Merge tag 'i3c/for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if ((!mi->part->bd_partno || rq->part == mi->part) &&
137             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138                 mi->inflight[rq_data_dir(rq)]++;
139
140         return true;
141 }
142
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144                 struct block_device *part)
145 {
146         struct mq_inflight mi = { .part = part };
147
148         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149
150         return mi.inflight[0] + mi.inflight[1];
151 }
152
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154                 unsigned int inflight[2])
155 {
156         struct mq_inflight mi = { .part = part };
157
158         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159         inflight[0] = mi.inflight[0];
160         inflight[1] = mi.inflight[1];
161 }
162
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165         mutex_lock(&q->mq_freeze_lock);
166         if (++q->mq_freeze_depth == 1) {
167                 percpu_ref_kill(&q->q_usage_counter);
168                 mutex_unlock(&q->mq_freeze_lock);
169                 if (queue_is_mq(q))
170                         blk_mq_run_hw_queues(q, false);
171         } else {
172                 mutex_unlock(&q->mq_freeze_lock);
173         }
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184                                      unsigned long timeout)
185 {
186         return wait_event_timeout(q->mq_freeze_wq,
187                                         percpu_ref_is_zero(&q->q_usage_counter),
188                                         timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198         /*
199          * In the !blk_mq case we are only calling this to kill the
200          * q_usage_counter, otherwise this increases the freeze depth
201          * and waits for it to return to zero.  For this reason there is
202          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203          * exported to drivers as the only user for unfreeze is blk_mq.
204          */
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211         /*
212          * ...just an alias to keep freeze and unfreeze actions balanced
213          * in the blk_mq_* namespace
214          */
215         blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221         mutex_lock(&q->mq_freeze_lock);
222         if (force_atomic)
223                 q->q_usage_counter.data->force_atomic = true;
224         q->mq_freeze_depth--;
225         WARN_ON_ONCE(q->mq_freeze_depth < 0);
226         if (!q->mq_freeze_depth) {
227                 percpu_ref_resurrect(&q->q_usage_counter);
228                 wake_up_all(&q->mq_freeze_wq);
229         }
230         mutex_unlock(&q->mq_freeze_lock);
231 }
232
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235         __blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245         unsigned long flags;
246
247         spin_lock_irqsave(&q->queue_lock, flags);
248         if (!q->quiesce_depth++)
249                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250         spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263         if (blk_queue_has_srcu(q))
264                 synchronize_srcu(q->srcu);
265         else
266                 synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281         blk_mq_quiesce_queue_nowait(q);
282         blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295         unsigned long flags;
296         bool run_queue = false;
297
298         spin_lock_irqsave(&q->queue_lock, flags);
299         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300                 ;
301         } else if (!--q->quiesce_depth) {
302                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303                 run_queue = true;
304         }
305         spin_unlock_irqrestore(&q->queue_lock, flags);
306
307         /* dispatch requests which are inserted during quiescing */
308         if (run_queue)
309                 blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (!(data->rq_flags & RQF_ELV)) {
360                 rq->tag = tag;
361                 rq->internal_tag = BLK_MQ_NO_TAG;
362         } else {
363                 rq->tag = BLK_MQ_NO_TAG;
364                 rq->internal_tag = tag;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_ELV) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (!op_is_flush(data->cmd_flags) &&
398                     e->type->ops.prepare_request) {
399                         e->type->ops.prepare_request(rq);
400                         rq->rq_flags |= RQF_ELVPRIV;
401                 }
402         }
403
404         return rq;
405 }
406
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409                 u64 alloc_time_ns)
410 {
411         unsigned int tag, tag_offset;
412         struct blk_mq_tags *tags;
413         struct request *rq;
414         unsigned long tag_mask;
415         int i, nr = 0;
416
417         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418         if (unlikely(!tag_mask))
419                 return NULL;
420
421         tags = blk_mq_tags_from_data(data);
422         for (i = 0; tag_mask; i++) {
423                 if (!(tag_mask & (1UL << i)))
424                         continue;
425                 tag = tag_offset + i;
426                 prefetch(tags->static_rqs[tag]);
427                 tag_mask &= ~(1UL << i);
428                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429                 rq_list_add(data->cached_rq, rq);
430                 nr++;
431         }
432         /* caller already holds a reference, add for remainder */
433         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434         data->nr_tags -= nr;
435
436         return rq_list_pop(data->cached_rq);
437 }
438
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441         struct request_queue *q = data->q;
442         u64 alloc_time_ns = 0;
443         struct request *rq;
444         unsigned int tag;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         if (data->cmd_flags & REQ_NOWAIT)
451                 data->flags |= BLK_MQ_REQ_NOWAIT;
452
453         if (q->elevator) {
454                 struct elevator_queue *e = q->elevator;
455
456                 data->rq_flags |= RQF_ELV;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list. Don't include reserved tags in the
461                  * limiting, as it isn't useful.
462                  */
463                 if (!op_is_flush(data->cmd_flags) &&
464                     !blk_op_is_passthrough(data->cmd_flags) &&
465                     e->type->ops.limit_depth &&
466                     !(data->flags & BLK_MQ_REQ_RESERVED))
467                         e->type->ops.limit_depth(data->cmd_flags, data);
468         }
469
470 retry:
471         data->ctx = blk_mq_get_ctx(q);
472         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473         if (!(data->rq_flags & RQF_ELV))
474                 blk_mq_tag_busy(data->hctx);
475
476         /*
477          * Try batched alloc if we want more than 1 tag.
478          */
479         if (data->nr_tags > 1) {
480                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481                 if (rq)
482                         return rq;
483                 data->nr_tags = 1;
484         }
485
486         /*
487          * Waiting allocations only fail because of an inactive hctx.  In that
488          * case just retry the hctx assignment and tag allocation as CPU hotplug
489          * should have migrated us to an online CPU by now.
490          */
491         tag = blk_mq_get_tag(data);
492         if (tag == BLK_MQ_NO_TAG) {
493                 if (data->flags & BLK_MQ_REQ_NOWAIT)
494                         return NULL;
495                 /*
496                  * Give up the CPU and sleep for a random short time to
497                  * ensure that thread using a realtime scheduling class
498                  * are migrated off the CPU, and thus off the hctx that
499                  * is going away.
500                  */
501                 msleep(3);
502                 goto retry;
503         }
504
505         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506                                         alloc_time_ns);
507 }
508
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510                 blk_mq_req_flags_t flags)
511 {
512         struct blk_mq_alloc_data data = {
513                 .q              = q,
514                 .flags          = flags,
515                 .cmd_flags      = op,
516                 .nr_tags        = 1,
517         };
518         struct request *rq;
519         int ret;
520
521         ret = blk_queue_enter(q, flags);
522         if (ret)
523                 return ERR_PTR(ret);
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (!rq)
527                 goto out_queue_exit;
528         rq->__data_len = 0;
529         rq->__sector = (sector_t) -1;
530         rq->bio = rq->biotail = NULL;
531         return rq;
532 out_queue_exit:
533         blk_queue_exit(q);
534         return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541         struct blk_mq_alloc_data data = {
542                 .q              = q,
543                 .flags          = flags,
544                 .cmd_flags      = op,
545                 .nr_tags        = 1,
546         };
547         u64 alloc_time_ns = 0;
548         unsigned int cpu;
549         unsigned int tag;
550         int ret;
551
552         /* alloc_time includes depth and tag waits */
553         if (blk_queue_rq_alloc_time(q))
554                 alloc_time_ns = ktime_get_ns();
555
556         /*
557          * If the tag allocator sleeps we could get an allocation for a
558          * different hardware context.  No need to complicate the low level
559          * allocator for this for the rare use case of a command tied to
560          * a specific queue.
561          */
562         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563                 return ERR_PTR(-EINVAL);
564
565         if (hctx_idx >= q->nr_hw_queues)
566                 return ERR_PTR(-EIO);
567
568         ret = blk_queue_enter(q, flags);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         /*
573          * Check if the hardware context is actually mapped to anything.
574          * If not tell the caller that it should skip this queue.
575          */
576         ret = -EXDEV;
577         data.hctx = xa_load(&q->hctx_table, hctx_idx);
578         if (!blk_mq_hw_queue_mapped(data.hctx))
579                 goto out_queue_exit;
580         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581         data.ctx = __blk_mq_get_ctx(q, cpu);
582
583         if (!q->elevator)
584                 blk_mq_tag_busy(data.hctx);
585         else
586                 data.rq_flags |= RQF_ELV;
587
588         ret = -EWOULDBLOCK;
589         tag = blk_mq_get_tag(&data);
590         if (tag == BLK_MQ_NO_TAG)
591                 goto out_queue_exit;
592         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593                                         alloc_time_ns);
594
595 out_queue_exit:
596         blk_queue_exit(q);
597         return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
601 static void __blk_mq_free_request(struct request *rq)
602 {
603         struct request_queue *q = rq->q;
604         struct blk_mq_ctx *ctx = rq->mq_ctx;
605         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606         const int sched_tag = rq->internal_tag;
607
608         blk_crypto_free_request(rq);
609         blk_pm_mark_last_busy(rq);
610         rq->mq_hctx = NULL;
611         if (rq->tag != BLK_MQ_NO_TAG)
612                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613         if (sched_tag != BLK_MQ_NO_TAG)
614                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615         blk_mq_sched_restart(hctx);
616         blk_queue_exit(q);
617 }
618
619 void blk_mq_free_request(struct request *rq)
620 {
621         struct request_queue *q = rq->q;
622         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623
624         if ((rq->rq_flags & RQF_ELVPRIV) &&
625             q->elevator->type->ops.finish_request)
626                 q->elevator->type->ops.finish_request(rq);
627
628         if (rq->rq_flags & RQF_MQ_INFLIGHT)
629                 __blk_mq_dec_active_requests(hctx);
630
631         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632                 laptop_io_completion(q->disk->bdi);
633
634         rq_qos_done(q, rq);
635
636         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637         if (req_ref_put_and_test(rq))
638                 __blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644         struct request *rq;
645
646         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647                 blk_mq_free_request(rq);
648 }
649
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653                 rq->q->disk ? rq->q->disk->disk_name : "?",
654                 (unsigned long long) rq->cmd_flags);
655
656         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657                (unsigned long long)blk_rq_pos(rq),
658                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660                rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665                           unsigned int nbytes, blk_status_t error)
666 {
667         if (unlikely(error)) {
668                 bio->bi_status = error;
669         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670                 /*
671                  * Partial zone append completions cannot be supported as the
672                  * BIO fragments may end up not being written sequentially.
673                  */
674                 if (bio->bi_iter.bi_size != nbytes)
675                         bio->bi_status = BLK_STS_IOERR;
676                 else
677                         bio->bi_iter.bi_sector = rq->__sector;
678         }
679
680         bio_advance(bio, nbytes);
681
682         if (unlikely(rq->rq_flags & RQF_QUIET))
683                 bio_set_flag(bio, BIO_QUIET);
684         /* don't actually finish bio if it's part of flush sequence */
685         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686                 bio_endio(bio);
687 }
688
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691         if (req->part && blk_do_io_stat(req)) {
692                 const int sgrp = op_stat_group(req_op(req));
693
694                 part_stat_lock();
695                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696                 part_stat_unlock();
697         }
698 }
699
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702         printk_ratelimited(KERN_ERR
703                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704                 "phys_seg %u prio class %u\n",
705                 blk_status_to_str(status),
706                 req->q->disk ? req->q->disk->disk_name : "?",
707                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708                 req->cmd_flags & ~REQ_OP_MASK,
709                 req->nr_phys_segments,
710                 IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720         int total_bytes = blk_rq_bytes(req);
721         struct bio *bio = req->bio;
722
723         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725         if (!bio)
726                 return;
727
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730                 req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732
733         blk_account_io_completion(req, total_bytes);
734
735         do {
736                 struct bio *next = bio->bi_next;
737
738                 /* Completion has already been traced */
739                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740
741                 if (req_op(req) == REQ_OP_ZONE_APPEND)
742                         bio->bi_iter.bi_sector = req->__sector;
743
744                 if (!is_flush)
745                         bio_endio(bio);
746                 bio = next;
747         } while (bio);
748
749         /*
750          * Reset counters so that the request stacking driver
751          * can find how many bytes remain in the request
752          * later.
753          */
754         req->bio = NULL;
755         req->__data_len = 0;
756 }
757
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781                 unsigned int nr_bytes)
782 {
783         int total_bytes;
784
785         trace_block_rq_complete(req, error, nr_bytes);
786
787         if (!req->bio)
788                 return false;
789
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792             error == BLK_STS_OK)
793                 req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795
796         if (unlikely(error && !blk_rq_is_passthrough(req) &&
797                      !(req->rq_flags & RQF_QUIET)) &&
798                      !test_bit(GD_DEAD, &req->q->disk->state)) {
799                 blk_print_req_error(req, error);
800                 trace_block_rq_error(req, error, nr_bytes);
801         }
802
803         blk_account_io_completion(req, nr_bytes);
804
805         total_bytes = 0;
806         while (req->bio) {
807                 struct bio *bio = req->bio;
808                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809
810                 if (bio_bytes == bio->bi_iter.bi_size)
811                         req->bio = bio->bi_next;
812
813                 /* Completion has already been traced */
814                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815                 req_bio_endio(req, bio, bio_bytes, error);
816
817                 total_bytes += bio_bytes;
818                 nr_bytes -= bio_bytes;
819
820                 if (!nr_bytes)
821                         break;
822         }
823
824         /*
825          * completely done
826          */
827         if (!req->bio) {
828                 /*
829                  * Reset counters so that the request stacking driver
830                  * can find how many bytes remain in the request
831                  * later.
832                  */
833                 req->__data_len = 0;
834                 return false;
835         }
836
837         req->__data_len -= total_bytes;
838
839         /* update sector only for requests with clear definition of sector */
840         if (!blk_rq_is_passthrough(req))
841                 req->__sector += total_bytes >> 9;
842
843         /* mixed attributes always follow the first bio */
844         if (req->rq_flags & RQF_MIXED_MERGE) {
845                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
846                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847         }
848
849         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850                 /*
851                  * If total number of sectors is less than the first segment
852                  * size, something has gone terribly wrong.
853                  */
854                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855                         blk_dump_rq_flags(req, "request botched");
856                         req->__data_len = blk_rq_cur_bytes(req);
857                 }
858
859                 /* recalculate the number of segments */
860                 req->nr_phys_segments = blk_recalc_rq_segments(req);
861         }
862
863         return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869         const int sgrp = op_stat_group(req_op(req));
870
871         part_stat_lock();
872         update_io_ticks(req->part, jiffies, true);
873         part_stat_inc(req->part, ios[sgrp]);
874         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875         part_stat_unlock();
876 }
877
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880         /*
881          * Account IO completion.  flush_rq isn't accounted as a
882          * normal IO on queueing nor completion.  Accounting the
883          * containing request is enough.
884          */
885         if (blk_do_io_stat(req) && req->part &&
886             !(req->rq_flags & RQF_FLUSH_SEQ))
887                 __blk_account_io_done(req, now);
888 }
889
890 static void __blk_account_io_start(struct request *rq)
891 {
892         /*
893          * All non-passthrough requests are created from a bio with one
894          * exception: when a flush command that is part of a flush sequence
895          * generated by the state machine in blk-flush.c is cloned onto the
896          * lower device by dm-multipath we can get here without a bio.
897          */
898         if (rq->bio)
899                 rq->part = rq->bio->bi_bdev;
900         else
901                 rq->part = rq->q->disk->part0;
902
903         part_stat_lock();
904         update_io_ticks(rq->part, jiffies, false);
905         part_stat_unlock();
906 }
907
908 static inline void blk_account_io_start(struct request *req)
909 {
910         if (blk_do_io_stat(req))
911                 __blk_account_io_start(req);
912 }
913
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916         if (rq->rq_flags & RQF_STATS) {
917                 blk_mq_poll_stats_start(rq->q);
918                 blk_stat_add(rq, now);
919         }
920
921         blk_mq_sched_completed_request(rq, now);
922         blk_account_io_done(rq, now);
923 }
924
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927         if (blk_mq_need_time_stamp(rq))
928                 __blk_mq_end_request_acct(rq, ktime_get_ns());
929
930         if (rq->end_io) {
931                 rq_qos_done(rq->q, rq);
932                 rq->end_io(rq, error);
933         } else {
934                 blk_mq_free_request(rq);
935         }
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942                 BUG();
943         __blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946
947 #define TAG_COMP_BATCH          32
948
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950                                           int *tag_array, int nr_tags)
951 {
952         struct request_queue *q = hctx->queue;
953
954         /*
955          * All requests should have been marked as RQF_MQ_INFLIGHT, so
956          * update hctx->nr_active in batch
957          */
958         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959                 __blk_mq_sub_active_requests(hctx, nr_tags);
960
961         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967         int tags[TAG_COMP_BATCH], nr_tags = 0;
968         struct blk_mq_hw_ctx *cur_hctx = NULL;
969         struct request *rq;
970         u64 now = 0;
971
972         if (iob->need_ts)
973                 now = ktime_get_ns();
974
975         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976                 prefetch(rq->bio);
977                 prefetch(rq->rq_next);
978
979                 blk_complete_request(rq);
980                 if (iob->need_ts)
981                         __blk_mq_end_request_acct(rq, now);
982
983                 rq_qos_done(rq->q, rq);
984
985                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986                 if (!req_ref_put_and_test(rq))
987                         continue;
988
989                 blk_crypto_free_request(rq);
990                 blk_pm_mark_last_busy(rq);
991
992                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993                         if (cur_hctx)
994                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995                         nr_tags = 0;
996                         cur_hctx = rq->mq_hctx;
997                 }
998                 tags[nr_tags++] = rq->tag;
999         }
1000
1001         if (nr_tags)
1002                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009         struct request *rq, *next;
1010
1011         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012                 rq->q->mq_ops->complete(rq);
1013 }
1014
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023         return 0;
1024 }
1025
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033         int cpu = raw_smp_processor_id();
1034
1035         if (!IS_ENABLED(CONFIG_SMP) ||
1036             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037                 return false;
1038         /*
1039          * With force threaded interrupts enabled, raising softirq from an SMP
1040          * function call will always result in waking the ksoftirqd thread.
1041          * This is probably worse than completing the request on a different
1042          * cache domain.
1043          */
1044         if (force_irqthreads())
1045                 return false;
1046
1047         /* same CPU or cache domain?  Complete locally */
1048         if (cpu == rq->mq_ctx->cpu ||
1049             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051                 return false;
1052
1053         /* don't try to IPI to an offline CPU */
1054         return cpu_online(rq->mq_ctx->cpu);
1055 }
1056
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059         struct llist_head *list;
1060         unsigned int cpu;
1061
1062         cpu = rq->mq_ctx->cpu;
1063         list = &per_cpu(blk_cpu_done, cpu);
1064         if (llist_add(&rq->ipi_list, list)) {
1065                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066                 smp_call_function_single_async(cpu, &rq->csd);
1067         }
1068 }
1069
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072         struct llist_head *list;
1073
1074         preempt_disable();
1075         list = this_cpu_ptr(&blk_cpu_done);
1076         if (llist_add(&rq->ipi_list, list))
1077                 raise_softirq(BLOCK_SOFTIRQ);
1078         preempt_enable();
1079 }
1080
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084
1085         /*
1086          * For a polled request, always complete locally, it's pointless
1087          * to redirect the completion.
1088          */
1089         if (rq->cmd_flags & REQ_POLLED)
1090                 return false;
1091
1092         if (blk_mq_complete_need_ipi(rq)) {
1093                 blk_mq_complete_send_ipi(rq);
1094                 return true;
1095         }
1096
1097         if (rq->q->nr_hw_queues == 1) {
1098                 blk_mq_raise_softirq(rq);
1099                 return true;
1100         }
1101         return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:         the request being processed
1108  *
1109  * Description:
1110  *      Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114         if (!blk_mq_complete_request_remote(rq))
1115                 rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129         struct request_queue *q = rq->q;
1130
1131         trace_block_rq_issue(rq);
1132
1133         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134                 rq->io_start_time_ns = ktime_get_ns();
1135                 rq->stats_sectors = blk_rq_sectors(rq);
1136                 rq->rq_flags |= RQF_STATS;
1137                 rq_qos_issue(q, rq);
1138         }
1139
1140         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1141
1142         blk_add_timer(rq);
1143         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1144
1145 #ifdef CONFIG_BLK_DEV_INTEGRITY
1146         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1147                 q->integrity.profile->prepare_fn(rq);
1148 #endif
1149         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1150                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1151 }
1152 EXPORT_SYMBOL(blk_mq_start_request);
1153
1154 /**
1155  * blk_end_sync_rq - executes a completion event on a request
1156  * @rq: request to complete
1157  * @error: end I/O status of the request
1158  */
1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1160 {
1161         struct completion *waiting = rq->end_io_data;
1162
1163         rq->end_io_data = (void *)(uintptr_t)error;
1164
1165         /*
1166          * complete last, if this is a stack request the process (and thus
1167          * the rq pointer) could be invalid right after this complete()
1168          */
1169         complete(waiting);
1170 }
1171
1172 /*
1173  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1174  * queues. This is important for md arrays to benefit from merging
1175  * requests.
1176  */
1177 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1178 {
1179         if (plug->multiple_queues)
1180                 return BLK_MAX_REQUEST_COUNT * 2;
1181         return BLK_MAX_REQUEST_COUNT;
1182 }
1183
1184 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1185 {
1186         struct request *last = rq_list_peek(&plug->mq_list);
1187
1188         if (!plug->rq_count) {
1189                 trace_block_plug(rq->q);
1190         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1191                    (!blk_queue_nomerges(rq->q) &&
1192                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1193                 blk_mq_flush_plug_list(plug, false);
1194                 trace_block_plug(rq->q);
1195         }
1196
1197         if (!plug->multiple_queues && last && last->q != rq->q)
1198                 plug->multiple_queues = true;
1199         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1200                 plug->has_elevator = true;
1201         rq->rq_next = NULL;
1202         rq_list_add(&plug->mq_list, rq);
1203         plug->rq_count++;
1204 }
1205
1206 static void __blk_execute_rq_nowait(struct request *rq, bool at_head,
1207                 rq_end_io_fn *done, bool use_plug)
1208 {
1209         WARN_ON(irqs_disabled());
1210         WARN_ON(!blk_rq_is_passthrough(rq));
1211
1212         rq->end_io = done;
1213
1214         blk_account_io_start(rq);
1215
1216         if (use_plug && current->plug) {
1217                 blk_add_rq_to_plug(current->plug, rq);
1218                 return;
1219         }
1220         /*
1221          * don't check dying flag for MQ because the request won't
1222          * be reused after dying flag is set
1223          */
1224         blk_mq_sched_insert_request(rq, at_head, true, false);
1225 }
1226
1227
1228 /**
1229  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1230  * @rq:         request to insert
1231  * @at_head:    insert request at head or tail of queue
1232  * @done:       I/O completion handler
1233  *
1234  * Description:
1235  *    Insert a fully prepared request at the back of the I/O scheduler queue
1236  *    for execution.  Don't wait for completion.
1237  *
1238  * Note:
1239  *    This function will invoke @done directly if the queue is dead.
1240  */
1241 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1242 {
1243         __blk_execute_rq_nowait(rq, at_head, done, true);
1244
1245 }
1246 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1247
1248 static bool blk_rq_is_poll(struct request *rq)
1249 {
1250         if (!rq->mq_hctx)
1251                 return false;
1252         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1253                 return false;
1254         if (WARN_ON_ONCE(!rq->bio))
1255                 return false;
1256         return true;
1257 }
1258
1259 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1260 {
1261         do {
1262                 bio_poll(rq->bio, NULL, 0);
1263                 cond_resched();
1264         } while (!completion_done(wait));
1265 }
1266
1267 /**
1268  * blk_execute_rq - insert a request into queue for execution
1269  * @rq:         request to insert
1270  * @at_head:    insert request at head or tail of queue
1271  *
1272  * Description:
1273  *    Insert a fully prepared request at the back of the I/O scheduler queue
1274  *    for execution and wait for completion.
1275  * Return: The blk_status_t result provided to blk_mq_end_request().
1276  */
1277 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1278 {
1279         DECLARE_COMPLETION_ONSTACK(wait);
1280         unsigned long hang_check;
1281
1282         /*
1283          * iopoll requires request to be submitted to driver, so can't
1284          * use plug
1285          */
1286         rq->end_io_data = &wait;
1287         __blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq,
1288                         !blk_rq_is_poll(rq));
1289
1290         /* Prevent hang_check timer from firing at us during very long I/O */
1291         hang_check = sysctl_hung_task_timeout_secs;
1292
1293         if (blk_rq_is_poll(rq))
1294                 blk_rq_poll_completion(rq, &wait);
1295         else if (hang_check)
1296                 while (!wait_for_completion_io_timeout(&wait,
1297                                 hang_check * (HZ/2)))
1298                         ;
1299         else
1300                 wait_for_completion_io(&wait);
1301
1302         return (blk_status_t)(uintptr_t)rq->end_io_data;
1303 }
1304 EXPORT_SYMBOL(blk_execute_rq);
1305
1306 static void __blk_mq_requeue_request(struct request *rq)
1307 {
1308         struct request_queue *q = rq->q;
1309
1310         blk_mq_put_driver_tag(rq);
1311
1312         trace_block_rq_requeue(rq);
1313         rq_qos_requeue(q, rq);
1314
1315         if (blk_mq_request_started(rq)) {
1316                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1317                 rq->rq_flags &= ~RQF_TIMED_OUT;
1318         }
1319 }
1320
1321 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1322 {
1323         __blk_mq_requeue_request(rq);
1324
1325         /* this request will be re-inserted to io scheduler queue */
1326         blk_mq_sched_requeue_request(rq);
1327
1328         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1329 }
1330 EXPORT_SYMBOL(blk_mq_requeue_request);
1331
1332 static void blk_mq_requeue_work(struct work_struct *work)
1333 {
1334         struct request_queue *q =
1335                 container_of(work, struct request_queue, requeue_work.work);
1336         LIST_HEAD(rq_list);
1337         struct request *rq, *next;
1338
1339         spin_lock_irq(&q->requeue_lock);
1340         list_splice_init(&q->requeue_list, &rq_list);
1341         spin_unlock_irq(&q->requeue_lock);
1342
1343         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1344                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1345                         continue;
1346
1347                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1348                 list_del_init(&rq->queuelist);
1349                 /*
1350                  * If RQF_DONTPREP, rq has contained some driver specific
1351                  * data, so insert it to hctx dispatch list to avoid any
1352                  * merge.
1353                  */
1354                 if (rq->rq_flags & RQF_DONTPREP)
1355                         blk_mq_request_bypass_insert(rq, false, false);
1356                 else
1357                         blk_mq_sched_insert_request(rq, true, false, false);
1358         }
1359
1360         while (!list_empty(&rq_list)) {
1361                 rq = list_entry(rq_list.next, struct request, queuelist);
1362                 list_del_init(&rq->queuelist);
1363                 blk_mq_sched_insert_request(rq, false, false, false);
1364         }
1365
1366         blk_mq_run_hw_queues(q, false);
1367 }
1368
1369 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1370                                 bool kick_requeue_list)
1371 {
1372         struct request_queue *q = rq->q;
1373         unsigned long flags;
1374
1375         /*
1376          * We abuse this flag that is otherwise used by the I/O scheduler to
1377          * request head insertion from the workqueue.
1378          */
1379         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1380
1381         spin_lock_irqsave(&q->requeue_lock, flags);
1382         if (at_head) {
1383                 rq->rq_flags |= RQF_SOFTBARRIER;
1384                 list_add(&rq->queuelist, &q->requeue_list);
1385         } else {
1386                 list_add_tail(&rq->queuelist, &q->requeue_list);
1387         }
1388         spin_unlock_irqrestore(&q->requeue_lock, flags);
1389
1390         if (kick_requeue_list)
1391                 blk_mq_kick_requeue_list(q);
1392 }
1393
1394 void blk_mq_kick_requeue_list(struct request_queue *q)
1395 {
1396         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1397 }
1398 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1399
1400 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1401                                     unsigned long msecs)
1402 {
1403         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1404                                     msecs_to_jiffies(msecs));
1405 }
1406 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1407
1408 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1409                                bool reserved)
1410 {
1411         /*
1412          * If we find a request that isn't idle we know the queue is busy
1413          * as it's checked in the iter.
1414          * Return false to stop the iteration.
1415          */
1416         if (blk_mq_request_started(rq)) {
1417                 bool *busy = priv;
1418
1419                 *busy = true;
1420                 return false;
1421         }
1422
1423         return true;
1424 }
1425
1426 bool blk_mq_queue_inflight(struct request_queue *q)
1427 {
1428         bool busy = false;
1429
1430         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1431         return busy;
1432 }
1433 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1434
1435 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1436 {
1437         req->rq_flags |= RQF_TIMED_OUT;
1438         if (req->q->mq_ops->timeout) {
1439                 enum blk_eh_timer_return ret;
1440
1441                 ret = req->q->mq_ops->timeout(req, reserved);
1442                 if (ret == BLK_EH_DONE)
1443                         return;
1444                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1445         }
1446
1447         blk_add_timer(req);
1448 }
1449
1450 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1451 {
1452         unsigned long deadline;
1453
1454         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1455                 return false;
1456         if (rq->rq_flags & RQF_TIMED_OUT)
1457                 return false;
1458
1459         deadline = READ_ONCE(rq->deadline);
1460         if (time_after_eq(jiffies, deadline))
1461                 return true;
1462
1463         if (*next == 0)
1464                 *next = deadline;
1465         else if (time_after(*next, deadline))
1466                 *next = deadline;
1467         return false;
1468 }
1469
1470 void blk_mq_put_rq_ref(struct request *rq)
1471 {
1472         if (is_flush_rq(rq))
1473                 rq->end_io(rq, 0);
1474         else if (req_ref_put_and_test(rq))
1475                 __blk_mq_free_request(rq);
1476 }
1477
1478 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1479 {
1480         unsigned long *next = priv;
1481
1482         /*
1483          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1484          * be reallocated underneath the timeout handler's processing, then
1485          * the expire check is reliable. If the request is not expired, then
1486          * it was completed and reallocated as a new request after returning
1487          * from blk_mq_check_expired().
1488          */
1489         if (blk_mq_req_expired(rq, next))
1490                 blk_mq_rq_timed_out(rq, reserved);
1491         return true;
1492 }
1493
1494 static void blk_mq_timeout_work(struct work_struct *work)
1495 {
1496         struct request_queue *q =
1497                 container_of(work, struct request_queue, timeout_work);
1498         unsigned long next = 0;
1499         struct blk_mq_hw_ctx *hctx;
1500         unsigned long i;
1501
1502         /* A deadlock might occur if a request is stuck requiring a
1503          * timeout at the same time a queue freeze is waiting
1504          * completion, since the timeout code would not be able to
1505          * acquire the queue reference here.
1506          *
1507          * That's why we don't use blk_queue_enter here; instead, we use
1508          * percpu_ref_tryget directly, because we need to be able to
1509          * obtain a reference even in the short window between the queue
1510          * starting to freeze, by dropping the first reference in
1511          * blk_freeze_queue_start, and the moment the last request is
1512          * consumed, marked by the instant q_usage_counter reaches
1513          * zero.
1514          */
1515         if (!percpu_ref_tryget(&q->q_usage_counter))
1516                 return;
1517
1518         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1519
1520         if (next != 0) {
1521                 mod_timer(&q->timeout, next);
1522         } else {
1523                 /*
1524                  * Request timeouts are handled as a forward rolling timer. If
1525                  * we end up here it means that no requests are pending and
1526                  * also that no request has been pending for a while. Mark
1527                  * each hctx as idle.
1528                  */
1529                 queue_for_each_hw_ctx(q, hctx, i) {
1530                         /* the hctx may be unmapped, so check it here */
1531                         if (blk_mq_hw_queue_mapped(hctx))
1532                                 blk_mq_tag_idle(hctx);
1533                 }
1534         }
1535         blk_queue_exit(q);
1536 }
1537
1538 struct flush_busy_ctx_data {
1539         struct blk_mq_hw_ctx *hctx;
1540         struct list_head *list;
1541 };
1542
1543 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1544 {
1545         struct flush_busy_ctx_data *flush_data = data;
1546         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1547         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1548         enum hctx_type type = hctx->type;
1549
1550         spin_lock(&ctx->lock);
1551         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1552         sbitmap_clear_bit(sb, bitnr);
1553         spin_unlock(&ctx->lock);
1554         return true;
1555 }
1556
1557 /*
1558  * Process software queues that have been marked busy, splicing them
1559  * to the for-dispatch
1560  */
1561 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1562 {
1563         struct flush_busy_ctx_data data = {
1564                 .hctx = hctx,
1565                 .list = list,
1566         };
1567
1568         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1569 }
1570 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1571
1572 struct dispatch_rq_data {
1573         struct blk_mq_hw_ctx *hctx;
1574         struct request *rq;
1575 };
1576
1577 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1578                 void *data)
1579 {
1580         struct dispatch_rq_data *dispatch_data = data;
1581         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1582         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1583         enum hctx_type type = hctx->type;
1584
1585         spin_lock(&ctx->lock);
1586         if (!list_empty(&ctx->rq_lists[type])) {
1587                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1588                 list_del_init(&dispatch_data->rq->queuelist);
1589                 if (list_empty(&ctx->rq_lists[type]))
1590                         sbitmap_clear_bit(sb, bitnr);
1591         }
1592         spin_unlock(&ctx->lock);
1593
1594         return !dispatch_data->rq;
1595 }
1596
1597 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1598                                         struct blk_mq_ctx *start)
1599 {
1600         unsigned off = start ? start->index_hw[hctx->type] : 0;
1601         struct dispatch_rq_data data = {
1602                 .hctx = hctx,
1603                 .rq   = NULL,
1604         };
1605
1606         __sbitmap_for_each_set(&hctx->ctx_map, off,
1607                                dispatch_rq_from_ctx, &data);
1608
1609         return data.rq;
1610 }
1611
1612 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1613 {
1614         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1615         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1616         int tag;
1617
1618         blk_mq_tag_busy(rq->mq_hctx);
1619
1620         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1621                 bt = &rq->mq_hctx->tags->breserved_tags;
1622                 tag_offset = 0;
1623         } else {
1624                 if (!hctx_may_queue(rq->mq_hctx, bt))
1625                         return false;
1626         }
1627
1628         tag = __sbitmap_queue_get(bt);
1629         if (tag == BLK_MQ_NO_TAG)
1630                 return false;
1631
1632         rq->tag = tag + tag_offset;
1633         return true;
1634 }
1635
1636 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1637 {
1638         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1639                 return false;
1640
1641         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1642                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1643                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1644                 __blk_mq_inc_active_requests(hctx);
1645         }
1646         hctx->tags->rqs[rq->tag] = rq;
1647         return true;
1648 }
1649
1650 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1651                                 int flags, void *key)
1652 {
1653         struct blk_mq_hw_ctx *hctx;
1654
1655         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1656
1657         spin_lock(&hctx->dispatch_wait_lock);
1658         if (!list_empty(&wait->entry)) {
1659                 struct sbitmap_queue *sbq;
1660
1661                 list_del_init(&wait->entry);
1662                 sbq = &hctx->tags->bitmap_tags;
1663                 atomic_dec(&sbq->ws_active);
1664         }
1665         spin_unlock(&hctx->dispatch_wait_lock);
1666
1667         blk_mq_run_hw_queue(hctx, true);
1668         return 1;
1669 }
1670
1671 /*
1672  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1673  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1674  * restart. For both cases, take care to check the condition again after
1675  * marking us as waiting.
1676  */
1677 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1678                                  struct request *rq)
1679 {
1680         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1681         struct wait_queue_head *wq;
1682         wait_queue_entry_t *wait;
1683         bool ret;
1684
1685         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1686                 blk_mq_sched_mark_restart_hctx(hctx);
1687
1688                 /*
1689                  * It's possible that a tag was freed in the window between the
1690                  * allocation failure and adding the hardware queue to the wait
1691                  * queue.
1692                  *
1693                  * Don't clear RESTART here, someone else could have set it.
1694                  * At most this will cost an extra queue run.
1695                  */
1696                 return blk_mq_get_driver_tag(rq);
1697         }
1698
1699         wait = &hctx->dispatch_wait;
1700         if (!list_empty_careful(&wait->entry))
1701                 return false;
1702
1703         wq = &bt_wait_ptr(sbq, hctx)->wait;
1704
1705         spin_lock_irq(&wq->lock);
1706         spin_lock(&hctx->dispatch_wait_lock);
1707         if (!list_empty(&wait->entry)) {
1708                 spin_unlock(&hctx->dispatch_wait_lock);
1709                 spin_unlock_irq(&wq->lock);
1710                 return false;
1711         }
1712
1713         atomic_inc(&sbq->ws_active);
1714         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1715         __add_wait_queue(wq, wait);
1716
1717         /*
1718          * It's possible that a tag was freed in the window between the
1719          * allocation failure and adding the hardware queue to the wait
1720          * queue.
1721          */
1722         ret = blk_mq_get_driver_tag(rq);
1723         if (!ret) {
1724                 spin_unlock(&hctx->dispatch_wait_lock);
1725                 spin_unlock_irq(&wq->lock);
1726                 return false;
1727         }
1728
1729         /*
1730          * We got a tag, remove ourselves from the wait queue to ensure
1731          * someone else gets the wakeup.
1732          */
1733         list_del_init(&wait->entry);
1734         atomic_dec(&sbq->ws_active);
1735         spin_unlock(&hctx->dispatch_wait_lock);
1736         spin_unlock_irq(&wq->lock);
1737
1738         return true;
1739 }
1740
1741 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1742 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1743 /*
1744  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1745  * - EWMA is one simple way to compute running average value
1746  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1747  * - take 4 as factor for avoiding to get too small(0) result, and this
1748  *   factor doesn't matter because EWMA decreases exponentially
1749  */
1750 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1751 {
1752         unsigned int ewma;
1753
1754         ewma = hctx->dispatch_busy;
1755
1756         if (!ewma && !busy)
1757                 return;
1758
1759         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1760         if (busy)
1761                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1762         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1763
1764         hctx->dispatch_busy = ewma;
1765 }
1766
1767 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1768
1769 static void blk_mq_handle_dev_resource(struct request *rq,
1770                                        struct list_head *list)
1771 {
1772         struct request *next =
1773                 list_first_entry_or_null(list, struct request, queuelist);
1774
1775         /*
1776          * If an I/O scheduler has been configured and we got a driver tag for
1777          * the next request already, free it.
1778          */
1779         if (next)
1780                 blk_mq_put_driver_tag(next);
1781
1782         list_add(&rq->queuelist, list);
1783         __blk_mq_requeue_request(rq);
1784 }
1785
1786 static void blk_mq_handle_zone_resource(struct request *rq,
1787                                         struct list_head *zone_list)
1788 {
1789         /*
1790          * If we end up here it is because we cannot dispatch a request to a
1791          * specific zone due to LLD level zone-write locking or other zone
1792          * related resource not being available. In this case, set the request
1793          * aside in zone_list for retrying it later.
1794          */
1795         list_add(&rq->queuelist, zone_list);
1796         __blk_mq_requeue_request(rq);
1797 }
1798
1799 enum prep_dispatch {
1800         PREP_DISPATCH_OK,
1801         PREP_DISPATCH_NO_TAG,
1802         PREP_DISPATCH_NO_BUDGET,
1803 };
1804
1805 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1806                                                   bool need_budget)
1807 {
1808         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1809         int budget_token = -1;
1810
1811         if (need_budget) {
1812                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1813                 if (budget_token < 0) {
1814                         blk_mq_put_driver_tag(rq);
1815                         return PREP_DISPATCH_NO_BUDGET;
1816                 }
1817                 blk_mq_set_rq_budget_token(rq, budget_token);
1818         }
1819
1820         if (!blk_mq_get_driver_tag(rq)) {
1821                 /*
1822                  * The initial allocation attempt failed, so we need to
1823                  * rerun the hardware queue when a tag is freed. The
1824                  * waitqueue takes care of that. If the queue is run
1825                  * before we add this entry back on the dispatch list,
1826                  * we'll re-run it below.
1827                  */
1828                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1829                         /*
1830                          * All budgets not got from this function will be put
1831                          * together during handling partial dispatch
1832                          */
1833                         if (need_budget)
1834                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1835                         return PREP_DISPATCH_NO_TAG;
1836                 }
1837         }
1838
1839         return PREP_DISPATCH_OK;
1840 }
1841
1842 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1843 static void blk_mq_release_budgets(struct request_queue *q,
1844                 struct list_head *list)
1845 {
1846         struct request *rq;
1847
1848         list_for_each_entry(rq, list, queuelist) {
1849                 int budget_token = blk_mq_get_rq_budget_token(rq);
1850
1851                 if (budget_token >= 0)
1852                         blk_mq_put_dispatch_budget(q, budget_token);
1853         }
1854 }
1855
1856 /*
1857  * Returns true if we did some work AND can potentially do more.
1858  */
1859 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1860                              unsigned int nr_budgets)
1861 {
1862         enum prep_dispatch prep;
1863         struct request_queue *q = hctx->queue;
1864         struct request *rq, *nxt;
1865         int errors, queued;
1866         blk_status_t ret = BLK_STS_OK;
1867         LIST_HEAD(zone_list);
1868         bool needs_resource = false;
1869
1870         if (list_empty(list))
1871                 return false;
1872
1873         /*
1874          * Now process all the entries, sending them to the driver.
1875          */
1876         errors = queued = 0;
1877         do {
1878                 struct blk_mq_queue_data bd;
1879
1880                 rq = list_first_entry(list, struct request, queuelist);
1881
1882                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1883                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1884                 if (prep != PREP_DISPATCH_OK)
1885                         break;
1886
1887                 list_del_init(&rq->queuelist);
1888
1889                 bd.rq = rq;
1890
1891                 /*
1892                  * Flag last if we have no more requests, or if we have more
1893                  * but can't assign a driver tag to it.
1894                  */
1895                 if (list_empty(list))
1896                         bd.last = true;
1897                 else {
1898                         nxt = list_first_entry(list, struct request, queuelist);
1899                         bd.last = !blk_mq_get_driver_tag(nxt);
1900                 }
1901
1902                 /*
1903                  * once the request is queued to lld, no need to cover the
1904                  * budget any more
1905                  */
1906                 if (nr_budgets)
1907                         nr_budgets--;
1908                 ret = q->mq_ops->queue_rq(hctx, &bd);
1909                 switch (ret) {
1910                 case BLK_STS_OK:
1911                         queued++;
1912                         break;
1913                 case BLK_STS_RESOURCE:
1914                         needs_resource = true;
1915                         fallthrough;
1916                 case BLK_STS_DEV_RESOURCE:
1917                         blk_mq_handle_dev_resource(rq, list);
1918                         goto out;
1919                 case BLK_STS_ZONE_RESOURCE:
1920                         /*
1921                          * Move the request to zone_list and keep going through
1922                          * the dispatch list to find more requests the drive can
1923                          * accept.
1924                          */
1925                         blk_mq_handle_zone_resource(rq, &zone_list);
1926                         needs_resource = true;
1927                         break;
1928                 default:
1929                         errors++;
1930                         blk_mq_end_request(rq, ret);
1931                 }
1932         } while (!list_empty(list));
1933 out:
1934         if (!list_empty(&zone_list))
1935                 list_splice_tail_init(&zone_list, list);
1936
1937         /* If we didn't flush the entire list, we could have told the driver
1938          * there was more coming, but that turned out to be a lie.
1939          */
1940         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1941                 q->mq_ops->commit_rqs(hctx);
1942         /*
1943          * Any items that need requeuing? Stuff them into hctx->dispatch,
1944          * that is where we will continue on next queue run.
1945          */
1946         if (!list_empty(list)) {
1947                 bool needs_restart;
1948                 /* For non-shared tags, the RESTART check will suffice */
1949                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1950                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1951
1952                 if (nr_budgets)
1953                         blk_mq_release_budgets(q, list);
1954
1955                 spin_lock(&hctx->lock);
1956                 list_splice_tail_init(list, &hctx->dispatch);
1957                 spin_unlock(&hctx->lock);
1958
1959                 /*
1960                  * Order adding requests to hctx->dispatch and checking
1961                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1962                  * in blk_mq_sched_restart(). Avoid restart code path to
1963                  * miss the new added requests to hctx->dispatch, meantime
1964                  * SCHED_RESTART is observed here.
1965                  */
1966                 smp_mb();
1967
1968                 /*
1969                  * If SCHED_RESTART was set by the caller of this function and
1970                  * it is no longer set that means that it was cleared by another
1971                  * thread and hence that a queue rerun is needed.
1972                  *
1973                  * If 'no_tag' is set, that means that we failed getting
1974                  * a driver tag with an I/O scheduler attached. If our dispatch
1975                  * waitqueue is no longer active, ensure that we run the queue
1976                  * AFTER adding our entries back to the list.
1977                  *
1978                  * If no I/O scheduler has been configured it is possible that
1979                  * the hardware queue got stopped and restarted before requests
1980                  * were pushed back onto the dispatch list. Rerun the queue to
1981                  * avoid starvation. Notes:
1982                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1983                  *   been stopped before rerunning a queue.
1984                  * - Some but not all block drivers stop a queue before
1985                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1986                  *   and dm-rq.
1987                  *
1988                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1989                  * bit is set, run queue after a delay to avoid IO stalls
1990                  * that could otherwise occur if the queue is idle.  We'll do
1991                  * similar if we couldn't get budget or couldn't lock a zone
1992                  * and SCHED_RESTART is set.
1993                  */
1994                 needs_restart = blk_mq_sched_needs_restart(hctx);
1995                 if (prep == PREP_DISPATCH_NO_BUDGET)
1996                         needs_resource = true;
1997                 if (!needs_restart ||
1998                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1999                         blk_mq_run_hw_queue(hctx, true);
2000                 else if (needs_restart && needs_resource)
2001                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2002
2003                 blk_mq_update_dispatch_busy(hctx, true);
2004                 return false;
2005         } else
2006                 blk_mq_update_dispatch_busy(hctx, false);
2007
2008         return (queued + errors) != 0;
2009 }
2010
2011 /**
2012  * __blk_mq_run_hw_queue - Run a hardware queue.
2013  * @hctx: Pointer to the hardware queue to run.
2014  *
2015  * Send pending requests to the hardware.
2016  */
2017 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2018 {
2019         /*
2020          * We can't run the queue inline with ints disabled. Ensure that
2021          * we catch bad users of this early.
2022          */
2023         WARN_ON_ONCE(in_interrupt());
2024
2025         blk_mq_run_dispatch_ops(hctx->queue,
2026                         blk_mq_sched_dispatch_requests(hctx));
2027 }
2028
2029 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2030 {
2031         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2032
2033         if (cpu >= nr_cpu_ids)
2034                 cpu = cpumask_first(hctx->cpumask);
2035         return cpu;
2036 }
2037
2038 /*
2039  * It'd be great if the workqueue API had a way to pass
2040  * in a mask and had some smarts for more clever placement.
2041  * For now we just round-robin here, switching for every
2042  * BLK_MQ_CPU_WORK_BATCH queued items.
2043  */
2044 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2045 {
2046         bool tried = false;
2047         int next_cpu = hctx->next_cpu;
2048
2049         if (hctx->queue->nr_hw_queues == 1)
2050                 return WORK_CPU_UNBOUND;
2051
2052         if (--hctx->next_cpu_batch <= 0) {
2053 select_cpu:
2054                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2055                                 cpu_online_mask);
2056                 if (next_cpu >= nr_cpu_ids)
2057                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2058                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2059         }
2060
2061         /*
2062          * Do unbound schedule if we can't find a online CPU for this hctx,
2063          * and it should only happen in the path of handling CPU DEAD.
2064          */
2065         if (!cpu_online(next_cpu)) {
2066                 if (!tried) {
2067                         tried = true;
2068                         goto select_cpu;
2069                 }
2070
2071                 /*
2072                  * Make sure to re-select CPU next time once after CPUs
2073                  * in hctx->cpumask become online again.
2074                  */
2075                 hctx->next_cpu = next_cpu;
2076                 hctx->next_cpu_batch = 1;
2077                 return WORK_CPU_UNBOUND;
2078         }
2079
2080         hctx->next_cpu = next_cpu;
2081         return next_cpu;
2082 }
2083
2084 /**
2085  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2086  * @hctx: Pointer to the hardware queue to run.
2087  * @async: If we want to run the queue asynchronously.
2088  * @msecs: Milliseconds of delay to wait before running the queue.
2089  *
2090  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2091  * with a delay of @msecs.
2092  */
2093 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2094                                         unsigned long msecs)
2095 {
2096         if (unlikely(blk_mq_hctx_stopped(hctx)))
2097                 return;
2098
2099         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2100                 int cpu = get_cpu();
2101                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2102                         __blk_mq_run_hw_queue(hctx);
2103                         put_cpu();
2104                         return;
2105                 }
2106
2107                 put_cpu();
2108         }
2109
2110         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2111                                     msecs_to_jiffies(msecs));
2112 }
2113
2114 /**
2115  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2116  * @hctx: Pointer to the hardware queue to run.
2117  * @msecs: Milliseconds of delay to wait before running the queue.
2118  *
2119  * Run a hardware queue asynchronously with a delay of @msecs.
2120  */
2121 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2122 {
2123         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2124 }
2125 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2126
2127 /**
2128  * blk_mq_run_hw_queue - Start to run a hardware queue.
2129  * @hctx: Pointer to the hardware queue to run.
2130  * @async: If we want to run the queue asynchronously.
2131  *
2132  * Check if the request queue is not in a quiesced state and if there are
2133  * pending requests to be sent. If this is true, run the queue to send requests
2134  * to hardware.
2135  */
2136 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2137 {
2138         bool need_run;
2139
2140         /*
2141          * When queue is quiesced, we may be switching io scheduler, or
2142          * updating nr_hw_queues, or other things, and we can't run queue
2143          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2144          *
2145          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2146          * quiesced.
2147          */
2148         __blk_mq_run_dispatch_ops(hctx->queue, false,
2149                 need_run = !blk_queue_quiesced(hctx->queue) &&
2150                 blk_mq_hctx_has_pending(hctx));
2151
2152         if (need_run)
2153                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2154 }
2155 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2156
2157 /*
2158  * Is the request queue handled by an IO scheduler that does not respect
2159  * hardware queues when dispatching?
2160  */
2161 static bool blk_mq_has_sqsched(struct request_queue *q)
2162 {
2163         struct elevator_queue *e = q->elevator;
2164
2165         if (e && e->type->ops.dispatch_request &&
2166             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2167                 return true;
2168         return false;
2169 }
2170
2171 /*
2172  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2173  * scheduler.
2174  */
2175 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2176 {
2177         struct blk_mq_hw_ctx *hctx;
2178
2179         /*
2180          * If the IO scheduler does not respect hardware queues when
2181          * dispatching, we just don't bother with multiple HW queues and
2182          * dispatch from hctx for the current CPU since running multiple queues
2183          * just causes lock contention inside the scheduler and pointless cache
2184          * bouncing.
2185          */
2186         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2187                                      raw_smp_processor_id());
2188         if (!blk_mq_hctx_stopped(hctx))
2189                 return hctx;
2190         return NULL;
2191 }
2192
2193 /**
2194  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2195  * @q: Pointer to the request queue to run.
2196  * @async: If we want to run the queue asynchronously.
2197  */
2198 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2199 {
2200         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2201         unsigned long i;
2202
2203         sq_hctx = NULL;
2204         if (blk_mq_has_sqsched(q))
2205                 sq_hctx = blk_mq_get_sq_hctx(q);
2206         queue_for_each_hw_ctx(q, hctx, i) {
2207                 if (blk_mq_hctx_stopped(hctx))
2208                         continue;
2209                 /*
2210                  * Dispatch from this hctx either if there's no hctx preferred
2211                  * by IO scheduler or if it has requests that bypass the
2212                  * scheduler.
2213                  */
2214                 if (!sq_hctx || sq_hctx == hctx ||
2215                     !list_empty_careful(&hctx->dispatch))
2216                         blk_mq_run_hw_queue(hctx, async);
2217         }
2218 }
2219 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2220
2221 /**
2222  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2223  * @q: Pointer to the request queue to run.
2224  * @msecs: Milliseconds of delay to wait before running the queues.
2225  */
2226 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2227 {
2228         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2229         unsigned long i;
2230
2231         sq_hctx = NULL;
2232         if (blk_mq_has_sqsched(q))
2233                 sq_hctx = blk_mq_get_sq_hctx(q);
2234         queue_for_each_hw_ctx(q, hctx, i) {
2235                 if (blk_mq_hctx_stopped(hctx))
2236                         continue;
2237                 /*
2238                  * If there is already a run_work pending, leave the
2239                  * pending delay untouched. Otherwise, a hctx can stall
2240                  * if another hctx is re-delaying the other's work
2241                  * before the work executes.
2242                  */
2243                 if (delayed_work_pending(&hctx->run_work))
2244                         continue;
2245                 /*
2246                  * Dispatch from this hctx either if there's no hctx preferred
2247                  * by IO scheduler or if it has requests that bypass the
2248                  * scheduler.
2249                  */
2250                 if (!sq_hctx || sq_hctx == hctx ||
2251                     !list_empty_careful(&hctx->dispatch))
2252                         blk_mq_delay_run_hw_queue(hctx, msecs);
2253         }
2254 }
2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2256
2257 /**
2258  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2259  * @q: request queue.
2260  *
2261  * The caller is responsible for serializing this function against
2262  * blk_mq_{start,stop}_hw_queue().
2263  */
2264 bool blk_mq_queue_stopped(struct request_queue *q)
2265 {
2266         struct blk_mq_hw_ctx *hctx;
2267         unsigned long i;
2268
2269         queue_for_each_hw_ctx(q, hctx, i)
2270                 if (blk_mq_hctx_stopped(hctx))
2271                         return true;
2272
2273         return false;
2274 }
2275 EXPORT_SYMBOL(blk_mq_queue_stopped);
2276
2277 /*
2278  * This function is often used for pausing .queue_rq() by driver when
2279  * there isn't enough resource or some conditions aren't satisfied, and
2280  * BLK_STS_RESOURCE is usually returned.
2281  *
2282  * We do not guarantee that dispatch can be drained or blocked
2283  * after blk_mq_stop_hw_queue() returns. Please use
2284  * blk_mq_quiesce_queue() for that requirement.
2285  */
2286 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288         cancel_delayed_work(&hctx->run_work);
2289
2290         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2291 }
2292 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2293
2294 /*
2295  * This function is often used for pausing .queue_rq() by driver when
2296  * there isn't enough resource or some conditions aren't satisfied, and
2297  * BLK_STS_RESOURCE is usually returned.
2298  *
2299  * We do not guarantee that dispatch can be drained or blocked
2300  * after blk_mq_stop_hw_queues() returns. Please use
2301  * blk_mq_quiesce_queue() for that requirement.
2302  */
2303 void blk_mq_stop_hw_queues(struct request_queue *q)
2304 {
2305         struct blk_mq_hw_ctx *hctx;
2306         unsigned long i;
2307
2308         queue_for_each_hw_ctx(q, hctx, i)
2309                 blk_mq_stop_hw_queue(hctx);
2310 }
2311 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2312
2313 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2314 {
2315         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2316
2317         blk_mq_run_hw_queue(hctx, false);
2318 }
2319 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2320
2321 void blk_mq_start_hw_queues(struct request_queue *q)
2322 {
2323         struct blk_mq_hw_ctx *hctx;
2324         unsigned long i;
2325
2326         queue_for_each_hw_ctx(q, hctx, i)
2327                 blk_mq_start_hw_queue(hctx);
2328 }
2329 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2330
2331 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2332 {
2333         if (!blk_mq_hctx_stopped(hctx))
2334                 return;
2335
2336         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2337         blk_mq_run_hw_queue(hctx, async);
2338 }
2339 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2340
2341 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2342 {
2343         struct blk_mq_hw_ctx *hctx;
2344         unsigned long i;
2345
2346         queue_for_each_hw_ctx(q, hctx, i)
2347                 blk_mq_start_stopped_hw_queue(hctx, async);
2348 }
2349 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2350
2351 static void blk_mq_run_work_fn(struct work_struct *work)
2352 {
2353         struct blk_mq_hw_ctx *hctx;
2354
2355         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2356
2357         /*
2358          * If we are stopped, don't run the queue.
2359          */
2360         if (blk_mq_hctx_stopped(hctx))
2361                 return;
2362
2363         __blk_mq_run_hw_queue(hctx);
2364 }
2365
2366 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2367                                             struct request *rq,
2368                                             bool at_head)
2369 {
2370         struct blk_mq_ctx *ctx = rq->mq_ctx;
2371         enum hctx_type type = hctx->type;
2372
2373         lockdep_assert_held(&ctx->lock);
2374
2375         trace_block_rq_insert(rq);
2376
2377         if (at_head)
2378                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2379         else
2380                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2381 }
2382
2383 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2384                              bool at_head)
2385 {
2386         struct blk_mq_ctx *ctx = rq->mq_ctx;
2387
2388         lockdep_assert_held(&ctx->lock);
2389
2390         __blk_mq_insert_req_list(hctx, rq, at_head);
2391         blk_mq_hctx_mark_pending(hctx, ctx);
2392 }
2393
2394 /**
2395  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2396  * @rq: Pointer to request to be inserted.
2397  * @at_head: true if the request should be inserted at the head of the list.
2398  * @run_queue: If we should run the hardware queue after inserting the request.
2399  *
2400  * Should only be used carefully, when the caller knows we want to
2401  * bypass a potential IO scheduler on the target device.
2402  */
2403 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2404                                   bool run_queue)
2405 {
2406         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2407
2408         spin_lock(&hctx->lock);
2409         if (at_head)
2410                 list_add(&rq->queuelist, &hctx->dispatch);
2411         else
2412                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2413         spin_unlock(&hctx->lock);
2414
2415         if (run_queue)
2416                 blk_mq_run_hw_queue(hctx, false);
2417 }
2418
2419 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2420                             struct list_head *list)
2421
2422 {
2423         struct request *rq;
2424         enum hctx_type type = hctx->type;
2425
2426         /*
2427          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2428          * offline now
2429          */
2430         list_for_each_entry(rq, list, queuelist) {
2431                 BUG_ON(rq->mq_ctx != ctx);
2432                 trace_block_rq_insert(rq);
2433         }
2434
2435         spin_lock(&ctx->lock);
2436         list_splice_tail_init(list, &ctx->rq_lists[type]);
2437         blk_mq_hctx_mark_pending(hctx, ctx);
2438         spin_unlock(&ctx->lock);
2439 }
2440
2441 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2442                               bool from_schedule)
2443 {
2444         if (hctx->queue->mq_ops->commit_rqs) {
2445                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2446                 hctx->queue->mq_ops->commit_rqs(hctx);
2447         }
2448         *queued = 0;
2449 }
2450
2451 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2452                 unsigned int nr_segs)
2453 {
2454         int err;
2455
2456         if (bio->bi_opf & REQ_RAHEAD)
2457                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2458
2459         rq->__sector = bio->bi_iter.bi_sector;
2460         blk_rq_bio_prep(rq, bio, nr_segs);
2461
2462         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2463         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2464         WARN_ON_ONCE(err);
2465
2466         blk_account_io_start(rq);
2467 }
2468
2469 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2470                                             struct request *rq, bool last)
2471 {
2472         struct request_queue *q = rq->q;
2473         struct blk_mq_queue_data bd = {
2474                 .rq = rq,
2475                 .last = last,
2476         };
2477         blk_status_t ret;
2478
2479         /*
2480          * For OK queue, we are done. For error, caller may kill it.
2481          * Any other error (busy), just add it to our list as we
2482          * previously would have done.
2483          */
2484         ret = q->mq_ops->queue_rq(hctx, &bd);
2485         switch (ret) {
2486         case BLK_STS_OK:
2487                 blk_mq_update_dispatch_busy(hctx, false);
2488                 break;
2489         case BLK_STS_RESOURCE:
2490         case BLK_STS_DEV_RESOURCE:
2491                 blk_mq_update_dispatch_busy(hctx, true);
2492                 __blk_mq_requeue_request(rq);
2493                 break;
2494         default:
2495                 blk_mq_update_dispatch_busy(hctx, false);
2496                 break;
2497         }
2498
2499         return ret;
2500 }
2501
2502 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2503                                                 struct request *rq,
2504                                                 bool bypass_insert, bool last)
2505 {
2506         struct request_queue *q = rq->q;
2507         bool run_queue = true;
2508         int budget_token;
2509
2510         /*
2511          * RCU or SRCU read lock is needed before checking quiesced flag.
2512          *
2513          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2514          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2515          * and avoid driver to try to dispatch again.
2516          */
2517         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2518                 run_queue = false;
2519                 bypass_insert = false;
2520                 goto insert;
2521         }
2522
2523         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2524                 goto insert;
2525
2526         budget_token = blk_mq_get_dispatch_budget(q);
2527         if (budget_token < 0)
2528                 goto insert;
2529
2530         blk_mq_set_rq_budget_token(rq, budget_token);
2531
2532         if (!blk_mq_get_driver_tag(rq)) {
2533                 blk_mq_put_dispatch_budget(q, budget_token);
2534                 goto insert;
2535         }
2536
2537         return __blk_mq_issue_directly(hctx, rq, last);
2538 insert:
2539         if (bypass_insert)
2540                 return BLK_STS_RESOURCE;
2541
2542         blk_mq_sched_insert_request(rq, false, run_queue, false);
2543
2544         return BLK_STS_OK;
2545 }
2546
2547 /**
2548  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2549  * @hctx: Pointer of the associated hardware queue.
2550  * @rq: Pointer to request to be sent.
2551  *
2552  * If the device has enough resources to accept a new request now, send the
2553  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2554  * we can try send it another time in the future. Requests inserted at this
2555  * queue have higher priority.
2556  */
2557 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                 struct request *rq)
2559 {
2560         blk_status_t ret =
2561                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2562
2563         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2564                 blk_mq_request_bypass_insert(rq, false, true);
2565         else if (ret != BLK_STS_OK)
2566                 blk_mq_end_request(rq, ret);
2567 }
2568
2569 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2570 {
2571         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2572 }
2573
2574 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2575 {
2576         struct blk_mq_hw_ctx *hctx = NULL;
2577         struct request *rq;
2578         int queued = 0;
2579         int errors = 0;
2580
2581         while ((rq = rq_list_pop(&plug->mq_list))) {
2582                 bool last = rq_list_empty(plug->mq_list);
2583                 blk_status_t ret;
2584
2585                 if (hctx != rq->mq_hctx) {
2586                         if (hctx)
2587                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2588                         hctx = rq->mq_hctx;
2589                 }
2590
2591                 ret = blk_mq_request_issue_directly(rq, last);
2592                 switch (ret) {
2593                 case BLK_STS_OK:
2594                         queued++;
2595                         break;
2596                 case BLK_STS_RESOURCE:
2597                 case BLK_STS_DEV_RESOURCE:
2598                         blk_mq_request_bypass_insert(rq, false, last);
2599                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2600                         return;
2601                 default:
2602                         blk_mq_end_request(rq, ret);
2603                         errors++;
2604                         break;
2605                 }
2606         }
2607
2608         /*
2609          * If we didn't flush the entire list, we could have told the driver
2610          * there was more coming, but that turned out to be a lie.
2611          */
2612         if (errors)
2613                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2614 }
2615
2616 static void __blk_mq_flush_plug_list(struct request_queue *q,
2617                                      struct blk_plug *plug)
2618 {
2619         if (blk_queue_quiesced(q))
2620                 return;
2621         q->mq_ops->queue_rqs(&plug->mq_list);
2622 }
2623
2624 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2625 {
2626         struct blk_mq_hw_ctx *this_hctx = NULL;
2627         struct blk_mq_ctx *this_ctx = NULL;
2628         struct request *requeue_list = NULL;
2629         unsigned int depth = 0;
2630         LIST_HEAD(list);
2631
2632         do {
2633                 struct request *rq = rq_list_pop(&plug->mq_list);
2634
2635                 if (!this_hctx) {
2636                         this_hctx = rq->mq_hctx;
2637                         this_ctx = rq->mq_ctx;
2638                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2639                         rq_list_add(&requeue_list, rq);
2640                         continue;
2641                 }
2642                 list_add_tail(&rq->queuelist, &list);
2643                 depth++;
2644         } while (!rq_list_empty(plug->mq_list));
2645
2646         plug->mq_list = requeue_list;
2647         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2648         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2649 }
2650
2651 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2652 {
2653         struct request *rq;
2654
2655         if (rq_list_empty(plug->mq_list))
2656                 return;
2657         plug->rq_count = 0;
2658
2659         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2660                 struct request_queue *q;
2661
2662                 rq = rq_list_peek(&plug->mq_list);
2663                 q = rq->q;
2664
2665                 /*
2666                  * Peek first request and see if we have a ->queue_rqs() hook.
2667                  * If we do, we can dispatch the whole plug list in one go. We
2668                  * already know at this point that all requests belong to the
2669                  * same queue, caller must ensure that's the case.
2670                  *
2671                  * Since we pass off the full list to the driver at this point,
2672                  * we do not increment the active request count for the queue.
2673                  * Bypass shared tags for now because of that.
2674                  */
2675                 if (q->mq_ops->queue_rqs &&
2676                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2677                         blk_mq_run_dispatch_ops(q,
2678                                 __blk_mq_flush_plug_list(q, plug));
2679                         if (rq_list_empty(plug->mq_list))
2680                                 return;
2681                 }
2682
2683                 blk_mq_run_dispatch_ops(q,
2684                                 blk_mq_plug_issue_direct(plug, false));
2685                 if (rq_list_empty(plug->mq_list))
2686                         return;
2687         }
2688
2689         do {
2690                 blk_mq_dispatch_plug_list(plug, from_schedule);
2691         } while (!rq_list_empty(plug->mq_list));
2692 }
2693
2694 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2695                 struct list_head *list)
2696 {
2697         int queued = 0;
2698         int errors = 0;
2699
2700         while (!list_empty(list)) {
2701                 blk_status_t ret;
2702                 struct request *rq = list_first_entry(list, struct request,
2703                                 queuelist);
2704
2705                 list_del_init(&rq->queuelist);
2706                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2707                 if (ret != BLK_STS_OK) {
2708                         if (ret == BLK_STS_RESOURCE ||
2709                                         ret == BLK_STS_DEV_RESOURCE) {
2710                                 blk_mq_request_bypass_insert(rq, false,
2711                                                         list_empty(list));
2712                                 break;
2713                         }
2714                         blk_mq_end_request(rq, ret);
2715                         errors++;
2716                 } else
2717                         queued++;
2718         }
2719
2720         /*
2721          * If we didn't flush the entire list, we could have told
2722          * the driver there was more coming, but that turned out to
2723          * be a lie.
2724          */
2725         if ((!list_empty(list) || errors) &&
2726              hctx->queue->mq_ops->commit_rqs && queued)
2727                 hctx->queue->mq_ops->commit_rqs(hctx);
2728 }
2729
2730 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2731                                      struct bio *bio, unsigned int nr_segs)
2732 {
2733         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2734                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2735                         return true;
2736                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2737                         return true;
2738         }
2739         return false;
2740 }
2741
2742 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2743                                                struct blk_plug *plug,
2744                                                struct bio *bio,
2745                                                unsigned int nsegs)
2746 {
2747         struct blk_mq_alloc_data data = {
2748                 .q              = q,
2749                 .nr_tags        = 1,
2750                 .cmd_flags      = bio->bi_opf,
2751         };
2752         struct request *rq;
2753
2754         if (unlikely(bio_queue_enter(bio)))
2755                 return NULL;
2756
2757         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2758                 goto queue_exit;
2759
2760         rq_qos_throttle(q, bio);
2761
2762         if (plug) {
2763                 data.nr_tags = plug->nr_ios;
2764                 plug->nr_ios = 1;
2765                 data.cached_rq = &plug->cached_rq;
2766         }
2767
2768         rq = __blk_mq_alloc_requests(&data);
2769         if (rq)
2770                 return rq;
2771         rq_qos_cleanup(q, bio);
2772         if (bio->bi_opf & REQ_NOWAIT)
2773                 bio_wouldblock_error(bio);
2774 queue_exit:
2775         blk_queue_exit(q);
2776         return NULL;
2777 }
2778
2779 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2780                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2781 {
2782         struct request *rq;
2783
2784         if (!plug)
2785                 return NULL;
2786         rq = rq_list_peek(&plug->cached_rq);
2787         if (!rq || rq->q != q)
2788                 return NULL;
2789
2790         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2791                 *bio = NULL;
2792                 return NULL;
2793         }
2794
2795         rq_qos_throttle(q, *bio);
2796
2797         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2798                 return NULL;
2799         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2800                 return NULL;
2801
2802         rq->cmd_flags = (*bio)->bi_opf;
2803         plug->cached_rq = rq_list_next(rq);
2804         INIT_LIST_HEAD(&rq->queuelist);
2805         return rq;
2806 }
2807
2808 /**
2809  * blk_mq_submit_bio - Create and send a request to block device.
2810  * @bio: Bio pointer.
2811  *
2812  * Builds up a request structure from @q and @bio and send to the device. The
2813  * request may not be queued directly to hardware if:
2814  * * This request can be merged with another one
2815  * * We want to place request at plug queue for possible future merging
2816  * * There is an IO scheduler active at this queue
2817  *
2818  * It will not queue the request if there is an error with the bio, or at the
2819  * request creation.
2820  */
2821 void blk_mq_submit_bio(struct bio *bio)
2822 {
2823         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2824         struct blk_plug *plug = blk_mq_plug(q, bio);
2825         const int is_sync = op_is_sync(bio->bi_opf);
2826         struct request *rq;
2827         unsigned int nr_segs = 1;
2828         blk_status_t ret;
2829
2830         blk_queue_bounce(q, &bio);
2831         if (blk_may_split(q, bio))
2832                 __blk_queue_split(q, &bio, &nr_segs);
2833
2834         if (!bio_integrity_prep(bio))
2835                 return;
2836
2837         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2838         if (!rq) {
2839                 if (!bio)
2840                         return;
2841                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2842                 if (unlikely(!rq))
2843                         return;
2844         }
2845
2846         trace_block_getrq(bio);
2847
2848         rq_qos_track(q, rq, bio);
2849
2850         blk_mq_bio_to_request(rq, bio, nr_segs);
2851
2852         ret = blk_crypto_init_request(rq);
2853         if (ret != BLK_STS_OK) {
2854                 bio->bi_status = ret;
2855                 bio_endio(bio);
2856                 blk_mq_free_request(rq);
2857                 return;
2858         }
2859
2860         if (op_is_flush(bio->bi_opf)) {
2861                 blk_insert_flush(rq);
2862                 return;
2863         }
2864
2865         if (plug)
2866                 blk_add_rq_to_plug(plug, rq);
2867         else if ((rq->rq_flags & RQF_ELV) ||
2868                  (rq->mq_hctx->dispatch_busy &&
2869                   (q->nr_hw_queues == 1 || !is_sync)))
2870                 blk_mq_sched_insert_request(rq, false, true, true);
2871         else
2872                 blk_mq_run_dispatch_ops(rq->q,
2873                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2874 }
2875
2876 #ifdef CONFIG_BLK_MQ_STACKING
2877 /**
2878  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2879  * @rq: the request being queued
2880  */
2881 blk_status_t blk_insert_cloned_request(struct request *rq)
2882 {
2883         struct request_queue *q = rq->q;
2884         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2885         blk_status_t ret;
2886
2887         if (blk_rq_sectors(rq) > max_sectors) {
2888                 /*
2889                  * SCSI device does not have a good way to return if
2890                  * Write Same/Zero is actually supported. If a device rejects
2891                  * a non-read/write command (discard, write same,etc.) the
2892                  * low-level device driver will set the relevant queue limit to
2893                  * 0 to prevent blk-lib from issuing more of the offending
2894                  * operations. Commands queued prior to the queue limit being
2895                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2896                  * errors being propagated to upper layers.
2897                  */
2898                 if (max_sectors == 0)
2899                         return BLK_STS_NOTSUPP;
2900
2901                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2902                         __func__, blk_rq_sectors(rq), max_sectors);
2903                 return BLK_STS_IOERR;
2904         }
2905
2906         /*
2907          * The queue settings related to segment counting may differ from the
2908          * original queue.
2909          */
2910         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2911         if (rq->nr_phys_segments > queue_max_segments(q)) {
2912                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2913                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2914                 return BLK_STS_IOERR;
2915         }
2916
2917         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2918                 return BLK_STS_IOERR;
2919
2920         if (blk_crypto_insert_cloned_request(rq))
2921                 return BLK_STS_IOERR;
2922
2923         blk_account_io_start(rq);
2924
2925         /*
2926          * Since we have a scheduler attached on the top device,
2927          * bypass a potential scheduler on the bottom device for
2928          * insert.
2929          */
2930         blk_mq_run_dispatch_ops(q,
2931                         ret = blk_mq_request_issue_directly(rq, true));
2932         if (ret)
2933                 blk_account_io_done(rq, ktime_get_ns());
2934         return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2937
2938 /**
2939  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2940  * @rq: the clone request to be cleaned up
2941  *
2942  * Description:
2943  *     Free all bios in @rq for a cloned request.
2944  */
2945 void blk_rq_unprep_clone(struct request *rq)
2946 {
2947         struct bio *bio;
2948
2949         while ((bio = rq->bio) != NULL) {
2950                 rq->bio = bio->bi_next;
2951
2952                 bio_put(bio);
2953         }
2954 }
2955 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2956
2957 /**
2958  * blk_rq_prep_clone - Helper function to setup clone request
2959  * @rq: the request to be setup
2960  * @rq_src: original request to be cloned
2961  * @bs: bio_set that bios for clone are allocated from
2962  * @gfp_mask: memory allocation mask for bio
2963  * @bio_ctr: setup function to be called for each clone bio.
2964  *           Returns %0 for success, non %0 for failure.
2965  * @data: private data to be passed to @bio_ctr
2966  *
2967  * Description:
2968  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2969  *     Also, pages which the original bios are pointing to are not copied
2970  *     and the cloned bios just point same pages.
2971  *     So cloned bios must be completed before original bios, which means
2972  *     the caller must complete @rq before @rq_src.
2973  */
2974 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2975                       struct bio_set *bs, gfp_t gfp_mask,
2976                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2977                       void *data)
2978 {
2979         struct bio *bio, *bio_src;
2980
2981         if (!bs)
2982                 bs = &fs_bio_set;
2983
2984         __rq_for_each_bio(bio_src, rq_src) {
2985                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2986                                       bs);
2987                 if (!bio)
2988                         goto free_and_out;
2989
2990                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2991                         goto free_and_out;
2992
2993                 if (rq->bio) {
2994                         rq->biotail->bi_next = bio;
2995                         rq->biotail = bio;
2996                 } else {
2997                         rq->bio = rq->biotail = bio;
2998                 }
2999                 bio = NULL;
3000         }
3001
3002         /* Copy attributes of the original request to the clone request. */
3003         rq->__sector = blk_rq_pos(rq_src);
3004         rq->__data_len = blk_rq_bytes(rq_src);
3005         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3006                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3007                 rq->special_vec = rq_src->special_vec;
3008         }
3009         rq->nr_phys_segments = rq_src->nr_phys_segments;
3010         rq->ioprio = rq_src->ioprio;
3011
3012         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3013                 goto free_and_out;
3014
3015         return 0;
3016
3017 free_and_out:
3018         if (bio)
3019                 bio_put(bio);
3020         blk_rq_unprep_clone(rq);
3021
3022         return -ENOMEM;
3023 }
3024 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3025 #endif /* CONFIG_BLK_MQ_STACKING */
3026
3027 /*
3028  * Steal bios from a request and add them to a bio list.
3029  * The request must not have been partially completed before.
3030  */
3031 void blk_steal_bios(struct bio_list *list, struct request *rq)
3032 {
3033         if (rq->bio) {
3034                 if (list->tail)
3035                         list->tail->bi_next = rq->bio;
3036                 else
3037                         list->head = rq->bio;
3038                 list->tail = rq->biotail;
3039
3040                 rq->bio = NULL;
3041                 rq->biotail = NULL;
3042         }
3043
3044         rq->__data_len = 0;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_steal_bios);
3047
3048 static size_t order_to_size(unsigned int order)
3049 {
3050         return (size_t)PAGE_SIZE << order;
3051 }
3052
3053 /* called before freeing request pool in @tags */
3054 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3055                                     struct blk_mq_tags *tags)
3056 {
3057         struct page *page;
3058         unsigned long flags;
3059
3060         /* There is no need to clear a driver tags own mapping */
3061         if (drv_tags == tags)
3062                 return;
3063
3064         list_for_each_entry(page, &tags->page_list, lru) {
3065                 unsigned long start = (unsigned long)page_address(page);
3066                 unsigned long end = start + order_to_size(page->private);
3067                 int i;
3068
3069                 for (i = 0; i < drv_tags->nr_tags; i++) {
3070                         struct request *rq = drv_tags->rqs[i];
3071                         unsigned long rq_addr = (unsigned long)rq;
3072
3073                         if (rq_addr >= start && rq_addr < end) {
3074                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3075                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3076                         }
3077                 }
3078         }
3079
3080         /*
3081          * Wait until all pending iteration is done.
3082          *
3083          * Request reference is cleared and it is guaranteed to be observed
3084          * after the ->lock is released.
3085          */
3086         spin_lock_irqsave(&drv_tags->lock, flags);
3087         spin_unlock_irqrestore(&drv_tags->lock, flags);
3088 }
3089
3090 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3091                      unsigned int hctx_idx)
3092 {
3093         struct blk_mq_tags *drv_tags;
3094         struct page *page;
3095
3096         if (list_empty(&tags->page_list))
3097                 return;
3098
3099         if (blk_mq_is_shared_tags(set->flags))
3100                 drv_tags = set->shared_tags;
3101         else
3102                 drv_tags = set->tags[hctx_idx];
3103
3104         if (tags->static_rqs && set->ops->exit_request) {
3105                 int i;
3106
3107                 for (i = 0; i < tags->nr_tags; i++) {
3108                         struct request *rq = tags->static_rqs[i];
3109
3110                         if (!rq)
3111                                 continue;
3112                         set->ops->exit_request(set, rq, hctx_idx);
3113                         tags->static_rqs[i] = NULL;
3114                 }
3115         }
3116
3117         blk_mq_clear_rq_mapping(drv_tags, tags);
3118
3119         while (!list_empty(&tags->page_list)) {
3120                 page = list_first_entry(&tags->page_list, struct page, lru);
3121                 list_del_init(&page->lru);
3122                 /*
3123                  * Remove kmemleak object previously allocated in
3124                  * blk_mq_alloc_rqs().
3125                  */
3126                 kmemleak_free(page_address(page));
3127                 __free_pages(page, page->private);
3128         }
3129 }
3130
3131 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3132 {
3133         kfree(tags->rqs);
3134         tags->rqs = NULL;
3135         kfree(tags->static_rqs);
3136         tags->static_rqs = NULL;
3137
3138         blk_mq_free_tags(tags);
3139 }
3140
3141 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3142                 unsigned int hctx_idx)
3143 {
3144         int i;
3145
3146         for (i = 0; i < set->nr_maps; i++) {
3147                 unsigned int start = set->map[i].queue_offset;
3148                 unsigned int end = start + set->map[i].nr_queues;
3149
3150                 if (hctx_idx >= start && hctx_idx < end)
3151                         break;
3152         }
3153
3154         if (i >= set->nr_maps)
3155                 i = HCTX_TYPE_DEFAULT;
3156
3157         return i;
3158 }
3159
3160 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3161                 unsigned int hctx_idx)
3162 {
3163         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3164
3165         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3166 }
3167
3168 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3169                                                unsigned int hctx_idx,
3170                                                unsigned int nr_tags,
3171                                                unsigned int reserved_tags)
3172 {
3173         int node = blk_mq_get_hctx_node(set, hctx_idx);
3174         struct blk_mq_tags *tags;
3175
3176         if (node == NUMA_NO_NODE)
3177                 node = set->numa_node;
3178
3179         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3180                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3181         if (!tags)
3182                 return NULL;
3183
3184         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3185                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3186                                  node);
3187         if (!tags->rqs) {
3188                 blk_mq_free_tags(tags);
3189                 return NULL;
3190         }
3191
3192         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3193                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3194                                         node);
3195         if (!tags->static_rqs) {
3196                 kfree(tags->rqs);
3197                 blk_mq_free_tags(tags);
3198                 return NULL;
3199         }
3200
3201         return tags;
3202 }
3203
3204 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3205                                unsigned int hctx_idx, int node)
3206 {
3207         int ret;
3208
3209         if (set->ops->init_request) {
3210                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3211                 if (ret)
3212                         return ret;
3213         }
3214
3215         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3216         return 0;
3217 }
3218
3219 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3220                             struct blk_mq_tags *tags,
3221                             unsigned int hctx_idx, unsigned int depth)
3222 {
3223         unsigned int i, j, entries_per_page, max_order = 4;
3224         int node = blk_mq_get_hctx_node(set, hctx_idx);
3225         size_t rq_size, left;
3226
3227         if (node == NUMA_NO_NODE)
3228                 node = set->numa_node;
3229
3230         INIT_LIST_HEAD(&tags->page_list);
3231
3232         /*
3233          * rq_size is the size of the request plus driver payload, rounded
3234          * to the cacheline size
3235          */
3236         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3237                                 cache_line_size());
3238         left = rq_size * depth;
3239
3240         for (i = 0; i < depth; ) {
3241                 int this_order = max_order;
3242                 struct page *page;
3243                 int to_do;
3244                 void *p;
3245
3246                 while (this_order && left < order_to_size(this_order - 1))
3247                         this_order--;
3248
3249                 do {
3250                         page = alloc_pages_node(node,
3251                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3252                                 this_order);
3253                         if (page)
3254                                 break;
3255                         if (!this_order--)
3256                                 break;
3257                         if (order_to_size(this_order) < rq_size)
3258                                 break;
3259                 } while (1);
3260
3261                 if (!page)
3262                         goto fail;
3263
3264                 page->private = this_order;
3265                 list_add_tail(&page->lru, &tags->page_list);
3266
3267                 p = page_address(page);
3268                 /*
3269                  * Allow kmemleak to scan these pages as they contain pointers
3270                  * to additional allocations like via ops->init_request().
3271                  */
3272                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3273                 entries_per_page = order_to_size(this_order) / rq_size;
3274                 to_do = min(entries_per_page, depth - i);
3275                 left -= to_do * rq_size;
3276                 for (j = 0; j < to_do; j++) {
3277                         struct request *rq = p;
3278
3279                         tags->static_rqs[i] = rq;
3280                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3281                                 tags->static_rqs[i] = NULL;
3282                                 goto fail;
3283                         }
3284
3285                         p += rq_size;
3286                         i++;
3287                 }
3288         }
3289         return 0;
3290
3291 fail:
3292         blk_mq_free_rqs(set, tags, hctx_idx);
3293         return -ENOMEM;
3294 }
3295
3296 struct rq_iter_data {
3297         struct blk_mq_hw_ctx *hctx;
3298         bool has_rq;
3299 };
3300
3301 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3302 {
3303         struct rq_iter_data *iter_data = data;
3304
3305         if (rq->mq_hctx != iter_data->hctx)
3306                 return true;
3307         iter_data->has_rq = true;
3308         return false;
3309 }
3310
3311 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3312 {
3313         struct blk_mq_tags *tags = hctx->sched_tags ?
3314                         hctx->sched_tags : hctx->tags;
3315         struct rq_iter_data data = {
3316                 .hctx   = hctx,
3317         };
3318
3319         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3320         return data.has_rq;
3321 }
3322
3323 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3324                 struct blk_mq_hw_ctx *hctx)
3325 {
3326         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3327                 return false;
3328         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3329                 return false;
3330         return true;
3331 }
3332
3333 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3334 {
3335         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3336                         struct blk_mq_hw_ctx, cpuhp_online);
3337
3338         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3339             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3340                 return 0;
3341
3342         /*
3343          * Prevent new request from being allocated on the current hctx.
3344          *
3345          * The smp_mb__after_atomic() Pairs with the implied barrier in
3346          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3347          * seen once we return from the tag allocator.
3348          */
3349         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3350         smp_mb__after_atomic();
3351
3352         /*
3353          * Try to grab a reference to the queue and wait for any outstanding
3354          * requests.  If we could not grab a reference the queue has been
3355          * frozen and there are no requests.
3356          */
3357         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3358                 while (blk_mq_hctx_has_requests(hctx))
3359                         msleep(5);
3360                 percpu_ref_put(&hctx->queue->q_usage_counter);
3361         }
3362
3363         return 0;
3364 }
3365
3366 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3367 {
3368         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3369                         struct blk_mq_hw_ctx, cpuhp_online);
3370
3371         if (cpumask_test_cpu(cpu, hctx->cpumask))
3372                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3373         return 0;
3374 }
3375
3376 /*
3377  * 'cpu' is going away. splice any existing rq_list entries from this
3378  * software queue to the hw queue dispatch list, and ensure that it
3379  * gets run.
3380  */
3381 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3382 {
3383         struct blk_mq_hw_ctx *hctx;
3384         struct blk_mq_ctx *ctx;
3385         LIST_HEAD(tmp);
3386         enum hctx_type type;
3387
3388         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3389         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3390                 return 0;
3391
3392         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3393         type = hctx->type;
3394
3395         spin_lock(&ctx->lock);
3396         if (!list_empty(&ctx->rq_lists[type])) {
3397                 list_splice_init(&ctx->rq_lists[type], &tmp);
3398                 blk_mq_hctx_clear_pending(hctx, ctx);
3399         }
3400         spin_unlock(&ctx->lock);
3401
3402         if (list_empty(&tmp))
3403                 return 0;
3404
3405         spin_lock(&hctx->lock);
3406         list_splice_tail_init(&tmp, &hctx->dispatch);
3407         spin_unlock(&hctx->lock);
3408
3409         blk_mq_run_hw_queue(hctx, true);
3410         return 0;
3411 }
3412
3413 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3414 {
3415         if (!(hctx->flags & BLK_MQ_F_STACKING))
3416                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3417                                                     &hctx->cpuhp_online);
3418         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3419                                             &hctx->cpuhp_dead);
3420 }
3421
3422 /*
3423  * Before freeing hw queue, clearing the flush request reference in
3424  * tags->rqs[] for avoiding potential UAF.
3425  */
3426 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3427                 unsigned int queue_depth, struct request *flush_rq)
3428 {
3429         int i;
3430         unsigned long flags;
3431
3432         /* The hw queue may not be mapped yet */
3433         if (!tags)
3434                 return;
3435
3436         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3437
3438         for (i = 0; i < queue_depth; i++)
3439                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3440
3441         /*
3442          * Wait until all pending iteration is done.
3443          *
3444          * Request reference is cleared and it is guaranteed to be observed
3445          * after the ->lock is released.
3446          */
3447         spin_lock_irqsave(&tags->lock, flags);
3448         spin_unlock_irqrestore(&tags->lock, flags);
3449 }
3450
3451 /* hctx->ctxs will be freed in queue's release handler */
3452 static void blk_mq_exit_hctx(struct request_queue *q,
3453                 struct blk_mq_tag_set *set,
3454                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3455 {
3456         struct request *flush_rq = hctx->fq->flush_rq;
3457
3458         if (blk_mq_hw_queue_mapped(hctx))
3459                 blk_mq_tag_idle(hctx);
3460
3461         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3462                         set->queue_depth, flush_rq);
3463         if (set->ops->exit_request)
3464                 set->ops->exit_request(set, flush_rq, hctx_idx);
3465
3466         if (set->ops->exit_hctx)
3467                 set->ops->exit_hctx(hctx, hctx_idx);
3468
3469         blk_mq_remove_cpuhp(hctx);
3470
3471         xa_erase(&q->hctx_table, hctx_idx);
3472
3473         spin_lock(&q->unused_hctx_lock);
3474         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3475         spin_unlock(&q->unused_hctx_lock);
3476 }
3477
3478 static void blk_mq_exit_hw_queues(struct request_queue *q,
3479                 struct blk_mq_tag_set *set, int nr_queue)
3480 {
3481         struct blk_mq_hw_ctx *hctx;
3482         unsigned long i;
3483
3484         queue_for_each_hw_ctx(q, hctx, i) {
3485                 if (i == nr_queue)
3486                         break;
3487                 blk_mq_exit_hctx(q, set, hctx, i);
3488         }
3489 }
3490
3491 static int blk_mq_init_hctx(struct request_queue *q,
3492                 struct blk_mq_tag_set *set,
3493                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3494 {
3495         hctx->queue_num = hctx_idx;
3496
3497         if (!(hctx->flags & BLK_MQ_F_STACKING))
3498                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3499                                 &hctx->cpuhp_online);
3500         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3501
3502         hctx->tags = set->tags[hctx_idx];
3503
3504         if (set->ops->init_hctx &&
3505             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3506                 goto unregister_cpu_notifier;
3507
3508         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3509                                 hctx->numa_node))
3510                 goto exit_hctx;
3511
3512         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3513                 goto exit_flush_rq;
3514
3515         return 0;
3516
3517  exit_flush_rq:
3518         if (set->ops->exit_request)
3519                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3520  exit_hctx:
3521         if (set->ops->exit_hctx)
3522                 set->ops->exit_hctx(hctx, hctx_idx);
3523  unregister_cpu_notifier:
3524         blk_mq_remove_cpuhp(hctx);
3525         return -1;
3526 }
3527
3528 static struct blk_mq_hw_ctx *
3529 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3530                 int node)
3531 {
3532         struct blk_mq_hw_ctx *hctx;
3533         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3534
3535         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3536         if (!hctx)
3537                 goto fail_alloc_hctx;
3538
3539         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3540                 goto free_hctx;
3541
3542         atomic_set(&hctx->nr_active, 0);
3543         if (node == NUMA_NO_NODE)
3544                 node = set->numa_node;
3545         hctx->numa_node = node;
3546
3547         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3548         spin_lock_init(&hctx->lock);
3549         INIT_LIST_HEAD(&hctx->dispatch);
3550         hctx->queue = q;
3551         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3552
3553         INIT_LIST_HEAD(&hctx->hctx_list);
3554
3555         /*
3556          * Allocate space for all possible cpus to avoid allocation at
3557          * runtime
3558          */
3559         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3560                         gfp, node);
3561         if (!hctx->ctxs)
3562                 goto free_cpumask;
3563
3564         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3565                                 gfp, node, false, false))
3566                 goto free_ctxs;
3567         hctx->nr_ctx = 0;
3568
3569         spin_lock_init(&hctx->dispatch_wait_lock);
3570         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3571         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3572
3573         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3574         if (!hctx->fq)
3575                 goto free_bitmap;
3576
3577         blk_mq_hctx_kobj_init(hctx);
3578
3579         return hctx;
3580
3581  free_bitmap:
3582         sbitmap_free(&hctx->ctx_map);
3583  free_ctxs:
3584         kfree(hctx->ctxs);
3585  free_cpumask:
3586         free_cpumask_var(hctx->cpumask);
3587  free_hctx:
3588         kfree(hctx);
3589  fail_alloc_hctx:
3590         return NULL;
3591 }
3592
3593 static void blk_mq_init_cpu_queues(struct request_queue *q,
3594                                    unsigned int nr_hw_queues)
3595 {
3596         struct blk_mq_tag_set *set = q->tag_set;
3597         unsigned int i, j;
3598
3599         for_each_possible_cpu(i) {
3600                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3601                 struct blk_mq_hw_ctx *hctx;
3602                 int k;
3603
3604                 __ctx->cpu = i;
3605                 spin_lock_init(&__ctx->lock);
3606                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3607                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3608
3609                 __ctx->queue = q;
3610
3611                 /*
3612                  * Set local node, IFF we have more than one hw queue. If
3613                  * not, we remain on the home node of the device
3614                  */
3615                 for (j = 0; j < set->nr_maps; j++) {
3616                         hctx = blk_mq_map_queue_type(q, j, i);
3617                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3618                                 hctx->numa_node = cpu_to_node(i);
3619                 }
3620         }
3621 }
3622
3623 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3624                                              unsigned int hctx_idx,
3625                                              unsigned int depth)
3626 {
3627         struct blk_mq_tags *tags;
3628         int ret;
3629
3630         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3631         if (!tags)
3632                 return NULL;
3633
3634         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3635         if (ret) {
3636                 blk_mq_free_rq_map(tags);
3637                 return NULL;
3638         }
3639
3640         return tags;
3641 }
3642
3643 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3644                                        int hctx_idx)
3645 {
3646         if (blk_mq_is_shared_tags(set->flags)) {
3647                 set->tags[hctx_idx] = set->shared_tags;
3648
3649                 return true;
3650         }
3651
3652         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3653                                                        set->queue_depth);
3654
3655         return set->tags[hctx_idx];
3656 }
3657
3658 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659                              struct blk_mq_tags *tags,
3660                              unsigned int hctx_idx)
3661 {
3662         if (tags) {
3663                 blk_mq_free_rqs(set, tags, hctx_idx);
3664                 blk_mq_free_rq_map(tags);
3665         }
3666 }
3667
3668 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3669                                       unsigned int hctx_idx)
3670 {
3671         if (!blk_mq_is_shared_tags(set->flags))
3672                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3673
3674         set->tags[hctx_idx] = NULL;
3675 }
3676
3677 static void blk_mq_map_swqueue(struct request_queue *q)
3678 {
3679         unsigned int j, hctx_idx;
3680         unsigned long i;
3681         struct blk_mq_hw_ctx *hctx;
3682         struct blk_mq_ctx *ctx;
3683         struct blk_mq_tag_set *set = q->tag_set;
3684
3685         queue_for_each_hw_ctx(q, hctx, i) {
3686                 cpumask_clear(hctx->cpumask);
3687                 hctx->nr_ctx = 0;
3688                 hctx->dispatch_from = NULL;
3689         }
3690
3691         /*
3692          * Map software to hardware queues.
3693          *
3694          * If the cpu isn't present, the cpu is mapped to first hctx.
3695          */
3696         for_each_possible_cpu(i) {
3697
3698                 ctx = per_cpu_ptr(q->queue_ctx, i);
3699                 for (j = 0; j < set->nr_maps; j++) {
3700                         if (!set->map[j].nr_queues) {
3701                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3702                                                 HCTX_TYPE_DEFAULT, i);
3703                                 continue;
3704                         }
3705                         hctx_idx = set->map[j].mq_map[i];
3706                         /* unmapped hw queue can be remapped after CPU topo changed */
3707                         if (!set->tags[hctx_idx] &&
3708                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3709                                 /*
3710                                  * If tags initialization fail for some hctx,
3711                                  * that hctx won't be brought online.  In this
3712                                  * case, remap the current ctx to hctx[0] which
3713                                  * is guaranteed to always have tags allocated
3714                                  */
3715                                 set->map[j].mq_map[i] = 0;
3716                         }
3717
3718                         hctx = blk_mq_map_queue_type(q, j, i);
3719                         ctx->hctxs[j] = hctx;
3720                         /*
3721                          * If the CPU is already set in the mask, then we've
3722                          * mapped this one already. This can happen if
3723                          * devices share queues across queue maps.
3724                          */
3725                         if (cpumask_test_cpu(i, hctx->cpumask))
3726                                 continue;
3727
3728                         cpumask_set_cpu(i, hctx->cpumask);
3729                         hctx->type = j;
3730                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3731                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3732
3733                         /*
3734                          * If the nr_ctx type overflows, we have exceeded the
3735                          * amount of sw queues we can support.
3736                          */
3737                         BUG_ON(!hctx->nr_ctx);
3738                 }
3739
3740                 for (; j < HCTX_MAX_TYPES; j++)
3741                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3742                                         HCTX_TYPE_DEFAULT, i);
3743         }
3744
3745         queue_for_each_hw_ctx(q, hctx, i) {
3746                 /*
3747                  * If no software queues are mapped to this hardware queue,
3748                  * disable it and free the request entries.
3749                  */
3750                 if (!hctx->nr_ctx) {
3751                         /* Never unmap queue 0.  We need it as a
3752                          * fallback in case of a new remap fails
3753                          * allocation
3754                          */
3755                         if (i)
3756                                 __blk_mq_free_map_and_rqs(set, i);
3757
3758                         hctx->tags = NULL;
3759                         continue;
3760                 }
3761
3762                 hctx->tags = set->tags[i];
3763                 WARN_ON(!hctx->tags);
3764
3765                 /*
3766                  * Set the map size to the number of mapped software queues.
3767                  * This is more accurate and more efficient than looping
3768                  * over all possibly mapped software queues.
3769                  */
3770                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3771
3772                 /*
3773                  * Initialize batch roundrobin counts
3774                  */
3775                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3776                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3777         }
3778 }
3779
3780 /*
3781  * Caller needs to ensure that we're either frozen/quiesced, or that
3782  * the queue isn't live yet.
3783  */
3784 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3785 {
3786         struct blk_mq_hw_ctx *hctx;
3787         unsigned long i;
3788
3789         queue_for_each_hw_ctx(q, hctx, i) {
3790                 if (shared) {
3791                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3792                 } else {
3793                         blk_mq_tag_idle(hctx);
3794                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3795                 }
3796         }
3797 }
3798
3799 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3800                                          bool shared)
3801 {
3802         struct request_queue *q;
3803
3804         lockdep_assert_held(&set->tag_list_lock);
3805
3806         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3807                 blk_mq_freeze_queue(q);
3808                 queue_set_hctx_shared(q, shared);
3809                 blk_mq_unfreeze_queue(q);
3810         }
3811 }
3812
3813 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3814 {
3815         struct blk_mq_tag_set *set = q->tag_set;
3816
3817         mutex_lock(&set->tag_list_lock);
3818         list_del(&q->tag_set_list);
3819         if (list_is_singular(&set->tag_list)) {
3820                 /* just transitioned to unshared */
3821                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3822                 /* update existing queue */
3823                 blk_mq_update_tag_set_shared(set, false);
3824         }
3825         mutex_unlock(&set->tag_list_lock);
3826         INIT_LIST_HEAD(&q->tag_set_list);
3827 }
3828
3829 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3830                                      struct request_queue *q)
3831 {
3832         mutex_lock(&set->tag_list_lock);
3833
3834         /*
3835          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3836          */
3837         if (!list_empty(&set->tag_list) &&
3838             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3839                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3840                 /* update existing queue */
3841                 blk_mq_update_tag_set_shared(set, true);
3842         }
3843         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3844                 queue_set_hctx_shared(q, true);
3845         list_add_tail(&q->tag_set_list, &set->tag_list);
3846
3847         mutex_unlock(&set->tag_list_lock);
3848 }
3849
3850 /* All allocations will be freed in release handler of q->mq_kobj */
3851 static int blk_mq_alloc_ctxs(struct request_queue *q)
3852 {
3853         struct blk_mq_ctxs *ctxs;
3854         int cpu;
3855
3856         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3857         if (!ctxs)
3858                 return -ENOMEM;
3859
3860         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3861         if (!ctxs->queue_ctx)
3862                 goto fail;
3863
3864         for_each_possible_cpu(cpu) {
3865                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3866                 ctx->ctxs = ctxs;
3867         }
3868
3869         q->mq_kobj = &ctxs->kobj;
3870         q->queue_ctx = ctxs->queue_ctx;
3871
3872         return 0;
3873  fail:
3874         kfree(ctxs);
3875         return -ENOMEM;
3876 }
3877
3878 /*
3879  * It is the actual release handler for mq, but we do it from
3880  * request queue's release handler for avoiding use-after-free
3881  * and headache because q->mq_kobj shouldn't have been introduced,
3882  * but we can't group ctx/kctx kobj without it.
3883  */
3884 void blk_mq_release(struct request_queue *q)
3885 {
3886         struct blk_mq_hw_ctx *hctx, *next;
3887         unsigned long i;
3888
3889         queue_for_each_hw_ctx(q, hctx, i)
3890                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3891
3892         /* all hctx are in .unused_hctx_list now */
3893         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3894                 list_del_init(&hctx->hctx_list);
3895                 kobject_put(&hctx->kobj);
3896         }
3897
3898         xa_destroy(&q->hctx_table);
3899
3900         /*
3901          * release .mq_kobj and sw queue's kobject now because
3902          * both share lifetime with request queue.
3903          */
3904         blk_mq_sysfs_deinit(q);
3905 }
3906
3907 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3908                 void *queuedata)
3909 {
3910         struct request_queue *q;
3911         int ret;
3912
3913         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3914         if (!q)
3915                 return ERR_PTR(-ENOMEM);
3916         q->queuedata = queuedata;
3917         ret = blk_mq_init_allocated_queue(set, q);
3918         if (ret) {
3919                 blk_cleanup_queue(q);
3920                 return ERR_PTR(ret);
3921         }
3922         return q;
3923 }
3924
3925 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3926 {
3927         return blk_mq_init_queue_data(set, NULL);
3928 }
3929 EXPORT_SYMBOL(blk_mq_init_queue);
3930
3931 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3932                 struct lock_class_key *lkclass)
3933 {
3934         struct request_queue *q;
3935         struct gendisk *disk;
3936
3937         q = blk_mq_init_queue_data(set, queuedata);
3938         if (IS_ERR(q))
3939                 return ERR_CAST(q);
3940
3941         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3942         if (!disk) {
3943                 blk_cleanup_queue(q);
3944                 return ERR_PTR(-ENOMEM);
3945         }
3946         return disk;
3947 }
3948 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3949
3950 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3951                 struct blk_mq_tag_set *set, struct request_queue *q,
3952                 int hctx_idx, int node)
3953 {
3954         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3955
3956         /* reuse dead hctx first */
3957         spin_lock(&q->unused_hctx_lock);
3958         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3959                 if (tmp->numa_node == node) {
3960                         hctx = tmp;
3961                         break;
3962                 }
3963         }
3964         if (hctx)
3965                 list_del_init(&hctx->hctx_list);
3966         spin_unlock(&q->unused_hctx_lock);
3967
3968         if (!hctx)
3969                 hctx = blk_mq_alloc_hctx(q, set, node);
3970         if (!hctx)
3971                 goto fail;
3972
3973         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3974                 goto free_hctx;
3975
3976         return hctx;
3977
3978  free_hctx:
3979         kobject_put(&hctx->kobj);
3980  fail:
3981         return NULL;
3982 }
3983
3984 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3985                                                 struct request_queue *q)
3986 {
3987         struct blk_mq_hw_ctx *hctx;
3988         unsigned long i, j;
3989
3990         /* protect against switching io scheduler  */
3991         mutex_lock(&q->sysfs_lock);
3992         for (i = 0; i < set->nr_hw_queues; i++) {
3993                 int old_node;
3994                 int node = blk_mq_get_hctx_node(set, i);
3995                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3996
3997                 if (old_hctx) {
3998                         old_node = old_hctx->numa_node;
3999                         blk_mq_exit_hctx(q, set, old_hctx, i);
4000                 }
4001
4002                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4003                         if (!old_hctx)
4004                                 break;
4005                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4006                                         node, old_node);
4007                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4008                         WARN_ON_ONCE(!hctx);
4009                 }
4010         }
4011         /*
4012          * Increasing nr_hw_queues fails. Free the newly allocated
4013          * hctxs and keep the previous q->nr_hw_queues.
4014          */
4015         if (i != set->nr_hw_queues) {
4016                 j = q->nr_hw_queues;
4017         } else {
4018                 j = i;
4019                 q->nr_hw_queues = set->nr_hw_queues;
4020         }
4021
4022         xa_for_each_start(&q->hctx_table, j, hctx, j)
4023                 blk_mq_exit_hctx(q, set, hctx, j);
4024         mutex_unlock(&q->sysfs_lock);
4025 }
4026
4027 static void blk_mq_update_poll_flag(struct request_queue *q)
4028 {
4029         struct blk_mq_tag_set *set = q->tag_set;
4030
4031         if (set->nr_maps > HCTX_TYPE_POLL &&
4032             set->map[HCTX_TYPE_POLL].nr_queues)
4033                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4034         else
4035                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4036 }
4037
4038 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4039                 struct request_queue *q)
4040 {
4041         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4042                         !!(set->flags & BLK_MQ_F_BLOCKING));
4043
4044         /* mark the queue as mq asap */
4045         q->mq_ops = set->ops;
4046
4047         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4048                                              blk_mq_poll_stats_bkt,
4049                                              BLK_MQ_POLL_STATS_BKTS, q);
4050         if (!q->poll_cb)
4051                 goto err_exit;
4052
4053         if (blk_mq_alloc_ctxs(q))
4054                 goto err_poll;
4055
4056         /* init q->mq_kobj and sw queues' kobjects */
4057         blk_mq_sysfs_init(q);
4058
4059         INIT_LIST_HEAD(&q->unused_hctx_list);
4060         spin_lock_init(&q->unused_hctx_lock);
4061
4062         xa_init(&q->hctx_table);
4063
4064         blk_mq_realloc_hw_ctxs(set, q);
4065         if (!q->nr_hw_queues)
4066                 goto err_hctxs;
4067
4068         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4069         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4070
4071         q->tag_set = set;
4072
4073         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4074         blk_mq_update_poll_flag(q);
4075
4076         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4077         INIT_LIST_HEAD(&q->requeue_list);
4078         spin_lock_init(&q->requeue_lock);
4079
4080         q->nr_requests = set->queue_depth;
4081
4082         /*
4083          * Default to classic polling
4084          */
4085         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4086
4087         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4088         blk_mq_add_queue_tag_set(set, q);
4089         blk_mq_map_swqueue(q);
4090         return 0;
4091
4092 err_hctxs:
4093         xa_destroy(&q->hctx_table);
4094         q->nr_hw_queues = 0;
4095         blk_mq_sysfs_deinit(q);
4096 err_poll:
4097         blk_stat_free_callback(q->poll_cb);
4098         q->poll_cb = NULL;
4099 err_exit:
4100         q->mq_ops = NULL;
4101         return -ENOMEM;
4102 }
4103 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4104
4105 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4106 void blk_mq_exit_queue(struct request_queue *q)
4107 {
4108         struct blk_mq_tag_set *set = q->tag_set;
4109
4110         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4111         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4112         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4113         blk_mq_del_queue_tag_set(q);
4114 }
4115
4116 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4117 {
4118         int i;
4119
4120         if (blk_mq_is_shared_tags(set->flags)) {
4121                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4122                                                 BLK_MQ_NO_HCTX_IDX,
4123                                                 set->queue_depth);
4124                 if (!set->shared_tags)
4125                         return -ENOMEM;
4126         }
4127
4128         for (i = 0; i < set->nr_hw_queues; i++) {
4129                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4130                         goto out_unwind;
4131                 cond_resched();
4132         }
4133
4134         return 0;
4135
4136 out_unwind:
4137         while (--i >= 0)
4138                 __blk_mq_free_map_and_rqs(set, i);
4139
4140         if (blk_mq_is_shared_tags(set->flags)) {
4141                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4142                                         BLK_MQ_NO_HCTX_IDX);
4143         }
4144
4145         return -ENOMEM;
4146 }
4147
4148 /*
4149  * Allocate the request maps associated with this tag_set. Note that this
4150  * may reduce the depth asked for, if memory is tight. set->queue_depth
4151  * will be updated to reflect the allocated depth.
4152  */
4153 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4154 {
4155         unsigned int depth;
4156         int err;
4157
4158         depth = set->queue_depth;
4159         do {
4160                 err = __blk_mq_alloc_rq_maps(set);
4161                 if (!err)
4162                         break;
4163
4164                 set->queue_depth >>= 1;
4165                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4166                         err = -ENOMEM;
4167                         break;
4168                 }
4169         } while (set->queue_depth);
4170
4171         if (!set->queue_depth || err) {
4172                 pr_err("blk-mq: failed to allocate request map\n");
4173                 return -ENOMEM;
4174         }
4175
4176         if (depth != set->queue_depth)
4177                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4178                                                 depth, set->queue_depth);
4179
4180         return 0;
4181 }
4182
4183 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4184 {
4185         /*
4186          * blk_mq_map_queues() and multiple .map_queues() implementations
4187          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4188          * number of hardware queues.
4189          */
4190         if (set->nr_maps == 1)
4191                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4192
4193         if (set->ops->map_queues && !is_kdump_kernel()) {
4194                 int i;
4195
4196                 /*
4197                  * transport .map_queues is usually done in the following
4198                  * way:
4199                  *
4200                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4201                  *      mask = get_cpu_mask(queue)
4202                  *      for_each_cpu(cpu, mask)
4203                  *              set->map[x].mq_map[cpu] = queue;
4204                  * }
4205                  *
4206                  * When we need to remap, the table has to be cleared for
4207                  * killing stale mapping since one CPU may not be mapped
4208                  * to any hw queue.
4209                  */
4210                 for (i = 0; i < set->nr_maps; i++)
4211                         blk_mq_clear_mq_map(&set->map[i]);
4212
4213                 return set->ops->map_queues(set);
4214         } else {
4215                 BUG_ON(set->nr_maps > 1);
4216                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4217         }
4218 }
4219
4220 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4221                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4222 {
4223         struct blk_mq_tags **new_tags;
4224
4225         if (cur_nr_hw_queues >= new_nr_hw_queues)
4226                 return 0;
4227
4228         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4229                                 GFP_KERNEL, set->numa_node);
4230         if (!new_tags)
4231                 return -ENOMEM;
4232
4233         if (set->tags)
4234                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4235                        sizeof(*set->tags));
4236         kfree(set->tags);
4237         set->tags = new_tags;
4238         set->nr_hw_queues = new_nr_hw_queues;
4239
4240         return 0;
4241 }
4242
4243 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4244                                 int new_nr_hw_queues)
4245 {
4246         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4247 }
4248
4249 /*
4250  * Alloc a tag set to be associated with one or more request queues.
4251  * May fail with EINVAL for various error conditions. May adjust the
4252  * requested depth down, if it's too large. In that case, the set
4253  * value will be stored in set->queue_depth.
4254  */
4255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4256 {
4257         int i, ret;
4258
4259         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4260
4261         if (!set->nr_hw_queues)
4262                 return -EINVAL;
4263         if (!set->queue_depth)
4264                 return -EINVAL;
4265         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4266                 return -EINVAL;
4267
4268         if (!set->ops->queue_rq)
4269                 return -EINVAL;
4270
4271         if (!set->ops->get_budget ^ !set->ops->put_budget)
4272                 return -EINVAL;
4273
4274         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4275                 pr_info("blk-mq: reduced tag depth to %u\n",
4276                         BLK_MQ_MAX_DEPTH);
4277                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4278         }
4279
4280         if (!set->nr_maps)
4281                 set->nr_maps = 1;
4282         else if (set->nr_maps > HCTX_MAX_TYPES)
4283                 return -EINVAL;
4284
4285         /*
4286          * If a crashdump is active, then we are potentially in a very
4287          * memory constrained environment. Limit us to 1 queue and
4288          * 64 tags to prevent using too much memory.
4289          */
4290         if (is_kdump_kernel()) {
4291                 set->nr_hw_queues = 1;
4292                 set->nr_maps = 1;
4293                 set->queue_depth = min(64U, set->queue_depth);
4294         }
4295         /*
4296          * There is no use for more h/w queues than cpus if we just have
4297          * a single map
4298          */
4299         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4300                 set->nr_hw_queues = nr_cpu_ids;
4301
4302         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4303                 return -ENOMEM;
4304
4305         ret = -ENOMEM;
4306         for (i = 0; i < set->nr_maps; i++) {
4307                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4308                                                   sizeof(set->map[i].mq_map[0]),
4309                                                   GFP_KERNEL, set->numa_node);
4310                 if (!set->map[i].mq_map)
4311                         goto out_free_mq_map;
4312                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4313         }
4314
4315         ret = blk_mq_update_queue_map(set);
4316         if (ret)
4317                 goto out_free_mq_map;
4318
4319         ret = blk_mq_alloc_set_map_and_rqs(set);
4320         if (ret)
4321                 goto out_free_mq_map;
4322
4323         mutex_init(&set->tag_list_lock);
4324         INIT_LIST_HEAD(&set->tag_list);
4325
4326         return 0;
4327
4328 out_free_mq_map:
4329         for (i = 0; i < set->nr_maps; i++) {
4330                 kfree(set->map[i].mq_map);
4331                 set->map[i].mq_map = NULL;
4332         }
4333         kfree(set->tags);
4334         set->tags = NULL;
4335         return ret;
4336 }
4337 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4338
4339 /* allocate and initialize a tagset for a simple single-queue device */
4340 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4341                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4342                 unsigned int set_flags)
4343 {
4344         memset(set, 0, sizeof(*set));
4345         set->ops = ops;
4346         set->nr_hw_queues = 1;
4347         set->nr_maps = 1;
4348         set->queue_depth = queue_depth;
4349         set->numa_node = NUMA_NO_NODE;
4350         set->flags = set_flags;
4351         return blk_mq_alloc_tag_set(set);
4352 }
4353 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4354
4355 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4356 {
4357         int i, j;
4358
4359         for (i = 0; i < set->nr_hw_queues; i++)
4360                 __blk_mq_free_map_and_rqs(set, i);
4361
4362         if (blk_mq_is_shared_tags(set->flags)) {
4363                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4364                                         BLK_MQ_NO_HCTX_IDX);
4365         }
4366
4367         for (j = 0; j < set->nr_maps; j++) {
4368                 kfree(set->map[j].mq_map);
4369                 set->map[j].mq_map = NULL;
4370         }
4371
4372         kfree(set->tags);
4373         set->tags = NULL;
4374 }
4375 EXPORT_SYMBOL(blk_mq_free_tag_set);
4376
4377 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4378 {
4379         struct blk_mq_tag_set *set = q->tag_set;
4380         struct blk_mq_hw_ctx *hctx;
4381         int ret;
4382         unsigned long i;
4383
4384         if (!set)
4385                 return -EINVAL;
4386
4387         if (q->nr_requests == nr)
4388                 return 0;
4389
4390         blk_mq_freeze_queue(q);
4391         blk_mq_quiesce_queue(q);
4392
4393         ret = 0;
4394         queue_for_each_hw_ctx(q, hctx, i) {
4395                 if (!hctx->tags)
4396                         continue;
4397                 /*
4398                  * If we're using an MQ scheduler, just update the scheduler
4399                  * queue depth. This is similar to what the old code would do.
4400                  */
4401                 if (hctx->sched_tags) {
4402                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4403                                                       nr, true);
4404                 } else {
4405                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4406                                                       false);
4407                 }
4408                 if (ret)
4409                         break;
4410                 if (q->elevator && q->elevator->type->ops.depth_updated)
4411                         q->elevator->type->ops.depth_updated(hctx);
4412         }
4413         if (!ret) {
4414                 q->nr_requests = nr;
4415                 if (blk_mq_is_shared_tags(set->flags)) {
4416                         if (q->elevator)
4417                                 blk_mq_tag_update_sched_shared_tags(q);
4418                         else
4419                                 blk_mq_tag_resize_shared_tags(set, nr);
4420                 }
4421         }
4422
4423         blk_mq_unquiesce_queue(q);
4424         blk_mq_unfreeze_queue(q);
4425
4426         return ret;
4427 }
4428
4429 /*
4430  * request_queue and elevator_type pair.
4431  * It is just used by __blk_mq_update_nr_hw_queues to cache
4432  * the elevator_type associated with a request_queue.
4433  */
4434 struct blk_mq_qe_pair {
4435         struct list_head node;
4436         struct request_queue *q;
4437         struct elevator_type *type;
4438 };
4439
4440 /*
4441  * Cache the elevator_type in qe pair list and switch the
4442  * io scheduler to 'none'
4443  */
4444 static bool blk_mq_elv_switch_none(struct list_head *head,
4445                 struct request_queue *q)
4446 {
4447         struct blk_mq_qe_pair *qe;
4448
4449         if (!q->elevator)
4450                 return true;
4451
4452         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4453         if (!qe)
4454                 return false;
4455
4456         INIT_LIST_HEAD(&qe->node);
4457         qe->q = q;
4458         qe->type = q->elevator->type;
4459         list_add(&qe->node, head);
4460
4461         mutex_lock(&q->sysfs_lock);
4462         /*
4463          * After elevator_switch_mq, the previous elevator_queue will be
4464          * released by elevator_release. The reference of the io scheduler
4465          * module get by elevator_get will also be put. So we need to get
4466          * a reference of the io scheduler module here to prevent it to be
4467          * removed.
4468          */
4469         __module_get(qe->type->elevator_owner);
4470         elevator_switch_mq(q, NULL);
4471         mutex_unlock(&q->sysfs_lock);
4472
4473         return true;
4474 }
4475
4476 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4477                                                 struct request_queue *q)
4478 {
4479         struct blk_mq_qe_pair *qe;
4480
4481         list_for_each_entry(qe, head, node)
4482                 if (qe->q == q)
4483                         return qe;
4484
4485         return NULL;
4486 }
4487
4488 static void blk_mq_elv_switch_back(struct list_head *head,
4489                                   struct request_queue *q)
4490 {
4491         struct blk_mq_qe_pair *qe;
4492         struct elevator_type *t;
4493
4494         qe = blk_lookup_qe_pair(head, q);
4495         if (!qe)
4496                 return;
4497         t = qe->type;
4498         list_del(&qe->node);
4499         kfree(qe);
4500
4501         mutex_lock(&q->sysfs_lock);
4502         elevator_switch_mq(q, t);
4503         mutex_unlock(&q->sysfs_lock);
4504 }
4505
4506 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4507                                                         int nr_hw_queues)
4508 {
4509         struct request_queue *q;
4510         LIST_HEAD(head);
4511         int prev_nr_hw_queues;
4512
4513         lockdep_assert_held(&set->tag_list_lock);
4514
4515         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4516                 nr_hw_queues = nr_cpu_ids;
4517         if (nr_hw_queues < 1)
4518                 return;
4519         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4520                 return;
4521
4522         list_for_each_entry(q, &set->tag_list, tag_set_list)
4523                 blk_mq_freeze_queue(q);
4524         /*
4525          * Switch IO scheduler to 'none', cleaning up the data associated
4526          * with the previous scheduler. We will switch back once we are done
4527          * updating the new sw to hw queue mappings.
4528          */
4529         list_for_each_entry(q, &set->tag_list, tag_set_list)
4530                 if (!blk_mq_elv_switch_none(&head, q))
4531                         goto switch_back;
4532
4533         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4534                 blk_mq_debugfs_unregister_hctxs(q);
4535                 blk_mq_sysfs_unregister(q);
4536         }
4537
4538         prev_nr_hw_queues = set->nr_hw_queues;
4539         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4540             0)
4541                 goto reregister;
4542
4543         set->nr_hw_queues = nr_hw_queues;
4544 fallback:
4545         blk_mq_update_queue_map(set);
4546         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547                 blk_mq_realloc_hw_ctxs(set, q);
4548                 blk_mq_update_poll_flag(q);
4549                 if (q->nr_hw_queues != set->nr_hw_queues) {
4550                         int i = prev_nr_hw_queues;
4551
4552                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4553                                         nr_hw_queues, prev_nr_hw_queues);
4554                         for (; i < set->nr_hw_queues; i++)
4555                                 __blk_mq_free_map_and_rqs(set, i);
4556
4557                         set->nr_hw_queues = prev_nr_hw_queues;
4558                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4559                         goto fallback;
4560                 }
4561                 blk_mq_map_swqueue(q);
4562         }
4563
4564 reregister:
4565         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4566                 blk_mq_sysfs_register(q);
4567                 blk_mq_debugfs_register_hctxs(q);
4568         }
4569
4570 switch_back:
4571         list_for_each_entry(q, &set->tag_list, tag_set_list)
4572                 blk_mq_elv_switch_back(&head, q);
4573
4574         list_for_each_entry(q, &set->tag_list, tag_set_list)
4575                 blk_mq_unfreeze_queue(q);
4576 }
4577
4578 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4579 {
4580         mutex_lock(&set->tag_list_lock);
4581         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4582         mutex_unlock(&set->tag_list_lock);
4583 }
4584 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4585
4586 /* Enable polling stats and return whether they were already enabled. */
4587 static bool blk_poll_stats_enable(struct request_queue *q)
4588 {
4589         if (q->poll_stat)
4590                 return true;
4591
4592         return blk_stats_alloc_enable(q);
4593 }
4594
4595 static void blk_mq_poll_stats_start(struct request_queue *q)
4596 {
4597         /*
4598          * We don't arm the callback if polling stats are not enabled or the
4599          * callback is already active.
4600          */
4601         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4602                 return;
4603
4604         blk_stat_activate_msecs(q->poll_cb, 100);
4605 }
4606
4607 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4608 {
4609         struct request_queue *q = cb->data;
4610         int bucket;
4611
4612         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4613                 if (cb->stat[bucket].nr_samples)
4614                         q->poll_stat[bucket] = cb->stat[bucket];
4615         }
4616 }
4617
4618 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4619                                        struct request *rq)
4620 {
4621         unsigned long ret = 0;
4622         int bucket;
4623
4624         /*
4625          * If stats collection isn't on, don't sleep but turn it on for
4626          * future users
4627          */
4628         if (!blk_poll_stats_enable(q))
4629                 return 0;
4630
4631         /*
4632          * As an optimistic guess, use half of the mean service time
4633          * for this type of request. We can (and should) make this smarter.
4634          * For instance, if the completion latencies are tight, we can
4635          * get closer than just half the mean. This is especially
4636          * important on devices where the completion latencies are longer
4637          * than ~10 usec. We do use the stats for the relevant IO size
4638          * if available which does lead to better estimates.
4639          */
4640         bucket = blk_mq_poll_stats_bkt(rq);
4641         if (bucket < 0)
4642                 return ret;
4643
4644         if (q->poll_stat[bucket].nr_samples)
4645                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4646
4647         return ret;
4648 }
4649
4650 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4651 {
4652         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4653         struct request *rq = blk_qc_to_rq(hctx, qc);
4654         struct hrtimer_sleeper hs;
4655         enum hrtimer_mode mode;
4656         unsigned int nsecs;
4657         ktime_t kt;
4658
4659         /*
4660          * If a request has completed on queue that uses an I/O scheduler, we
4661          * won't get back a request from blk_qc_to_rq.
4662          */
4663         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4664                 return false;
4665
4666         /*
4667          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4668          *
4669          *  0:  use half of prev avg
4670          * >0:  use this specific value
4671          */
4672         if (q->poll_nsec > 0)
4673                 nsecs = q->poll_nsec;
4674         else
4675                 nsecs = blk_mq_poll_nsecs(q, rq);
4676
4677         if (!nsecs)
4678                 return false;
4679
4680         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4681
4682         /*
4683          * This will be replaced with the stats tracking code, using
4684          * 'avg_completion_time / 2' as the pre-sleep target.
4685          */
4686         kt = nsecs;
4687
4688         mode = HRTIMER_MODE_REL;
4689         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4690         hrtimer_set_expires(&hs.timer, kt);
4691
4692         do {
4693                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4694                         break;
4695                 set_current_state(TASK_UNINTERRUPTIBLE);
4696                 hrtimer_sleeper_start_expires(&hs, mode);
4697                 if (hs.task)
4698                         io_schedule();
4699                 hrtimer_cancel(&hs.timer);
4700                 mode = HRTIMER_MODE_ABS;
4701         } while (hs.task && !signal_pending(current));
4702
4703         __set_current_state(TASK_RUNNING);
4704         destroy_hrtimer_on_stack(&hs.timer);
4705
4706         /*
4707          * If we sleep, have the caller restart the poll loop to reset the
4708          * state.  Like for the other success return cases, the caller is
4709          * responsible for checking if the IO completed.  If the IO isn't
4710          * complete, we'll get called again and will go straight to the busy
4711          * poll loop.
4712          */
4713         return true;
4714 }
4715
4716 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4717                                struct io_comp_batch *iob, unsigned int flags)
4718 {
4719         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4720         long state = get_current_state();
4721         int ret;
4722
4723         do {
4724                 ret = q->mq_ops->poll(hctx, iob);
4725                 if (ret > 0) {
4726                         __set_current_state(TASK_RUNNING);
4727                         return ret;
4728                 }
4729
4730                 if (signal_pending_state(state, current))
4731                         __set_current_state(TASK_RUNNING);
4732                 if (task_is_running(current))
4733                         return 1;
4734
4735                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4736                         break;
4737                 cpu_relax();
4738         } while (!need_resched());
4739
4740         __set_current_state(TASK_RUNNING);
4741         return 0;
4742 }
4743
4744 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4745                 unsigned int flags)
4746 {
4747         if (!(flags & BLK_POLL_NOSLEEP) &&
4748             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4749                 if (blk_mq_poll_hybrid(q, cookie))
4750                         return 1;
4751         }
4752         return blk_mq_poll_classic(q, cookie, iob, flags);
4753 }
4754
4755 unsigned int blk_mq_rq_cpu(struct request *rq)
4756 {
4757         return rq->mq_ctx->cpu;
4758 }
4759 EXPORT_SYMBOL(blk_mq_rq_cpu);
4760
4761 void blk_mq_cancel_work_sync(struct request_queue *q)
4762 {
4763         if (queue_is_mq(q)) {
4764                 struct blk_mq_hw_ctx *hctx;
4765                 unsigned long i;
4766
4767                 cancel_delayed_work_sync(&q->requeue_work);
4768
4769                 queue_for_each_hw_ctx(q, hctx, i)
4770                         cancel_delayed_work_sync(&hctx->run_work);
4771         }
4772 }
4773
4774 static int __init blk_mq_init(void)
4775 {
4776         int i;
4777
4778         for_each_possible_cpu(i)
4779                 init_llist_head(&per_cpu(blk_cpu_done, i));
4780         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4781
4782         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4783                                   "block/softirq:dead", NULL,
4784                                   blk_softirq_cpu_dead);
4785         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4786                                 blk_mq_hctx_notify_dead);
4787         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4788                                 blk_mq_hctx_notify_online,
4789                                 blk_mq_hctx_notify_offline);
4790         return 0;
4791 }
4792 subsys_initcall(blk_mq_init);