pair {
4425         struct list_head node;
4426         struct request_queue *q;
4427         struct elevator_type *type;
4428 };
4429
4430 /*
4431  * Cache the elevator_type in qe pair list and switch the
4432  * io scheduler to 'none'
4433  */
4434 static bool blk_mq_elv_switch_none(struct list_head *head,
4435                 struct request_queue *q)
4436 {
4437         struct blk_mq_qe_pair *qe;
4438
4439         if (!q->elevator)
4440                 return true;
4441
4442         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4443         if (!qe)
4444                 return false;
4445
4446         INIT_LIST_HEAD(&qe->node);
4447         qe->q = q;
4448         qe->type = q->elevator->type;
4449         list_add(&qe->node, head);
4450
4451         mutex_lock(&q->sysfs_lock);
4452         /*
4453          * After elevator_switch_mq, the previous elevator_queue will be
4454          * released by elevator_release. The reference of the io scheduler
4455          * module get by elevator_get will also be put. So we need to get
4456          * a reference of the io scheduler module here to prevent it to be
4457          * removed.
4458          */
4459         __module_get(qe->type->elevator_owner);
4460         elevator_switch_mq(q, NULL);
4461         mutex_unlock(&q->sysfs_lock);
4462
4463         return true;
4464 }
4465
4466 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4467                                                 struct request_queue *q)
4468 {
4469         struct blk_mq_qe_pair *qe;
4470
4471         list_for_each_entry(qe, head, node)
4472                 if (qe->q == q)
4473                         return qe;
4474
4475         return NULL;
4476 }
4477
4478 static void blk_mq_elv_switch_back(struct list_head *head,
4479                                   struct request_queue *q)
4480 {
4481         struct blk_mq_qe_pair *qe;
4482         struct elevator_type *t;
4483
4484         qe = blk_lookup_qe_pair(head, q);
4485         if (!qe)
4486                 return;
4487         t = qe->type;
4488         list_del(&qe->node);
4489         kfree(qe);
4490
4491         mutex_lock(&q->sysfs_lock);
4492         elevator_switch_mq(q, t);
4493         mutex_unlock(&q->sysfs_lock);
4494 }
4495
4496 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4497                                                         int nr_hw_queues)
4498 {
4499         struct request_queue *q;
4500         LIST_HEAD(head);
4501         int prev_nr_hw_queues;
4502
4503         lockdep_assert_held(&set->tag_list_lock);
4504
4505         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4506                 nr_hw_queues = nr_cpu_ids;
4507         if (nr_hw_queues < 1)
4508                 return;
4509         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4510                 return;
4511
4512         list_for_each_entry(q, &set->tag_list, tag_set_list)
4513                 blk_mq_freeze_queue(q);
4514         /*
4515          * Switch IO scheduler to 'none', cleaning up the data associated
4516          * with the previous scheduler. We will switch back once we are done
4517          * updating the new sw to hw queue mappings.
4518          */
4519         list_for_each_entry(q, &set->tag_list, tag_set_list)
4520                 if (!blk_mq_elv_switch_none(&head, q))
4521                         goto switch_back;
4522
4523         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4524                 blk_mq_debugfs_unregister_hctxs(q);
4525                 blk_mq_sysfs_unregister(q);
4526         }
4527
4528         prev_nr_hw_queues = set->nr_hw_queues;
4529         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4530             0)
4531                 goto reregister;
4532
4533         set->nr_hw_queues = nr_hw_queues;
4534 fallback:
4535         blk_mq_update_queue_map(set);
4536         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4537                 blk_mq_realloc_hw_ctxs(set, q);
4538                 blk_mq_update_poll_flag(q);
4539                 if (q->nr_hw_queues != set->nr_hw_queues) {
4540                         int i = prev_nr_hw_queues;
4541
4542                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4543                                         nr_hw_queues, prev_nr_hw_queues);
4544                         for (; i < set->nr_hw_queues; i++)
4545                                 __blk_mq_free_map_and_rqs(set, i);
4546
4547                         set->nr_hw_queues = prev_nr_hw_queues;
4548                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4549                         goto fallback;
4550                 }
4551                 blk_mq_map_swqueue(q);
4552         }
4553
4554 reregister:
4555         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4556                 blk_mq_sysfs_register(q);
4557                 blk_mq_debugfs_register_hctxs(q);
4558         }
4559
4560 switch_back:
4561         list_for_each_entry(q, &set->tag_list, tag_set_list)
4562                 blk_mq_elv_switch_back(&head, q);
4563
4564         list_for_each_entry(q, &set->tag_list, tag_set_list)
4565                 blk_mq_unfreeze_queue(q);
4566 }
4567
4568 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4569 {
4570         mutex_lock(&set->tag_list_lock);
4571         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4572         mutex_unlock(&set->tag_list_lock);
4573 }
4574 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4575
4576 /* Enable polling stats and return whether they were already enabled. */
4577 static bool blk_poll_stats_enable(struct request_queue *q)
4578 {
4579         if (q->poll_stat)
4580                 return true;
4581
4582         return blk_stats_alloc_enable(q);
4583 }
4584
4585 static void blk_mq_poll_stats_start(struct request_queue *q)
4586 {
4587         /*
4588          * We don't arm the callback if polling stats are not enabled or the
4589          * callback is already active.
4590          */
4591         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4592                 return;
4593
4594         blk_stat_activate_msecs(q->poll_cb, 100);
4595 }
4596
4597 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4598 {
4599         struct request_queue *q = cb->data;
4600         int bucket;
4601
4602         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4603                 if (cb->stat[bucket].nr_samples)
4604                         q->poll_stat[bucket] = cb->stat[bucket];
4605         }
4606 }
4607
4608 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4609                                        struct request *rq)
4610 {
4611         unsigned long ret = 0;
4612         int bucket;
4613
4614         /*
4615          * If stats collection isn't on, don't sleep but turn it on for
4616          * future users
4617          */
4618         if (!blk_poll_stats_enable(q))
4619                 return 0;
4620
4621         /*
4622          * As an optimistic guess, use half of the mean service time
4623          * for this type of request. We can (and should) make this smarter.
4624          * For instance, if the completion latencies are tight, we can
4625          * get closer than just half the mean. This is especially
4626          * important on devices where the completion latencies are longer
4627          * than ~10 usec. We do use the stats for the relevant IO size
4628          * if available which does lead to better estimates.
4629          */
4630         bucket = blk_mq_poll_stats_bkt(rq);
4631         if (bucket < 0)
4632                 return ret;
4633
4634         if (q->poll_stat[bucket].nr_samples)
4635                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4636
4637         return ret;
4638 }
4639
4640 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4641 {
4642         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4643         struct request *rq = blk_qc_to_rq(hctx, qc);
4644         struct hrtimer_sleeper hs;
4645         enum hrtimer_mode mode;
4646         unsigned int nsecs;
4647         ktime_t kt;
4648
4649         /*
4650          * If a request has completed on queue that uses an I/O scheduler, we
4651          * won't get back a request from blk_qc_to_rq.
4652          */
4653         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4654                 return false;
4655
4656         /*
4657          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4658          *
4659          *  0:  use half of prev avg
4660          * >0:  use this specific value
4661          */
4662         if (q->poll_nsec > 0)
4663                 nsecs = q->poll_nsec;
4664         else
4665                 nsecs = blk_mq_poll_nsecs(q, rq);
4666
4667         if (!nsecs)
4668                 return false;
4669
4670         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4671
4672         /*
4673          * This will be replaced with the stats tracking code, using
4674          * 'avg_completion_time / 2' as the pre-sleep target.
4675          */
4676         kt = nsecs;
4677
4678         mode = HRTIMER_MODE_REL;
4679         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4680         hrtimer_set_expires(&hs.timer, kt);
4681
4682         do {
4683                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4684                         break;
4685                 set_current_state(TASK_UNINTERRUPTIBLE);
4686                 hrtimer_sleeper_start_expires(&hs, mode);
4687                 if (hs.task)
4688                         io_schedule();
4689                 hrtimer_cancel(&hs.timer);
4690                 mode = HRTIMER_MODE_ABS;
4691         } while (hs.task && !signal_pending(current));
4692
4693         __set_current_state(TASK_RUNNING);
4694         destroy_hrtimer_on_stack(&hs.timer);
4695
4696         /*
4697          * If we sleep, have the caller restart the poll loop to reset the
4698          * state.  Like for the other success return cases, the caller is
4699          * responsible for checking if the IO completed.  If the IO isn't
4700          * complete, we'll get called again and will go straight to the busy
4701          * poll loop.
4702          */
4703         return true;
4704 }
4705
4706 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4707                                struct io_comp_batch *iob, unsigned int flags)
4708 {
4709         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4710         long state = get_current_state();
4711         int ret;
4712
4713         do {
4714                 ret = q->mq_ops->poll(hctx, iob);
4715                 if (ret > 0) {
4716                         __set_current_state(TASK_RUNNING);
4717                         return ret;
4718                 }
4719
4720                 if (signal_pending_state(state, current))
4721                         __set_current_state(TASK_RUNNING);
4722                 if (task_is_running(current))
4723                         return 1;
4724
4725                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4726                         break;
4727                 cpu_relax();
4728         } while (!need_resched());
4729
4730         __set_current_state(TASK_RUNNING);
4731         return 0;
4732 }
4733
4734 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4735                 unsigned int flags)
4736 {
4737         if (!(flags & BLK_POLL_NOSLEEP) &&
4738             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4739                 if (blk_mq_poll_hybrid(q, cookie))
4740                         return 1;
4741         }
4742         return blk_mq_poll_classic(q, cookie, iob, flags);
4743 }
4744
4745 unsigned int blk_mq_rq_cpu(struct request *rq)
4746 {
4747         return rq->mq_ctx->cpu;
4748 }
4749 EXPORT_SYMBOL(blk_mq_rq_cpu);
4750
4751 void blk_mq_cancel_work_sync(struct request_queue *q)
4752 {
4753         if (queue_is_mq(q)) {
4754                 struct blk_mq_hw_ctx *hctx;
4755                 unsigned long i;
4756
4757                 cancel_delayed_work_sync(&q->requeue_work);
4758
4759                 queue_for_each_hw_ctx(q, hctx, i)
4760                         cancel_delayed_work_sync(&hctx->run_work);
4761         }
4762 }
4763
4764 static int __init blk_mq_init(void)
4765 {
4766         int i;
4767
4768         for_each_possible_cpu(i)
4769                 init_llist_head(&per_cpu(blk_cpu_done, i));
4770         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4771
4772         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4773                                   "block/softirq:dead", NULL,
4774                                   blk_softirq_cpu_dead);
4775         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4776                                 blk_mq_hctx_notify_dead);
4777         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4778                                 blk_mq_hctx_notify_online,
4779                                 blk_mq_hctx_notify_offline);
4780         return 0;
4781 }
4782 subsys_initcall(blk_mq_init);