Merge tag 'mfd-next-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush/passthrough requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     !blk_op_is_passthrough(data->cmd_flags) &&
370                     e->type->ops.limit_depth &&
371                     !(data->flags & BLK_MQ_REQ_RESERVED))
372                         e->type->ops.limit_depth(data->cmd_flags, data);
373         }
374
375 retry:
376         data->ctx = blk_mq_get_ctx(q);
377         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378         if (!e)
379                 blk_mq_tag_busy(data->hctx);
380
381         /*
382          * Waiting allocations only fail because of an inactive hctx.  In that
383          * case just retry the hctx assignment and tag allocation as CPU hotplug
384          * should have migrated us to an online CPU by now.
385          */
386         tag = blk_mq_get_tag(data);
387         if (tag == BLK_MQ_NO_TAG) {
388                 if (data->flags & BLK_MQ_REQ_NOWAIT)
389                         return NULL;
390
391                 /*
392                  * Give up the CPU and sleep for a random short time to ensure
393                  * that thread using a realtime scheduling class are migrated
394                  * off the CPU, and thus off the hctx that is going away.
395                  */
396                 msleep(3);
397                 goto retry;
398         }
399         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403                 blk_mq_req_flags_t flags)
404 {
405         struct blk_mq_alloc_data data = {
406                 .q              = q,
407                 .flags          = flags,
408                 .cmd_flags      = op,
409         };
410         struct request *rq;
411         int ret;
412
413         ret = blk_queue_enter(q, flags);
414         if (ret)
415                 return ERR_PTR(ret);
416
417         rq = __blk_mq_alloc_request(&data);
418         if (!rq)
419                 goto out_queue_exit;
420         rq->__data_len = 0;
421         rq->__sector = (sector_t) -1;
422         rq->bio = rq->biotail = NULL;
423         return rq;
424 out_queue_exit:
425         blk_queue_exit(q);
426         return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433         struct blk_mq_alloc_data data = {
434                 .q              = q,
435                 .flags          = flags,
436                 .cmd_flags      = op,
437         };
438         u64 alloc_time_ns = 0;
439         unsigned int cpu;
440         unsigned int tag;
441         int ret;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         /*
448          * If the tag allocator sleeps we could get an allocation for a
449          * different hardware context.  No need to complicate the low level
450          * allocator for this for the rare use case of a command tied to
451          * a specific queue.
452          */
453         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454                 return ERR_PTR(-EINVAL);
455
456         if (hctx_idx >= q->nr_hw_queues)
457                 return ERR_PTR(-EIO);
458
459         ret = blk_queue_enter(q, flags);
460         if (ret)
461                 return ERR_PTR(ret);
462
463         /*
464          * Check if the hardware context is actually mapped to anything.
465          * If not tell the caller that it should skip this queue.
466          */
467         ret = -EXDEV;
468         data.hctx = q->queue_hw_ctx[hctx_idx];
469         if (!blk_mq_hw_queue_mapped(data.hctx))
470                 goto out_queue_exit;
471         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472         data.ctx = __blk_mq_get_ctx(q, cpu);
473
474         if (!q->elevator)
475                 blk_mq_tag_busy(data.hctx);
476
477         ret = -EWOULDBLOCK;
478         tag = blk_mq_get_tag(&data);
479         if (tag == BLK_MQ_NO_TAG)
480                 goto out_queue_exit;
481         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484         blk_queue_exit(q);
485         return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491         struct request_queue *q = rq->q;
492         struct blk_mq_ctx *ctx = rq->mq_ctx;
493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494         const int sched_tag = rq->internal_tag;
495
496         blk_crypto_free_request(rq);
497         blk_pm_mark_last_busy(rq);
498         rq->mq_hctx = NULL;
499         if (rq->tag != BLK_MQ_NO_TAG)
500                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501         if (sched_tag != BLK_MQ_NO_TAG)
502                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503         blk_mq_sched_restart(hctx);
504         blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509         struct request_queue *q = rq->q;
510         struct elevator_queue *e = q->elevator;
511         struct blk_mq_ctx *ctx = rq->mq_ctx;
512         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514         if (rq->rq_flags & RQF_ELVPRIV) {
515                 if (e && e->type->ops.finish_request)
516                         e->type->ops.finish_request(rq);
517                 if (rq->elv.icq) {
518                         put_io_context(rq->elv.icq->ioc);
519                         rq->elv.icq = NULL;
520                 }
521         }
522
523         ctx->rq_completed[rq_is_sync(rq)]++;
524         if (rq->rq_flags & RQF_MQ_INFLIGHT)
525                 __blk_mq_dec_active_requests(hctx);
526
527         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528                 laptop_io_completion(q->backing_dev_info);
529
530         rq_qos_done(q, rq);
531
532         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533         if (refcount_dec_and_test(&rq->ref))
534                 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         u64 now = 0;
541
542         if (blk_mq_need_time_stamp(rq))
543                 now = ktime_get_ns();
544
545         if (rq->rq_flags & RQF_STATS) {
546                 blk_mq_poll_stats_start(rq->q);
547                 blk_stat_add(rq, now);
548         }
549
550         blk_mq_sched_completed_request(rq, now);
551
552         blk_account_io_done(rq, now);
553
554         if (rq->end_io) {
555                 rq_qos_done(rq->q, rq);
556                 rq->end_io(rq, error);
557         } else {
558                 blk_mq_free_request(rq);
559         }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566                 BUG();
567         __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574         struct request *rq, *next;
575
576         llist_for_each_entry_safe(rq, next, entry, ipi_list)
577                 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588         return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598         int cpu = raw_smp_processor_id();
599
600         if (!IS_ENABLED(CONFIG_SMP) ||
601             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602                 return false;
603         /*
604          * With force threaded interrupts enabled, raising softirq from an SMP
605          * function call will always result in waking the ksoftirqd thread.
606          * This is probably worse than completing the request on a different
607          * cache domain.
608          */
609         if (force_irqthreads)
610                 return false;
611
612         /* same CPU or cache domain?  Complete locally */
613         if (cpu == rq->mq_ctx->cpu ||
614             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616                 return false;
617
618         /* don't try to IPI to an offline CPU */
619         return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624         struct llist_head *list;
625         unsigned int cpu;
626
627         cpu = rq->mq_ctx->cpu;
628         list = &per_cpu(blk_cpu_done, cpu);
629         if (llist_add(&rq->ipi_list, list)) {
630                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631                 smp_call_function_single_async(cpu, &rq->csd);
632         }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637         struct llist_head *list;
638
639         preempt_disable();
640         list = this_cpu_ptr(&blk_cpu_done);
641         if (llist_add(&rq->ipi_list, list))
642                 raise_softirq(BLOCK_SOFTIRQ);
643         preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650         /*
651          * For a polled request, always complete locallly, it's pointless
652          * to redirect the completion.
653          */
654         if (rq->cmd_flags & REQ_HIPRI)
655                 return false;
656
657         if (blk_mq_complete_need_ipi(rq)) {
658                 blk_mq_complete_send_ipi(rq);
659                 return true;
660         }
661
662         if (rq->q->nr_hw_queues == 1) {
663                 blk_mq_raise_softirq(rq);
664                 return true;
665         }
666         return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671  * blk_mq_complete_request - end I/O on a request
672  * @rq:         the request being processed
673  *
674  * Description:
675  *      Complete a request by scheduling the ->complete_rq operation.
676  **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679         if (!blk_mq_complete_request_remote(rq))
680                 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685         __releases(hctx->srcu)
686 {
687         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688                 rcu_read_unlock();
689         else
690                 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694         __acquires(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697                 /* shut up gcc false positive */
698                 *srcu_idx = 0;
699                 rcu_read_lock();
700         } else
701                 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705  * blk_mq_start_request - Start processing a request
706  * @rq: Pointer to request to be started
707  *
708  * Function used by device drivers to notify the block layer that a request
709  * is going to be processed now, so blk layer can do proper initializations
710  * such as starting the timeout timer.
711  */
712 void blk_mq_start_request(struct request *rq)
713 {
714         struct request_queue *q = rq->q;
715
716         trace_block_rq_issue(rq);
717
718         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719                 rq->io_start_time_ns = ktime_get_ns();
720                 rq->stats_sectors = blk_rq_sectors(rq);
721                 rq->rq_flags |= RQF_STATS;
722                 rq_qos_issue(q, rq);
723         }
724
725         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727         blk_add_timer(rq);
728         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732                 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739         struct request_queue *q = rq->q;
740
741         blk_mq_put_driver_tag(rq);
742
743         trace_block_rq_requeue(rq);
744         rq_qos_requeue(q, rq);
745
746         if (blk_mq_request_started(rq)) {
747                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748                 rq->rq_flags &= ~RQF_TIMED_OUT;
749         }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754         __blk_mq_requeue_request(rq);
755
756         /* this request will be re-inserted to io scheduler queue */
757         blk_mq_sched_requeue_request(rq);
758
759         BUG_ON(!list_empty(&rq->queuelist));
760         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766         struct request_queue *q =
767                 container_of(work, struct request_queue, requeue_work.work);
768         LIST_HEAD(rq_list);
769         struct request *rq, *next;
770
771         spin_lock_irq(&q->requeue_lock);
772         list_splice_init(&q->requeue_list, &rq_list);
773         spin_unlock_irq(&q->requeue_lock);
774
775         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777                         continue;
778
779                 rq->rq_flags &= ~RQF_SOFTBARRIER;
780                 list_del_init(&rq->queuelist);
781                 /*
782                  * If RQF_DONTPREP, rq has contained some driver specific
783                  * data, so insert it to hctx dispatch list to avoid any
784                  * merge.
785                  */
786                 if (rq->rq_flags & RQF_DONTPREP)
787                         blk_mq_request_bypass_insert(rq, false, false);
788                 else
789                         blk_mq_sched_insert_request(rq, true, false, false);
790         }
791
792         while (!list_empty(&rq_list)) {
793                 rq = list_entry(rq_list.next, struct request, queuelist);
794                 list_del_init(&rq->queuelist);
795                 blk_mq_sched_insert_request(rq, false, false, false);
796         }
797
798         blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802                                 bool kick_requeue_list)
803 {
804         struct request_queue *q = rq->q;
805         unsigned long flags;
806
807         /*
808          * We abuse this flag that is otherwise used by the I/O scheduler to
809          * request head insertion from the workqueue.
810          */
811         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813         spin_lock_irqsave(&q->requeue_lock, flags);
814         if (at_head) {
815                 rq->rq_flags |= RQF_SOFTBARRIER;
816                 list_add(&rq->queuelist, &q->requeue_list);
817         } else {
818                 list_add_tail(&rq->queuelist, &q->requeue_list);
819         }
820         spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822         if (kick_requeue_list)
823                 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833                                     unsigned long msecs)
834 {
835         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836                                     msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842         if (tag < tags->nr_tags) {
843                 prefetch(tags->rqs[tag]);
844                 return tags->rqs[tag];
845         }
846
847         return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852                                void *priv, bool reserved)
853 {
854         /*
855          * If we find a request that isn't idle and the queue matches,
856          * we know the queue is busy. Return false to stop the iteration.
857          */
858         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859                 bool *busy = priv;
860
861                 *busy = true;
862                 return false;
863         }
864
865         return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870         bool busy = false;
871
872         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873         return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879         req->rq_flags |= RQF_TIMED_OUT;
880         if (req->q->mq_ops->timeout) {
881                 enum blk_eh_timer_return ret;
882
883                 ret = req->q->mq_ops->timeout(req, reserved);
884                 if (ret == BLK_EH_DONE)
885                         return;
886                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887         }
888
889         blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894         unsigned long deadline;
895
896         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897                 return false;
898         if (rq->rq_flags & RQF_TIMED_OUT)
899                 return false;
900
901         deadline = READ_ONCE(rq->deadline);
902         if (time_after_eq(jiffies, deadline))
903                 return true;
904
905         if (*next == 0)
906                 *next = deadline;
907         else if (time_after(*next, deadline))
908                 *next = deadline;
909         return false;
910 }
911
912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
913                 struct request *rq, void *priv, bool reserved)
914 {
915         unsigned long *next = priv;
916
917         /*
918          * Just do a quick check if it is expired before locking the request in
919          * so we're not unnecessarilly synchronizing across CPUs.
920          */
921         if (!blk_mq_req_expired(rq, next))
922                 return true;
923
924         /*
925          * We have reason to believe the request may be expired. Take a
926          * reference on the request to lock this request lifetime into its
927          * currently allocated context to prevent it from being reallocated in
928          * the event the completion by-passes this timeout handler.
929          *
930          * If the reference was already released, then the driver beat the
931          * timeout handler to posting a natural completion.
932          */
933         if (!refcount_inc_not_zero(&rq->ref))
934                 return true;
935
936         /*
937          * The request is now locked and cannot be reallocated underneath the
938          * timeout handler's processing. Re-verify this exact request is truly
939          * expired; if it is not expired, then the request was completed and
940          * reallocated as a new request.
941          */
942         if (blk_mq_req_expired(rq, next))
943                 blk_mq_rq_timed_out(rq, reserved);
944
945         if (is_flush_rq(rq, hctx))
946                 rq->end_io(rq, 0);
947         else if (refcount_dec_and_test(&rq->ref))
948                 __blk_mq_free_request(rq);
949
950         return true;
951 }
952
953 static void blk_mq_timeout_work(struct work_struct *work)
954 {
955         struct request_queue *q =
956                 container_of(work, struct request_queue, timeout_work);
957         unsigned long next = 0;
958         struct blk_mq_hw_ctx *hctx;
959         int i;
960
961         /* A deadlock might occur if a request is stuck requiring a
962          * timeout at the same time a queue freeze is waiting
963          * completion, since the timeout code would not be able to
964          * acquire the queue reference here.
965          *
966          * That's why we don't use blk_queue_enter here; instead, we use
967          * percpu_ref_tryget directly, because we need to be able to
968          * obtain a reference even in the short window between the queue
969          * starting to freeze, by dropping the first reference in
970          * blk_freeze_queue_start, and the moment the last request is
971          * consumed, marked by the instant q_usage_counter reaches
972          * zero.
973          */
974         if (!percpu_ref_tryget(&q->q_usage_counter))
975                 return;
976
977         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
978
979         if (next != 0) {
980                 mod_timer(&q->timeout, next);
981         } else {
982                 /*
983                  * Request timeouts are handled as a forward rolling timer. If
984                  * we end up here it means that no requests are pending and
985                  * also that no request has been pending for a while. Mark
986                  * each hctx as idle.
987                  */
988                 queue_for_each_hw_ctx(q, hctx, i) {
989                         /* the hctx may be unmapped, so check it here */
990                         if (blk_mq_hw_queue_mapped(hctx))
991                                 blk_mq_tag_idle(hctx);
992                 }
993         }
994         blk_queue_exit(q);
995 }
996
997 struct flush_busy_ctx_data {
998         struct blk_mq_hw_ctx *hctx;
999         struct list_head *list;
1000 };
1001
1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1003 {
1004         struct flush_busy_ctx_data *flush_data = data;
1005         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1006         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007         enum hctx_type type = hctx->type;
1008
1009         spin_lock(&ctx->lock);
1010         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1011         sbitmap_clear_bit(sb, bitnr);
1012         spin_unlock(&ctx->lock);
1013         return true;
1014 }
1015
1016 /*
1017  * Process software queues that have been marked busy, splicing them
1018  * to the for-dispatch
1019  */
1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1021 {
1022         struct flush_busy_ctx_data data = {
1023                 .hctx = hctx,
1024                 .list = list,
1025         };
1026
1027         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1028 }
1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1030
1031 struct dispatch_rq_data {
1032         struct blk_mq_hw_ctx *hctx;
1033         struct request *rq;
1034 };
1035
1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1037                 void *data)
1038 {
1039         struct dispatch_rq_data *dispatch_data = data;
1040         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1041         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1042         enum hctx_type type = hctx->type;
1043
1044         spin_lock(&ctx->lock);
1045         if (!list_empty(&ctx->rq_lists[type])) {
1046                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1047                 list_del_init(&dispatch_data->rq->queuelist);
1048                 if (list_empty(&ctx->rq_lists[type]))
1049                         sbitmap_clear_bit(sb, bitnr);
1050         }
1051         spin_unlock(&ctx->lock);
1052
1053         return !dispatch_data->rq;
1054 }
1055
1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1057                                         struct blk_mq_ctx *start)
1058 {
1059         unsigned off = start ? start->index_hw[hctx->type] : 0;
1060         struct dispatch_rq_data data = {
1061                 .hctx = hctx,
1062                 .rq   = NULL,
1063         };
1064
1065         __sbitmap_for_each_set(&hctx->ctx_map, off,
1066                                dispatch_rq_from_ctx, &data);
1067
1068         return data.rq;
1069 }
1070
1071 static inline unsigned int queued_to_index(unsigned int queued)
1072 {
1073         if (!queued)
1074                 return 0;
1075
1076         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1077 }
1078
1079 static bool __blk_mq_get_driver_tag(struct request *rq)
1080 {
1081         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1082         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1083         int tag;
1084
1085         blk_mq_tag_busy(rq->mq_hctx);
1086
1087         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1088                 bt = rq->mq_hctx->tags->breserved_tags;
1089                 tag_offset = 0;
1090         } else {
1091                 if (!hctx_may_queue(rq->mq_hctx, bt))
1092                         return false;
1093         }
1094
1095         tag = __sbitmap_queue_get(bt);
1096         if (tag == BLK_MQ_NO_TAG)
1097                 return false;
1098
1099         rq->tag = tag + tag_offset;
1100         return true;
1101 }
1102
1103 static bool blk_mq_get_driver_tag(struct request *rq)
1104 {
1105         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1106
1107         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1108                 return false;
1109
1110         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1111                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1112                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1113                 __blk_mq_inc_active_requests(hctx);
1114         }
1115         hctx->tags->rqs[rq->tag] = rq;
1116         return true;
1117 }
1118
1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120                                 int flags, void *key)
1121 {
1122         struct blk_mq_hw_ctx *hctx;
1123
1124         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125
1126         spin_lock(&hctx->dispatch_wait_lock);
1127         if (!list_empty(&wait->entry)) {
1128                 struct sbitmap_queue *sbq;
1129
1130                 list_del_init(&wait->entry);
1131                 sbq = hctx->tags->bitmap_tags;
1132                 atomic_dec(&sbq->ws_active);
1133         }
1134         spin_unlock(&hctx->dispatch_wait_lock);
1135
1136         blk_mq_run_hw_queue(hctx, true);
1137         return 1;
1138 }
1139
1140 /*
1141  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1142  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143  * restart. For both cases, take care to check the condition again after
1144  * marking us as waiting.
1145  */
1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1147                                  struct request *rq)
1148 {
1149         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1150         struct wait_queue_head *wq;
1151         wait_queue_entry_t *wait;
1152         bool ret;
1153
1154         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1155                 blk_mq_sched_mark_restart_hctx(hctx);
1156
1157                 /*
1158                  * It's possible that a tag was freed in the window between the
1159                  * allocation failure and adding the hardware queue to the wait
1160                  * queue.
1161                  *
1162                  * Don't clear RESTART here, someone else could have set it.
1163                  * At most this will cost an extra queue run.
1164                  */
1165                 return blk_mq_get_driver_tag(rq);
1166         }
1167
1168         wait = &hctx->dispatch_wait;
1169         if (!list_empty_careful(&wait->entry))
1170                 return false;
1171
1172         wq = &bt_wait_ptr(sbq, hctx)->wait;
1173
1174         spin_lock_irq(&wq->lock);
1175         spin_lock(&hctx->dispatch_wait_lock);
1176         if (!list_empty(&wait->entry)) {
1177                 spin_unlock(&hctx->dispatch_wait_lock);
1178                 spin_unlock_irq(&wq->lock);
1179                 return false;
1180         }
1181
1182         atomic_inc(&sbq->ws_active);
1183         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184         __add_wait_queue(wq, wait);
1185
1186         /*
1187          * It's possible that a tag was freed in the window between the
1188          * allocation failure and adding the hardware queue to the wait
1189          * queue.
1190          */
1191         ret = blk_mq_get_driver_tag(rq);
1192         if (!ret) {
1193                 spin_unlock(&hctx->dispatch_wait_lock);
1194                 spin_unlock_irq(&wq->lock);
1195                 return false;
1196         }
1197
1198         /*
1199          * We got a tag, remove ourselves from the wait queue to ensure
1200          * someone else gets the wakeup.
1201          */
1202         list_del_init(&wait->entry);
1203         atomic_dec(&sbq->ws_active);
1204         spin_unlock(&hctx->dispatch_wait_lock);
1205         spin_unlock_irq(&wq->lock);
1206
1207         return true;
1208 }
1209
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1212 /*
1213  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214  * - EWMA is one simple way to compute running average value
1215  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216  * - take 4 as factor for avoiding to get too small(0) result, and this
1217  *   factor doesn't matter because EWMA decreases exponentially
1218  */
1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220 {
1221         unsigned int ewma;
1222
1223         if (hctx->queue->elevator)
1224                 return;
1225
1226         ewma = hctx->dispatch_busy;
1227
1228         if (!ewma && !busy)
1229                 return;
1230
1231         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232         if (busy)
1233                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235
1236         hctx->dispatch_busy = ewma;
1237 }
1238
1239 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1240
1241 static void blk_mq_handle_dev_resource(struct request *rq,
1242                                        struct list_head *list)
1243 {
1244         struct request *next =
1245                 list_first_entry_or_null(list, struct request, queuelist);
1246
1247         /*
1248          * If an I/O scheduler has been configured and we got a driver tag for
1249          * the next request already, free it.
1250          */
1251         if (next)
1252                 blk_mq_put_driver_tag(next);
1253
1254         list_add(&rq->queuelist, list);
1255         __blk_mq_requeue_request(rq);
1256 }
1257
1258 static void blk_mq_handle_zone_resource(struct request *rq,
1259                                         struct list_head *zone_list)
1260 {
1261         /*
1262          * If we end up here it is because we cannot dispatch a request to a
1263          * specific zone due to LLD level zone-write locking or other zone
1264          * related resource not being available. In this case, set the request
1265          * aside in zone_list for retrying it later.
1266          */
1267         list_add(&rq->queuelist, zone_list);
1268         __blk_mq_requeue_request(rq);
1269 }
1270
1271 enum prep_dispatch {
1272         PREP_DISPATCH_OK,
1273         PREP_DISPATCH_NO_TAG,
1274         PREP_DISPATCH_NO_BUDGET,
1275 };
1276
1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1278                                                   bool need_budget)
1279 {
1280         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1281
1282         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1283                 blk_mq_put_driver_tag(rq);
1284                 return PREP_DISPATCH_NO_BUDGET;
1285         }
1286
1287         if (!blk_mq_get_driver_tag(rq)) {
1288                 /*
1289                  * The initial allocation attempt failed, so we need to
1290                  * rerun the hardware queue when a tag is freed. The
1291                  * waitqueue takes care of that. If the queue is run
1292                  * before we add this entry back on the dispatch list,
1293                  * we'll re-run it below.
1294                  */
1295                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1296                         /*
1297                          * All budgets not got from this function will be put
1298                          * together during handling partial dispatch
1299                          */
1300                         if (need_budget)
1301                                 blk_mq_put_dispatch_budget(rq->q);
1302                         return PREP_DISPATCH_NO_TAG;
1303                 }
1304         }
1305
1306         return PREP_DISPATCH_OK;
1307 }
1308
1309 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1310 static void blk_mq_release_budgets(struct request_queue *q,
1311                 unsigned int nr_budgets)
1312 {
1313         int i;
1314
1315         for (i = 0; i < nr_budgets; i++)
1316                 blk_mq_put_dispatch_budget(q);
1317 }
1318
1319 /*
1320  * Returns true if we did some work AND can potentially do more.
1321  */
1322 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1323                              unsigned int nr_budgets)
1324 {
1325         enum prep_dispatch prep;
1326         struct request_queue *q = hctx->queue;
1327         struct request *rq, *nxt;
1328         int errors, queued;
1329         blk_status_t ret = BLK_STS_OK;
1330         LIST_HEAD(zone_list);
1331
1332         if (list_empty(list))
1333                 return false;
1334
1335         /*
1336          * Now process all the entries, sending them to the driver.
1337          */
1338         errors = queued = 0;
1339         do {
1340                 struct blk_mq_queue_data bd;
1341
1342                 rq = list_first_entry(list, struct request, queuelist);
1343
1344                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1345                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1346                 if (prep != PREP_DISPATCH_OK)
1347                         break;
1348
1349                 list_del_init(&rq->queuelist);
1350
1351                 bd.rq = rq;
1352
1353                 /*
1354                  * Flag last if we have no more requests, or if we have more
1355                  * but can't assign a driver tag to it.
1356                  */
1357                 if (list_empty(list))
1358                         bd.last = true;
1359                 else {
1360                         nxt = list_first_entry(list, struct request, queuelist);
1361                         bd.last = !blk_mq_get_driver_tag(nxt);
1362                 }
1363
1364                 /*
1365                  * once the request is queued to lld, no need to cover the
1366                  * budget any more
1367                  */
1368                 if (nr_budgets)
1369                         nr_budgets--;
1370                 ret = q->mq_ops->queue_rq(hctx, &bd);
1371                 switch (ret) {
1372                 case BLK_STS_OK:
1373                         queued++;
1374                         break;
1375                 case BLK_STS_RESOURCE:
1376                 case BLK_STS_DEV_RESOURCE:
1377                         blk_mq_handle_dev_resource(rq, list);
1378                         goto out;
1379                 case BLK_STS_ZONE_RESOURCE:
1380                         /*
1381                          * Move the request to zone_list and keep going through
1382                          * the dispatch list to find more requests the drive can
1383                          * accept.
1384                          */
1385                         blk_mq_handle_zone_resource(rq, &zone_list);
1386                         break;
1387                 default:
1388                         errors++;
1389                         blk_mq_end_request(rq, ret);
1390                 }
1391         } while (!list_empty(list));
1392 out:
1393         if (!list_empty(&zone_list))
1394                 list_splice_tail_init(&zone_list, list);
1395
1396         hctx->dispatched[queued_to_index(queued)]++;
1397
1398         /* If we didn't flush the entire list, we could have told the driver
1399          * there was more coming, but that turned out to be a lie.
1400          */
1401         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1402                 q->mq_ops->commit_rqs(hctx);
1403         /*
1404          * Any items that need requeuing? Stuff them into hctx->dispatch,
1405          * that is where we will continue on next queue run.
1406          */
1407         if (!list_empty(list)) {
1408                 bool needs_restart;
1409                 /* For non-shared tags, the RESTART check will suffice */
1410                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1411                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1412                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1413
1414                 blk_mq_release_budgets(q, nr_budgets);
1415
1416                 spin_lock(&hctx->lock);
1417                 list_splice_tail_init(list, &hctx->dispatch);
1418                 spin_unlock(&hctx->lock);
1419
1420                 /*
1421                  * Order adding requests to hctx->dispatch and checking
1422                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1423                  * in blk_mq_sched_restart(). Avoid restart code path to
1424                  * miss the new added requests to hctx->dispatch, meantime
1425                  * SCHED_RESTART is observed here.
1426                  */
1427                 smp_mb();
1428
1429                 /*
1430                  * If SCHED_RESTART was set by the caller of this function and
1431                  * it is no longer set that means that it was cleared by another
1432                  * thread and hence that a queue rerun is needed.
1433                  *
1434                  * If 'no_tag' is set, that means that we failed getting
1435                  * a driver tag with an I/O scheduler attached. If our dispatch
1436                  * waitqueue is no longer active, ensure that we run the queue
1437                  * AFTER adding our entries back to the list.
1438                  *
1439                  * If no I/O scheduler has been configured it is possible that
1440                  * the hardware queue got stopped and restarted before requests
1441                  * were pushed back onto the dispatch list. Rerun the queue to
1442                  * avoid starvation. Notes:
1443                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1444                  *   been stopped before rerunning a queue.
1445                  * - Some but not all block drivers stop a queue before
1446                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1447                  *   and dm-rq.
1448                  *
1449                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1450                  * bit is set, run queue after a delay to avoid IO stalls
1451                  * that could otherwise occur if the queue is idle.  We'll do
1452                  * similar if we couldn't get budget and SCHED_RESTART is set.
1453                  */
1454                 needs_restart = blk_mq_sched_needs_restart(hctx);
1455                 if (!needs_restart ||
1456                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1457                         blk_mq_run_hw_queue(hctx, true);
1458                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1459                                            no_budget_avail))
1460                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1461
1462                 blk_mq_update_dispatch_busy(hctx, true);
1463                 return false;
1464         } else
1465                 blk_mq_update_dispatch_busy(hctx, false);
1466
1467         return (queued + errors) != 0;
1468 }
1469
1470 /**
1471  * __blk_mq_run_hw_queue - Run a hardware queue.
1472  * @hctx: Pointer to the hardware queue to run.
1473  *
1474  * Send pending requests to the hardware.
1475  */
1476 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1477 {
1478         int srcu_idx;
1479
1480         /*
1481          * We can't run the queue inline with ints disabled. Ensure that
1482          * we catch bad users of this early.
1483          */
1484         WARN_ON_ONCE(in_interrupt());
1485
1486         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1487
1488         hctx_lock(hctx, &srcu_idx);
1489         blk_mq_sched_dispatch_requests(hctx);
1490         hctx_unlock(hctx, srcu_idx);
1491 }
1492
1493 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1494 {
1495         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1496
1497         if (cpu >= nr_cpu_ids)
1498                 cpu = cpumask_first(hctx->cpumask);
1499         return cpu;
1500 }
1501
1502 /*
1503  * It'd be great if the workqueue API had a way to pass
1504  * in a mask and had some smarts for more clever placement.
1505  * For now we just round-robin here, switching for every
1506  * BLK_MQ_CPU_WORK_BATCH queued items.
1507  */
1508 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1509 {
1510         bool tried = false;
1511         int next_cpu = hctx->next_cpu;
1512
1513         if (hctx->queue->nr_hw_queues == 1)
1514                 return WORK_CPU_UNBOUND;
1515
1516         if (--hctx->next_cpu_batch <= 0) {
1517 select_cpu:
1518                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1519                                 cpu_online_mask);
1520                 if (next_cpu >= nr_cpu_ids)
1521                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1522                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1523         }
1524
1525         /*
1526          * Do unbound schedule if we can't find a online CPU for this hctx,
1527          * and it should only happen in the path of handling CPU DEAD.
1528          */
1529         if (!cpu_online(next_cpu)) {
1530                 if (!tried) {
1531                         tried = true;
1532                         goto select_cpu;
1533                 }
1534
1535                 /*
1536                  * Make sure to re-select CPU next time once after CPUs
1537                  * in hctx->cpumask become online again.
1538                  */
1539                 hctx->next_cpu = next_cpu;
1540                 hctx->next_cpu_batch = 1;
1541                 return WORK_CPU_UNBOUND;
1542         }
1543
1544         hctx->next_cpu = next_cpu;
1545         return next_cpu;
1546 }
1547
1548 /**
1549  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1550  * @hctx: Pointer to the hardware queue to run.
1551  * @async: If we want to run the queue asynchronously.
1552  * @msecs: Milliseconds of delay to wait before running the queue.
1553  *
1554  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1555  * with a delay of @msecs.
1556  */
1557 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1558                                         unsigned long msecs)
1559 {
1560         if (unlikely(blk_mq_hctx_stopped(hctx)))
1561                 return;
1562
1563         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1564                 int cpu = get_cpu();
1565                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1566                         __blk_mq_run_hw_queue(hctx);
1567                         put_cpu();
1568                         return;
1569                 }
1570
1571                 put_cpu();
1572         }
1573
1574         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1575                                     msecs_to_jiffies(msecs));
1576 }
1577
1578 /**
1579  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1580  * @hctx: Pointer to the hardware queue to run.
1581  * @msecs: Milliseconds of delay to wait before running the queue.
1582  *
1583  * Run a hardware queue asynchronously with a delay of @msecs.
1584  */
1585 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1586 {
1587         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1588 }
1589 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1590
1591 /**
1592  * blk_mq_run_hw_queue - Start to run a hardware queue.
1593  * @hctx: Pointer to the hardware queue to run.
1594  * @async: If we want to run the queue asynchronously.
1595  *
1596  * Check if the request queue is not in a quiesced state and if there are
1597  * pending requests to be sent. If this is true, run the queue to send requests
1598  * to hardware.
1599  */
1600 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1601 {
1602         int srcu_idx;
1603         bool need_run;
1604
1605         /*
1606          * When queue is quiesced, we may be switching io scheduler, or
1607          * updating nr_hw_queues, or other things, and we can't run queue
1608          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1609          *
1610          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1611          * quiesced.
1612          */
1613         hctx_lock(hctx, &srcu_idx);
1614         need_run = !blk_queue_quiesced(hctx->queue) &&
1615                 blk_mq_hctx_has_pending(hctx);
1616         hctx_unlock(hctx, srcu_idx);
1617
1618         if (need_run)
1619                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1620 }
1621 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1622
1623 /*
1624  * Is the request queue handled by an IO scheduler that does not respect
1625  * hardware queues when dispatching?
1626  */
1627 static bool blk_mq_has_sqsched(struct request_queue *q)
1628 {
1629         struct elevator_queue *e = q->elevator;
1630
1631         if (e && e->type->ops.dispatch_request &&
1632             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1633                 return true;
1634         return false;
1635 }
1636
1637 /*
1638  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1639  * scheduler.
1640  */
1641 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1642 {
1643         struct blk_mq_hw_ctx *hctx;
1644
1645         /*
1646          * If the IO scheduler does not respect hardware queues when
1647          * dispatching, we just don't bother with multiple HW queues and
1648          * dispatch from hctx for the current CPU since running multiple queues
1649          * just causes lock contention inside the scheduler and pointless cache
1650          * bouncing.
1651          */
1652         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1653                                      raw_smp_processor_id());
1654         if (!blk_mq_hctx_stopped(hctx))
1655                 return hctx;
1656         return NULL;
1657 }
1658
1659 /**
1660  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1661  * @q: Pointer to the request queue to run.
1662  * @async: If we want to run the queue asynchronously.
1663  */
1664 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1665 {
1666         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1667         int i;
1668
1669         sq_hctx = NULL;
1670         if (blk_mq_has_sqsched(q))
1671                 sq_hctx = blk_mq_get_sq_hctx(q);
1672         queue_for_each_hw_ctx(q, hctx, i) {
1673                 if (blk_mq_hctx_stopped(hctx))
1674                         continue;
1675                 /*
1676                  * Dispatch from this hctx either if there's no hctx preferred
1677                  * by IO scheduler or if it has requests that bypass the
1678                  * scheduler.
1679                  */
1680                 if (!sq_hctx || sq_hctx == hctx ||
1681                     !list_empty_careful(&hctx->dispatch))
1682                         blk_mq_run_hw_queue(hctx, async);
1683         }
1684 }
1685 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686
1687 /**
1688  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1689  * @q: Pointer to the request queue to run.
1690  * @msecs: Milliseconds of delay to wait before running the queues.
1691  */
1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1693 {
1694         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1695         int i;
1696
1697         sq_hctx = NULL;
1698         if (blk_mq_has_sqsched(q))
1699                 sq_hctx = blk_mq_get_sq_hctx(q);
1700         queue_for_each_hw_ctx(q, hctx, i) {
1701                 if (blk_mq_hctx_stopped(hctx))
1702                         continue;
1703                 /*
1704                  * Dispatch from this hctx either if there's no hctx preferred
1705                  * by IO scheduler or if it has requests that bypass the
1706                  * scheduler.
1707                  */
1708                 if (!sq_hctx || sq_hctx == hctx ||
1709                     !list_empty_careful(&hctx->dispatch))
1710                         blk_mq_delay_run_hw_queue(hctx, msecs);
1711         }
1712 }
1713 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1714
1715 /**
1716  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1717  * @q: request queue.
1718  *
1719  * The caller is responsible for serializing this function against
1720  * blk_mq_{start,stop}_hw_queue().
1721  */
1722 bool blk_mq_queue_stopped(struct request_queue *q)
1723 {
1724         struct blk_mq_hw_ctx *hctx;
1725         int i;
1726
1727         queue_for_each_hw_ctx(q, hctx, i)
1728                 if (blk_mq_hctx_stopped(hctx))
1729                         return true;
1730
1731         return false;
1732 }
1733 EXPORT_SYMBOL(blk_mq_queue_stopped);
1734
1735 /*
1736  * This function is often used for pausing .queue_rq() by driver when
1737  * there isn't enough resource or some conditions aren't satisfied, and
1738  * BLK_STS_RESOURCE is usually returned.
1739  *
1740  * We do not guarantee that dispatch can be drained or blocked
1741  * after blk_mq_stop_hw_queue() returns. Please use
1742  * blk_mq_quiesce_queue() for that requirement.
1743  */
1744 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1745 {
1746         cancel_delayed_work(&hctx->run_work);
1747
1748         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1749 }
1750 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1751
1752 /*
1753  * This function is often used for pausing .queue_rq() by driver when
1754  * there isn't enough resource or some conditions aren't satisfied, and
1755  * BLK_STS_RESOURCE is usually returned.
1756  *
1757  * We do not guarantee that dispatch can be drained or blocked
1758  * after blk_mq_stop_hw_queues() returns. Please use
1759  * blk_mq_quiesce_queue() for that requirement.
1760  */
1761 void blk_mq_stop_hw_queues(struct request_queue *q)
1762 {
1763         struct blk_mq_hw_ctx *hctx;
1764         int i;
1765
1766         queue_for_each_hw_ctx(q, hctx, i)
1767                 blk_mq_stop_hw_queue(hctx);
1768 }
1769 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1770
1771 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1772 {
1773         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1774
1775         blk_mq_run_hw_queue(hctx, false);
1776 }
1777 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1778
1779 void blk_mq_start_hw_queues(struct request_queue *q)
1780 {
1781         struct blk_mq_hw_ctx *hctx;
1782         int i;
1783
1784         queue_for_each_hw_ctx(q, hctx, i)
1785                 blk_mq_start_hw_queue(hctx);
1786 }
1787 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1788
1789 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1790 {
1791         if (!blk_mq_hctx_stopped(hctx))
1792                 return;
1793
1794         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1795         blk_mq_run_hw_queue(hctx, async);
1796 }
1797 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1798
1799 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1800 {
1801         struct blk_mq_hw_ctx *hctx;
1802         int i;
1803
1804         queue_for_each_hw_ctx(q, hctx, i)
1805                 blk_mq_start_stopped_hw_queue(hctx, async);
1806 }
1807 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1808
1809 static void blk_mq_run_work_fn(struct work_struct *work)
1810 {
1811         struct blk_mq_hw_ctx *hctx;
1812
1813         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1814
1815         /*
1816          * If we are stopped, don't run the queue.
1817          */
1818         if (blk_mq_hctx_stopped(hctx))
1819                 return;
1820
1821         __blk_mq_run_hw_queue(hctx);
1822 }
1823
1824 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1825                                             struct request *rq,
1826                                             bool at_head)
1827 {
1828         struct blk_mq_ctx *ctx = rq->mq_ctx;
1829         enum hctx_type type = hctx->type;
1830
1831         lockdep_assert_held(&ctx->lock);
1832
1833         trace_block_rq_insert(rq);
1834
1835         if (at_head)
1836                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1837         else
1838                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1839 }
1840
1841 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1842                              bool at_head)
1843 {
1844         struct blk_mq_ctx *ctx = rq->mq_ctx;
1845
1846         lockdep_assert_held(&ctx->lock);
1847
1848         __blk_mq_insert_req_list(hctx, rq, at_head);
1849         blk_mq_hctx_mark_pending(hctx, ctx);
1850 }
1851
1852 /**
1853  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1854  * @rq: Pointer to request to be inserted.
1855  * @at_head: true if the request should be inserted at the head of the list.
1856  * @run_queue: If we should run the hardware queue after inserting the request.
1857  *
1858  * Should only be used carefully, when the caller knows we want to
1859  * bypass a potential IO scheduler on the target device.
1860  */
1861 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1862                                   bool run_queue)
1863 {
1864         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1865
1866         spin_lock(&hctx->lock);
1867         if (at_head)
1868                 list_add(&rq->queuelist, &hctx->dispatch);
1869         else
1870                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1871         spin_unlock(&hctx->lock);
1872
1873         if (run_queue)
1874                 blk_mq_run_hw_queue(hctx, false);
1875 }
1876
1877 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1878                             struct list_head *list)
1879
1880 {
1881         struct request *rq;
1882         enum hctx_type type = hctx->type;
1883
1884         /*
1885          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1886          * offline now
1887          */
1888         list_for_each_entry(rq, list, queuelist) {
1889                 BUG_ON(rq->mq_ctx != ctx);
1890                 trace_block_rq_insert(rq);
1891         }
1892
1893         spin_lock(&ctx->lock);
1894         list_splice_tail_init(list, &ctx->rq_lists[type]);
1895         blk_mq_hctx_mark_pending(hctx, ctx);
1896         spin_unlock(&ctx->lock);
1897 }
1898
1899 static int plug_rq_cmp(void *priv, const struct list_head *a,
1900                        const struct list_head *b)
1901 {
1902         struct request *rqa = container_of(a, struct request, queuelist);
1903         struct request *rqb = container_of(b, struct request, queuelist);
1904
1905         if (rqa->mq_ctx != rqb->mq_ctx)
1906                 return rqa->mq_ctx > rqb->mq_ctx;
1907         if (rqa->mq_hctx != rqb->mq_hctx)
1908                 return rqa->mq_hctx > rqb->mq_hctx;
1909
1910         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1911 }
1912
1913 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1914 {
1915         LIST_HEAD(list);
1916
1917         if (list_empty(&plug->mq_list))
1918                 return;
1919         list_splice_init(&plug->mq_list, &list);
1920
1921         if (plug->rq_count > 2 && plug->multiple_queues)
1922                 list_sort(NULL, &list, plug_rq_cmp);
1923
1924         plug->rq_count = 0;
1925
1926         do {
1927                 struct list_head rq_list;
1928                 struct request *rq, *head_rq = list_entry_rq(list.next);
1929                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1930                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1931                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1932                 unsigned int depth = 1;
1933
1934                 list_for_each_continue(pos, &list) {
1935                         rq = list_entry_rq(pos);
1936                         BUG_ON(!rq->q);
1937                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1938                                 break;
1939                         depth++;
1940                 }
1941
1942                 list_cut_before(&rq_list, &list, pos);
1943                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1944                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1945                                                 from_schedule);
1946         } while(!list_empty(&list));
1947 }
1948
1949 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1950                 unsigned int nr_segs)
1951 {
1952         int err;
1953
1954         if (bio->bi_opf & REQ_RAHEAD)
1955                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1956
1957         rq->__sector = bio->bi_iter.bi_sector;
1958         rq->write_hint = bio->bi_write_hint;
1959         blk_rq_bio_prep(rq, bio, nr_segs);
1960
1961         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1962         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1963         WARN_ON_ONCE(err);
1964
1965         blk_account_io_start(rq);
1966 }
1967
1968 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1969                                             struct request *rq,
1970                                             blk_qc_t *cookie, bool last)
1971 {
1972         struct request_queue *q = rq->q;
1973         struct blk_mq_queue_data bd = {
1974                 .rq = rq,
1975                 .last = last,
1976         };
1977         blk_qc_t new_cookie;
1978         blk_status_t ret;
1979
1980         new_cookie = request_to_qc_t(hctx, rq);
1981
1982         /*
1983          * For OK queue, we are done. For error, caller may kill it.
1984          * Any other error (busy), just add it to our list as we
1985          * previously would have done.
1986          */
1987         ret = q->mq_ops->queue_rq(hctx, &bd);
1988         switch (ret) {
1989         case BLK_STS_OK:
1990                 blk_mq_update_dispatch_busy(hctx, false);
1991                 *cookie = new_cookie;
1992                 break;
1993         case BLK_STS_RESOURCE:
1994         case BLK_STS_DEV_RESOURCE:
1995                 blk_mq_update_dispatch_busy(hctx, true);
1996                 __blk_mq_requeue_request(rq);
1997                 break;
1998         default:
1999                 blk_mq_update_dispatch_busy(hctx, false);
2000                 *cookie = BLK_QC_T_NONE;
2001                 break;
2002         }
2003
2004         return ret;
2005 }
2006
2007 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2008                                                 struct request *rq,
2009                                                 blk_qc_t *cookie,
2010                                                 bool bypass_insert, bool last)
2011 {
2012         struct request_queue *q = rq->q;
2013         bool run_queue = true;
2014
2015         /*
2016          * RCU or SRCU read lock is needed before checking quiesced flag.
2017          *
2018          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2019          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2020          * and avoid driver to try to dispatch again.
2021          */
2022         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2023                 run_queue = false;
2024                 bypass_insert = false;
2025                 goto insert;
2026         }
2027
2028         if (q->elevator && !bypass_insert)
2029                 goto insert;
2030
2031         if (!blk_mq_get_dispatch_budget(q))
2032                 goto insert;
2033
2034         if (!blk_mq_get_driver_tag(rq)) {
2035                 blk_mq_put_dispatch_budget(q);
2036                 goto insert;
2037         }
2038
2039         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2040 insert:
2041         if (bypass_insert)
2042                 return BLK_STS_RESOURCE;
2043
2044         blk_mq_sched_insert_request(rq, false, run_queue, false);
2045
2046         return BLK_STS_OK;
2047 }
2048
2049 /**
2050  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2051  * @hctx: Pointer of the associated hardware queue.
2052  * @rq: Pointer to request to be sent.
2053  * @cookie: Request queue cookie.
2054  *
2055  * If the device has enough resources to accept a new request now, send the
2056  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2057  * we can try send it another time in the future. Requests inserted at this
2058  * queue have higher priority.
2059  */
2060 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2061                 struct request *rq, blk_qc_t *cookie)
2062 {
2063         blk_status_t ret;
2064         int srcu_idx;
2065
2066         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2067
2068         hctx_lock(hctx, &srcu_idx);
2069
2070         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2071         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2072                 blk_mq_request_bypass_insert(rq, false, true);
2073         else if (ret != BLK_STS_OK)
2074                 blk_mq_end_request(rq, ret);
2075
2076         hctx_unlock(hctx, srcu_idx);
2077 }
2078
2079 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2080 {
2081         blk_status_t ret;
2082         int srcu_idx;
2083         blk_qc_t unused_cookie;
2084         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2085
2086         hctx_lock(hctx, &srcu_idx);
2087         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2088         hctx_unlock(hctx, srcu_idx);
2089
2090         return ret;
2091 }
2092
2093 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2094                 struct list_head *list)
2095 {
2096         int queued = 0;
2097         int errors = 0;
2098
2099         while (!list_empty(list)) {
2100                 blk_status_t ret;
2101                 struct request *rq = list_first_entry(list, struct request,
2102                                 queuelist);
2103
2104                 list_del_init(&rq->queuelist);
2105                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2106                 if (ret != BLK_STS_OK) {
2107                         if (ret == BLK_STS_RESOURCE ||
2108                                         ret == BLK_STS_DEV_RESOURCE) {
2109                                 blk_mq_request_bypass_insert(rq, false,
2110                                                         list_empty(list));
2111                                 break;
2112                         }
2113                         blk_mq_end_request(rq, ret);
2114                         errors++;
2115                 } else
2116                         queued++;
2117         }
2118
2119         /*
2120          * If we didn't flush the entire list, we could have told
2121          * the driver there was more coming, but that turned out to
2122          * be a lie.
2123          */
2124         if ((!list_empty(list) || errors) &&
2125              hctx->queue->mq_ops->commit_rqs && queued)
2126                 hctx->queue->mq_ops->commit_rqs(hctx);
2127 }
2128
2129 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2130 {
2131         list_add_tail(&rq->queuelist, &plug->mq_list);
2132         plug->rq_count++;
2133         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2134                 struct request *tmp;
2135
2136                 tmp = list_first_entry(&plug->mq_list, struct request,
2137                                                 queuelist);
2138                 if (tmp->q != rq->q)
2139                         plug->multiple_queues = true;
2140         }
2141 }
2142
2143 /**
2144  * blk_mq_submit_bio - Create and send a request to block device.
2145  * @bio: Bio pointer.
2146  *
2147  * Builds up a request structure from @q and @bio and send to the device. The
2148  * request may not be queued directly to hardware if:
2149  * * This request can be merged with another one
2150  * * We want to place request at plug queue for possible future merging
2151  * * There is an IO scheduler active at this queue
2152  *
2153  * It will not queue the request if there is an error with the bio, or at the
2154  * request creation.
2155  *
2156  * Returns: Request queue cookie.
2157  */
2158 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2159 {
2160         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2161         const int is_sync = op_is_sync(bio->bi_opf);
2162         const int is_flush_fua = op_is_flush(bio->bi_opf);
2163         struct blk_mq_alloc_data data = {
2164                 .q              = q,
2165         };
2166         struct request *rq;
2167         struct blk_plug *plug;
2168         struct request *same_queue_rq = NULL;
2169         unsigned int nr_segs;
2170         blk_qc_t cookie;
2171         blk_status_t ret;
2172         bool hipri;
2173
2174         blk_queue_bounce(q, &bio);
2175         __blk_queue_split(&bio, &nr_segs);
2176
2177         if (!bio_integrity_prep(bio))
2178                 goto queue_exit;
2179
2180         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2181             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2182                 goto queue_exit;
2183
2184         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2185                 goto queue_exit;
2186
2187         rq_qos_throttle(q, bio);
2188
2189         hipri = bio->bi_opf & REQ_HIPRI;
2190
2191         data.cmd_flags = bio->bi_opf;
2192         rq = __blk_mq_alloc_request(&data);
2193         if (unlikely(!rq)) {
2194                 rq_qos_cleanup(q, bio);
2195                 if (bio->bi_opf & REQ_NOWAIT)
2196                         bio_wouldblock_error(bio);
2197                 goto queue_exit;
2198         }
2199
2200         trace_block_getrq(bio);
2201
2202         rq_qos_track(q, rq, bio);
2203
2204         cookie = request_to_qc_t(data.hctx, rq);
2205
2206         blk_mq_bio_to_request(rq, bio, nr_segs);
2207
2208         ret = blk_crypto_init_request(rq);
2209         if (ret != BLK_STS_OK) {
2210                 bio->bi_status = ret;
2211                 bio_endio(bio);
2212                 blk_mq_free_request(rq);
2213                 return BLK_QC_T_NONE;
2214         }
2215
2216         plug = blk_mq_plug(q, bio);
2217         if (unlikely(is_flush_fua)) {
2218                 /* Bypass scheduler for flush requests */
2219                 blk_insert_flush(rq);
2220                 blk_mq_run_hw_queue(data.hctx, true);
2221         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2222                                 !blk_queue_nonrot(q))) {
2223                 /*
2224                  * Use plugging if we have a ->commit_rqs() hook as well, as
2225                  * we know the driver uses bd->last in a smart fashion.
2226                  *
2227                  * Use normal plugging if this disk is slow HDD, as sequential
2228                  * IO may benefit a lot from plug merging.
2229                  */
2230                 unsigned int request_count = plug->rq_count;
2231                 struct request *last = NULL;
2232
2233                 if (!request_count)
2234                         trace_block_plug(q);
2235                 else
2236                         last = list_entry_rq(plug->mq_list.prev);
2237
2238                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2239                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2240                         blk_flush_plug_list(plug, false);
2241                         trace_block_plug(q);
2242                 }
2243
2244                 blk_add_rq_to_plug(plug, rq);
2245         } else if (q->elevator) {
2246                 /* Insert the request at the IO scheduler queue */
2247                 blk_mq_sched_insert_request(rq, false, true, true);
2248         } else if (plug && !blk_queue_nomerges(q)) {
2249                 /*
2250                  * We do limited plugging. If the bio can be merged, do that.
2251                  * Otherwise the existing request in the plug list will be
2252                  * issued. So the plug list will have one request at most
2253                  * The plug list might get flushed before this. If that happens,
2254                  * the plug list is empty, and same_queue_rq is invalid.
2255                  */
2256                 if (list_empty(&plug->mq_list))
2257                         same_queue_rq = NULL;
2258                 if (same_queue_rq) {
2259                         list_del_init(&same_queue_rq->queuelist);
2260                         plug->rq_count--;
2261                 }
2262                 blk_add_rq_to_plug(plug, rq);
2263                 trace_block_plug(q);
2264
2265                 if (same_queue_rq) {
2266                         data.hctx = same_queue_rq->mq_hctx;
2267                         trace_block_unplug(q, 1, true);
2268                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2269                                         &cookie);
2270                 }
2271         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2272                         !data.hctx->dispatch_busy) {
2273                 /*
2274                  * There is no scheduler and we can try to send directly
2275                  * to the hardware.
2276                  */
2277                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2278         } else {
2279                 /* Default case. */
2280                 blk_mq_sched_insert_request(rq, false, true, true);
2281         }
2282
2283         if (!hipri)
2284                 return BLK_QC_T_NONE;
2285         return cookie;
2286 queue_exit:
2287         blk_queue_exit(q);
2288         return BLK_QC_T_NONE;
2289 }
2290
2291 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2292                      unsigned int hctx_idx)
2293 {
2294         struct page *page;
2295
2296         if (tags->rqs && set->ops->exit_request) {
2297                 int i;
2298
2299                 for (i = 0; i < tags->nr_tags; i++) {
2300                         struct request *rq = tags->static_rqs[i];
2301
2302                         if (!rq)
2303                                 continue;
2304                         set->ops->exit_request(set, rq, hctx_idx);
2305                         tags->static_rqs[i] = NULL;
2306                 }
2307         }
2308
2309         while (!list_empty(&tags->page_list)) {
2310                 page = list_first_entry(&tags->page_list, struct page, lru);
2311                 list_del_init(&page->lru);
2312                 /*
2313                  * Remove kmemleak object previously allocated in
2314                  * blk_mq_alloc_rqs().
2315                  */
2316                 kmemleak_free(page_address(page));
2317                 __free_pages(page, page->private);
2318         }
2319 }
2320
2321 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2322 {
2323         kfree(tags->rqs);
2324         tags->rqs = NULL;
2325         kfree(tags->static_rqs);
2326         tags->static_rqs = NULL;
2327
2328         blk_mq_free_tags(tags, flags);
2329 }
2330
2331 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2332                                         unsigned int hctx_idx,
2333                                         unsigned int nr_tags,
2334                                         unsigned int reserved_tags,
2335                                         unsigned int flags)
2336 {
2337         struct blk_mq_tags *tags;
2338         int node;
2339
2340         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2341         if (node == NUMA_NO_NODE)
2342                 node = set->numa_node;
2343
2344         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2345         if (!tags)
2346                 return NULL;
2347
2348         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2349                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2350                                  node);
2351         if (!tags->rqs) {
2352                 blk_mq_free_tags(tags, flags);
2353                 return NULL;
2354         }
2355
2356         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2357                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2358                                         node);
2359         if (!tags->static_rqs) {
2360                 kfree(tags->rqs);
2361                 blk_mq_free_tags(tags, flags);
2362                 return NULL;
2363         }
2364
2365         return tags;
2366 }
2367
2368 static size_t order_to_size(unsigned int order)
2369 {
2370         return (size_t)PAGE_SIZE << order;
2371 }
2372
2373 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2374                                unsigned int hctx_idx, int node)
2375 {
2376         int ret;
2377
2378         if (set->ops->init_request) {
2379                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2380                 if (ret)
2381                         return ret;
2382         }
2383
2384         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2385         return 0;
2386 }
2387
2388 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2389                      unsigned int hctx_idx, unsigned int depth)
2390 {
2391         unsigned int i, j, entries_per_page, max_order = 4;
2392         size_t rq_size, left;
2393         int node;
2394
2395         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2396         if (node == NUMA_NO_NODE)
2397                 node = set->numa_node;
2398
2399         INIT_LIST_HEAD(&tags->page_list);
2400
2401         /*
2402          * rq_size is the size of the request plus driver payload, rounded
2403          * to the cacheline size
2404          */
2405         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2406                                 cache_line_size());
2407         left = rq_size * depth;
2408
2409         for (i = 0; i < depth; ) {
2410                 int this_order = max_order;
2411                 struct page *page;
2412                 int to_do;
2413                 void *p;
2414
2415                 while (this_order && left < order_to_size(this_order - 1))
2416                         this_order--;
2417
2418                 do {
2419                         page = alloc_pages_node(node,
2420                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2421                                 this_order);
2422                         if (page)
2423                                 break;
2424                         if (!this_order--)
2425                                 break;
2426                         if (order_to_size(this_order) < rq_size)
2427                                 break;
2428                 } while (1);
2429
2430                 if (!page)
2431                         goto fail;
2432
2433                 page->private = this_order;
2434                 list_add_tail(&page->lru, &tags->page_list);
2435
2436                 p = page_address(page);
2437                 /*
2438                  * Allow kmemleak to scan these pages as they contain pointers
2439                  * to additional allocations like via ops->init_request().
2440                  */
2441                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2442                 entries_per_page = order_to_size(this_order) / rq_size;
2443                 to_do = min(entries_per_page, depth - i);
2444                 left -= to_do * rq_size;
2445                 for (j = 0; j < to_do; j++) {
2446                         struct request *rq = p;
2447
2448                         tags->static_rqs[i] = rq;
2449                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2450                                 tags->static_rqs[i] = NULL;
2451                                 goto fail;
2452                         }
2453
2454                         p += rq_size;
2455                         i++;
2456                 }
2457         }
2458         return 0;
2459
2460 fail:
2461         blk_mq_free_rqs(set, tags, hctx_idx);
2462         return -ENOMEM;
2463 }
2464
2465 struct rq_iter_data {
2466         struct blk_mq_hw_ctx *hctx;
2467         bool has_rq;
2468 };
2469
2470 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2471 {
2472         struct rq_iter_data *iter_data = data;
2473
2474         if (rq->mq_hctx != iter_data->hctx)
2475                 return true;
2476         iter_data->has_rq = true;
2477         return false;
2478 }
2479
2480 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2481 {
2482         struct blk_mq_tags *tags = hctx->sched_tags ?
2483                         hctx->sched_tags : hctx->tags;
2484         struct rq_iter_data data = {
2485                 .hctx   = hctx,
2486         };
2487
2488         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2489         return data.has_rq;
2490 }
2491
2492 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2493                 struct blk_mq_hw_ctx *hctx)
2494 {
2495         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2496                 return false;
2497         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2498                 return false;
2499         return true;
2500 }
2501
2502 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2503 {
2504         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2505                         struct blk_mq_hw_ctx, cpuhp_online);
2506
2507         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2508             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2509                 return 0;
2510
2511         /*
2512          * Prevent new request from being allocated on the current hctx.
2513          *
2514          * The smp_mb__after_atomic() Pairs with the implied barrier in
2515          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2516          * seen once we return from the tag allocator.
2517          */
2518         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2519         smp_mb__after_atomic();
2520
2521         /*
2522          * Try to grab a reference to the queue and wait for any outstanding
2523          * requests.  If we could not grab a reference the queue has been
2524          * frozen and there are no requests.
2525          */
2526         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2527                 while (blk_mq_hctx_has_requests(hctx))
2528                         msleep(5);
2529                 percpu_ref_put(&hctx->queue->q_usage_counter);
2530         }
2531
2532         return 0;
2533 }
2534
2535 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2536 {
2537         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2538                         struct blk_mq_hw_ctx, cpuhp_online);
2539
2540         if (cpumask_test_cpu(cpu, hctx->cpumask))
2541                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2542         return 0;
2543 }
2544
2545 /*
2546  * 'cpu' is going away. splice any existing rq_list entries from this
2547  * software queue to the hw queue dispatch list, and ensure that it
2548  * gets run.
2549  */
2550 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2551 {
2552         struct blk_mq_hw_ctx *hctx;
2553         struct blk_mq_ctx *ctx;
2554         LIST_HEAD(tmp);
2555         enum hctx_type type;
2556
2557         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2558         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2559                 return 0;
2560
2561         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2562         type = hctx->type;
2563
2564         spin_lock(&ctx->lock);
2565         if (!list_empty(&ctx->rq_lists[type])) {
2566                 list_splice_init(&ctx->rq_lists[type], &tmp);
2567                 blk_mq_hctx_clear_pending(hctx, ctx);
2568         }
2569         spin_unlock(&ctx->lock);
2570
2571         if (list_empty(&tmp))
2572                 return 0;
2573
2574         spin_lock(&hctx->lock);
2575         list_splice_tail_init(&tmp, &hctx->dispatch);
2576         spin_unlock(&hctx->lock);
2577
2578         blk_mq_run_hw_queue(hctx, true);
2579         return 0;
2580 }
2581
2582 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2583 {
2584         if (!(hctx->flags & BLK_MQ_F_STACKING))
2585                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2586                                                     &hctx->cpuhp_online);
2587         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2588                                             &hctx->cpuhp_dead);
2589 }
2590
2591 /* hctx->ctxs will be freed in queue's release handler */
2592 static void blk_mq_exit_hctx(struct request_queue *q,
2593                 struct blk_mq_tag_set *set,
2594                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2595 {
2596         if (blk_mq_hw_queue_mapped(hctx))
2597                 blk_mq_tag_idle(hctx);
2598
2599         if (set->ops->exit_request)
2600                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2601
2602         if (set->ops->exit_hctx)
2603                 set->ops->exit_hctx(hctx, hctx_idx);
2604
2605         blk_mq_remove_cpuhp(hctx);
2606
2607         spin_lock(&q->unused_hctx_lock);
2608         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2609         spin_unlock(&q->unused_hctx_lock);
2610 }
2611
2612 static void blk_mq_exit_hw_queues(struct request_queue *q,
2613                 struct blk_mq_tag_set *set, int nr_queue)
2614 {
2615         struct blk_mq_hw_ctx *hctx;
2616         unsigned int i;
2617
2618         queue_for_each_hw_ctx(q, hctx, i) {
2619                 if (i == nr_queue)
2620                         break;
2621                 blk_mq_debugfs_unregister_hctx(hctx);
2622                 blk_mq_exit_hctx(q, set, hctx, i);
2623         }
2624 }
2625
2626 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2627 {
2628         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2629
2630         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2631                            __alignof__(struct blk_mq_hw_ctx)) !=
2632                      sizeof(struct blk_mq_hw_ctx));
2633
2634         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2635                 hw_ctx_size += sizeof(struct srcu_struct);
2636
2637         return hw_ctx_size;
2638 }
2639
2640 static int blk_mq_init_hctx(struct request_queue *q,
2641                 struct blk_mq_tag_set *set,
2642                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2643 {
2644         hctx->queue_num = hctx_idx;
2645
2646         if (!(hctx->flags & BLK_MQ_F_STACKING))
2647                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2648                                 &hctx->cpuhp_online);
2649         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2650
2651         hctx->tags = set->tags[hctx_idx];
2652
2653         if (set->ops->init_hctx &&
2654             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2655                 goto unregister_cpu_notifier;
2656
2657         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2658                                 hctx->numa_node))
2659                 goto exit_hctx;
2660         return 0;
2661
2662  exit_hctx:
2663         if (set->ops->exit_hctx)
2664                 set->ops->exit_hctx(hctx, hctx_idx);
2665  unregister_cpu_notifier:
2666         blk_mq_remove_cpuhp(hctx);
2667         return -1;
2668 }
2669
2670 static struct blk_mq_hw_ctx *
2671 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2672                 int node)
2673 {
2674         struct blk_mq_hw_ctx *hctx;
2675         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2676
2677         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2678         if (!hctx)
2679                 goto fail_alloc_hctx;
2680
2681         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2682                 goto free_hctx;
2683
2684         atomic_set(&hctx->nr_active, 0);
2685         if (node == NUMA_NO_NODE)
2686                 node = set->numa_node;
2687         hctx->numa_node = node;
2688
2689         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2690         spin_lock_init(&hctx->lock);
2691         INIT_LIST_HEAD(&hctx->dispatch);
2692         hctx->queue = q;
2693         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2694
2695         INIT_LIST_HEAD(&hctx->hctx_list);
2696
2697         /*
2698          * Allocate space for all possible cpus to avoid allocation at
2699          * runtime
2700          */
2701         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2702                         gfp, node);
2703         if (!hctx->ctxs)
2704                 goto free_cpumask;
2705
2706         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2707                                 gfp, node))
2708                 goto free_ctxs;
2709         hctx->nr_ctx = 0;
2710
2711         spin_lock_init(&hctx->dispatch_wait_lock);
2712         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2713         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2714
2715         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2716         if (!hctx->fq)
2717                 goto free_bitmap;
2718
2719         if (hctx->flags & BLK_MQ_F_BLOCKING)
2720                 init_srcu_struct(hctx->srcu);
2721         blk_mq_hctx_kobj_init(hctx);
2722
2723         return hctx;
2724
2725  free_bitmap:
2726         sbitmap_free(&hctx->ctx_map);
2727  free_ctxs:
2728         kfree(hctx->ctxs);
2729  free_cpumask:
2730         free_cpumask_var(hctx->cpumask);
2731  free_hctx:
2732         kfree(hctx);
2733  fail_alloc_hctx:
2734         return NULL;
2735 }
2736
2737 static void blk_mq_init_cpu_queues(struct request_queue *q,
2738                                    unsigned int nr_hw_queues)
2739 {
2740         struct blk_mq_tag_set *set = q->tag_set;
2741         unsigned int i, j;
2742
2743         for_each_possible_cpu(i) {
2744                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2745                 struct blk_mq_hw_ctx *hctx;
2746                 int k;
2747
2748                 __ctx->cpu = i;
2749                 spin_lock_init(&__ctx->lock);
2750                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2751                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2752
2753                 __ctx->queue = q;
2754
2755                 /*
2756                  * Set local node, IFF we have more than one hw queue. If
2757                  * not, we remain on the home node of the device
2758                  */
2759                 for (j = 0; j < set->nr_maps; j++) {
2760                         hctx = blk_mq_map_queue_type(q, j, i);
2761                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2762                                 hctx->numa_node = cpu_to_node(i);
2763                 }
2764         }
2765 }
2766
2767 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2768                                         int hctx_idx)
2769 {
2770         unsigned int flags = set->flags;
2771         int ret = 0;
2772
2773         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2774                                         set->queue_depth, set->reserved_tags, flags);
2775         if (!set->tags[hctx_idx])
2776                 return false;
2777
2778         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2779                                 set->queue_depth);
2780         if (!ret)
2781                 return true;
2782
2783         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2784         set->tags[hctx_idx] = NULL;
2785         return false;
2786 }
2787
2788 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2789                                          unsigned int hctx_idx)
2790 {
2791         unsigned int flags = set->flags;
2792
2793         if (set->tags && set->tags[hctx_idx]) {
2794                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2795                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2796                 set->tags[hctx_idx] = NULL;
2797         }
2798 }
2799
2800 static void blk_mq_map_swqueue(struct request_queue *q)
2801 {
2802         unsigned int i, j, hctx_idx;
2803         struct blk_mq_hw_ctx *hctx;
2804         struct blk_mq_ctx *ctx;
2805         struct blk_mq_tag_set *set = q->tag_set;
2806
2807         queue_for_each_hw_ctx(q, hctx, i) {
2808                 cpumask_clear(hctx->cpumask);
2809                 hctx->nr_ctx = 0;
2810                 hctx->dispatch_from = NULL;
2811         }
2812
2813         /*
2814          * Map software to hardware queues.
2815          *
2816          * If the cpu isn't present, the cpu is mapped to first hctx.
2817          */
2818         for_each_possible_cpu(i) {
2819
2820                 ctx = per_cpu_ptr(q->queue_ctx, i);
2821                 for (j = 0; j < set->nr_maps; j++) {
2822                         if (!set->map[j].nr_queues) {
2823                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2824                                                 HCTX_TYPE_DEFAULT, i);
2825                                 continue;
2826                         }
2827                         hctx_idx = set->map[j].mq_map[i];
2828                         /* unmapped hw queue can be remapped after CPU topo changed */
2829                         if (!set->tags[hctx_idx] &&
2830                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2831                                 /*
2832                                  * If tags initialization fail for some hctx,
2833                                  * that hctx won't be brought online.  In this
2834                                  * case, remap the current ctx to hctx[0] which
2835                                  * is guaranteed to always have tags allocated
2836                                  */
2837                                 set->map[j].mq_map[i] = 0;
2838                         }
2839
2840                         hctx = blk_mq_map_queue_type(q, j, i);
2841                         ctx->hctxs[j] = hctx;
2842                         /*
2843                          * If the CPU is already set in the mask, then we've
2844                          * mapped this one already. This can happen if
2845                          * devices share queues across queue maps.
2846                          */
2847                         if (cpumask_test_cpu(i, hctx->cpumask))
2848                                 continue;
2849
2850                         cpumask_set_cpu(i, hctx->cpumask);
2851                         hctx->type = j;
2852                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2853                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2854
2855                         /*
2856                          * If the nr_ctx type overflows, we have exceeded the
2857                          * amount of sw queues we can support.
2858                          */
2859                         BUG_ON(!hctx->nr_ctx);
2860                 }
2861
2862                 for (; j < HCTX_MAX_TYPES; j++)
2863                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2864                                         HCTX_TYPE_DEFAULT, i);
2865         }
2866
2867         queue_for_each_hw_ctx(q, hctx, i) {
2868                 /*
2869                  * If no software queues are mapped to this hardware queue,
2870                  * disable it and free the request entries.
2871                  */
2872                 if (!hctx->nr_ctx) {
2873                         /* Never unmap queue 0.  We need it as a
2874                          * fallback in case of a new remap fails
2875                          * allocation
2876                          */
2877                         if (i && set->tags[i])
2878                                 blk_mq_free_map_and_requests(set, i);
2879
2880                         hctx->tags = NULL;
2881                         continue;
2882                 }
2883
2884                 hctx->tags = set->tags[i];
2885                 WARN_ON(!hctx->tags);
2886
2887                 /*
2888                  * Set the map size to the number of mapped software queues.
2889                  * This is more accurate and more efficient than looping
2890                  * over all possibly mapped software queues.
2891                  */
2892                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2893
2894                 /*
2895                  * Initialize batch roundrobin counts
2896                  */
2897                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2898                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2899         }
2900 }
2901
2902 /*
2903  * Caller needs to ensure that we're either frozen/quiesced, or that
2904  * the queue isn't live yet.
2905  */
2906 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2907 {
2908         struct blk_mq_hw_ctx *hctx;
2909         int i;
2910
2911         queue_for_each_hw_ctx(q, hctx, i) {
2912                 if (shared)
2913                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2914                 else
2915                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2916         }
2917 }
2918
2919 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2920                                          bool shared)
2921 {
2922         struct request_queue *q;
2923
2924         lockdep_assert_held(&set->tag_list_lock);
2925
2926         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2927                 blk_mq_freeze_queue(q);
2928                 queue_set_hctx_shared(q, shared);
2929                 blk_mq_unfreeze_queue(q);
2930         }
2931 }
2932
2933 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2934 {
2935         struct blk_mq_tag_set *set = q->tag_set;
2936
2937         mutex_lock(&set->tag_list_lock);
2938         list_del(&q->tag_set_list);
2939         if (list_is_singular(&set->tag_list)) {
2940                 /* just transitioned to unshared */
2941                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2942                 /* update existing queue */
2943                 blk_mq_update_tag_set_shared(set, false);
2944         }
2945         mutex_unlock(&set->tag_list_lock);
2946         INIT_LIST_HEAD(&q->tag_set_list);
2947 }
2948
2949 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2950                                      struct request_queue *q)
2951 {
2952         mutex_lock(&set->tag_list_lock);
2953
2954         /*
2955          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2956          */
2957         if (!list_empty(&set->tag_list) &&
2958             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2959                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2960                 /* update existing queue */
2961                 blk_mq_update_tag_set_shared(set, true);
2962         }
2963         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2964                 queue_set_hctx_shared(q, true);
2965         list_add_tail(&q->tag_set_list, &set->tag_list);
2966
2967         mutex_unlock(&set->tag_list_lock);
2968 }
2969
2970 /* All allocations will be freed in release handler of q->mq_kobj */
2971 static int blk_mq_alloc_ctxs(struct request_queue *q)
2972 {
2973         struct blk_mq_ctxs *ctxs;
2974         int cpu;
2975
2976         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2977         if (!ctxs)
2978                 return -ENOMEM;
2979
2980         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2981         if (!ctxs->queue_ctx)
2982                 goto fail;
2983
2984         for_each_possible_cpu(cpu) {
2985                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2986                 ctx->ctxs = ctxs;
2987         }
2988
2989         q->mq_kobj = &ctxs->kobj;
2990         q->queue_ctx = ctxs->queue_ctx;
2991
2992         return 0;
2993  fail:
2994         kfree(ctxs);
2995         return -ENOMEM;
2996 }
2997
2998 /*
2999  * It is the actual release handler for mq, but we do it from
3000  * request queue's release handler for avoiding use-after-free
3001  * and headache because q->mq_kobj shouldn't have been introduced,
3002  * but we can't group ctx/kctx kobj without it.
3003  */
3004 void blk_mq_release(struct request_queue *q)
3005 {
3006         struct blk_mq_hw_ctx *hctx, *next;
3007         int i;
3008
3009         queue_for_each_hw_ctx(q, hctx, i)
3010                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3011
3012         /* all hctx are in .unused_hctx_list now */
3013         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3014                 list_del_init(&hctx->hctx_list);
3015                 kobject_put(&hctx->kobj);
3016         }
3017
3018         kfree(q->queue_hw_ctx);
3019
3020         /*
3021          * release .mq_kobj and sw queue's kobject now because
3022          * both share lifetime with request queue.
3023          */
3024         blk_mq_sysfs_deinit(q);
3025 }
3026
3027 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3028                 void *queuedata)
3029 {
3030         struct request_queue *uninit_q, *q;
3031
3032         uninit_q = blk_alloc_queue(set->numa_node);
3033         if (!uninit_q)
3034                 return ERR_PTR(-ENOMEM);
3035         uninit_q->queuedata = queuedata;
3036
3037         /*
3038          * Initialize the queue without an elevator. device_add_disk() will do
3039          * the initialization.
3040          */
3041         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3042         if (IS_ERR(q))
3043                 blk_cleanup_queue(uninit_q);
3044
3045         return q;
3046 }
3047 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3048
3049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3050 {
3051         return blk_mq_init_queue_data(set, NULL);
3052 }
3053 EXPORT_SYMBOL(blk_mq_init_queue);
3054
3055 /*
3056  * Helper for setting up a queue with mq ops, given queue depth, and
3057  * the passed in mq ops flags.
3058  */
3059 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3060                                            const struct blk_mq_ops *ops,
3061                                            unsigned int queue_depth,
3062                                            unsigned int set_flags)
3063 {
3064         struct request_queue *q;
3065         int ret;
3066
3067         memset(set, 0, sizeof(*set));
3068         set->ops = ops;
3069         set->nr_hw_queues = 1;
3070         set->nr_maps = 1;
3071         set->queue_depth = queue_depth;
3072         set->numa_node = NUMA_NO_NODE;
3073         set->flags = set_flags;
3074
3075         ret = blk_mq_alloc_tag_set(set);
3076         if (ret)
3077                 return ERR_PTR(ret);
3078
3079         q = blk_mq_init_queue(set);
3080         if (IS_ERR(q)) {
3081                 blk_mq_free_tag_set(set);
3082                 return q;
3083         }
3084
3085         return q;
3086 }
3087 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3088
3089 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3090                 struct blk_mq_tag_set *set, struct request_queue *q,
3091                 int hctx_idx, int node)
3092 {
3093         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3094
3095         /* reuse dead hctx first */
3096         spin_lock(&q->unused_hctx_lock);
3097         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3098                 if (tmp->numa_node == node) {
3099                         hctx = tmp;
3100                         break;
3101                 }
3102         }
3103         if (hctx)
3104                 list_del_init(&hctx->hctx_list);
3105         spin_unlock(&q->unused_hctx_lock);
3106
3107         if (!hctx)
3108                 hctx = blk_mq_alloc_hctx(q, set, node);
3109         if (!hctx)
3110                 goto fail;
3111
3112         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3113                 goto free_hctx;
3114
3115         return hctx;
3116
3117  free_hctx:
3118         kobject_put(&hctx->kobj);
3119  fail:
3120         return NULL;
3121 }
3122
3123 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3124                                                 struct request_queue *q)
3125 {
3126         int i, j, end;
3127         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3128
3129         if (q->nr_hw_queues < set->nr_hw_queues) {
3130                 struct blk_mq_hw_ctx **new_hctxs;
3131
3132                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3133                                        sizeof(*new_hctxs), GFP_KERNEL,
3134                                        set->numa_node);
3135                 if (!new_hctxs)
3136                         return;
3137                 if (hctxs)
3138                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3139                                sizeof(*hctxs));
3140                 q->queue_hw_ctx = new_hctxs;
3141                 kfree(hctxs);
3142                 hctxs = new_hctxs;
3143         }
3144
3145         /* protect against switching io scheduler  */
3146         mutex_lock(&q->sysfs_lock);
3147         for (i = 0; i < set->nr_hw_queues; i++) {
3148                 int node;
3149                 struct blk_mq_hw_ctx *hctx;
3150
3151                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3152                 /*
3153                  * If the hw queue has been mapped to another numa node,
3154                  * we need to realloc the hctx. If allocation fails, fallback
3155                  * to use the previous one.
3156                  */
3157                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3158                         continue;
3159
3160                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3161                 if (hctx) {
3162                         if (hctxs[i])
3163                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3164                         hctxs[i] = hctx;
3165                 } else {
3166                         if (hctxs[i])
3167                                 pr_warn("Allocate new hctx on node %d fails,\
3168                                                 fallback to previous one on node %d\n",
3169                                                 node, hctxs[i]->numa_node);
3170                         else
3171                                 break;
3172                 }
3173         }
3174         /*
3175          * Increasing nr_hw_queues fails. Free the newly allocated
3176          * hctxs and keep the previous q->nr_hw_queues.
3177          */
3178         if (i != set->nr_hw_queues) {
3179                 j = q->nr_hw_queues;
3180                 end = i;
3181         } else {
3182                 j = i;
3183                 end = q->nr_hw_queues;
3184                 q->nr_hw_queues = set->nr_hw_queues;
3185         }
3186
3187         for (; j < end; j++) {
3188                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3189
3190                 if (hctx) {
3191                         if (hctx->tags)
3192                                 blk_mq_free_map_and_requests(set, j);
3193                         blk_mq_exit_hctx(q, set, hctx, j);
3194                         hctxs[j] = NULL;
3195                 }
3196         }
3197         mutex_unlock(&q->sysfs_lock);
3198 }
3199
3200 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3201                                                   struct request_queue *q,
3202                                                   bool elevator_init)
3203 {
3204         /* mark the queue as mq asap */
3205         q->mq_ops = set->ops;
3206
3207         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3208                                              blk_mq_poll_stats_bkt,
3209                                              BLK_MQ_POLL_STATS_BKTS, q);
3210         if (!q->poll_cb)
3211                 goto err_exit;
3212
3213         if (blk_mq_alloc_ctxs(q))
3214                 goto err_poll;
3215
3216         /* init q->mq_kobj and sw queues' kobjects */
3217         blk_mq_sysfs_init(q);
3218
3219         INIT_LIST_HEAD(&q->unused_hctx_list);
3220         spin_lock_init(&q->unused_hctx_lock);
3221
3222         blk_mq_realloc_hw_ctxs(set, q);
3223         if (!q->nr_hw_queues)
3224                 goto err_hctxs;
3225
3226         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3227         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3228
3229         q->tag_set = set;
3230
3231         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3232         if (set->nr_maps > HCTX_TYPE_POLL &&
3233             set->map[HCTX_TYPE_POLL].nr_queues)
3234                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3235
3236         q->sg_reserved_size = INT_MAX;
3237
3238         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3239         INIT_LIST_HEAD(&q->requeue_list);
3240         spin_lock_init(&q->requeue_lock);
3241
3242         q->nr_requests = set->queue_depth;
3243
3244         /*
3245          * Default to classic polling
3246          */
3247         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3248
3249         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3250         blk_mq_add_queue_tag_set(set, q);
3251         blk_mq_map_swqueue(q);
3252
3253         if (elevator_init)
3254                 elevator_init_mq(q);
3255
3256         return q;
3257
3258 err_hctxs:
3259         kfree(q->queue_hw_ctx);
3260         q->nr_hw_queues = 0;
3261         blk_mq_sysfs_deinit(q);
3262 err_poll:
3263         blk_stat_free_callback(q->poll_cb);
3264         q->poll_cb = NULL;
3265 err_exit:
3266         q->mq_ops = NULL;
3267         return ERR_PTR(-ENOMEM);
3268 }
3269 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3270
3271 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3272 void blk_mq_exit_queue(struct request_queue *q)
3273 {
3274         struct blk_mq_tag_set   *set = q->tag_set;
3275
3276         blk_mq_del_queue_tag_set(q);
3277         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3278 }
3279
3280 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3281 {
3282         int i;
3283
3284         for (i = 0; i < set->nr_hw_queues; i++) {
3285                 if (!__blk_mq_alloc_map_and_request(set, i))
3286                         goto out_unwind;
3287                 cond_resched();
3288         }
3289
3290         return 0;
3291
3292 out_unwind:
3293         while (--i >= 0)
3294                 blk_mq_free_map_and_requests(set, i);
3295
3296         return -ENOMEM;
3297 }
3298
3299 /*
3300  * Allocate the request maps associated with this tag_set. Note that this
3301  * may reduce the depth asked for, if memory is tight. set->queue_depth
3302  * will be updated to reflect the allocated depth.
3303  */
3304 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3305 {
3306         unsigned int depth;
3307         int err;
3308
3309         depth = set->queue_depth;
3310         do {
3311                 err = __blk_mq_alloc_rq_maps(set);
3312                 if (!err)
3313                         break;
3314
3315                 set->queue_depth >>= 1;
3316                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3317                         err = -ENOMEM;
3318                         break;
3319                 }
3320         } while (set->queue_depth);
3321
3322         if (!set->queue_depth || err) {
3323                 pr_err("blk-mq: failed to allocate request map\n");
3324                 return -ENOMEM;
3325         }
3326
3327         if (depth != set->queue_depth)
3328                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3329                                                 depth, set->queue_depth);
3330
3331         return 0;
3332 }
3333
3334 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3335 {
3336         /*
3337          * blk_mq_map_queues() and multiple .map_queues() implementations
3338          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3339          * number of hardware queues.
3340          */
3341         if (set->nr_maps == 1)
3342                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3343
3344         if (set->ops->map_queues && !is_kdump_kernel()) {
3345                 int i;
3346
3347                 /*
3348                  * transport .map_queues is usually done in the following
3349                  * way:
3350                  *
3351                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3352                  *      mask = get_cpu_mask(queue)
3353                  *      for_each_cpu(cpu, mask)
3354                  *              set->map[x].mq_map[cpu] = queue;
3355                  * }
3356                  *
3357                  * When we need to remap, the table has to be cleared for
3358                  * killing stale mapping since one CPU may not be mapped
3359                  * to any hw queue.
3360                  */
3361                 for (i = 0; i < set->nr_maps; i++)
3362                         blk_mq_clear_mq_map(&set->map[i]);
3363
3364                 return set->ops->map_queues(set);
3365         } else {
3366                 BUG_ON(set->nr_maps > 1);
3367                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3368         }
3369 }
3370
3371 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3372                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3373 {
3374         struct blk_mq_tags **new_tags;
3375
3376         if (cur_nr_hw_queues >= new_nr_hw_queues)
3377                 return 0;
3378
3379         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3380                                 GFP_KERNEL, set->numa_node);
3381         if (!new_tags)
3382                 return -ENOMEM;
3383
3384         if (set->tags)
3385                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3386                        sizeof(*set->tags));
3387         kfree(set->tags);
3388         set->tags = new_tags;
3389         set->nr_hw_queues = new_nr_hw_queues;
3390
3391         return 0;
3392 }
3393
3394 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3395                                 int new_nr_hw_queues)
3396 {
3397         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3398 }
3399
3400 /*
3401  * Alloc a tag set to be associated with one or more request queues.
3402  * May fail with EINVAL for various error conditions. May adjust the
3403  * requested depth down, if it's too large. In that case, the set
3404  * value will be stored in set->queue_depth.
3405  */
3406 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3407 {
3408         int i, ret;
3409
3410         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3411
3412         if (!set->nr_hw_queues)
3413                 return -EINVAL;
3414         if (!set->queue_depth)
3415                 return -EINVAL;
3416         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3417                 return -EINVAL;
3418
3419         if (!set->ops->queue_rq)
3420                 return -EINVAL;
3421
3422         if (!set->ops->get_budget ^ !set->ops->put_budget)
3423                 return -EINVAL;
3424
3425         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3426                 pr_info("blk-mq: reduced tag depth to %u\n",
3427                         BLK_MQ_MAX_DEPTH);
3428                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3429         }
3430
3431         if (!set->nr_maps)
3432                 set->nr_maps = 1;
3433         else if (set->nr_maps > HCTX_MAX_TYPES)
3434                 return -EINVAL;
3435
3436         /*
3437          * If a crashdump is active, then we are potentially in a very
3438          * memory constrained environment. Limit us to 1 queue and
3439          * 64 tags to prevent using too much memory.
3440          */
3441         if (is_kdump_kernel()) {
3442                 set->nr_hw_queues = 1;
3443                 set->nr_maps = 1;
3444                 set->queue_depth = min(64U, set->queue_depth);
3445         }
3446         /*
3447          * There is no use for more h/w queues than cpus if we just have
3448          * a single map
3449          */
3450         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3451                 set->nr_hw_queues = nr_cpu_ids;
3452
3453         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3454                 return -ENOMEM;
3455
3456         ret = -ENOMEM;
3457         for (i = 0; i < set->nr_maps; i++) {
3458                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3459                                                   sizeof(set->map[i].mq_map[0]),
3460                                                   GFP_KERNEL, set->numa_node);
3461                 if (!set->map[i].mq_map)
3462                         goto out_free_mq_map;
3463                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3464         }
3465
3466         ret = blk_mq_update_queue_map(set);
3467         if (ret)
3468                 goto out_free_mq_map;
3469
3470         ret = blk_mq_alloc_map_and_requests(set);
3471         if (ret)
3472                 goto out_free_mq_map;
3473
3474         if (blk_mq_is_sbitmap_shared(set->flags)) {
3475                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3476
3477                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3478                         ret = -ENOMEM;
3479                         goto out_free_mq_rq_maps;
3480                 }
3481         }
3482
3483         mutex_init(&set->tag_list_lock);
3484         INIT_LIST_HEAD(&set->tag_list);
3485
3486         return 0;
3487
3488 out_free_mq_rq_maps:
3489         for (i = 0; i < set->nr_hw_queues; i++)
3490                 blk_mq_free_map_and_requests(set, i);
3491 out_free_mq_map:
3492         for (i = 0; i < set->nr_maps; i++) {
3493                 kfree(set->map[i].mq_map);
3494                 set->map[i].mq_map = NULL;
3495         }
3496         kfree(set->tags);
3497         set->tags = NULL;
3498         return ret;
3499 }
3500 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3501
3502 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3503 {
3504         int i, j;
3505
3506         for (i = 0; i < set->nr_hw_queues; i++)
3507                 blk_mq_free_map_and_requests(set, i);
3508
3509         if (blk_mq_is_sbitmap_shared(set->flags))
3510                 blk_mq_exit_shared_sbitmap(set);
3511
3512         for (j = 0; j < set->nr_maps; j++) {
3513                 kfree(set->map[j].mq_map);
3514                 set->map[j].mq_map = NULL;
3515         }
3516
3517         kfree(set->tags);
3518         set->tags = NULL;
3519 }
3520 EXPORT_SYMBOL(blk_mq_free_tag_set);
3521
3522 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3523 {
3524         struct blk_mq_tag_set *set = q->tag_set;
3525         struct blk_mq_hw_ctx *hctx;
3526         int i, ret;
3527
3528         if (!set)
3529                 return -EINVAL;
3530
3531         if (q->nr_requests == nr)
3532                 return 0;
3533
3534         blk_mq_freeze_queue(q);
3535         blk_mq_quiesce_queue(q);
3536
3537         ret = 0;
3538         queue_for_each_hw_ctx(q, hctx, i) {
3539                 if (!hctx->tags)
3540                         continue;
3541                 /*
3542                  * If we're using an MQ scheduler, just update the scheduler
3543                  * queue depth. This is similar to what the old code would do.
3544                  */
3545                 if (!hctx->sched_tags) {
3546                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3547                                                         false);
3548                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3549                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3550                 } else {
3551                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3552                                                         nr, true);
3553                 }
3554                 if (ret)
3555                         break;
3556                 if (q->elevator && q->elevator->type->ops.depth_updated)
3557                         q->elevator->type->ops.depth_updated(hctx);
3558         }
3559
3560         if (!ret)
3561                 q->nr_requests = nr;
3562
3563         blk_mq_unquiesce_queue(q);
3564         blk_mq_unfreeze_queue(q);
3565
3566         return ret;
3567 }
3568
3569 /*
3570  * request_queue and elevator_type pair.
3571  * It is just used by __blk_mq_update_nr_hw_queues to cache
3572  * the elevator_type associated with a request_queue.
3573  */
3574 struct blk_mq_qe_pair {
3575         struct list_head node;
3576         struct request_queue *q;
3577         struct elevator_type *type;
3578 };
3579
3580 /*
3581  * Cache the elevator_type in qe pair list and switch the
3582  * io scheduler to 'none'
3583  */
3584 static bool blk_mq_elv_switch_none(struct list_head *head,
3585                 struct request_queue *q)
3586 {
3587         struct blk_mq_qe_pair *qe;
3588
3589         if (!q->elevator)
3590                 return true;
3591
3592         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3593         if (!qe)
3594                 return false;
3595
3596         INIT_LIST_HEAD(&qe->node);
3597         qe->q = q;
3598         qe->type = q->elevator->type;
3599         list_add(&qe->node, head);
3600
3601         mutex_lock(&q->sysfs_lock);
3602         /*
3603          * After elevator_switch_mq, the previous elevator_queue will be
3604          * released by elevator_release. The reference of the io scheduler
3605          * module get by elevator_get will also be put. So we need to get
3606          * a reference of the io scheduler module here to prevent it to be
3607          * removed.
3608          */
3609         __module_get(qe->type->elevator_owner);
3610         elevator_switch_mq(q, NULL);
3611         mutex_unlock(&q->sysfs_lock);
3612
3613         return true;
3614 }
3615
3616 static void blk_mq_elv_switch_back(struct list_head *head,
3617                 struct request_queue *q)
3618 {
3619         struct blk_mq_qe_pair *qe;
3620         struct elevator_type *t = NULL;
3621
3622         list_for_each_entry(qe, head, node)
3623                 if (qe->q == q) {
3624                         t = qe->type;
3625                         break;
3626                 }
3627
3628         if (!t)
3629                 return;
3630
3631         list_del(&qe->node);
3632         kfree(qe);
3633
3634         mutex_lock(&q->sysfs_lock);
3635         elevator_switch_mq(q, t);
3636         mutex_unlock(&q->sysfs_lock);
3637 }
3638
3639 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3640                                                         int nr_hw_queues)
3641 {
3642         struct request_queue *q;
3643         LIST_HEAD(head);
3644         int prev_nr_hw_queues;
3645
3646         lockdep_assert_held(&set->tag_list_lock);
3647
3648         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3649                 nr_hw_queues = nr_cpu_ids;
3650         if (nr_hw_queues < 1)
3651                 return;
3652         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3653                 return;
3654
3655         list_for_each_entry(q, &set->tag_list, tag_set_list)
3656                 blk_mq_freeze_queue(q);
3657         /*
3658          * Switch IO scheduler to 'none', cleaning up the data associated
3659          * with the previous scheduler. We will switch back once we are done
3660          * updating the new sw to hw queue mappings.
3661          */
3662         list_for_each_entry(q, &set->tag_list, tag_set_list)
3663                 if (!blk_mq_elv_switch_none(&head, q))
3664                         goto switch_back;
3665
3666         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3667                 blk_mq_debugfs_unregister_hctxs(q);
3668                 blk_mq_sysfs_unregister(q);
3669         }
3670
3671         prev_nr_hw_queues = set->nr_hw_queues;
3672         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3673             0)
3674                 goto reregister;
3675
3676         set->nr_hw_queues = nr_hw_queues;
3677 fallback:
3678         blk_mq_update_queue_map(set);
3679         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3680                 blk_mq_realloc_hw_ctxs(set, q);
3681                 if (q->nr_hw_queues != set->nr_hw_queues) {
3682                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3683                                         nr_hw_queues, prev_nr_hw_queues);
3684                         set->nr_hw_queues = prev_nr_hw_queues;
3685                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3686                         goto fallback;
3687                 }
3688                 blk_mq_map_swqueue(q);
3689         }
3690
3691 reregister:
3692         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3693                 blk_mq_sysfs_register(q);
3694                 blk_mq_debugfs_register_hctxs(q);
3695         }
3696
3697 switch_back:
3698         list_for_each_entry(q, &set->tag_list, tag_set_list)
3699                 blk_mq_elv_switch_back(&head, q);
3700
3701         list_for_each_entry(q, &set->tag_list, tag_set_list)
3702                 blk_mq_unfreeze_queue(q);
3703 }
3704
3705 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3706 {
3707         mutex_lock(&set->tag_list_lock);
3708         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3709         mutex_unlock(&set->tag_list_lock);
3710 }
3711 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3712
3713 /* Enable polling stats and return whether they were already enabled. */
3714 static bool blk_poll_stats_enable(struct request_queue *q)
3715 {
3716         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3717             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3718                 return true;
3719         blk_stat_add_callback(q, q->poll_cb);
3720         return false;
3721 }
3722
3723 static void blk_mq_poll_stats_start(struct request_queue *q)
3724 {
3725         /*
3726          * We don't arm the callback if polling stats are not enabled or the
3727          * callback is already active.
3728          */
3729         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3730             blk_stat_is_active(q->poll_cb))
3731                 return;
3732
3733         blk_stat_activate_msecs(q->poll_cb, 100);
3734 }
3735
3736 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3737 {
3738         struct request_queue *q = cb->data;
3739         int bucket;
3740
3741         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3742                 if (cb->stat[bucket].nr_samples)
3743                         q->poll_stat[bucket] = cb->stat[bucket];
3744         }
3745 }
3746
3747 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3748                                        struct request *rq)
3749 {
3750         unsigned long ret = 0;
3751         int bucket;
3752
3753         /*
3754          * If stats collection isn't on, don't sleep but turn it on for
3755          * future users
3756          */
3757         if (!blk_poll_stats_enable(q))
3758                 return 0;
3759
3760         /*
3761          * As an optimistic guess, use half of the mean service time
3762          * for this type of request. We can (and should) make this smarter.
3763          * For instance, if the completion latencies are tight, we can
3764          * get closer than just half the mean. This is especially
3765          * important on devices where the completion latencies are longer
3766          * than ~10 usec. We do use the stats for the relevant IO size
3767          * if available which does lead to better estimates.
3768          */
3769         bucket = blk_mq_poll_stats_bkt(rq);
3770         if (bucket < 0)
3771                 return ret;
3772
3773         if (q->poll_stat[bucket].nr_samples)
3774                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3775
3776         return ret;
3777 }
3778
3779 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3780                                      struct request *rq)
3781 {
3782         struct hrtimer_sleeper hs;
3783         enum hrtimer_mode mode;
3784         unsigned int nsecs;
3785         ktime_t kt;
3786
3787         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3788                 return false;
3789
3790         /*
3791          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3792          *
3793          *  0:  use half of prev avg
3794          * >0:  use this specific value
3795          */
3796         if (q->poll_nsec > 0)
3797                 nsecs = q->poll_nsec;
3798         else
3799                 nsecs = blk_mq_poll_nsecs(q, rq);
3800
3801         if (!nsecs)
3802                 return false;
3803
3804         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3805
3806         /*
3807          * This will be replaced with the stats tracking code, using
3808          * 'avg_completion_time / 2' as the pre-sleep target.
3809          */
3810         kt = nsecs;
3811
3812         mode = HRTIMER_MODE_REL;
3813         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3814         hrtimer_set_expires(&hs.timer, kt);
3815
3816         do {
3817                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3818                         break;
3819                 set_current_state(TASK_UNINTERRUPTIBLE);
3820                 hrtimer_sleeper_start_expires(&hs, mode);
3821                 if (hs.task)
3822                         io_schedule();
3823                 hrtimer_cancel(&hs.timer);
3824                 mode = HRTIMER_MODE_ABS;
3825         } while (hs.task && !signal_pending(current));
3826
3827         __set_current_state(TASK_RUNNING);
3828         destroy_hrtimer_on_stack(&hs.timer);
3829         return true;
3830 }
3831
3832 static bool blk_mq_poll_hybrid(struct request_queue *q,
3833                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3834 {
3835         struct request *rq;
3836
3837         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3838                 return false;
3839
3840         if (!blk_qc_t_is_internal(cookie))
3841                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3842         else {
3843                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3844                 /*
3845                  * With scheduling, if the request has completed, we'll
3846                  * get a NULL return here, as we clear the sched tag when
3847                  * that happens. The request still remains valid, like always,
3848                  * so we should be safe with just the NULL check.
3849                  */
3850                 if (!rq)
3851                         return false;
3852         }
3853
3854         return blk_mq_poll_hybrid_sleep(q, rq);
3855 }
3856
3857 /**
3858  * blk_poll - poll for IO completions
3859  * @q:  the queue
3860  * @cookie: cookie passed back at IO submission time
3861  * @spin: whether to spin for completions
3862  *
3863  * Description:
3864  *    Poll for completions on the passed in queue. Returns number of
3865  *    completed entries found. If @spin is true, then blk_poll will continue
3866  *    looping until at least one completion is found, unless the task is
3867  *    otherwise marked running (or we need to reschedule).
3868  */
3869 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3870 {
3871         struct blk_mq_hw_ctx *hctx;
3872         long state;
3873
3874         if (!blk_qc_t_valid(cookie) ||
3875             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3876                 return 0;
3877
3878         if (current->plug)
3879                 blk_flush_plug_list(current->plug, false);
3880
3881         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3882
3883         /*
3884          * If we sleep, have the caller restart the poll loop to reset
3885          * the state. Like for the other success return cases, the
3886          * caller is responsible for checking if the IO completed. If
3887          * the IO isn't complete, we'll get called again and will go
3888          * straight to the busy poll loop. If specified not to spin,
3889          * we also should not sleep.
3890          */
3891         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3892                 return 1;
3893
3894         hctx->poll_considered++;
3895
3896         state = current->state;
3897         do {
3898                 int ret;
3899
3900                 hctx->poll_invoked++;
3901
3902                 ret = q->mq_ops->poll(hctx);
3903                 if (ret > 0) {
3904                         hctx->poll_success++;
3905                         __set_current_state(TASK_RUNNING);
3906                         return ret;
3907                 }
3908
3909                 if (signal_pending_state(state, current))
3910                         __set_current_state(TASK_RUNNING);
3911
3912                 if (current->state == TASK_RUNNING)
3913                         return 1;
3914                 if (ret < 0 || !spin)
3915                         break;
3916                 cpu_relax();
3917         } while (!need_resched());
3918
3919         __set_current_state(TASK_RUNNING);
3920         return 0;
3921 }
3922 EXPORT_SYMBOL_GPL(blk_poll);
3923
3924 unsigned int blk_mq_rq_cpu(struct request *rq)
3925 {
3926         return rq->mq_ctx->cpu;
3927 }
3928 EXPORT_SYMBOL(blk_mq_rq_cpu);
3929
3930 static int __init blk_mq_init(void)
3931 {
3932         int i;
3933
3934         for_each_possible_cpu(i)
3935                 init_llist_head(&per_cpu(blk_cpu_done, i));
3936         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3937
3938         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3939                                   "block/softirq:dead", NULL,
3940                                   blk_softirq_cpu_dead);
3941         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3942                                 blk_mq_hctx_notify_dead);
3943         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3944                                 blk_mq_hctx_notify_online,
3945                                 blk_mq_hctx_notify_offline);
3946         return 0;
3947 }
3948 subsys_initcall(blk_mq_init);