blk-mq: remove redundant insert case in blk_mq_make_request()
[linux-2.6-microblaze.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         return rq;
336 }
337
338 static struct request *blk_mq_get_request(struct request_queue *q,
339                 struct bio *bio, unsigned int op,
340                 struct blk_mq_alloc_data *data)
341 {
342         struct elevator_queue *e = q->elevator;
343         struct request *rq;
344         unsigned int tag;
345         bool put_ctx_on_error = false;
346
347         blk_queue_enter_live(q);
348         data->q = q;
349         if (likely(!data->ctx)) {
350                 data->ctx = blk_mq_get_ctx(q);
351                 put_ctx_on_error = true;
352         }
353         if (likely(!data->hctx))
354                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
355         if (op & REQ_NOWAIT)
356                 data->flags |= BLK_MQ_REQ_NOWAIT;
357
358         if (e) {
359                 data->flags |= BLK_MQ_REQ_INTERNAL;
360
361                 /*
362                  * Flush requests are special and go directly to the
363                  * dispatch list. Don't include reserved tags in the
364                  * limiting, as it isn't useful.
365                  */
366                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
367                     !(data->flags & BLK_MQ_REQ_RESERVED))
368                         e->type->ops.mq.limit_depth(op, data);
369         }
370
371         tag = blk_mq_get_tag(data);
372         if (tag == BLK_MQ_TAG_FAIL) {
373                 if (put_ctx_on_error) {
374                         blk_mq_put_ctx(data->ctx);
375                         data->ctx = NULL;
376                 }
377                 blk_queue_exit(q);
378                 return NULL;
379         }
380
381         rq = blk_mq_rq_ctx_init(data, tag, op);
382         if (!op_is_flush(op)) {
383                 rq->elv.icq = NULL;
384                 if (e && e->type->ops.mq.prepare_request) {
385                         if (e->type->icq_cache && rq_ioc(bio))
386                                 blk_mq_sched_assign_ioc(rq, bio);
387
388                         e->type->ops.mq.prepare_request(rq, bio);
389                         rq->rq_flags |= RQF_ELVPRIV;
390                 }
391         }
392         data->hctx->queued++;
393         return rq;
394 }
395
396 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397                 blk_mq_req_flags_t flags)
398 {
399         struct blk_mq_alloc_data alloc_data = { .flags = flags };
400         struct request *rq;
401         int ret;
402
403         ret = blk_queue_enter(q, flags);
404         if (ret)
405                 return ERR_PTR(ret);
406
407         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408         blk_queue_exit(q);
409
410         if (!rq)
411                 return ERR_PTR(-EWOULDBLOCK);
412
413         blk_mq_put_ctx(alloc_data.ctx);
414
415         rq->__data_len = 0;
416         rq->__sector = (sector_t) -1;
417         rq->bio = rq->biotail = NULL;
418         return rq;
419 }
420 EXPORT_SYMBOL(blk_mq_alloc_request);
421
422 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
424 {
425         struct blk_mq_alloc_data alloc_data = { .flags = flags };
426         struct request *rq;
427         unsigned int cpu;
428         int ret;
429
430         /*
431          * If the tag allocator sleeps we could get an allocation for a
432          * different hardware context.  No need to complicate the low level
433          * allocator for this for the rare use case of a command tied to
434          * a specific queue.
435          */
436         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
437                 return ERR_PTR(-EINVAL);
438
439         if (hctx_idx >= q->nr_hw_queues)
440                 return ERR_PTR(-EIO);
441
442         ret = blk_queue_enter(q, flags);
443         if (ret)
444                 return ERR_PTR(ret);
445
446         /*
447          * Check if the hardware context is actually mapped to anything.
448          * If not tell the caller that it should skip this queue.
449          */
450         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
451         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
452                 blk_queue_exit(q);
453                 return ERR_PTR(-EXDEV);
454         }
455         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
457
458         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459         blk_queue_exit(q);
460
461         if (!rq)
462                 return ERR_PTR(-EWOULDBLOCK);
463
464         return rq;
465 }
466 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
467
468 void blk_mq_free_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471         struct elevator_queue *e = q->elevator;
472         struct blk_mq_ctx *ctx = rq->mq_ctx;
473         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474         const int sched_tag = rq->internal_tag;
475
476         if (rq->rq_flags & RQF_ELVPRIV) {
477                 if (e && e->type->ops.mq.finish_request)
478                         e->type->ops.mq.finish_request(rq);
479                 if (rq->elv.icq) {
480                         put_io_context(rq->elv.icq->ioc);
481                         rq->elv.icq = NULL;
482                 }
483         }
484
485         ctx->rq_completed[rq_is_sync(rq)]++;
486         if (rq->rq_flags & RQF_MQ_INFLIGHT)
487                 atomic_dec(&hctx->nr_active);
488
489         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
490                 laptop_io_completion(q->backing_dev_info);
491
492         wbt_done(q->rq_wb, rq);
493
494         if (blk_rq_rl(rq))
495                 blk_put_rl(blk_rq_rl(rq));
496
497         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498         if (rq->tag != -1)
499                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
500         if (sched_tag != -1)
501                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505 EXPORT_SYMBOL_GPL(blk_mq_free_request);
506
507 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508 {
509         u64 now = ktime_get_ns();
510
511         if (rq->rq_flags & RQF_STATS) {
512                 blk_mq_poll_stats_start(rq->q);
513                 blk_stat_add(rq, now);
514         }
515
516         blk_account_io_done(rq, now);
517
518         if (rq->end_io) {
519                 wbt_done(rq->q->rq_wb, rq);
520                 rq->end_io(rq, error);
521         } else {
522                 if (unlikely(blk_bidi_rq(rq)))
523                         blk_mq_free_request(rq->next_rq);
524                 blk_mq_free_request(rq);
525         }
526 }
527 EXPORT_SYMBOL(__blk_mq_end_request);
528
529 void blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
532                 BUG();
533         __blk_mq_end_request(rq, error);
534 }
535 EXPORT_SYMBOL(blk_mq_end_request);
536
537 static void __blk_mq_complete_request_remote(void *data)
538 {
539         struct request *rq = data;
540
541         rq->q->softirq_done_fn(rq);
542 }
543
544 static void __blk_mq_complete_request(struct request *rq)
545 {
546         struct blk_mq_ctx *ctx = rq->mq_ctx;
547         bool shared = false;
548         int cpu;
549
550         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
551         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
552
553         if (rq->internal_tag != -1)
554                 blk_mq_sched_completed_request(rq);
555
556         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
557                 rq->q->softirq_done_fn(rq);
558                 return;
559         }
560
561         cpu = get_cpu();
562         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
563                 shared = cpus_share_cache(cpu, ctx->cpu);
564
565         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
566                 rq->csd.func = __blk_mq_complete_request_remote;
567                 rq->csd.info = rq;
568                 rq->csd.flags = 0;
569                 smp_call_function_single_async(ctx->cpu, &rq->csd);
570         } else {
571                 rq->q->softirq_done_fn(rq);
572         }
573         put_cpu();
574 }
575
576 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
577         __releases(hctx->srcu)
578 {
579         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
580                 rcu_read_unlock();
581         else
582                 srcu_read_unlock(hctx->srcu, srcu_idx);
583 }
584
585 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
586         __acquires(hctx->srcu)
587 {
588         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
589                 /* shut up gcc false positive */
590                 *srcu_idx = 0;
591                 rcu_read_lock();
592         } else
593                 *srcu_idx = srcu_read_lock(hctx->srcu);
594 }
595
596 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
597 {
598         unsigned long flags;
599
600         /*
601          * blk_mq_rq_aborted_gstate() is used from the completion path and
602          * can thus be called from irq context.  u64_stats_fetch in the
603          * middle of update on the same CPU leads to lockup.  Disable irq
604          * while updating.
605          */
606         local_irq_save(flags);
607         u64_stats_update_begin(&rq->aborted_gstate_sync);
608         rq->aborted_gstate = gstate;
609         u64_stats_update_end(&rq->aborted_gstate_sync);
610         local_irq_restore(flags);
611 }
612
613 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
614 {
615         unsigned int start;
616         u64 aborted_gstate;
617
618         do {
619                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
620                 aborted_gstate = rq->aborted_gstate;
621         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
622
623         return aborted_gstate;
624 }
625
626 /**
627  * blk_mq_complete_request - end I/O on a request
628  * @rq:         the request being processed
629  *
630  * Description:
631  *      Ends all I/O on a request. It does not handle partial completions.
632  *      The actual completion happens out-of-order, through a IPI handler.
633  **/
634 void blk_mq_complete_request(struct request *rq)
635 {
636         struct request_queue *q = rq->q;
637         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
638         int srcu_idx;
639
640         if (unlikely(blk_should_fake_timeout(q)))
641                 return;
642
643         /*
644          * If @rq->aborted_gstate equals the current instance, timeout is
645          * claiming @rq and we lost.  This is synchronized through
646          * hctx_lock().  See blk_mq_timeout_work() for details.
647          *
648          * Completion path never blocks and we can directly use RCU here
649          * instead of hctx_lock() which can be either RCU or SRCU.
650          * However, that would complicate paths which want to synchronize
651          * against us.  Let stay in sync with the issue path so that
652          * hctx_lock() covers both issue and completion paths.
653          */
654         hctx_lock(hctx, &srcu_idx);
655         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
656                 __blk_mq_complete_request(rq);
657         hctx_unlock(hctx, srcu_idx);
658 }
659 EXPORT_SYMBOL(blk_mq_complete_request);
660
661 int blk_mq_request_started(struct request *rq)
662 {
663         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
664 }
665 EXPORT_SYMBOL_GPL(blk_mq_request_started);
666
667 void blk_mq_start_request(struct request *rq)
668 {
669         struct request_queue *q = rq->q;
670
671         blk_mq_sched_started_request(rq);
672
673         trace_block_rq_issue(q, rq);
674
675         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
676                 rq->io_start_time_ns = ktime_get_ns();
677 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
678                 rq->throtl_size = blk_rq_sectors(rq);
679 #endif
680                 rq->rq_flags |= RQF_STATS;
681                 wbt_issue(q->rq_wb, rq);
682         }
683
684         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
685
686         /*
687          * Mark @rq in-flight which also advances the generation number,
688          * and register for timeout.  Protect with a seqcount to allow the
689          * timeout path to read both @rq->gstate and @rq->deadline
690          * coherently.
691          *
692          * This is the only place where a request is marked in-flight.  If
693          * the timeout path reads an in-flight @rq->gstate, the
694          * @rq->deadline it reads together under @rq->gstate_seq is
695          * guaranteed to be the matching one.
696          */
697         preempt_disable();
698         write_seqcount_begin(&rq->gstate_seq);
699
700         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
701         blk_add_timer(rq);
702
703         write_seqcount_end(&rq->gstate_seq);
704         preempt_enable();
705
706         if (q->dma_drain_size && blk_rq_bytes(rq)) {
707                 /*
708                  * Make sure space for the drain appears.  We know we can do
709                  * this because max_hw_segments has been adjusted to be one
710                  * fewer than the device can handle.
711                  */
712                 rq->nr_phys_segments++;
713         }
714 }
715 EXPORT_SYMBOL(blk_mq_start_request);
716
717 /*
718  * When we reach here because queue is busy, it's safe to change the state
719  * to IDLE without checking @rq->aborted_gstate because we should still be
720  * holding the RCU read lock and thus protected against timeout.
721  */
722 static void __blk_mq_requeue_request(struct request *rq)
723 {
724         struct request_queue *q = rq->q;
725
726         blk_mq_put_driver_tag(rq);
727
728         trace_block_rq_requeue(q, rq);
729         wbt_requeue(q->rq_wb, rq);
730
731         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
732                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
733                 if (q->dma_drain_size && blk_rq_bytes(rq))
734                         rq->nr_phys_segments--;
735         }
736 }
737
738 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
739 {
740         __blk_mq_requeue_request(rq);
741
742         /* this request will be re-inserted to io scheduler queue */
743         blk_mq_sched_requeue_request(rq);
744
745         BUG_ON(blk_queued_rq(rq));
746         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
747 }
748 EXPORT_SYMBOL(blk_mq_requeue_request);
749
750 static void blk_mq_requeue_work(struct work_struct *work)
751 {
752         struct request_queue *q =
753                 container_of(work, struct request_queue, requeue_work.work);
754         LIST_HEAD(rq_list);
755         struct request *rq, *next;
756
757         spin_lock_irq(&q->requeue_lock);
758         list_splice_init(&q->requeue_list, &rq_list);
759         spin_unlock_irq(&q->requeue_lock);
760
761         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
762                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
763                         continue;
764
765                 rq->rq_flags &= ~RQF_SOFTBARRIER;
766                 list_del_init(&rq->queuelist);
767                 blk_mq_sched_insert_request(rq, true, false, false);
768         }
769
770         while (!list_empty(&rq_list)) {
771                 rq = list_entry(rq_list.next, struct request, queuelist);
772                 list_del_init(&rq->queuelist);
773                 blk_mq_sched_insert_request(rq, false, false, false);
774         }
775
776         blk_mq_run_hw_queues(q, false);
777 }
778
779 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
780                                 bool kick_requeue_list)
781 {
782         struct request_queue *q = rq->q;
783         unsigned long flags;
784
785         /*
786          * We abuse this flag that is otherwise used by the I/O scheduler to
787          * request head insertion from the workqueue.
788          */
789         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
790
791         spin_lock_irqsave(&q->requeue_lock, flags);
792         if (at_head) {
793                 rq->rq_flags |= RQF_SOFTBARRIER;
794                 list_add(&rq->queuelist, &q->requeue_list);
795         } else {
796                 list_add_tail(&rq->queuelist, &q->requeue_list);
797         }
798         spin_unlock_irqrestore(&q->requeue_lock, flags);
799
800         if (kick_requeue_list)
801                 blk_mq_kick_requeue_list(q);
802 }
803 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
804
805 void blk_mq_kick_requeue_list(struct request_queue *q)
806 {
807         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
808 }
809 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
810
811 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
812                                     unsigned long msecs)
813 {
814         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
815                                     msecs_to_jiffies(msecs));
816 }
817 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
818
819 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
820 {
821         if (tag < tags->nr_tags) {
822                 prefetch(tags->rqs[tag]);
823                 return tags->rqs[tag];
824         }
825
826         return NULL;
827 }
828 EXPORT_SYMBOL(blk_mq_tag_to_rq);
829
830 struct blk_mq_timeout_data {
831         unsigned long next;
832         unsigned int next_set;
833         unsigned int nr_expired;
834 };
835
836 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
837 {
838         const struct blk_mq_ops *ops = req->q->mq_ops;
839         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
840
841         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
842
843         if (ops->timeout)
844                 ret = ops->timeout(req, reserved);
845
846         switch (ret) {
847         case BLK_EH_HANDLED:
848                 __blk_mq_complete_request(req);
849                 break;
850         case BLK_EH_RESET_TIMER:
851                 /*
852                  * As nothing prevents from completion happening while
853                  * ->aborted_gstate is set, this may lead to ignored
854                  * completions and further spurious timeouts.
855                  */
856                 blk_mq_rq_update_aborted_gstate(req, 0);
857                 blk_add_timer(req);
858                 break;
859         case BLK_EH_NOT_HANDLED:
860                 break;
861         default:
862                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
863                 break;
864         }
865 }
866
867 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
868                 struct request *rq, void *priv, bool reserved)
869 {
870         struct blk_mq_timeout_data *data = priv;
871         unsigned long gstate, deadline;
872         int start;
873
874         might_sleep();
875
876         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
877                 return;
878
879         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
880         while (true) {
881                 start = read_seqcount_begin(&rq->gstate_seq);
882                 gstate = READ_ONCE(rq->gstate);
883                 deadline = blk_rq_deadline(rq);
884                 if (!read_seqcount_retry(&rq->gstate_seq, start))
885                         break;
886                 cond_resched();
887         }
888
889         /* if in-flight && overdue, mark for abortion */
890         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
891             time_after_eq(jiffies, deadline)) {
892                 blk_mq_rq_update_aborted_gstate(rq, gstate);
893                 data->nr_expired++;
894                 hctx->nr_expired++;
895         } else if (!data->next_set || time_after(data->next, deadline)) {
896                 data->next = deadline;
897                 data->next_set = 1;
898         }
899 }
900
901 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
902                 struct request *rq, void *priv, bool reserved)
903 {
904         /*
905          * We marked @rq->aborted_gstate and waited for RCU.  If there were
906          * completions that we lost to, they would have finished and
907          * updated @rq->gstate by now; otherwise, the completion path is
908          * now guaranteed to see @rq->aborted_gstate and yield.  If
909          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
910          */
911         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
912             READ_ONCE(rq->gstate) == rq->aborted_gstate)
913                 blk_mq_rq_timed_out(rq, reserved);
914 }
915
916 static void blk_mq_timeout_work(struct work_struct *work)
917 {
918         struct request_queue *q =
919                 container_of(work, struct request_queue, timeout_work);
920         struct blk_mq_timeout_data data = {
921                 .next           = 0,
922                 .next_set       = 0,
923                 .nr_expired     = 0,
924         };
925         struct blk_mq_hw_ctx *hctx;
926         int i;
927
928         /* A deadlock might occur if a request is stuck requiring a
929          * timeout at the same time a queue freeze is waiting
930          * completion, since the timeout code would not be able to
931          * acquire the queue reference here.
932          *
933          * That's why we don't use blk_queue_enter here; instead, we use
934          * percpu_ref_tryget directly, because we need to be able to
935          * obtain a reference even in the short window between the queue
936          * starting to freeze, by dropping the first reference in
937          * blk_freeze_queue_start, and the moment the last request is
938          * consumed, marked by the instant q_usage_counter reaches
939          * zero.
940          */
941         if (!percpu_ref_tryget(&q->q_usage_counter))
942                 return;
943
944         /* scan for the expired ones and set their ->aborted_gstate */
945         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
946
947         if (data.nr_expired) {
948                 bool has_rcu = false;
949
950                 /*
951                  * Wait till everyone sees ->aborted_gstate.  The
952                  * sequential waits for SRCUs aren't ideal.  If this ever
953                  * becomes a problem, we can add per-hw_ctx rcu_head and
954                  * wait in parallel.
955                  */
956                 queue_for_each_hw_ctx(q, hctx, i) {
957                         if (!hctx->nr_expired)
958                                 continue;
959
960                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
961                                 has_rcu = true;
962                         else
963                                 synchronize_srcu(hctx->srcu);
964
965                         hctx->nr_expired = 0;
966                 }
967                 if (has_rcu)
968                         synchronize_rcu();
969
970                 /* terminate the ones we won */
971                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
972         }
973
974         if (data.next_set) {
975                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
976                 mod_timer(&q->timeout, data.next);
977         } else {
978                 /*
979                  * Request timeouts are handled as a forward rolling timer. If
980                  * we end up here it means that no requests are pending and
981                  * also that no request has been pending for a while. Mark
982                  * each hctx as idle.
983                  */
984                 queue_for_each_hw_ctx(q, hctx, i) {
985                         /* the hctx may be unmapped, so check it here */
986                         if (blk_mq_hw_queue_mapped(hctx))
987                                 blk_mq_tag_idle(hctx);
988                 }
989         }
990         blk_queue_exit(q);
991 }
992
993 struct flush_busy_ctx_data {
994         struct blk_mq_hw_ctx *hctx;
995         struct list_head *list;
996 };
997
998 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
999 {
1000         struct flush_busy_ctx_data *flush_data = data;
1001         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1002         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003
1004         spin_lock(&ctx->lock);
1005         list_splice_tail_init(&ctx->rq_list, flush_data->list);
1006         sbitmap_clear_bit(sb, bitnr);
1007         spin_unlock(&ctx->lock);
1008         return true;
1009 }
1010
1011 /*
1012  * Process software queues that have been marked busy, splicing them
1013  * to the for-dispatch
1014  */
1015 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1016 {
1017         struct flush_busy_ctx_data data = {
1018                 .hctx = hctx,
1019                 .list = list,
1020         };
1021
1022         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1023 }
1024 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1025
1026 struct dispatch_rq_data {
1027         struct blk_mq_hw_ctx *hctx;
1028         struct request *rq;
1029 };
1030
1031 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1032                 void *data)
1033 {
1034         struct dispatch_rq_data *dispatch_data = data;
1035         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1036         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1037
1038         spin_lock(&ctx->lock);
1039         if (unlikely(!list_empty(&ctx->rq_list))) {
1040                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1041                 list_del_init(&dispatch_data->rq->queuelist);
1042                 if (list_empty(&ctx->rq_list))
1043                         sbitmap_clear_bit(sb, bitnr);
1044         }
1045         spin_unlock(&ctx->lock);
1046
1047         return !dispatch_data->rq;
1048 }
1049
1050 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1051                                         struct blk_mq_ctx *start)
1052 {
1053         unsigned off = start ? start->index_hw : 0;
1054         struct dispatch_rq_data data = {
1055                 .hctx = hctx,
1056                 .rq   = NULL,
1057         };
1058
1059         __sbitmap_for_each_set(&hctx->ctx_map, off,
1060                                dispatch_rq_from_ctx, &data);
1061
1062         return data.rq;
1063 }
1064
1065 static inline unsigned int queued_to_index(unsigned int queued)
1066 {
1067         if (!queued)
1068                 return 0;
1069
1070         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1071 }
1072
1073 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1074                            bool wait)
1075 {
1076         struct blk_mq_alloc_data data = {
1077                 .q = rq->q,
1078                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1079                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1080         };
1081
1082         might_sleep_if(wait);
1083
1084         if (rq->tag != -1)
1085                 goto done;
1086
1087         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1088                 data.flags |= BLK_MQ_REQ_RESERVED;
1089
1090         rq->tag = blk_mq_get_tag(&data);
1091         if (rq->tag >= 0) {
1092                 if (blk_mq_tag_busy(data.hctx)) {
1093                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1094                         atomic_inc(&data.hctx->nr_active);
1095                 }
1096                 data.hctx->tags->rqs[rq->tag] = rq;
1097         }
1098
1099 done:
1100         if (hctx)
1101                 *hctx = data.hctx;
1102         return rq->tag != -1;
1103 }
1104
1105 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1106                                 int flags, void *key)
1107 {
1108         struct blk_mq_hw_ctx *hctx;
1109
1110         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1111
1112         list_del_init(&wait->entry);
1113         blk_mq_run_hw_queue(hctx, true);
1114         return 1;
1115 }
1116
1117 /*
1118  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1119  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1120  * restart. For both cases, take care to check the condition again after
1121  * marking us as waiting.
1122  */
1123 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1124                                  struct request *rq)
1125 {
1126         struct blk_mq_hw_ctx *this_hctx = *hctx;
1127         struct sbq_wait_state *ws;
1128         wait_queue_entry_t *wait;
1129         bool ret;
1130
1131         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1132                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1133                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1134
1135                 /*
1136                  * It's possible that a tag was freed in the window between the
1137                  * allocation failure and adding the hardware queue to the wait
1138                  * queue.
1139                  *
1140                  * Don't clear RESTART here, someone else could have set it.
1141                  * At most this will cost an extra queue run.
1142                  */
1143                 return blk_mq_get_driver_tag(rq, hctx, false);
1144         }
1145
1146         wait = &this_hctx->dispatch_wait;
1147         if (!list_empty_careful(&wait->entry))
1148                 return false;
1149
1150         spin_lock(&this_hctx->lock);
1151         if (!list_empty(&wait->entry)) {
1152                 spin_unlock(&this_hctx->lock);
1153                 return false;
1154         }
1155
1156         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1157         add_wait_queue(&ws->wait, wait);
1158
1159         /*
1160          * It's possible that a tag was freed in the window between the
1161          * allocation failure and adding the hardware queue to the wait
1162          * queue.
1163          */
1164         ret = blk_mq_get_driver_tag(rq, hctx, false);
1165         if (!ret) {
1166                 spin_unlock(&this_hctx->lock);
1167                 return false;
1168         }
1169
1170         /*
1171          * We got a tag, remove ourselves from the wait queue to ensure
1172          * someone else gets the wakeup.
1173          */
1174         spin_lock_irq(&ws->wait.lock);
1175         list_del_init(&wait->entry);
1176         spin_unlock_irq(&ws->wait.lock);
1177         spin_unlock(&this_hctx->lock);
1178
1179         return true;
1180 }
1181
1182 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1183
1184 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1185                              bool got_budget)
1186 {
1187         struct blk_mq_hw_ctx *hctx;
1188         struct request *rq, *nxt;
1189         bool no_tag = false;
1190         int errors, queued;
1191         blk_status_t ret = BLK_STS_OK;
1192
1193         if (list_empty(list))
1194                 return false;
1195
1196         WARN_ON(!list_is_singular(list) && got_budget);
1197
1198         /*
1199          * Now process all the entries, sending them to the driver.
1200          */
1201         errors = queued = 0;
1202         do {
1203                 struct blk_mq_queue_data bd;
1204
1205                 rq = list_first_entry(list, struct request, queuelist);
1206
1207                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1208                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1209                         break;
1210
1211                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1212                         /*
1213                          * The initial allocation attempt failed, so we need to
1214                          * rerun the hardware queue when a tag is freed. The
1215                          * waitqueue takes care of that. If the queue is run
1216                          * before we add this entry back on the dispatch list,
1217                          * we'll re-run it below.
1218                          */
1219                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1220                                 blk_mq_put_dispatch_budget(hctx);
1221                                 /*
1222                                  * For non-shared tags, the RESTART check
1223                                  * will suffice.
1224                                  */
1225                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1226                                         no_tag = true;
1227                                 break;
1228                         }
1229                 }
1230
1231                 list_del_init(&rq->queuelist);
1232
1233                 bd.rq = rq;
1234
1235                 /*
1236                  * Flag last if we have no more requests, or if we have more
1237                  * but can't assign a driver tag to it.
1238                  */
1239                 if (list_empty(list))
1240                         bd.last = true;
1241                 else {
1242                         nxt = list_first_entry(list, struct request, queuelist);
1243                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1244                 }
1245
1246                 ret = q->mq_ops->queue_rq(hctx, &bd);
1247                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1248                         /*
1249                          * If an I/O scheduler has been configured and we got a
1250                          * driver tag for the next request already, free it
1251                          * again.
1252                          */
1253                         if (!list_empty(list)) {
1254                                 nxt = list_first_entry(list, struct request, queuelist);
1255                                 blk_mq_put_driver_tag(nxt);
1256                         }
1257                         list_add(&rq->queuelist, list);
1258                         __blk_mq_requeue_request(rq);
1259                         break;
1260                 }
1261
1262                 if (unlikely(ret != BLK_STS_OK)) {
1263                         errors++;
1264                         blk_mq_end_request(rq, BLK_STS_IOERR);
1265                         continue;
1266                 }
1267
1268                 queued++;
1269         } while (!list_empty(list));
1270
1271         hctx->dispatched[queued_to_index(queued)]++;
1272
1273         /*
1274          * Any items that need requeuing? Stuff them into hctx->dispatch,
1275          * that is where we will continue on next queue run.
1276          */
1277         if (!list_empty(list)) {
1278                 bool needs_restart;
1279
1280                 spin_lock(&hctx->lock);
1281                 list_splice_init(list, &hctx->dispatch);
1282                 spin_unlock(&hctx->lock);
1283
1284                 /*
1285                  * If SCHED_RESTART was set by the caller of this function and
1286                  * it is no longer set that means that it was cleared by another
1287                  * thread and hence that a queue rerun is needed.
1288                  *
1289                  * If 'no_tag' is set, that means that we failed getting
1290                  * a driver tag with an I/O scheduler attached. If our dispatch
1291                  * waitqueue is no longer active, ensure that we run the queue
1292                  * AFTER adding our entries back to the list.
1293                  *
1294                  * If no I/O scheduler has been configured it is possible that
1295                  * the hardware queue got stopped and restarted before requests
1296                  * were pushed back onto the dispatch list. Rerun the queue to
1297                  * avoid starvation. Notes:
1298                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1299                  *   been stopped before rerunning a queue.
1300                  * - Some but not all block drivers stop a queue before
1301                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302                  *   and dm-rq.
1303                  *
1304                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1305                  * bit is set, run queue after a delay to avoid IO stalls
1306                  * that could otherwise occur if the queue is idle.
1307                  */
1308                 needs_restart = blk_mq_sched_needs_restart(hctx);
1309                 if (!needs_restart ||
1310                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311                         blk_mq_run_hw_queue(hctx, true);
1312                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1313                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1314         }
1315
1316         return (queued + errors) != 0;
1317 }
1318
1319 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1320 {
1321         int srcu_idx;
1322
1323         /*
1324          * We should be running this queue from one of the CPUs that
1325          * are mapped to it.
1326          *
1327          * There are at least two related races now between setting
1328          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1329          * __blk_mq_run_hw_queue():
1330          *
1331          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1332          *   but later it becomes online, then this warning is harmless
1333          *   at all
1334          *
1335          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1336          *   but later it becomes offline, then the warning can't be
1337          *   triggered, and we depend on blk-mq timeout handler to
1338          *   handle dispatched requests to this hctx
1339          */
1340         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1341                 cpu_online(hctx->next_cpu)) {
1342                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1343                         raw_smp_processor_id(),
1344                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1345                 dump_stack();
1346         }
1347
1348         /*
1349          * We can't run the queue inline with ints disabled. Ensure that
1350          * we catch bad users of this early.
1351          */
1352         WARN_ON_ONCE(in_interrupt());
1353
1354         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1355
1356         hctx_lock(hctx, &srcu_idx);
1357         blk_mq_sched_dispatch_requests(hctx);
1358         hctx_unlock(hctx, srcu_idx);
1359 }
1360
1361 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1362 {
1363         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1364
1365         if (cpu >= nr_cpu_ids)
1366                 cpu = cpumask_first(hctx->cpumask);
1367         return cpu;
1368 }
1369
1370 /*
1371  * It'd be great if the workqueue API had a way to pass
1372  * in a mask and had some smarts for more clever placement.
1373  * For now we just round-robin here, switching for every
1374  * BLK_MQ_CPU_WORK_BATCH queued items.
1375  */
1376 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378         bool tried = false;
1379         int next_cpu = hctx->next_cpu;
1380
1381         if (hctx->queue->nr_hw_queues == 1)
1382                 return WORK_CPU_UNBOUND;
1383
1384         if (--hctx->next_cpu_batch <= 0) {
1385 select_cpu:
1386                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1387                                 cpu_online_mask);
1388                 if (next_cpu >= nr_cpu_ids)
1389                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1390                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1391         }
1392
1393         /*
1394          * Do unbound schedule if we can't find a online CPU for this hctx,
1395          * and it should only happen in the path of handling CPU DEAD.
1396          */
1397         if (!cpu_online(next_cpu)) {
1398                 if (!tried) {
1399                         tried = true;
1400                         goto select_cpu;
1401                 }
1402
1403                 /*
1404                  * Make sure to re-select CPU next time once after CPUs
1405                  * in hctx->cpumask become online again.
1406                  */
1407                 hctx->next_cpu = next_cpu;
1408                 hctx->next_cpu_batch = 1;
1409                 return WORK_CPU_UNBOUND;
1410         }
1411
1412         hctx->next_cpu = next_cpu;
1413         return next_cpu;
1414 }
1415
1416 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1417                                         unsigned long msecs)
1418 {
1419         if (unlikely(blk_mq_hctx_stopped(hctx)))
1420                 return;
1421
1422         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1423                 int cpu = get_cpu();
1424                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1425                         __blk_mq_run_hw_queue(hctx);
1426                         put_cpu();
1427                         return;
1428                 }
1429
1430                 put_cpu();
1431         }
1432
1433         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1434                                     msecs_to_jiffies(msecs));
1435 }
1436
1437 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1438 {
1439         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1440 }
1441 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1442
1443 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1444 {
1445         int srcu_idx;
1446         bool need_run;
1447
1448         /*
1449          * When queue is quiesced, we may be switching io scheduler, or
1450          * updating nr_hw_queues, or other things, and we can't run queue
1451          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1452          *
1453          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1454          * quiesced.
1455          */
1456         hctx_lock(hctx, &srcu_idx);
1457         need_run = !blk_queue_quiesced(hctx->queue) &&
1458                 blk_mq_hctx_has_pending(hctx);
1459         hctx_unlock(hctx, srcu_idx);
1460
1461         if (need_run) {
1462                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1463                 return true;
1464         }
1465
1466         return false;
1467 }
1468 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1469
1470 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1471 {
1472         struct blk_mq_hw_ctx *hctx;
1473         int i;
1474
1475         queue_for_each_hw_ctx(q, hctx, i) {
1476                 if (blk_mq_hctx_stopped(hctx))
1477                         continue;
1478
1479                 blk_mq_run_hw_queue(hctx, async);
1480         }
1481 }
1482 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1483
1484 /**
1485  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1486  * @q: request queue.
1487  *
1488  * The caller is responsible for serializing this function against
1489  * blk_mq_{start,stop}_hw_queue().
1490  */
1491 bool blk_mq_queue_stopped(struct request_queue *q)
1492 {
1493         struct blk_mq_hw_ctx *hctx;
1494         int i;
1495
1496         queue_for_each_hw_ctx(q, hctx, i)
1497                 if (blk_mq_hctx_stopped(hctx))
1498                         return true;
1499
1500         return false;
1501 }
1502 EXPORT_SYMBOL(blk_mq_queue_stopped);
1503
1504 /*
1505  * This function is often used for pausing .queue_rq() by driver when
1506  * there isn't enough resource or some conditions aren't satisfied, and
1507  * BLK_STS_RESOURCE is usually returned.
1508  *
1509  * We do not guarantee that dispatch can be drained or blocked
1510  * after blk_mq_stop_hw_queue() returns. Please use
1511  * blk_mq_quiesce_queue() for that requirement.
1512  */
1513 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1514 {
1515         cancel_delayed_work(&hctx->run_work);
1516
1517         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1518 }
1519 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1520
1521 /*
1522  * This function is often used for pausing .queue_rq() by driver when
1523  * there isn't enough resource or some conditions aren't satisfied, and
1524  * BLK_STS_RESOURCE is usually returned.
1525  *
1526  * We do not guarantee that dispatch can be drained or blocked
1527  * after blk_mq_stop_hw_queues() returns. Please use
1528  * blk_mq_quiesce_queue() for that requirement.
1529  */
1530 void blk_mq_stop_hw_queues(struct request_queue *q)
1531 {
1532         struct blk_mq_hw_ctx *hctx;
1533         int i;
1534
1535         queue_for_each_hw_ctx(q, hctx, i)
1536                 blk_mq_stop_hw_queue(hctx);
1537 }
1538 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1539
1540 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1541 {
1542         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1543
1544         blk_mq_run_hw_queue(hctx, false);
1545 }
1546 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1547
1548 void blk_mq_start_hw_queues(struct request_queue *q)
1549 {
1550         struct blk_mq_hw_ctx *hctx;
1551         int i;
1552
1553         queue_for_each_hw_ctx(q, hctx, i)
1554                 blk_mq_start_hw_queue(hctx);
1555 }
1556 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1557
1558 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1559 {
1560         if (!blk_mq_hctx_stopped(hctx))
1561                 return;
1562
1563         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564         blk_mq_run_hw_queue(hctx, async);
1565 }
1566 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1567
1568 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1569 {
1570         struct blk_mq_hw_ctx *hctx;
1571         int i;
1572
1573         queue_for_each_hw_ctx(q, hctx, i)
1574                 blk_mq_start_stopped_hw_queue(hctx, async);
1575 }
1576 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1577
1578 static void blk_mq_run_work_fn(struct work_struct *work)
1579 {
1580         struct blk_mq_hw_ctx *hctx;
1581
1582         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1583
1584         /*
1585          * If we are stopped, don't run the queue.
1586          */
1587         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1588                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589
1590         __blk_mq_run_hw_queue(hctx);
1591 }
1592
1593 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1594                                             struct request *rq,
1595                                             bool at_head)
1596 {
1597         struct blk_mq_ctx *ctx = rq->mq_ctx;
1598
1599         lockdep_assert_held(&ctx->lock);
1600
1601         trace_block_rq_insert(hctx->queue, rq);
1602
1603         if (at_head)
1604                 list_add(&rq->queuelist, &ctx->rq_list);
1605         else
1606                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1607 }
1608
1609 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1610                              bool at_head)
1611 {
1612         struct blk_mq_ctx *ctx = rq->mq_ctx;
1613
1614         lockdep_assert_held(&ctx->lock);
1615
1616         __blk_mq_insert_req_list(hctx, rq, at_head);
1617         blk_mq_hctx_mark_pending(hctx, ctx);
1618 }
1619
1620 /*
1621  * Should only be used carefully, when the caller knows we want to
1622  * bypass a potential IO scheduler on the target device.
1623  */
1624 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1625 {
1626         struct blk_mq_ctx *ctx = rq->mq_ctx;
1627         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1628
1629         spin_lock(&hctx->lock);
1630         list_add_tail(&rq->queuelist, &hctx->dispatch);
1631         spin_unlock(&hctx->lock);
1632
1633         if (run_queue)
1634                 blk_mq_run_hw_queue(hctx, false);
1635 }
1636
1637 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1638                             struct list_head *list)
1639
1640 {
1641         /*
1642          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1643          * offline now
1644          */
1645         spin_lock(&ctx->lock);
1646         while (!list_empty(list)) {
1647                 struct request *rq;
1648
1649                 rq = list_first_entry(list, struct request, queuelist);
1650                 BUG_ON(rq->mq_ctx != ctx);
1651                 list_del_init(&rq->queuelist);
1652                 __blk_mq_insert_req_list(hctx, rq, false);
1653         }
1654         blk_mq_hctx_mark_pending(hctx, ctx);
1655         spin_unlock(&ctx->lock);
1656 }
1657
1658 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1659 {
1660         struct request *rqa = container_of(a, struct request, queuelist);
1661         struct request *rqb = container_of(b, struct request, queuelist);
1662
1663         return !(rqa->mq_ctx < rqb->mq_ctx ||
1664                  (rqa->mq_ctx == rqb->mq_ctx &&
1665                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1666 }
1667
1668 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1669 {
1670         struct blk_mq_ctx *this_ctx;
1671         struct request_queue *this_q;
1672         struct request *rq;
1673         LIST_HEAD(list);
1674         LIST_HEAD(ctx_list);
1675         unsigned int depth;
1676
1677         list_splice_init(&plug->mq_list, &list);
1678
1679         list_sort(NULL, &list, plug_ctx_cmp);
1680
1681         this_q = NULL;
1682         this_ctx = NULL;
1683         depth = 0;
1684
1685         while (!list_empty(&list)) {
1686                 rq = list_entry_rq(list.next);
1687                 list_del_init(&rq->queuelist);
1688                 BUG_ON(!rq->q);
1689                 if (rq->mq_ctx != this_ctx) {
1690                         if (this_ctx) {
1691                                 trace_block_unplug(this_q, depth, from_schedule);
1692                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1693                                                                 &ctx_list,
1694                                                                 from_schedule);
1695                         }
1696
1697                         this_ctx = rq->mq_ctx;
1698                         this_q = rq->q;
1699                         depth = 0;
1700                 }
1701
1702                 depth++;
1703                 list_add_tail(&rq->queuelist, &ctx_list);
1704         }
1705
1706         /*
1707          * If 'this_ctx' is set, we know we have entries to complete
1708          * on 'ctx_list'. Do those.
1709          */
1710         if (this_ctx) {
1711                 trace_block_unplug(this_q, depth, from_schedule);
1712                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1713                                                 from_schedule);
1714         }
1715 }
1716
1717 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1718 {
1719         blk_init_request_from_bio(rq, bio);
1720
1721         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1722
1723         blk_account_io_start(rq, true);
1724 }
1725
1726 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1727 {
1728         if (rq->tag != -1)
1729                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1730
1731         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1732 }
1733
1734 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1735                                             struct request *rq,
1736                                             blk_qc_t *cookie)
1737 {
1738         struct request_queue *q = rq->q;
1739         struct blk_mq_queue_data bd = {
1740                 .rq = rq,
1741                 .last = true,
1742         };
1743         blk_qc_t new_cookie;
1744         blk_status_t ret;
1745
1746         new_cookie = request_to_qc_t(hctx, rq);
1747
1748         /*
1749          * For OK queue, we are done. For error, caller may kill it.
1750          * Any other error (busy), just add it to our list as we
1751          * previously would have done.
1752          */
1753         ret = q->mq_ops->queue_rq(hctx, &bd);
1754         switch (ret) {
1755         case BLK_STS_OK:
1756                 *cookie = new_cookie;
1757                 break;
1758         case BLK_STS_RESOURCE:
1759         case BLK_STS_DEV_RESOURCE:
1760                 __blk_mq_requeue_request(rq);
1761                 break;
1762         default:
1763                 *cookie = BLK_QC_T_NONE;
1764                 break;
1765         }
1766
1767         return ret;
1768 }
1769
1770 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1771                                                 struct request *rq,
1772                                                 blk_qc_t *cookie,
1773                                                 bool bypass_insert)
1774 {
1775         struct request_queue *q = rq->q;
1776         bool run_queue = true;
1777
1778         /*
1779          * RCU or SRCU read lock is needed before checking quiesced flag.
1780          *
1781          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1782          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1783          * and avoid driver to try to dispatch again.
1784          */
1785         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1786                 run_queue = false;
1787                 bypass_insert = false;
1788                 goto insert;
1789         }
1790
1791         if (q->elevator && !bypass_insert)
1792                 goto insert;
1793
1794         if (!blk_mq_get_dispatch_budget(hctx))
1795                 goto insert;
1796
1797         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1798                 blk_mq_put_dispatch_budget(hctx);
1799                 goto insert;
1800         }
1801
1802         return __blk_mq_issue_directly(hctx, rq, cookie);
1803 insert:
1804         if (bypass_insert)
1805                 return BLK_STS_RESOURCE;
1806
1807         blk_mq_sched_insert_request(rq, false, run_queue, false);
1808         return BLK_STS_OK;
1809 }
1810
1811 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1812                 struct request *rq, blk_qc_t *cookie)
1813 {
1814         blk_status_t ret;
1815         int srcu_idx;
1816
1817         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1818
1819         hctx_lock(hctx, &srcu_idx);
1820
1821         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1822         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1823                 blk_mq_sched_insert_request(rq, false, true, false);
1824         else if (ret != BLK_STS_OK)
1825                 blk_mq_end_request(rq, ret);
1826
1827         hctx_unlock(hctx, srcu_idx);
1828 }
1829
1830 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1831 {
1832         blk_status_t ret;
1833         int srcu_idx;
1834         blk_qc_t unused_cookie;
1835         struct blk_mq_ctx *ctx = rq->mq_ctx;
1836         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1837
1838         hctx_lock(hctx, &srcu_idx);
1839         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1840         hctx_unlock(hctx, srcu_idx);
1841
1842         return ret;
1843 }
1844
1845 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1846 {
1847         const int is_sync = op_is_sync(bio->bi_opf);
1848         const int is_flush_fua = op_is_flush(bio->bi_opf);
1849         struct blk_mq_alloc_data data = { .flags = 0 };
1850         struct request *rq;
1851         unsigned int request_count = 0;
1852         struct blk_plug *plug;
1853         struct request *same_queue_rq = NULL;
1854         blk_qc_t cookie;
1855         unsigned int wb_acct;
1856
1857         blk_queue_bounce(q, &bio);
1858
1859         blk_queue_split(q, &bio);
1860
1861         if (!bio_integrity_prep(bio))
1862                 return BLK_QC_T_NONE;
1863
1864         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1865             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1866                 return BLK_QC_T_NONE;
1867
1868         if (blk_mq_sched_bio_merge(q, bio))
1869                 return BLK_QC_T_NONE;
1870
1871         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1872
1873         trace_block_getrq(q, bio, bio->bi_opf);
1874
1875         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1876         if (unlikely(!rq)) {
1877                 __wbt_done(q->rq_wb, wb_acct);
1878                 if (bio->bi_opf & REQ_NOWAIT)
1879                         bio_wouldblock_error(bio);
1880                 return BLK_QC_T_NONE;
1881         }
1882
1883         wbt_track(rq, wb_acct);
1884
1885         cookie = request_to_qc_t(data.hctx, rq);
1886
1887         plug = current->plug;
1888         if (unlikely(is_flush_fua)) {
1889                 blk_mq_put_ctx(data.ctx);
1890                 blk_mq_bio_to_request(rq, bio);
1891
1892                 /* bypass scheduler for flush rq */
1893                 blk_insert_flush(rq);
1894                 blk_mq_run_hw_queue(data.hctx, true);
1895         } else if (plug && q->nr_hw_queues == 1) {
1896                 struct request *last = NULL;
1897
1898                 blk_mq_put_ctx(data.ctx);
1899                 blk_mq_bio_to_request(rq, bio);
1900
1901                 /*
1902                  * @request_count may become stale because of schedule
1903                  * out, so check the list again.
1904                  */
1905                 if (list_empty(&plug->mq_list))
1906                         request_count = 0;
1907                 else if (blk_queue_nomerges(q))
1908                         request_count = blk_plug_queued_count(q);
1909
1910                 if (!request_count)
1911                         trace_block_plug(q);
1912                 else
1913                         last = list_entry_rq(plug->mq_list.prev);
1914
1915                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1916                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1917                         blk_flush_plug_list(plug, false);
1918                         trace_block_plug(q);
1919                 }
1920
1921                 list_add_tail(&rq->queuelist, &plug->mq_list);
1922         } else if (plug && !blk_queue_nomerges(q)) {
1923                 blk_mq_bio_to_request(rq, bio);
1924
1925                 /*
1926                  * We do limited plugging. If the bio can be merged, do that.
1927                  * Otherwise the existing request in the plug list will be
1928                  * issued. So the plug list will have one request at most
1929                  * The plug list might get flushed before this. If that happens,
1930                  * the plug list is empty, and same_queue_rq is invalid.
1931                  */
1932                 if (list_empty(&plug->mq_list))
1933                         same_queue_rq = NULL;
1934                 if (same_queue_rq)
1935                         list_del_init(&same_queue_rq->queuelist);
1936                 list_add_tail(&rq->queuelist, &plug->mq_list);
1937
1938                 blk_mq_put_ctx(data.ctx);
1939
1940                 if (same_queue_rq) {
1941                         data.hctx = blk_mq_map_queue(q,
1942                                         same_queue_rq->mq_ctx->cpu);
1943                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1944                                         &cookie);
1945                 }
1946         } else if (q->nr_hw_queues > 1 && is_sync) {
1947                 blk_mq_put_ctx(data.ctx);
1948                 blk_mq_bio_to_request(rq, bio);
1949                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1950         } else {
1951                 blk_mq_put_ctx(data.ctx);
1952                 blk_mq_bio_to_request(rq, bio);
1953                 blk_mq_sched_insert_request(rq, false, true, true);
1954         }
1955
1956         return cookie;
1957 }
1958
1959 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1960                      unsigned int hctx_idx)
1961 {
1962         struct page *page;
1963
1964         if (tags->rqs && set->ops->exit_request) {
1965                 int i;
1966
1967                 for (i = 0; i < tags->nr_tags; i++) {
1968                         struct request *rq = tags->static_rqs[i];
1969
1970                         if (!rq)
1971                                 continue;
1972                         set->ops->exit_request(set, rq, hctx_idx);
1973                         tags->static_rqs[i] = NULL;
1974                 }
1975         }
1976
1977         while (!list_empty(&tags->page_list)) {
1978                 page = list_first_entry(&tags->page_list, struct page, lru);
1979                 list_del_init(&page->lru);
1980                 /*
1981                  * Remove kmemleak object previously allocated in
1982                  * blk_mq_init_rq_map().
1983                  */
1984                 kmemleak_free(page_address(page));
1985                 __free_pages(page, page->private);
1986         }
1987 }
1988
1989 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1990 {
1991         kfree(tags->rqs);
1992         tags->rqs = NULL;
1993         kfree(tags->static_rqs);
1994         tags->static_rqs = NULL;
1995
1996         blk_mq_free_tags(tags);
1997 }
1998
1999 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2000                                         unsigned int hctx_idx,
2001                                         unsigned int nr_tags,
2002                                         unsigned int reserved_tags)
2003 {
2004         struct blk_mq_tags *tags;
2005         int node;
2006
2007         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2008         if (node == NUMA_NO_NODE)
2009                 node = set->numa_node;
2010
2011         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2012                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2013         if (!tags)
2014                 return NULL;
2015
2016         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2017                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2018                                  node);
2019         if (!tags->rqs) {
2020                 blk_mq_free_tags(tags);
2021                 return NULL;
2022         }
2023
2024         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2025                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2026                                  node);
2027         if (!tags->static_rqs) {
2028                 kfree(tags->rqs);
2029                 blk_mq_free_tags(tags);
2030                 return NULL;
2031         }
2032
2033         return tags;
2034 }
2035
2036 static size_t order_to_size(unsigned int order)
2037 {
2038         return (size_t)PAGE_SIZE << order;
2039 }
2040
2041 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2042                                unsigned int hctx_idx, int node)
2043 {
2044         int ret;
2045
2046         if (set->ops->init_request) {
2047                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2048                 if (ret)
2049                         return ret;
2050         }
2051
2052         seqcount_init(&rq->gstate_seq);
2053         u64_stats_init(&rq->aborted_gstate_sync);
2054         /*
2055          * start gstate with gen 1 instead of 0, otherwise it will be equal
2056          * to aborted_gstate, and be identified timed out by
2057          * blk_mq_terminate_expired.
2058          */
2059         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2060
2061         return 0;
2062 }
2063
2064 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2065                      unsigned int hctx_idx, unsigned int depth)
2066 {
2067         unsigned int i, j, entries_per_page, max_order = 4;
2068         size_t rq_size, left;
2069         int node;
2070
2071         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2072         if (node == NUMA_NO_NODE)
2073                 node = set->numa_node;
2074
2075         INIT_LIST_HEAD(&tags->page_list);
2076
2077         /*
2078          * rq_size is the size of the request plus driver payload, rounded
2079          * to the cacheline size
2080          */
2081         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2082                                 cache_line_size());
2083         left = rq_size * depth;
2084
2085         for (i = 0; i < depth; ) {
2086                 int this_order = max_order;
2087                 struct page *page;
2088                 int to_do;
2089                 void *p;
2090
2091                 while (this_order && left < order_to_size(this_order - 1))
2092                         this_order--;
2093
2094                 do {
2095                         page = alloc_pages_node(node,
2096                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2097                                 this_order);
2098                         if (page)
2099                                 break;
2100                         if (!this_order--)
2101                                 break;
2102                         if (order_to_size(this_order) < rq_size)
2103                                 break;
2104                 } while (1);
2105
2106                 if (!page)
2107                         goto fail;
2108
2109                 page->private = this_order;
2110                 list_add_tail(&page->lru, &tags->page_list);
2111
2112                 p = page_address(page);
2113                 /*
2114                  * Allow kmemleak to scan these pages as they contain pointers
2115                  * to additional allocations like via ops->init_request().
2116                  */
2117                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2118                 entries_per_page = order_to_size(this_order) / rq_size;
2119                 to_do = min(entries_per_page, depth - i);
2120                 left -= to_do * rq_size;
2121                 for (j = 0; j < to_do; j++) {
2122                         struct request *rq = p;
2123
2124                         tags->static_rqs[i] = rq;
2125                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2126                                 tags->static_rqs[i] = NULL;
2127                                 goto fail;
2128                         }
2129
2130                         p += rq_size;
2131                         i++;
2132                 }
2133         }
2134         return 0;
2135
2136 fail:
2137         blk_mq_free_rqs(set, tags, hctx_idx);
2138         return -ENOMEM;
2139 }
2140
2141 /*
2142  * 'cpu' is going away. splice any existing rq_list entries from this
2143  * software queue to the hw queue dispatch list, and ensure that it
2144  * gets run.
2145  */
2146 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2147 {
2148         struct blk_mq_hw_ctx *hctx;
2149         struct blk_mq_ctx *ctx;
2150         LIST_HEAD(tmp);
2151
2152         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2153         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2154
2155         spin_lock(&ctx->lock);
2156         if (!list_empty(&ctx->rq_list)) {
2157                 list_splice_init(&ctx->rq_list, &tmp);
2158                 blk_mq_hctx_clear_pending(hctx, ctx);
2159         }
2160         spin_unlock(&ctx->lock);
2161
2162         if (list_empty(&tmp))
2163                 return 0;
2164
2165         spin_lock(&hctx->lock);
2166         list_splice_tail_init(&tmp, &hctx->dispatch);
2167         spin_unlock(&hctx->lock);
2168
2169         blk_mq_run_hw_queue(hctx, true);
2170         return 0;
2171 }
2172
2173 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2174 {
2175         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2176                                             &hctx->cpuhp_dead);
2177 }
2178
2179 /* hctx->ctxs will be freed in queue's release handler */
2180 static void blk_mq_exit_hctx(struct request_queue *q,
2181                 struct blk_mq_tag_set *set,
2182                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2183 {
2184         blk_mq_debugfs_unregister_hctx(hctx);
2185
2186         if (blk_mq_hw_queue_mapped(hctx))
2187                 blk_mq_tag_idle(hctx);
2188
2189         if (set->ops->exit_request)
2190                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2191
2192         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2193
2194         if (set->ops->exit_hctx)
2195                 set->ops->exit_hctx(hctx, hctx_idx);
2196
2197         if (hctx->flags & BLK_MQ_F_BLOCKING)
2198                 cleanup_srcu_struct(hctx->srcu);
2199
2200         blk_mq_remove_cpuhp(hctx);
2201         blk_free_flush_queue(hctx->fq);
2202         sbitmap_free(&hctx->ctx_map);
2203 }
2204
2205 static void blk_mq_exit_hw_queues(struct request_queue *q,
2206                 struct blk_mq_tag_set *set, int nr_queue)
2207 {
2208         struct blk_mq_hw_ctx *hctx;
2209         unsigned int i;
2210
2211         queue_for_each_hw_ctx(q, hctx, i) {
2212                 if (i == nr_queue)
2213                         break;
2214                 blk_mq_exit_hctx(q, set, hctx, i);
2215         }
2216 }
2217
2218 static int blk_mq_init_hctx(struct request_queue *q,
2219                 struct blk_mq_tag_set *set,
2220                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2221 {
2222         int node;
2223
2224         node = hctx->numa_node;
2225         if (node == NUMA_NO_NODE)
2226                 node = hctx->numa_node = set->numa_node;
2227
2228         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2229         spin_lock_init(&hctx->lock);
2230         INIT_LIST_HEAD(&hctx->dispatch);
2231         hctx->queue = q;
2232         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2233
2234         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2235
2236         hctx->tags = set->tags[hctx_idx];
2237
2238         /*
2239          * Allocate space for all possible cpus to avoid allocation at
2240          * runtime
2241          */
2242         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2243                                         GFP_KERNEL, node);
2244         if (!hctx->ctxs)
2245                 goto unregister_cpu_notifier;
2246
2247         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2248                               node))
2249                 goto free_ctxs;
2250
2251         hctx->nr_ctx = 0;
2252
2253         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2254         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2255
2256         if (set->ops->init_hctx &&
2257             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2258                 goto free_bitmap;
2259
2260         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2261                 goto exit_hctx;
2262
2263         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2264         if (!hctx->fq)
2265                 goto sched_exit_hctx;
2266
2267         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2268                 goto free_fq;
2269
2270         if (hctx->flags & BLK_MQ_F_BLOCKING)
2271                 init_srcu_struct(hctx->srcu);
2272
2273         blk_mq_debugfs_register_hctx(q, hctx);
2274
2275         return 0;
2276
2277  free_fq:
2278         kfree(hctx->fq);
2279  sched_exit_hctx:
2280         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2281  exit_hctx:
2282         if (set->ops->exit_hctx)
2283                 set->ops->exit_hctx(hctx, hctx_idx);
2284  free_bitmap:
2285         sbitmap_free(&hctx->ctx_map);
2286  free_ctxs:
2287         kfree(hctx->ctxs);
2288  unregister_cpu_notifier:
2289         blk_mq_remove_cpuhp(hctx);
2290         return -1;
2291 }
2292
2293 static void blk_mq_init_cpu_queues(struct request_queue *q,
2294                                    unsigned int nr_hw_queues)
2295 {
2296         unsigned int i;
2297
2298         for_each_possible_cpu(i) {
2299                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2300                 struct blk_mq_hw_ctx *hctx;
2301
2302                 __ctx->cpu = i;
2303                 spin_lock_init(&__ctx->lock);
2304                 INIT_LIST_HEAD(&__ctx->rq_list);
2305                 __ctx->queue = q;
2306
2307                 /*
2308                  * Set local node, IFF we have more than one hw queue. If
2309                  * not, we remain on the home node of the device
2310                  */
2311                 hctx = blk_mq_map_queue(q, i);
2312                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2313                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2314         }
2315 }
2316
2317 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2318 {
2319         int ret = 0;
2320
2321         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2322                                         set->queue_depth, set->reserved_tags);
2323         if (!set->tags[hctx_idx])
2324                 return false;
2325
2326         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2327                                 set->queue_depth);
2328         if (!ret)
2329                 return true;
2330
2331         blk_mq_free_rq_map(set->tags[hctx_idx]);
2332         set->tags[hctx_idx] = NULL;
2333         return false;
2334 }
2335
2336 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2337                                          unsigned int hctx_idx)
2338 {
2339         if (set->tags[hctx_idx]) {
2340                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2341                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2342                 set->tags[hctx_idx] = NULL;
2343         }
2344 }
2345
2346 static void blk_mq_map_swqueue(struct request_queue *q)
2347 {
2348         unsigned int i, hctx_idx;
2349         struct blk_mq_hw_ctx *hctx;
2350         struct blk_mq_ctx *ctx;
2351         struct blk_mq_tag_set *set = q->tag_set;
2352
2353         /*
2354          * Avoid others reading imcomplete hctx->cpumask through sysfs
2355          */
2356         mutex_lock(&q->sysfs_lock);
2357
2358         queue_for_each_hw_ctx(q, hctx, i) {
2359                 cpumask_clear(hctx->cpumask);
2360                 hctx->nr_ctx = 0;
2361         }
2362
2363         /*
2364          * Map software to hardware queues.
2365          *
2366          * If the cpu isn't present, the cpu is mapped to first hctx.
2367          */
2368         for_each_possible_cpu(i) {
2369                 hctx_idx = q->mq_map[i];
2370                 /* unmapped hw queue can be remapped after CPU topo changed */
2371                 if (!set->tags[hctx_idx] &&
2372                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2373                         /*
2374                          * If tags initialization fail for some hctx,
2375                          * that hctx won't be brought online.  In this
2376                          * case, remap the current ctx to hctx[0] which
2377                          * is guaranteed to always have tags allocated
2378                          */
2379                         q->mq_map[i] = 0;
2380                 }
2381
2382                 ctx = per_cpu_ptr(q->queue_ctx, i);
2383                 hctx = blk_mq_map_queue(q, i);
2384
2385                 cpumask_set_cpu(i, hctx->cpumask);
2386                 ctx->index_hw = hctx->nr_ctx;
2387                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2388         }
2389
2390         mutex_unlock(&q->sysfs_lock);
2391
2392         queue_for_each_hw_ctx(q, hctx, i) {
2393                 /*
2394                  * If no software queues are mapped to this hardware queue,
2395                  * disable it and free the request entries.
2396                  */
2397                 if (!hctx->nr_ctx) {
2398                         /* Never unmap queue 0.  We need it as a
2399                          * fallback in case of a new remap fails
2400                          * allocation
2401                          */
2402                         if (i && set->tags[i])
2403                                 blk_mq_free_map_and_requests(set, i);
2404
2405                         hctx->tags = NULL;
2406                         continue;
2407                 }
2408
2409                 hctx->tags = set->tags[i];
2410                 WARN_ON(!hctx->tags);
2411
2412                 /*
2413                  * Set the map size to the number of mapped software queues.
2414                  * This is more accurate and more efficient than looping
2415                  * over all possibly mapped software queues.
2416                  */
2417                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2418
2419                 /*
2420                  * Initialize batch roundrobin counts
2421                  */
2422                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2423                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2424         }
2425 }
2426
2427 /*
2428  * Caller needs to ensure that we're either frozen/quiesced, or that
2429  * the queue isn't live yet.
2430  */
2431 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2432 {
2433         struct blk_mq_hw_ctx *hctx;
2434         int i;
2435
2436         queue_for_each_hw_ctx(q, hctx, i) {
2437                 if (shared) {
2438                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2439                                 atomic_inc(&q->shared_hctx_restart);
2440                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2441                 } else {
2442                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2443                                 atomic_dec(&q->shared_hctx_restart);
2444                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2445                 }
2446         }
2447 }
2448
2449 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2450                                         bool shared)
2451 {
2452         struct request_queue *q;
2453
2454         lockdep_assert_held(&set->tag_list_lock);
2455
2456         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2457                 blk_mq_freeze_queue(q);
2458                 queue_set_hctx_shared(q, shared);
2459                 blk_mq_unfreeze_queue(q);
2460         }
2461 }
2462
2463 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2464 {
2465         struct blk_mq_tag_set *set = q->tag_set;
2466
2467         mutex_lock(&set->tag_list_lock);
2468         list_del_rcu(&q->tag_set_list);
2469         INIT_LIST_HEAD(&q->tag_set_list);
2470         if (list_is_singular(&set->tag_list)) {
2471                 /* just transitioned to unshared */
2472                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2473                 /* update existing queue */
2474                 blk_mq_update_tag_set_depth(set, false);
2475         }
2476         mutex_unlock(&set->tag_list_lock);
2477
2478         synchronize_rcu();
2479 }
2480
2481 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2482                                      struct request_queue *q)
2483 {
2484         q->tag_set = set;
2485
2486         mutex_lock(&set->tag_list_lock);
2487
2488         /*
2489          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2490          */
2491         if (!list_empty(&set->tag_list) &&
2492             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2493                 set->flags |= BLK_MQ_F_TAG_SHARED;
2494                 /* update existing queue */
2495                 blk_mq_update_tag_set_depth(set, true);
2496         }
2497         if (set->flags & BLK_MQ_F_TAG_SHARED)
2498                 queue_set_hctx_shared(q, true);
2499         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2500
2501         mutex_unlock(&set->tag_list_lock);
2502 }
2503
2504 /*
2505  * It is the actual release handler for mq, but we do it from
2506  * request queue's release handler for avoiding use-after-free
2507  * and headache because q->mq_kobj shouldn't have been introduced,
2508  * but we can't group ctx/kctx kobj without it.
2509  */
2510 void blk_mq_release(struct request_queue *q)
2511 {
2512         struct blk_mq_hw_ctx *hctx;
2513         unsigned int i;
2514
2515         /* hctx kobj stays in hctx */
2516         queue_for_each_hw_ctx(q, hctx, i) {
2517                 if (!hctx)
2518                         continue;
2519                 kobject_put(&hctx->kobj);
2520         }
2521
2522         q->mq_map = NULL;
2523
2524         kfree(q->queue_hw_ctx);
2525
2526         /*
2527          * release .mq_kobj and sw queue's kobject now because
2528          * both share lifetime with request queue.
2529          */
2530         blk_mq_sysfs_deinit(q);
2531
2532         free_percpu(q->queue_ctx);
2533 }
2534
2535 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2536 {
2537         struct request_queue *uninit_q, *q;
2538
2539         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2540         if (!uninit_q)
2541                 return ERR_PTR(-ENOMEM);
2542
2543         q = blk_mq_init_allocated_queue(set, uninit_q);
2544         if (IS_ERR(q))
2545                 blk_cleanup_queue(uninit_q);
2546
2547         return q;
2548 }
2549 EXPORT_SYMBOL(blk_mq_init_queue);
2550
2551 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2552 {
2553         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2554
2555         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2556                            __alignof__(struct blk_mq_hw_ctx)) !=
2557                      sizeof(struct blk_mq_hw_ctx));
2558
2559         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2560                 hw_ctx_size += sizeof(struct srcu_struct);
2561
2562         return hw_ctx_size;
2563 }
2564
2565 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2566                                                 struct request_queue *q)
2567 {
2568         int i, j;
2569         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2570
2571         blk_mq_sysfs_unregister(q);
2572
2573         /* protect against switching io scheduler  */
2574         mutex_lock(&q->sysfs_lock);
2575         for (i = 0; i < set->nr_hw_queues; i++) {
2576                 int node;
2577
2578                 if (hctxs[i])
2579                         continue;
2580
2581                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2582                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2583                                         GFP_KERNEL, node);
2584                 if (!hctxs[i])
2585                         break;
2586
2587                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2588                                                 node)) {
2589                         kfree(hctxs[i]);
2590                         hctxs[i] = NULL;
2591                         break;
2592                 }
2593
2594                 atomic_set(&hctxs[i]->nr_active, 0);
2595                 hctxs[i]->numa_node = node;
2596                 hctxs[i]->queue_num = i;
2597
2598                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2599                         free_cpumask_var(hctxs[i]->cpumask);
2600                         kfree(hctxs[i]);
2601                         hctxs[i] = NULL;
2602                         break;
2603                 }
2604                 blk_mq_hctx_kobj_init(hctxs[i]);
2605         }
2606         for (j = i; j < q->nr_hw_queues; j++) {
2607                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2608
2609                 if (hctx) {
2610                         if (hctx->tags)
2611                                 blk_mq_free_map_and_requests(set, j);
2612                         blk_mq_exit_hctx(q, set, hctx, j);
2613                         kobject_put(&hctx->kobj);
2614                         hctxs[j] = NULL;
2615
2616                 }
2617         }
2618         q->nr_hw_queues = i;
2619         mutex_unlock(&q->sysfs_lock);
2620         blk_mq_sysfs_register(q);
2621 }
2622
2623 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2624                                                   struct request_queue *q)
2625 {
2626         /* mark the queue as mq asap */
2627         q->mq_ops = set->ops;
2628
2629         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2630                                              blk_mq_poll_stats_bkt,
2631                                              BLK_MQ_POLL_STATS_BKTS, q);
2632         if (!q->poll_cb)
2633                 goto err_exit;
2634
2635         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2636         if (!q->queue_ctx)
2637                 goto err_exit;
2638
2639         /* init q->mq_kobj and sw queues' kobjects */
2640         blk_mq_sysfs_init(q);
2641
2642         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2643                                                 GFP_KERNEL, set->numa_node);
2644         if (!q->queue_hw_ctx)
2645                 goto err_percpu;
2646
2647         q->mq_map = set->mq_map;
2648
2649         blk_mq_realloc_hw_ctxs(set, q);
2650         if (!q->nr_hw_queues)
2651                 goto err_hctxs;
2652
2653         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2654         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2655
2656         q->nr_queues = nr_cpu_ids;
2657
2658         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2659
2660         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2661                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2662
2663         q->sg_reserved_size = INT_MAX;
2664
2665         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2666         INIT_LIST_HEAD(&q->requeue_list);
2667         spin_lock_init(&q->requeue_lock);
2668
2669         blk_queue_make_request(q, blk_mq_make_request);
2670         if (q->mq_ops->poll)
2671                 q->poll_fn = blk_mq_poll;
2672
2673         /*
2674          * Do this after blk_queue_make_request() overrides it...
2675          */
2676         q->nr_requests = set->queue_depth;
2677
2678         /*
2679          * Default to classic polling
2680          */
2681         q->poll_nsec = -1;
2682
2683         if (set->ops->complete)
2684                 blk_queue_softirq_done(q, set->ops->complete);
2685
2686         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2687         blk_mq_add_queue_tag_set(set, q);
2688         blk_mq_map_swqueue(q);
2689
2690         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2691                 int ret;
2692
2693                 ret = blk_mq_sched_init(q);
2694                 if (ret)
2695                         return ERR_PTR(ret);
2696         }
2697
2698         return q;
2699
2700 err_hctxs:
2701         kfree(q->queue_hw_ctx);
2702 err_percpu:
2703         free_percpu(q->queue_ctx);
2704 err_exit:
2705         q->mq_ops = NULL;
2706         return ERR_PTR(-ENOMEM);
2707 }
2708 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2709
2710 void blk_mq_free_queue(struct request_queue *q)
2711 {
2712         struct blk_mq_tag_set   *set = q->tag_set;
2713
2714         blk_mq_del_queue_tag_set(q);
2715         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2716 }
2717
2718 /* Basically redo blk_mq_init_queue with queue frozen */
2719 static void blk_mq_queue_reinit(struct request_queue *q)
2720 {
2721         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2722
2723         blk_mq_debugfs_unregister_hctxs(q);
2724         blk_mq_sysfs_unregister(q);
2725
2726         /*
2727          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2728          * we should change hctx numa_node according to the new topology (this
2729          * involves freeing and re-allocating memory, worth doing?)
2730          */
2731         blk_mq_map_swqueue(q);
2732
2733         blk_mq_sysfs_register(q);
2734         blk_mq_debugfs_register_hctxs(q);
2735 }
2736
2737 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2738 {
2739         int i;
2740
2741         for (i = 0; i < set->nr_hw_queues; i++)
2742                 if (!__blk_mq_alloc_rq_map(set, i))
2743                         goto out_unwind;
2744
2745         return 0;
2746
2747 out_unwind:
2748         while (--i >= 0)
2749                 blk_mq_free_rq_map(set->tags[i]);
2750
2751         return -ENOMEM;
2752 }
2753
2754 /*
2755  * Allocate the request maps associated with this tag_set. Note that this
2756  * may reduce the depth asked for, if memory is tight. set->queue_depth
2757  * will be updated to reflect the allocated depth.
2758  */
2759 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2760 {
2761         unsigned int depth;
2762         int err;
2763
2764         depth = set->queue_depth;
2765         do {
2766                 err = __blk_mq_alloc_rq_maps(set);
2767                 if (!err)
2768                         break;
2769
2770                 set->queue_depth >>= 1;
2771                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2772                         err = -ENOMEM;
2773                         break;
2774                 }
2775         } while (set->queue_depth);
2776
2777         if (!set->queue_depth || err) {
2778                 pr_err("blk-mq: failed to allocate request map\n");
2779                 return -ENOMEM;
2780         }
2781
2782         if (depth != set->queue_depth)
2783                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2784                                                 depth, set->queue_depth);
2785
2786         return 0;
2787 }
2788
2789 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2790 {
2791         if (set->ops->map_queues) {
2792                 int cpu;
2793                 /*
2794                  * transport .map_queues is usually done in the following
2795                  * way:
2796                  *
2797                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2798                  *      mask = get_cpu_mask(queue)
2799                  *      for_each_cpu(cpu, mask)
2800                  *              set->mq_map[cpu] = queue;
2801                  * }
2802                  *
2803                  * When we need to remap, the table has to be cleared for
2804                  * killing stale mapping since one CPU may not be mapped
2805                  * to any hw queue.
2806                  */
2807                 for_each_possible_cpu(cpu)
2808                         set->mq_map[cpu] = 0;
2809
2810                 return set->ops->map_queues(set);
2811         } else
2812                 return blk_mq_map_queues(set);
2813 }
2814
2815 /*
2816  * Alloc a tag set to be associated with one or more request queues.
2817  * May fail with EINVAL for various error conditions. May adjust the
2818  * requested depth down, if if it too large. In that case, the set
2819  * value will be stored in set->queue_depth.
2820  */
2821 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2822 {
2823         int ret;
2824
2825         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2826
2827         if (!set->nr_hw_queues)
2828                 return -EINVAL;
2829         if (!set->queue_depth)
2830                 return -EINVAL;
2831         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2832                 return -EINVAL;
2833
2834         if (!set->ops->queue_rq)
2835                 return -EINVAL;
2836
2837         if (!set->ops->get_budget ^ !set->ops->put_budget)
2838                 return -EINVAL;
2839
2840         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2841                 pr_info("blk-mq: reduced tag depth to %u\n",
2842                         BLK_MQ_MAX_DEPTH);
2843                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2844         }
2845
2846         /*
2847          * If a crashdump is active, then we are potentially in a very
2848          * memory constrained environment. Limit us to 1 queue and
2849          * 64 tags to prevent using too much memory.
2850          */
2851         if (is_kdump_kernel()) {
2852                 set->nr_hw_queues = 1;
2853                 set->queue_depth = min(64U, set->queue_depth);
2854         }
2855         /*
2856          * There is no use for more h/w queues than cpus.
2857          */
2858         if (set->nr_hw_queues > nr_cpu_ids)
2859                 set->nr_hw_queues = nr_cpu_ids;
2860
2861         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2862                                  GFP_KERNEL, set->numa_node);
2863         if (!set->tags)
2864                 return -ENOMEM;
2865
2866         ret = -ENOMEM;
2867         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2868                         GFP_KERNEL, set->numa_node);
2869         if (!set->mq_map)
2870                 goto out_free_tags;
2871
2872         ret = blk_mq_update_queue_map(set);
2873         if (ret)
2874                 goto out_free_mq_map;
2875
2876         ret = blk_mq_alloc_rq_maps(set);
2877         if (ret)
2878                 goto out_free_mq_map;
2879
2880         mutex_init(&set->tag_list_lock);
2881         INIT_LIST_HEAD(&set->tag_list);
2882
2883         return 0;
2884
2885 out_free_mq_map:
2886         kfree(set->mq_map);
2887         set->mq_map = NULL;
2888 out_free_tags:
2889         kfree(set->tags);
2890         set->tags = NULL;
2891         return ret;
2892 }
2893 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2894
2895 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2896 {
2897         int i;
2898
2899         for (i = 0; i < nr_cpu_ids; i++)
2900                 blk_mq_free_map_and_requests(set, i);
2901
2902         kfree(set->mq_map);
2903         set->mq_map = NULL;
2904
2905         kfree(set->tags);
2906         set->tags = NULL;
2907 }
2908 EXPORT_SYMBOL(blk_mq_free_tag_set);
2909
2910 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2911 {
2912         struct blk_mq_tag_set *set = q->tag_set;
2913         struct blk_mq_hw_ctx *hctx;
2914         int i, ret;
2915
2916         if (!set)
2917                 return -EINVAL;
2918
2919         blk_mq_freeze_queue(q);
2920         blk_mq_quiesce_queue(q);
2921
2922         ret = 0;
2923         queue_for_each_hw_ctx(q, hctx, i) {
2924                 if (!hctx->tags)
2925                         continue;
2926                 /*
2927                  * If we're using an MQ scheduler, just update the scheduler
2928                  * queue depth. This is similar to what the old code would do.
2929                  */
2930                 if (!hctx->sched_tags) {
2931                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2932                                                         false);
2933                 } else {
2934                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2935                                                         nr, true);
2936                 }
2937                 if (ret)
2938                         break;
2939         }
2940
2941         if (!ret)
2942                 q->nr_requests = nr;
2943
2944         blk_mq_unquiesce_queue(q);
2945         blk_mq_unfreeze_queue(q);
2946
2947         return ret;
2948 }
2949
2950 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2951                                                         int nr_hw_queues)
2952 {
2953         struct request_queue *q;
2954
2955         lockdep_assert_held(&set->tag_list_lock);
2956
2957         if (nr_hw_queues > nr_cpu_ids)
2958                 nr_hw_queues = nr_cpu_ids;
2959         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2960                 return;
2961
2962         list_for_each_entry(q, &set->tag_list, tag_set_list)
2963                 blk_mq_freeze_queue(q);
2964
2965         set->nr_hw_queues = nr_hw_queues;
2966         blk_mq_update_queue_map(set);
2967         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2968                 blk_mq_realloc_hw_ctxs(set, q);
2969                 blk_mq_queue_reinit(q);
2970         }
2971
2972         list_for_each_entry(q, &set->tag_list, tag_set_list)
2973                 blk_mq_unfreeze_queue(q);
2974 }
2975
2976 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2977 {
2978         mutex_lock(&set->tag_list_lock);
2979         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2980         mutex_unlock(&set->tag_list_lock);
2981 }
2982 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2983
2984 /* Enable polling stats and return whether they were already enabled. */
2985 static bool blk_poll_stats_enable(struct request_queue *q)
2986 {
2987         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2988             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2989                 return true;
2990         blk_stat_add_callback(q, q->poll_cb);
2991         return false;
2992 }
2993
2994 static void blk_mq_poll_stats_start(struct request_queue *q)
2995 {
2996         /*
2997          * We don't arm the callback if polling stats are not enabled or the
2998          * callback is already active.
2999          */
3000         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3001             blk_stat_is_active(q->poll_cb))
3002                 return;
3003
3004         blk_stat_activate_msecs(q->poll_cb, 100);
3005 }
3006
3007 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3008 {
3009         struct request_queue *q = cb->data;
3010         int bucket;
3011
3012         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3013                 if (cb->stat[bucket].nr_samples)
3014                         q->poll_stat[bucket] = cb->stat[bucket];
3015         }
3016 }
3017
3018 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3019                                        struct blk_mq_hw_ctx *hctx,
3020                                        struct request *rq)
3021 {
3022         unsigned long ret = 0;
3023         int bucket;
3024
3025         /*
3026          * If stats collection isn't on, don't sleep but turn it on for
3027          * future users
3028          */
3029         if (!blk_poll_stats_enable(q))
3030                 return 0;
3031
3032         /*
3033          * As an optimistic guess, use half of the mean service time
3034          * for this type of request. We can (and should) make this smarter.
3035          * For instance, if the completion latencies are tight, we can
3036          * get closer than just half the mean. This is especially
3037          * important on devices where the completion latencies are longer
3038          * than ~10 usec. We do use the stats for the relevant IO size
3039          * if available which does lead to better estimates.
3040          */
3041         bucket = blk_mq_poll_stats_bkt(rq);
3042         if (bucket < 0)
3043                 return ret;
3044
3045         if (q->poll_stat[bucket].nr_samples)
3046                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3047
3048         return ret;
3049 }
3050
3051 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3052                                      struct blk_mq_hw_ctx *hctx,
3053                                      struct request *rq)
3054 {
3055         struct hrtimer_sleeper hs;
3056         enum hrtimer_mode mode;
3057         unsigned int nsecs;
3058         ktime_t kt;
3059
3060         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3061                 return false;
3062
3063         /*
3064          * poll_nsec can be:
3065          *
3066          * -1:  don't ever hybrid sleep
3067          *  0:  use half of prev avg
3068          * >0:  use this specific value
3069          */
3070         if (q->poll_nsec == -1)
3071                 return false;
3072         else if (q->poll_nsec > 0)
3073                 nsecs = q->poll_nsec;
3074         else
3075                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3076
3077         if (!nsecs)
3078                 return false;
3079
3080         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3081
3082         /*
3083          * This will be replaced with the stats tracking code, using
3084          * 'avg_completion_time / 2' as the pre-sleep target.
3085          */
3086         kt = nsecs;
3087
3088         mode = HRTIMER_MODE_REL;
3089         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3090         hrtimer_set_expires(&hs.timer, kt);
3091
3092         hrtimer_init_sleeper(&hs, current);
3093         do {
3094                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3095                         break;
3096                 set_current_state(TASK_UNINTERRUPTIBLE);
3097                 hrtimer_start_expires(&hs.timer, mode);
3098                 if (hs.task)
3099                         io_schedule();
3100                 hrtimer_cancel(&hs.timer);
3101                 mode = HRTIMER_MODE_ABS;
3102         } while (hs.task && !signal_pending(current));
3103
3104         __set_current_state(TASK_RUNNING);
3105         destroy_hrtimer_on_stack(&hs.timer);
3106         return true;
3107 }
3108
3109 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3110 {
3111         struct request_queue *q = hctx->queue;
3112         long state;
3113
3114         /*
3115          * If we sleep, have the caller restart the poll loop to reset
3116          * the state. Like for the other success return cases, the
3117          * caller is responsible for checking if the IO completed. If
3118          * the IO isn't complete, we'll get called again and will go
3119          * straight to the busy poll loop.
3120          */
3121         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3122                 return true;
3123
3124         hctx->poll_considered++;
3125
3126         state = current->state;
3127         while (!need_resched()) {
3128                 int ret;
3129
3130                 hctx->poll_invoked++;
3131
3132                 ret = q->mq_ops->poll(hctx, rq->tag);
3133                 if (ret > 0) {
3134                         hctx->poll_success++;
3135                         set_current_state(TASK_RUNNING);
3136                         return true;
3137                 }
3138
3139                 if (signal_pending_state(state, current))
3140                         set_current_state(TASK_RUNNING);
3141
3142                 if (current->state == TASK_RUNNING)
3143                         return true;
3144                 if (ret < 0)
3145                         break;
3146                 cpu_relax();
3147         }
3148
3149         __set_current_state(TASK_RUNNING);
3150         return false;
3151 }
3152
3153 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3154 {
3155         struct blk_mq_hw_ctx *hctx;
3156         struct request *rq;
3157
3158         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3159                 return false;
3160
3161         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3162         if (!blk_qc_t_is_internal(cookie))
3163                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3164         else {
3165                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3166                 /*
3167                  * With scheduling, if the request has completed, we'll
3168                  * get a NULL return here, as we clear the sched tag when
3169                  * that happens. The request still remains valid, like always,
3170                  * so we should be safe with just the NULL check.
3171                  */
3172                 if (!rq)
3173                         return false;
3174         }
3175
3176         return __blk_mq_poll(hctx, rq);
3177 }
3178
3179 static int __init blk_mq_init(void)
3180 {
3181         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3182                                 blk_mq_hctx_notify_dead);
3183         return 0;
3184 }
3185 subsys_initcall(blk_mq_init);