block: get rid of struct blk_issue_stat
[linux-2.6-microblaze.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time = jiffies;
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332         set_start_time_ns(rq);
333         rq->cgroup_io_start_time_ns = 0;
334 #endif
335
336         data->ctx->rq_dispatched[op_is_sync(op)]++;
337         return rq;
338 }
339
340 static struct request *blk_mq_get_request(struct request_queue *q,
341                 struct bio *bio, unsigned int op,
342                 struct blk_mq_alloc_data *data)
343 {
344         struct elevator_queue *e = q->elevator;
345         struct request *rq;
346         unsigned int tag;
347         bool put_ctx_on_error = false;
348
349         blk_queue_enter_live(q);
350         data->q = q;
351         if (likely(!data->ctx)) {
352                 data->ctx = blk_mq_get_ctx(q);
353                 put_ctx_on_error = true;
354         }
355         if (likely(!data->hctx))
356                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357         if (op & REQ_NOWAIT)
358                 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360         if (e) {
361                 data->flags |= BLK_MQ_REQ_INTERNAL;
362
363                 /*
364                  * Flush requests are special and go directly to the
365                  * dispatch list.
366                  */
367                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
368                         e->type->ops.mq.limit_depth(op, data);
369         }
370
371         tag = blk_mq_get_tag(data);
372         if (tag == BLK_MQ_TAG_FAIL) {
373                 if (put_ctx_on_error) {
374                         blk_mq_put_ctx(data->ctx);
375                         data->ctx = NULL;
376                 }
377                 blk_queue_exit(q);
378                 return NULL;
379         }
380
381         rq = blk_mq_rq_ctx_init(data, tag, op);
382         if (!op_is_flush(op)) {
383                 rq->elv.icq = NULL;
384                 if (e && e->type->ops.mq.prepare_request) {
385                         if (e->type->icq_cache && rq_ioc(bio))
386                                 blk_mq_sched_assign_ioc(rq, bio);
387
388                         e->type->ops.mq.prepare_request(rq, bio);
389                         rq->rq_flags |= RQF_ELVPRIV;
390                 }
391         }
392         data->hctx->queued++;
393         return rq;
394 }
395
396 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397                 blk_mq_req_flags_t flags)
398 {
399         struct blk_mq_alloc_data alloc_data = { .flags = flags };
400         struct request *rq;
401         int ret;
402
403         ret = blk_queue_enter(q, flags);
404         if (ret)
405                 return ERR_PTR(ret);
406
407         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408         blk_queue_exit(q);
409
410         if (!rq)
411                 return ERR_PTR(-EWOULDBLOCK);
412
413         blk_mq_put_ctx(alloc_data.ctx);
414
415         rq->__data_len = 0;
416         rq->__sector = (sector_t) -1;
417         rq->bio = rq->biotail = NULL;
418         return rq;
419 }
420 EXPORT_SYMBOL(blk_mq_alloc_request);
421
422 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
424 {
425         struct blk_mq_alloc_data alloc_data = { .flags = flags };
426         struct request *rq;
427         unsigned int cpu;
428         int ret;
429
430         /*
431          * If the tag allocator sleeps we could get an allocation for a
432          * different hardware context.  No need to complicate the low level
433          * allocator for this for the rare use case of a command tied to
434          * a specific queue.
435          */
436         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
437                 return ERR_PTR(-EINVAL);
438
439         if (hctx_idx >= q->nr_hw_queues)
440                 return ERR_PTR(-EIO);
441
442         ret = blk_queue_enter(q, flags);
443         if (ret)
444                 return ERR_PTR(ret);
445
446         /*
447          * Check if the hardware context is actually mapped to anything.
448          * If not tell the caller that it should skip this queue.
449          */
450         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
451         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
452                 blk_queue_exit(q);
453                 return ERR_PTR(-EXDEV);
454         }
455         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
457
458         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459         blk_queue_exit(q);
460
461         if (!rq)
462                 return ERR_PTR(-EWOULDBLOCK);
463
464         return rq;
465 }
466 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
467
468 void blk_mq_free_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471         struct elevator_queue *e = q->elevator;
472         struct blk_mq_ctx *ctx = rq->mq_ctx;
473         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474         const int sched_tag = rq->internal_tag;
475
476         if (rq->rq_flags & RQF_ELVPRIV) {
477                 if (e && e->type->ops.mq.finish_request)
478                         e->type->ops.mq.finish_request(rq);
479                 if (rq->elv.icq) {
480                         put_io_context(rq->elv.icq->ioc);
481                         rq->elv.icq = NULL;
482                 }
483         }
484
485         ctx->rq_completed[rq_is_sync(rq)]++;
486         if (rq->rq_flags & RQF_MQ_INFLIGHT)
487                 atomic_dec(&hctx->nr_active);
488
489         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
490                 laptop_io_completion(q->backing_dev_info);
491
492         wbt_done(q->rq_wb, rq);
493
494         if (blk_rq_rl(rq))
495                 blk_put_rl(blk_rq_rl(rq));
496
497         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498         if (rq->tag != -1)
499                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
500         if (sched_tag != -1)
501                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505 EXPORT_SYMBOL_GPL(blk_mq_free_request);
506
507 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508 {
509         blk_account_io_done(rq);
510
511         if (rq->end_io) {
512                 wbt_done(rq->q->rq_wb, rq);
513                 rq->end_io(rq, error);
514         } else {
515                 if (unlikely(blk_bidi_rq(rq)))
516                         blk_mq_free_request(rq->next_rq);
517                 blk_mq_free_request(rq);
518         }
519 }
520 EXPORT_SYMBOL(__blk_mq_end_request);
521
522 void blk_mq_end_request(struct request *rq, blk_status_t error)
523 {
524         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
525                 BUG();
526         __blk_mq_end_request(rq, error);
527 }
528 EXPORT_SYMBOL(blk_mq_end_request);
529
530 static void __blk_mq_complete_request_remote(void *data)
531 {
532         struct request *rq = data;
533
534         rq->q->softirq_done_fn(rq);
535 }
536
537 static void __blk_mq_complete_request(struct request *rq)
538 {
539         struct blk_mq_ctx *ctx = rq->mq_ctx;
540         bool shared = false;
541         int cpu;
542
543         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
544         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
545
546         if (rq->internal_tag != -1)
547                 blk_mq_sched_completed_request(rq);
548         if (rq->rq_flags & RQF_STATS) {
549                 blk_mq_poll_stats_start(rq->q);
550                 blk_stat_add(rq);
551         }
552
553         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
554                 rq->q->softirq_done_fn(rq);
555                 return;
556         }
557
558         cpu = get_cpu();
559         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
560                 shared = cpus_share_cache(cpu, ctx->cpu);
561
562         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
563                 rq->csd.func = __blk_mq_complete_request_remote;
564                 rq->csd.info = rq;
565                 rq->csd.flags = 0;
566                 smp_call_function_single_async(ctx->cpu, &rq->csd);
567         } else {
568                 rq->q->softirq_done_fn(rq);
569         }
570         put_cpu();
571 }
572
573 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
574         __releases(hctx->srcu)
575 {
576         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
577                 rcu_read_unlock();
578         else
579                 srcu_read_unlock(hctx->srcu, srcu_idx);
580 }
581
582 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
583         __acquires(hctx->srcu)
584 {
585         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
586                 /* shut up gcc false positive */
587                 *srcu_idx = 0;
588                 rcu_read_lock();
589         } else
590                 *srcu_idx = srcu_read_lock(hctx->srcu);
591 }
592
593 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
594 {
595         unsigned long flags;
596
597         /*
598          * blk_mq_rq_aborted_gstate() is used from the completion path and
599          * can thus be called from irq context.  u64_stats_fetch in the
600          * middle of update on the same CPU leads to lockup.  Disable irq
601          * while updating.
602          */
603         local_irq_save(flags);
604         u64_stats_update_begin(&rq->aborted_gstate_sync);
605         rq->aborted_gstate = gstate;
606         u64_stats_update_end(&rq->aborted_gstate_sync);
607         local_irq_restore(flags);
608 }
609
610 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
611 {
612         unsigned int start;
613         u64 aborted_gstate;
614
615         do {
616                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
617                 aborted_gstate = rq->aborted_gstate;
618         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
619
620         return aborted_gstate;
621 }
622
623 /**
624  * blk_mq_complete_request - end I/O on a request
625  * @rq:         the request being processed
626  *
627  * Description:
628  *      Ends all I/O on a request. It does not handle partial completions.
629  *      The actual completion happens out-of-order, through a IPI handler.
630  **/
631 void blk_mq_complete_request(struct request *rq)
632 {
633         struct request_queue *q = rq->q;
634         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
635         int srcu_idx;
636
637         if (unlikely(blk_should_fake_timeout(q)))
638                 return;
639
640         /*
641          * If @rq->aborted_gstate equals the current instance, timeout is
642          * claiming @rq and we lost.  This is synchronized through
643          * hctx_lock().  See blk_mq_timeout_work() for details.
644          *
645          * Completion path never blocks and we can directly use RCU here
646          * instead of hctx_lock() which can be either RCU or SRCU.
647          * However, that would complicate paths which want to synchronize
648          * against us.  Let stay in sync with the issue path so that
649          * hctx_lock() covers both issue and completion paths.
650          */
651         hctx_lock(hctx, &srcu_idx);
652         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
653                 __blk_mq_complete_request(rq);
654         hctx_unlock(hctx, srcu_idx);
655 }
656 EXPORT_SYMBOL(blk_mq_complete_request);
657
658 int blk_mq_request_started(struct request *rq)
659 {
660         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
661 }
662 EXPORT_SYMBOL_GPL(blk_mq_request_started);
663
664 void blk_mq_start_request(struct request *rq)
665 {
666         struct request_queue *q = rq->q;
667
668         blk_mq_sched_started_request(rq);
669
670         trace_block_rq_issue(q, rq);
671
672         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
673                 rq->io_start_time_ns = ktime_get_ns();
674 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
675                 rq->throtl_size = blk_rq_sectors(rq);
676 #endif
677                 rq->rq_flags |= RQF_STATS;
678                 wbt_issue(q->rq_wb, rq);
679         }
680
681         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
682
683         /*
684          * Mark @rq in-flight which also advances the generation number,
685          * and register for timeout.  Protect with a seqcount to allow the
686          * timeout path to read both @rq->gstate and @rq->deadline
687          * coherently.
688          *
689          * This is the only place where a request is marked in-flight.  If
690          * the timeout path reads an in-flight @rq->gstate, the
691          * @rq->deadline it reads together under @rq->gstate_seq is
692          * guaranteed to be the matching one.
693          */
694         preempt_disable();
695         write_seqcount_begin(&rq->gstate_seq);
696
697         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
698         blk_add_timer(rq);
699
700         write_seqcount_end(&rq->gstate_seq);
701         preempt_enable();
702
703         if (q->dma_drain_size && blk_rq_bytes(rq)) {
704                 /*
705                  * Make sure space for the drain appears.  We know we can do
706                  * this because max_hw_segments has been adjusted to be one
707                  * fewer than the device can handle.
708                  */
709                 rq->nr_phys_segments++;
710         }
711 }
712 EXPORT_SYMBOL(blk_mq_start_request);
713
714 /*
715  * When we reach here because queue is busy, it's safe to change the state
716  * to IDLE without checking @rq->aborted_gstate because we should still be
717  * holding the RCU read lock and thus protected against timeout.
718  */
719 static void __blk_mq_requeue_request(struct request *rq)
720 {
721         struct request_queue *q = rq->q;
722
723         blk_mq_put_driver_tag(rq);
724
725         trace_block_rq_requeue(q, rq);
726         wbt_requeue(q->rq_wb, rq);
727
728         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
729                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
730                 if (q->dma_drain_size && blk_rq_bytes(rq))
731                         rq->nr_phys_segments--;
732         }
733 }
734
735 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
736 {
737         __blk_mq_requeue_request(rq);
738
739         /* this request will be re-inserted to io scheduler queue */
740         blk_mq_sched_requeue_request(rq);
741
742         BUG_ON(blk_queued_rq(rq));
743         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
744 }
745 EXPORT_SYMBOL(blk_mq_requeue_request);
746
747 static void blk_mq_requeue_work(struct work_struct *work)
748 {
749         struct request_queue *q =
750                 container_of(work, struct request_queue, requeue_work.work);
751         LIST_HEAD(rq_list);
752         struct request *rq, *next;
753
754         spin_lock_irq(&q->requeue_lock);
755         list_splice_init(&q->requeue_list, &rq_list);
756         spin_unlock_irq(&q->requeue_lock);
757
758         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
759                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
760                         continue;
761
762                 rq->rq_flags &= ~RQF_SOFTBARRIER;
763                 list_del_init(&rq->queuelist);
764                 blk_mq_sched_insert_request(rq, true, false, false);
765         }
766
767         while (!list_empty(&rq_list)) {
768                 rq = list_entry(rq_list.next, struct request, queuelist);
769                 list_del_init(&rq->queuelist);
770                 blk_mq_sched_insert_request(rq, false, false, false);
771         }
772
773         blk_mq_run_hw_queues(q, false);
774 }
775
776 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
777                                 bool kick_requeue_list)
778 {
779         struct request_queue *q = rq->q;
780         unsigned long flags;
781
782         /*
783          * We abuse this flag that is otherwise used by the I/O scheduler to
784          * request head insertion from the workqueue.
785          */
786         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
787
788         spin_lock_irqsave(&q->requeue_lock, flags);
789         if (at_head) {
790                 rq->rq_flags |= RQF_SOFTBARRIER;
791                 list_add(&rq->queuelist, &q->requeue_list);
792         } else {
793                 list_add_tail(&rq->queuelist, &q->requeue_list);
794         }
795         spin_unlock_irqrestore(&q->requeue_lock, flags);
796
797         if (kick_requeue_list)
798                 blk_mq_kick_requeue_list(q);
799 }
800 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
801
802 void blk_mq_kick_requeue_list(struct request_queue *q)
803 {
804         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
805 }
806 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
807
808 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
809                                     unsigned long msecs)
810 {
811         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
812                                     msecs_to_jiffies(msecs));
813 }
814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
815
816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
817 {
818         if (tag < tags->nr_tags) {
819                 prefetch(tags->rqs[tag]);
820                 return tags->rqs[tag];
821         }
822
823         return NULL;
824 }
825 EXPORT_SYMBOL(blk_mq_tag_to_rq);
826
827 struct blk_mq_timeout_data {
828         unsigned long next;
829         unsigned int next_set;
830         unsigned int nr_expired;
831 };
832
833 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
834 {
835         const struct blk_mq_ops *ops = req->q->mq_ops;
836         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
837
838         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
839
840         if (ops->timeout)
841                 ret = ops->timeout(req, reserved);
842
843         switch (ret) {
844         case BLK_EH_HANDLED:
845                 __blk_mq_complete_request(req);
846                 break;
847         case BLK_EH_RESET_TIMER:
848                 /*
849                  * As nothing prevents from completion happening while
850                  * ->aborted_gstate is set, this may lead to ignored
851                  * completions and further spurious timeouts.
852                  */
853                 blk_mq_rq_update_aborted_gstate(req, 0);
854                 blk_add_timer(req);
855                 break;
856         case BLK_EH_NOT_HANDLED:
857                 break;
858         default:
859                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
860                 break;
861         }
862 }
863
864 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
865                 struct request *rq, void *priv, bool reserved)
866 {
867         struct blk_mq_timeout_data *data = priv;
868         unsigned long gstate, deadline;
869         int start;
870
871         might_sleep();
872
873         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
874                 return;
875
876         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
877         while (true) {
878                 start = read_seqcount_begin(&rq->gstate_seq);
879                 gstate = READ_ONCE(rq->gstate);
880                 deadline = blk_rq_deadline(rq);
881                 if (!read_seqcount_retry(&rq->gstate_seq, start))
882                         break;
883                 cond_resched();
884         }
885
886         /* if in-flight && overdue, mark for abortion */
887         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
888             time_after_eq(jiffies, deadline)) {
889                 blk_mq_rq_update_aborted_gstate(rq, gstate);
890                 data->nr_expired++;
891                 hctx->nr_expired++;
892         } else if (!data->next_set || time_after(data->next, deadline)) {
893                 data->next = deadline;
894                 data->next_set = 1;
895         }
896 }
897
898 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
899                 struct request *rq, void *priv, bool reserved)
900 {
901         /*
902          * We marked @rq->aborted_gstate and waited for RCU.  If there were
903          * completions that we lost to, they would have finished and
904          * updated @rq->gstate by now; otherwise, the completion path is
905          * now guaranteed to see @rq->aborted_gstate and yield.  If
906          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
907          */
908         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
909             READ_ONCE(rq->gstate) == rq->aborted_gstate)
910                 blk_mq_rq_timed_out(rq, reserved);
911 }
912
913 static void blk_mq_timeout_work(struct work_struct *work)
914 {
915         struct request_queue *q =
916                 container_of(work, struct request_queue, timeout_work);
917         struct blk_mq_timeout_data data = {
918                 .next           = 0,
919                 .next_set       = 0,
920                 .nr_expired     = 0,
921         };
922         struct blk_mq_hw_ctx *hctx;
923         int i;
924
925         /* A deadlock might occur if a request is stuck requiring a
926          * timeout at the same time a queue freeze is waiting
927          * completion, since the timeout code would not be able to
928          * acquire the queue reference here.
929          *
930          * That's why we don't use blk_queue_enter here; instead, we use
931          * percpu_ref_tryget directly, because we need to be able to
932          * obtain a reference even in the short window between the queue
933          * starting to freeze, by dropping the first reference in
934          * blk_freeze_queue_start, and the moment the last request is
935          * consumed, marked by the instant q_usage_counter reaches
936          * zero.
937          */
938         if (!percpu_ref_tryget(&q->q_usage_counter))
939                 return;
940
941         /* scan for the expired ones and set their ->aborted_gstate */
942         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
943
944         if (data.nr_expired) {
945                 bool has_rcu = false;
946
947                 /*
948                  * Wait till everyone sees ->aborted_gstate.  The
949                  * sequential waits for SRCUs aren't ideal.  If this ever
950                  * becomes a problem, we can add per-hw_ctx rcu_head and
951                  * wait in parallel.
952                  */
953                 queue_for_each_hw_ctx(q, hctx, i) {
954                         if (!hctx->nr_expired)
955                                 continue;
956
957                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
958                                 has_rcu = true;
959                         else
960                                 synchronize_srcu(hctx->srcu);
961
962                         hctx->nr_expired = 0;
963                 }
964                 if (has_rcu)
965                         synchronize_rcu();
966
967                 /* terminate the ones we won */
968                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
969         }
970
971         if (data.next_set) {
972                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
973                 mod_timer(&q->timeout, data.next);
974         } else {
975                 /*
976                  * Request timeouts are handled as a forward rolling timer. If
977                  * we end up here it means that no requests are pending and
978                  * also that no request has been pending for a while. Mark
979                  * each hctx as idle.
980                  */
981                 queue_for_each_hw_ctx(q, hctx, i) {
982                         /* the hctx may be unmapped, so check it here */
983                         if (blk_mq_hw_queue_mapped(hctx))
984                                 blk_mq_tag_idle(hctx);
985                 }
986         }
987         blk_queue_exit(q);
988 }
989
990 struct flush_busy_ctx_data {
991         struct blk_mq_hw_ctx *hctx;
992         struct list_head *list;
993 };
994
995 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
996 {
997         struct flush_busy_ctx_data *flush_data = data;
998         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
999         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000
1001         spin_lock(&ctx->lock);
1002         list_splice_tail_init(&ctx->rq_list, flush_data->list);
1003         sbitmap_clear_bit(sb, bitnr);
1004         spin_unlock(&ctx->lock);
1005         return true;
1006 }
1007
1008 /*
1009  * Process software queues that have been marked busy, splicing them
1010  * to the for-dispatch
1011  */
1012 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1013 {
1014         struct flush_busy_ctx_data data = {
1015                 .hctx = hctx,
1016                 .list = list,
1017         };
1018
1019         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1020 }
1021 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1022
1023 struct dispatch_rq_data {
1024         struct blk_mq_hw_ctx *hctx;
1025         struct request *rq;
1026 };
1027
1028 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1029                 void *data)
1030 {
1031         struct dispatch_rq_data *dispatch_data = data;
1032         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1033         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1034
1035         spin_lock(&ctx->lock);
1036         if (unlikely(!list_empty(&ctx->rq_list))) {
1037                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1038                 list_del_init(&dispatch_data->rq->queuelist);
1039                 if (list_empty(&ctx->rq_list))
1040                         sbitmap_clear_bit(sb, bitnr);
1041         }
1042         spin_unlock(&ctx->lock);
1043
1044         return !dispatch_data->rq;
1045 }
1046
1047 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1048                                         struct blk_mq_ctx *start)
1049 {
1050         unsigned off = start ? start->index_hw : 0;
1051         struct dispatch_rq_data data = {
1052                 .hctx = hctx,
1053                 .rq   = NULL,
1054         };
1055
1056         __sbitmap_for_each_set(&hctx->ctx_map, off,
1057                                dispatch_rq_from_ctx, &data);
1058
1059         return data.rq;
1060 }
1061
1062 static inline unsigned int queued_to_index(unsigned int queued)
1063 {
1064         if (!queued)
1065                 return 0;
1066
1067         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 }
1069
1070 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1071                            bool wait)
1072 {
1073         struct blk_mq_alloc_data data = {
1074                 .q = rq->q,
1075                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1076                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1077         };
1078
1079         might_sleep_if(wait);
1080
1081         if (rq->tag != -1)
1082                 goto done;
1083
1084         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1085                 data.flags |= BLK_MQ_REQ_RESERVED;
1086
1087         rq->tag = blk_mq_get_tag(&data);
1088         if (rq->tag >= 0) {
1089                 if (blk_mq_tag_busy(data.hctx)) {
1090                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1091                         atomic_inc(&data.hctx->nr_active);
1092                 }
1093                 data.hctx->tags->rqs[rq->tag] = rq;
1094         }
1095
1096 done:
1097         if (hctx)
1098                 *hctx = data.hctx;
1099         return rq->tag != -1;
1100 }
1101
1102 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1103                                 int flags, void *key)
1104 {
1105         struct blk_mq_hw_ctx *hctx;
1106
1107         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1108
1109         list_del_init(&wait->entry);
1110         blk_mq_run_hw_queue(hctx, true);
1111         return 1;
1112 }
1113
1114 /*
1115  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1116  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1117  * restart. For both cases, take care to check the condition again after
1118  * marking us as waiting.
1119  */
1120 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1121                                  struct request *rq)
1122 {
1123         struct blk_mq_hw_ctx *this_hctx = *hctx;
1124         struct sbq_wait_state *ws;
1125         wait_queue_entry_t *wait;
1126         bool ret;
1127
1128         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1129                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1130                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1131
1132                 /*
1133                  * It's possible that a tag was freed in the window between the
1134                  * allocation failure and adding the hardware queue to the wait
1135                  * queue.
1136                  *
1137                  * Don't clear RESTART here, someone else could have set it.
1138                  * At most this will cost an extra queue run.
1139                  */
1140                 return blk_mq_get_driver_tag(rq, hctx, false);
1141         }
1142
1143         wait = &this_hctx->dispatch_wait;
1144         if (!list_empty_careful(&wait->entry))
1145                 return false;
1146
1147         spin_lock(&this_hctx->lock);
1148         if (!list_empty(&wait->entry)) {
1149                 spin_unlock(&this_hctx->lock);
1150                 return false;
1151         }
1152
1153         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1154         add_wait_queue(&ws->wait, wait);
1155
1156         /*
1157          * It's possible that a tag was freed in the window between the
1158          * allocation failure and adding the hardware queue to the wait
1159          * queue.
1160          */
1161         ret = blk_mq_get_driver_tag(rq, hctx, false);
1162         if (!ret) {
1163                 spin_unlock(&this_hctx->lock);
1164                 return false;
1165         }
1166
1167         /*
1168          * We got a tag, remove ourselves from the wait queue to ensure
1169          * someone else gets the wakeup.
1170          */
1171         spin_lock_irq(&ws->wait.lock);
1172         list_del_init(&wait->entry);
1173         spin_unlock_irq(&ws->wait.lock);
1174         spin_unlock(&this_hctx->lock);
1175
1176         return true;
1177 }
1178
1179 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1180
1181 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1182                              bool got_budget)
1183 {
1184         struct blk_mq_hw_ctx *hctx;
1185         struct request *rq, *nxt;
1186         bool no_tag = false;
1187         int errors, queued;
1188         blk_status_t ret = BLK_STS_OK;
1189
1190         if (list_empty(list))
1191                 return false;
1192
1193         WARN_ON(!list_is_singular(list) && got_budget);
1194
1195         /*
1196          * Now process all the entries, sending them to the driver.
1197          */
1198         errors = queued = 0;
1199         do {
1200                 struct blk_mq_queue_data bd;
1201
1202                 rq = list_first_entry(list, struct request, queuelist);
1203
1204                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1205                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1206                         break;
1207
1208                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1209                         /*
1210                          * The initial allocation attempt failed, so we need to
1211                          * rerun the hardware queue when a tag is freed. The
1212                          * waitqueue takes care of that. If the queue is run
1213                          * before we add this entry back on the dispatch list,
1214                          * we'll re-run it below.
1215                          */
1216                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1217                                 blk_mq_put_dispatch_budget(hctx);
1218                                 /*
1219                                  * For non-shared tags, the RESTART check
1220                                  * will suffice.
1221                                  */
1222                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1223                                         no_tag = true;
1224                                 break;
1225                         }
1226                 }
1227
1228                 list_del_init(&rq->queuelist);
1229
1230                 bd.rq = rq;
1231
1232                 /*
1233                  * Flag last if we have no more requests, or if we have more
1234                  * but can't assign a driver tag to it.
1235                  */
1236                 if (list_empty(list))
1237                         bd.last = true;
1238                 else {
1239                         nxt = list_first_entry(list, struct request, queuelist);
1240                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1241                 }
1242
1243                 ret = q->mq_ops->queue_rq(hctx, &bd);
1244                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1245                         /*
1246                          * If an I/O scheduler has been configured and we got a
1247                          * driver tag for the next request already, free it
1248                          * again.
1249                          */
1250                         if (!list_empty(list)) {
1251                                 nxt = list_first_entry(list, struct request, queuelist);
1252                                 blk_mq_put_driver_tag(nxt);
1253                         }
1254                         list_add(&rq->queuelist, list);
1255                         __blk_mq_requeue_request(rq);
1256                         break;
1257                 }
1258
1259                 if (unlikely(ret != BLK_STS_OK)) {
1260                         errors++;
1261                         blk_mq_end_request(rq, BLK_STS_IOERR);
1262                         continue;
1263                 }
1264
1265                 queued++;
1266         } while (!list_empty(list));
1267
1268         hctx->dispatched[queued_to_index(queued)]++;
1269
1270         /*
1271          * Any items that need requeuing? Stuff them into hctx->dispatch,
1272          * that is where we will continue on next queue run.
1273          */
1274         if (!list_empty(list)) {
1275                 bool needs_restart;
1276
1277                 spin_lock(&hctx->lock);
1278                 list_splice_init(list, &hctx->dispatch);
1279                 spin_unlock(&hctx->lock);
1280
1281                 /*
1282                  * If SCHED_RESTART was set by the caller of this function and
1283                  * it is no longer set that means that it was cleared by another
1284                  * thread and hence that a queue rerun is needed.
1285                  *
1286                  * If 'no_tag' is set, that means that we failed getting
1287                  * a driver tag with an I/O scheduler attached. If our dispatch
1288                  * waitqueue is no longer active, ensure that we run the queue
1289                  * AFTER adding our entries back to the list.
1290                  *
1291                  * If no I/O scheduler has been configured it is possible that
1292                  * the hardware queue got stopped and restarted before requests
1293                  * were pushed back onto the dispatch list. Rerun the queue to
1294                  * avoid starvation. Notes:
1295                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1296                  *   been stopped before rerunning a queue.
1297                  * - Some but not all block drivers stop a queue before
1298                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1299                  *   and dm-rq.
1300                  *
1301                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1302                  * bit is set, run queue after a delay to avoid IO stalls
1303                  * that could otherwise occur if the queue is idle.
1304                  */
1305                 needs_restart = blk_mq_sched_needs_restart(hctx);
1306                 if (!needs_restart ||
1307                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1308                         blk_mq_run_hw_queue(hctx, true);
1309                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1310                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1311         }
1312
1313         return (queued + errors) != 0;
1314 }
1315
1316 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1317 {
1318         int srcu_idx;
1319
1320         /*
1321          * We should be running this queue from one of the CPUs that
1322          * are mapped to it.
1323          *
1324          * There are at least two related races now between setting
1325          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1326          * __blk_mq_run_hw_queue():
1327          *
1328          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1329          *   but later it becomes online, then this warning is harmless
1330          *   at all
1331          *
1332          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1333          *   but later it becomes offline, then the warning can't be
1334          *   triggered, and we depend on blk-mq timeout handler to
1335          *   handle dispatched requests to this hctx
1336          */
1337         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1338                 cpu_online(hctx->next_cpu)) {
1339                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1340                         raw_smp_processor_id(),
1341                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1342                 dump_stack();
1343         }
1344
1345         /*
1346          * We can't run the queue inline with ints disabled. Ensure that
1347          * we catch bad users of this early.
1348          */
1349         WARN_ON_ONCE(in_interrupt());
1350
1351         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1352
1353         hctx_lock(hctx, &srcu_idx);
1354         blk_mq_sched_dispatch_requests(hctx);
1355         hctx_unlock(hctx, srcu_idx);
1356 }
1357
1358 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1359 {
1360         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1361
1362         if (cpu >= nr_cpu_ids)
1363                 cpu = cpumask_first(hctx->cpumask);
1364         return cpu;
1365 }
1366
1367 /*
1368  * It'd be great if the workqueue API had a way to pass
1369  * in a mask and had some smarts for more clever placement.
1370  * For now we just round-robin here, switching for every
1371  * BLK_MQ_CPU_WORK_BATCH queued items.
1372  */
1373 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1374 {
1375         bool tried = false;
1376         int next_cpu = hctx->next_cpu;
1377
1378         if (hctx->queue->nr_hw_queues == 1)
1379                 return WORK_CPU_UNBOUND;
1380
1381         if (--hctx->next_cpu_batch <= 0) {
1382 select_cpu:
1383                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1384                                 cpu_online_mask);
1385                 if (next_cpu >= nr_cpu_ids)
1386                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1387                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1388         }
1389
1390         /*
1391          * Do unbound schedule if we can't find a online CPU for this hctx,
1392          * and it should only happen in the path of handling CPU DEAD.
1393          */
1394         if (!cpu_online(next_cpu)) {
1395                 if (!tried) {
1396                         tried = true;
1397                         goto select_cpu;
1398                 }
1399
1400                 /*
1401                  * Make sure to re-select CPU next time once after CPUs
1402                  * in hctx->cpumask become online again.
1403                  */
1404                 hctx->next_cpu = next_cpu;
1405                 hctx->next_cpu_batch = 1;
1406                 return WORK_CPU_UNBOUND;
1407         }
1408
1409         hctx->next_cpu = next_cpu;
1410         return next_cpu;
1411 }
1412
1413 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1414                                         unsigned long msecs)
1415 {
1416         if (unlikely(blk_mq_hctx_stopped(hctx)))
1417                 return;
1418
1419         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1420                 int cpu = get_cpu();
1421                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1422                         __blk_mq_run_hw_queue(hctx);
1423                         put_cpu();
1424                         return;
1425                 }
1426
1427                 put_cpu();
1428         }
1429
1430         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1431                                     msecs_to_jiffies(msecs));
1432 }
1433
1434 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1435 {
1436         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1437 }
1438 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1439
1440 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1441 {
1442         int srcu_idx;
1443         bool need_run;
1444
1445         /*
1446          * When queue is quiesced, we may be switching io scheduler, or
1447          * updating nr_hw_queues, or other things, and we can't run queue
1448          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1449          *
1450          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1451          * quiesced.
1452          */
1453         hctx_lock(hctx, &srcu_idx);
1454         need_run = !blk_queue_quiesced(hctx->queue) &&
1455                 blk_mq_hctx_has_pending(hctx);
1456         hctx_unlock(hctx, srcu_idx);
1457
1458         if (need_run) {
1459                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1460                 return true;
1461         }
1462
1463         return false;
1464 }
1465 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1466
1467 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1468 {
1469         struct blk_mq_hw_ctx *hctx;
1470         int i;
1471
1472         queue_for_each_hw_ctx(q, hctx, i) {
1473                 if (blk_mq_hctx_stopped(hctx))
1474                         continue;
1475
1476                 blk_mq_run_hw_queue(hctx, async);
1477         }
1478 }
1479 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1480
1481 /**
1482  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1483  * @q: request queue.
1484  *
1485  * The caller is responsible for serializing this function against
1486  * blk_mq_{start,stop}_hw_queue().
1487  */
1488 bool blk_mq_queue_stopped(struct request_queue *q)
1489 {
1490         struct blk_mq_hw_ctx *hctx;
1491         int i;
1492
1493         queue_for_each_hw_ctx(q, hctx, i)
1494                 if (blk_mq_hctx_stopped(hctx))
1495                         return true;
1496
1497         return false;
1498 }
1499 EXPORT_SYMBOL(blk_mq_queue_stopped);
1500
1501 /*
1502  * This function is often used for pausing .queue_rq() by driver when
1503  * there isn't enough resource or some conditions aren't satisfied, and
1504  * BLK_STS_RESOURCE is usually returned.
1505  *
1506  * We do not guarantee that dispatch can be drained or blocked
1507  * after blk_mq_stop_hw_queue() returns. Please use
1508  * blk_mq_quiesce_queue() for that requirement.
1509  */
1510 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1511 {
1512         cancel_delayed_work(&hctx->run_work);
1513
1514         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1515 }
1516 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1517
1518 /*
1519  * This function is often used for pausing .queue_rq() by driver when
1520  * there isn't enough resource or some conditions aren't satisfied, and
1521  * BLK_STS_RESOURCE is usually returned.
1522  *
1523  * We do not guarantee that dispatch can be drained or blocked
1524  * after blk_mq_stop_hw_queues() returns. Please use
1525  * blk_mq_quiesce_queue() for that requirement.
1526  */
1527 void blk_mq_stop_hw_queues(struct request_queue *q)
1528 {
1529         struct blk_mq_hw_ctx *hctx;
1530         int i;
1531
1532         queue_for_each_hw_ctx(q, hctx, i)
1533                 blk_mq_stop_hw_queue(hctx);
1534 }
1535 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1536
1537 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1538 {
1539         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1540
1541         blk_mq_run_hw_queue(hctx, false);
1542 }
1543 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1544
1545 void blk_mq_start_hw_queues(struct request_queue *q)
1546 {
1547         struct blk_mq_hw_ctx *hctx;
1548         int i;
1549
1550         queue_for_each_hw_ctx(q, hctx, i)
1551                 blk_mq_start_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1554
1555 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1556 {
1557         if (!blk_mq_hctx_stopped(hctx))
1558                 return;
1559
1560         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1561         blk_mq_run_hw_queue(hctx, async);
1562 }
1563 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1564
1565 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1566 {
1567         struct blk_mq_hw_ctx *hctx;
1568         int i;
1569
1570         queue_for_each_hw_ctx(q, hctx, i)
1571                 blk_mq_start_stopped_hw_queue(hctx, async);
1572 }
1573 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1574
1575 static void blk_mq_run_work_fn(struct work_struct *work)
1576 {
1577         struct blk_mq_hw_ctx *hctx;
1578
1579         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1580
1581         /*
1582          * If we are stopped, don't run the queue.
1583          */
1584         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1585                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1586
1587         __blk_mq_run_hw_queue(hctx);
1588 }
1589
1590 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1591                                             struct request *rq,
1592                                             bool at_head)
1593 {
1594         struct blk_mq_ctx *ctx = rq->mq_ctx;
1595
1596         lockdep_assert_held(&ctx->lock);
1597
1598         trace_block_rq_insert(hctx->queue, rq);
1599
1600         if (at_head)
1601                 list_add(&rq->queuelist, &ctx->rq_list);
1602         else
1603                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1604 }
1605
1606 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1607                              bool at_head)
1608 {
1609         struct blk_mq_ctx *ctx = rq->mq_ctx;
1610
1611         lockdep_assert_held(&ctx->lock);
1612
1613         __blk_mq_insert_req_list(hctx, rq, at_head);
1614         blk_mq_hctx_mark_pending(hctx, ctx);
1615 }
1616
1617 /*
1618  * Should only be used carefully, when the caller knows we want to
1619  * bypass a potential IO scheduler on the target device.
1620  */
1621 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1622 {
1623         struct blk_mq_ctx *ctx = rq->mq_ctx;
1624         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1625
1626         spin_lock(&hctx->lock);
1627         list_add_tail(&rq->queuelist, &hctx->dispatch);
1628         spin_unlock(&hctx->lock);
1629
1630         if (run_queue)
1631                 blk_mq_run_hw_queue(hctx, false);
1632 }
1633
1634 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1635                             struct list_head *list)
1636
1637 {
1638         /*
1639          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1640          * offline now
1641          */
1642         spin_lock(&ctx->lock);
1643         while (!list_empty(list)) {
1644                 struct request *rq;
1645
1646                 rq = list_first_entry(list, struct request, queuelist);
1647                 BUG_ON(rq->mq_ctx != ctx);
1648                 list_del_init(&rq->queuelist);
1649                 __blk_mq_insert_req_list(hctx, rq, false);
1650         }
1651         blk_mq_hctx_mark_pending(hctx, ctx);
1652         spin_unlock(&ctx->lock);
1653 }
1654
1655 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1656 {
1657         struct request *rqa = container_of(a, struct request, queuelist);
1658         struct request *rqb = container_of(b, struct request, queuelist);
1659
1660         return !(rqa->mq_ctx < rqb->mq_ctx ||
1661                  (rqa->mq_ctx == rqb->mq_ctx &&
1662                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1663 }
1664
1665 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1666 {
1667         struct blk_mq_ctx *this_ctx;
1668         struct request_queue *this_q;
1669         struct request *rq;
1670         LIST_HEAD(list);
1671         LIST_HEAD(ctx_list);
1672         unsigned int depth;
1673
1674         list_splice_init(&plug->mq_list, &list);
1675
1676         list_sort(NULL, &list, plug_ctx_cmp);
1677
1678         this_q = NULL;
1679         this_ctx = NULL;
1680         depth = 0;
1681
1682         while (!list_empty(&list)) {
1683                 rq = list_entry_rq(list.next);
1684                 list_del_init(&rq->queuelist);
1685                 BUG_ON(!rq->q);
1686                 if (rq->mq_ctx != this_ctx) {
1687                         if (this_ctx) {
1688                                 trace_block_unplug(this_q, depth, from_schedule);
1689                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1690                                                                 &ctx_list,
1691                                                                 from_schedule);
1692                         }
1693
1694                         this_ctx = rq->mq_ctx;
1695                         this_q = rq->q;
1696                         depth = 0;
1697                 }
1698
1699                 depth++;
1700                 list_add_tail(&rq->queuelist, &ctx_list);
1701         }
1702
1703         /*
1704          * If 'this_ctx' is set, we know we have entries to complete
1705          * on 'ctx_list'. Do those.
1706          */
1707         if (this_ctx) {
1708                 trace_block_unplug(this_q, depth, from_schedule);
1709                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1710                                                 from_schedule);
1711         }
1712 }
1713
1714 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1715 {
1716         blk_init_request_from_bio(rq, bio);
1717
1718         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1719
1720         blk_account_io_start(rq, true);
1721 }
1722
1723 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1724                                    struct blk_mq_ctx *ctx,
1725                                    struct request *rq)
1726 {
1727         spin_lock(&ctx->lock);
1728         __blk_mq_insert_request(hctx, rq, false);
1729         spin_unlock(&ctx->lock);
1730 }
1731
1732 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1733 {
1734         if (rq->tag != -1)
1735                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1736
1737         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1738 }
1739
1740 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1741                                             struct request *rq,
1742                                             blk_qc_t *cookie)
1743 {
1744         struct request_queue *q = rq->q;
1745         struct blk_mq_queue_data bd = {
1746                 .rq = rq,
1747                 .last = true,
1748         };
1749         blk_qc_t new_cookie;
1750         blk_status_t ret;
1751
1752         new_cookie = request_to_qc_t(hctx, rq);
1753
1754         /*
1755          * For OK queue, we are done. For error, caller may kill it.
1756          * Any other error (busy), just add it to our list as we
1757          * previously would have done.
1758          */
1759         ret = q->mq_ops->queue_rq(hctx, &bd);
1760         switch (ret) {
1761         case BLK_STS_OK:
1762                 *cookie = new_cookie;
1763                 break;
1764         case BLK_STS_RESOURCE:
1765         case BLK_STS_DEV_RESOURCE:
1766                 __blk_mq_requeue_request(rq);
1767                 break;
1768         default:
1769                 *cookie = BLK_QC_T_NONE;
1770                 break;
1771         }
1772
1773         return ret;
1774 }
1775
1776 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1777                                                 struct request *rq,
1778                                                 blk_qc_t *cookie,
1779                                                 bool bypass_insert)
1780 {
1781         struct request_queue *q = rq->q;
1782         bool run_queue = true;
1783
1784         /*
1785          * RCU or SRCU read lock is needed before checking quiesced flag.
1786          *
1787          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1788          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1789          * and avoid driver to try to dispatch again.
1790          */
1791         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1792                 run_queue = false;
1793                 bypass_insert = false;
1794                 goto insert;
1795         }
1796
1797         if (q->elevator && !bypass_insert)
1798                 goto insert;
1799
1800         if (!blk_mq_get_dispatch_budget(hctx))
1801                 goto insert;
1802
1803         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1804                 blk_mq_put_dispatch_budget(hctx);
1805                 goto insert;
1806         }
1807
1808         return __blk_mq_issue_directly(hctx, rq, cookie);
1809 insert:
1810         if (bypass_insert)
1811                 return BLK_STS_RESOURCE;
1812
1813         blk_mq_sched_insert_request(rq, false, run_queue, false);
1814         return BLK_STS_OK;
1815 }
1816
1817 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1818                 struct request *rq, blk_qc_t *cookie)
1819 {
1820         blk_status_t ret;
1821         int srcu_idx;
1822
1823         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1824
1825         hctx_lock(hctx, &srcu_idx);
1826
1827         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1828         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1829                 blk_mq_sched_insert_request(rq, false, true, false);
1830         else if (ret != BLK_STS_OK)
1831                 blk_mq_end_request(rq, ret);
1832
1833         hctx_unlock(hctx, srcu_idx);
1834 }
1835
1836 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1837 {
1838         blk_status_t ret;
1839         int srcu_idx;
1840         blk_qc_t unused_cookie;
1841         struct blk_mq_ctx *ctx = rq->mq_ctx;
1842         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1843
1844         hctx_lock(hctx, &srcu_idx);
1845         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1846         hctx_unlock(hctx, srcu_idx);
1847
1848         return ret;
1849 }
1850
1851 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1852 {
1853         const int is_sync = op_is_sync(bio->bi_opf);
1854         const int is_flush_fua = op_is_flush(bio->bi_opf);
1855         struct blk_mq_alloc_data data = { .flags = 0 };
1856         struct request *rq;
1857         unsigned int request_count = 0;
1858         struct blk_plug *plug;
1859         struct request *same_queue_rq = NULL;
1860         blk_qc_t cookie;
1861         unsigned int wb_acct;
1862
1863         blk_queue_bounce(q, &bio);
1864
1865         blk_queue_split(q, &bio);
1866
1867         if (!bio_integrity_prep(bio))
1868                 return BLK_QC_T_NONE;
1869
1870         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1871             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1872                 return BLK_QC_T_NONE;
1873
1874         if (blk_mq_sched_bio_merge(q, bio))
1875                 return BLK_QC_T_NONE;
1876
1877         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1878
1879         trace_block_getrq(q, bio, bio->bi_opf);
1880
1881         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1882         if (unlikely(!rq)) {
1883                 __wbt_done(q->rq_wb, wb_acct);
1884                 if (bio->bi_opf & REQ_NOWAIT)
1885                         bio_wouldblock_error(bio);
1886                 return BLK_QC_T_NONE;
1887         }
1888
1889         wbt_track(rq, wb_acct);
1890
1891         cookie = request_to_qc_t(data.hctx, rq);
1892
1893         plug = current->plug;
1894         if (unlikely(is_flush_fua)) {
1895                 blk_mq_put_ctx(data.ctx);
1896                 blk_mq_bio_to_request(rq, bio);
1897
1898                 /* bypass scheduler for flush rq */
1899                 blk_insert_flush(rq);
1900                 blk_mq_run_hw_queue(data.hctx, true);
1901         } else if (plug && q->nr_hw_queues == 1) {
1902                 struct request *last = NULL;
1903
1904                 blk_mq_put_ctx(data.ctx);
1905                 blk_mq_bio_to_request(rq, bio);
1906
1907                 /*
1908                  * @request_count may become stale because of schedule
1909                  * out, so check the list again.
1910                  */
1911                 if (list_empty(&plug->mq_list))
1912                         request_count = 0;
1913                 else if (blk_queue_nomerges(q))
1914                         request_count = blk_plug_queued_count(q);
1915
1916                 if (!request_count)
1917                         trace_block_plug(q);
1918                 else
1919                         last = list_entry_rq(plug->mq_list.prev);
1920
1921                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1922                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1923                         blk_flush_plug_list(plug, false);
1924                         trace_block_plug(q);
1925                 }
1926
1927                 list_add_tail(&rq->queuelist, &plug->mq_list);
1928         } else if (plug && !blk_queue_nomerges(q)) {
1929                 blk_mq_bio_to_request(rq, bio);
1930
1931                 /*
1932                  * We do limited plugging. If the bio can be merged, do that.
1933                  * Otherwise the existing request in the plug list will be
1934                  * issued. So the plug list will have one request at most
1935                  * The plug list might get flushed before this. If that happens,
1936                  * the plug list is empty, and same_queue_rq is invalid.
1937                  */
1938                 if (list_empty(&plug->mq_list))
1939                         same_queue_rq = NULL;
1940                 if (same_queue_rq)
1941                         list_del_init(&same_queue_rq->queuelist);
1942                 list_add_tail(&rq->queuelist, &plug->mq_list);
1943
1944                 blk_mq_put_ctx(data.ctx);
1945
1946                 if (same_queue_rq) {
1947                         data.hctx = blk_mq_map_queue(q,
1948                                         same_queue_rq->mq_ctx->cpu);
1949                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1950                                         &cookie);
1951                 }
1952         } else if (q->nr_hw_queues > 1 && is_sync) {
1953                 blk_mq_put_ctx(data.ctx);
1954                 blk_mq_bio_to_request(rq, bio);
1955                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1956         } else if (q->elevator) {
1957                 blk_mq_put_ctx(data.ctx);
1958                 blk_mq_bio_to_request(rq, bio);
1959                 blk_mq_sched_insert_request(rq, false, true, true);
1960         } else {
1961                 blk_mq_put_ctx(data.ctx);
1962                 blk_mq_bio_to_request(rq, bio);
1963                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1964                 blk_mq_run_hw_queue(data.hctx, true);
1965         }
1966
1967         return cookie;
1968 }
1969
1970 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1971                      unsigned int hctx_idx)
1972 {
1973         struct page *page;
1974
1975         if (tags->rqs && set->ops->exit_request) {
1976                 int i;
1977
1978                 for (i = 0; i < tags->nr_tags; i++) {
1979                         struct request *rq = tags->static_rqs[i];
1980
1981                         if (!rq)
1982                                 continue;
1983                         set->ops->exit_request(set, rq, hctx_idx);
1984                         tags->static_rqs[i] = NULL;
1985                 }
1986         }
1987
1988         while (!list_empty(&tags->page_list)) {
1989                 page = list_first_entry(&tags->page_list, struct page, lru);
1990                 list_del_init(&page->lru);
1991                 /*
1992                  * Remove kmemleak object previously allocated in
1993                  * blk_mq_init_rq_map().
1994                  */
1995                 kmemleak_free(page_address(page));
1996                 __free_pages(page, page->private);
1997         }
1998 }
1999
2000 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2001 {
2002         kfree(tags->rqs);
2003         tags->rqs = NULL;
2004         kfree(tags->static_rqs);
2005         tags->static_rqs = NULL;
2006
2007         blk_mq_free_tags(tags);
2008 }
2009
2010 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2011                                         unsigned int hctx_idx,
2012                                         unsigned int nr_tags,
2013                                         unsigned int reserved_tags)
2014 {
2015         struct blk_mq_tags *tags;
2016         int node;
2017
2018         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2019         if (node == NUMA_NO_NODE)
2020                 node = set->numa_node;
2021
2022         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2023                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2024         if (!tags)
2025                 return NULL;
2026
2027         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2028                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2029                                  node);
2030         if (!tags->rqs) {
2031                 blk_mq_free_tags(tags);
2032                 return NULL;
2033         }
2034
2035         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2036                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2037                                  node);
2038         if (!tags->static_rqs) {
2039                 kfree(tags->rqs);
2040                 blk_mq_free_tags(tags);
2041                 return NULL;
2042         }
2043
2044         return tags;
2045 }
2046
2047 static size_t order_to_size(unsigned int order)
2048 {
2049         return (size_t)PAGE_SIZE << order;
2050 }
2051
2052 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2053                                unsigned int hctx_idx, int node)
2054 {
2055         int ret;
2056
2057         if (set->ops->init_request) {
2058                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2059                 if (ret)
2060                         return ret;
2061         }
2062
2063         seqcount_init(&rq->gstate_seq);
2064         u64_stats_init(&rq->aborted_gstate_sync);
2065         /*
2066          * start gstate with gen 1 instead of 0, otherwise it will be equal
2067          * to aborted_gstate, and be identified timed out by
2068          * blk_mq_terminate_expired.
2069          */
2070         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2071
2072         return 0;
2073 }
2074
2075 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2076                      unsigned int hctx_idx, unsigned int depth)
2077 {
2078         unsigned int i, j, entries_per_page, max_order = 4;
2079         size_t rq_size, left;
2080         int node;
2081
2082         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2083         if (node == NUMA_NO_NODE)
2084                 node = set->numa_node;
2085
2086         INIT_LIST_HEAD(&tags->page_list);
2087
2088         /*
2089          * rq_size is the size of the request plus driver payload, rounded
2090          * to the cacheline size
2091          */
2092         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2093                                 cache_line_size());
2094         left = rq_size * depth;
2095
2096         for (i = 0; i < depth; ) {
2097                 int this_order = max_order;
2098                 struct page *page;
2099                 int to_do;
2100                 void *p;
2101
2102                 while (this_order && left < order_to_size(this_order - 1))
2103                         this_order--;
2104
2105                 do {
2106                         page = alloc_pages_node(node,
2107                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2108                                 this_order);
2109                         if (page)
2110                                 break;
2111                         if (!this_order--)
2112                                 break;
2113                         if (order_to_size(this_order) < rq_size)
2114                                 break;
2115                 } while (1);
2116
2117                 if (!page)
2118                         goto fail;
2119
2120                 page->private = this_order;
2121                 list_add_tail(&page->lru, &tags->page_list);
2122
2123                 p = page_address(page);
2124                 /*
2125                  * Allow kmemleak to scan these pages as they contain pointers
2126                  * to additional allocations like via ops->init_request().
2127                  */
2128                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2129                 entries_per_page = order_to_size(this_order) / rq_size;
2130                 to_do = min(entries_per_page, depth - i);
2131                 left -= to_do * rq_size;
2132                 for (j = 0; j < to_do; j++) {
2133                         struct request *rq = p;
2134
2135                         tags->static_rqs[i] = rq;
2136                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2137                                 tags->static_rqs[i] = NULL;
2138                                 goto fail;
2139                         }
2140
2141                         p += rq_size;
2142                         i++;
2143                 }
2144         }
2145         return 0;
2146
2147 fail:
2148         blk_mq_free_rqs(set, tags, hctx_idx);
2149         return -ENOMEM;
2150 }
2151
2152 /*
2153  * 'cpu' is going away. splice any existing rq_list entries from this
2154  * software queue to the hw queue dispatch list, and ensure that it
2155  * gets run.
2156  */
2157 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2158 {
2159         struct blk_mq_hw_ctx *hctx;
2160         struct blk_mq_ctx *ctx;
2161         LIST_HEAD(tmp);
2162
2163         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2164         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2165
2166         spin_lock(&ctx->lock);
2167         if (!list_empty(&ctx->rq_list)) {
2168                 list_splice_init(&ctx->rq_list, &tmp);
2169                 blk_mq_hctx_clear_pending(hctx, ctx);
2170         }
2171         spin_unlock(&ctx->lock);
2172
2173         if (list_empty(&tmp))
2174                 return 0;
2175
2176         spin_lock(&hctx->lock);
2177         list_splice_tail_init(&tmp, &hctx->dispatch);
2178         spin_unlock(&hctx->lock);
2179
2180         blk_mq_run_hw_queue(hctx, true);
2181         return 0;
2182 }
2183
2184 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2185 {
2186         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2187                                             &hctx->cpuhp_dead);
2188 }
2189
2190 /* hctx->ctxs will be freed in queue's release handler */
2191 static void blk_mq_exit_hctx(struct request_queue *q,
2192                 struct blk_mq_tag_set *set,
2193                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2194 {
2195         blk_mq_debugfs_unregister_hctx(hctx);
2196
2197         if (blk_mq_hw_queue_mapped(hctx))
2198                 blk_mq_tag_idle(hctx);
2199
2200         if (set->ops->exit_request)
2201                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2202
2203         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2204
2205         if (set->ops->exit_hctx)
2206                 set->ops->exit_hctx(hctx, hctx_idx);
2207
2208         if (hctx->flags & BLK_MQ_F_BLOCKING)
2209                 cleanup_srcu_struct(hctx->srcu);
2210
2211         blk_mq_remove_cpuhp(hctx);
2212         blk_free_flush_queue(hctx->fq);
2213         sbitmap_free(&hctx->ctx_map);
2214 }
2215
2216 static void blk_mq_exit_hw_queues(struct request_queue *q,
2217                 struct blk_mq_tag_set *set, int nr_queue)
2218 {
2219         struct blk_mq_hw_ctx *hctx;
2220         unsigned int i;
2221
2222         queue_for_each_hw_ctx(q, hctx, i) {
2223                 if (i == nr_queue)
2224                         break;
2225                 blk_mq_exit_hctx(q, set, hctx, i);
2226         }
2227 }
2228
2229 static int blk_mq_init_hctx(struct request_queue *q,
2230                 struct blk_mq_tag_set *set,
2231                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2232 {
2233         int node;
2234
2235         node = hctx->numa_node;
2236         if (node == NUMA_NO_NODE)
2237                 node = hctx->numa_node = set->numa_node;
2238
2239         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2240         spin_lock_init(&hctx->lock);
2241         INIT_LIST_HEAD(&hctx->dispatch);
2242         hctx->queue = q;
2243         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2244
2245         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2246
2247         hctx->tags = set->tags[hctx_idx];
2248
2249         /*
2250          * Allocate space for all possible cpus to avoid allocation at
2251          * runtime
2252          */
2253         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2254                                         GFP_KERNEL, node);
2255         if (!hctx->ctxs)
2256                 goto unregister_cpu_notifier;
2257
2258         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2259                               node))
2260                 goto free_ctxs;
2261
2262         hctx->nr_ctx = 0;
2263
2264         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2265         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2266
2267         if (set->ops->init_hctx &&
2268             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2269                 goto free_bitmap;
2270
2271         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2272                 goto exit_hctx;
2273
2274         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2275         if (!hctx->fq)
2276                 goto sched_exit_hctx;
2277
2278         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2279                 goto free_fq;
2280
2281         if (hctx->flags & BLK_MQ_F_BLOCKING)
2282                 init_srcu_struct(hctx->srcu);
2283
2284         blk_mq_debugfs_register_hctx(q, hctx);
2285
2286         return 0;
2287
2288  free_fq:
2289         kfree(hctx->fq);
2290  sched_exit_hctx:
2291         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2292  exit_hctx:
2293         if (set->ops->exit_hctx)
2294                 set->ops->exit_hctx(hctx, hctx_idx);
2295  free_bitmap:
2296         sbitmap_free(&hctx->ctx_map);
2297  free_ctxs:
2298         kfree(hctx->ctxs);
2299  unregister_cpu_notifier:
2300         blk_mq_remove_cpuhp(hctx);
2301         return -1;
2302 }
2303
2304 static void blk_mq_init_cpu_queues(struct request_queue *q,
2305                                    unsigned int nr_hw_queues)
2306 {
2307         unsigned int i;
2308
2309         for_each_possible_cpu(i) {
2310                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2311                 struct blk_mq_hw_ctx *hctx;
2312
2313                 __ctx->cpu = i;
2314                 spin_lock_init(&__ctx->lock);
2315                 INIT_LIST_HEAD(&__ctx->rq_list);
2316                 __ctx->queue = q;
2317
2318                 /*
2319                  * Set local node, IFF we have more than one hw queue. If
2320                  * not, we remain on the home node of the device
2321                  */
2322                 hctx = blk_mq_map_queue(q, i);
2323                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2324                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2325         }
2326 }
2327
2328 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2329 {
2330         int ret = 0;
2331
2332         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2333                                         set->queue_depth, set->reserved_tags);
2334         if (!set->tags[hctx_idx])
2335                 return false;
2336
2337         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2338                                 set->queue_depth);
2339         if (!ret)
2340                 return true;
2341
2342         blk_mq_free_rq_map(set->tags[hctx_idx]);
2343         set->tags[hctx_idx] = NULL;
2344         return false;
2345 }
2346
2347 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2348                                          unsigned int hctx_idx)
2349 {
2350         if (set->tags[hctx_idx]) {
2351                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2352                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2353                 set->tags[hctx_idx] = NULL;
2354         }
2355 }
2356
2357 static void blk_mq_map_swqueue(struct request_queue *q)
2358 {
2359         unsigned int i, hctx_idx;
2360         struct blk_mq_hw_ctx *hctx;
2361         struct blk_mq_ctx *ctx;
2362         struct blk_mq_tag_set *set = q->tag_set;
2363
2364         /*
2365          * Avoid others reading imcomplete hctx->cpumask through sysfs
2366          */
2367         mutex_lock(&q->sysfs_lock);
2368
2369         queue_for_each_hw_ctx(q, hctx, i) {
2370                 cpumask_clear(hctx->cpumask);
2371                 hctx->nr_ctx = 0;
2372         }
2373
2374         /*
2375          * Map software to hardware queues.
2376          *
2377          * If the cpu isn't present, the cpu is mapped to first hctx.
2378          */
2379         for_each_possible_cpu(i) {
2380                 hctx_idx = q->mq_map[i];
2381                 /* unmapped hw queue can be remapped after CPU topo changed */
2382                 if (!set->tags[hctx_idx] &&
2383                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2384                         /*
2385                          * If tags initialization fail for some hctx,
2386                          * that hctx won't be brought online.  In this
2387                          * case, remap the current ctx to hctx[0] which
2388                          * is guaranteed to always have tags allocated
2389                          */
2390                         q->mq_map[i] = 0;
2391                 }
2392
2393                 ctx = per_cpu_ptr(q->queue_ctx, i);
2394                 hctx = blk_mq_map_queue(q, i);
2395
2396                 cpumask_set_cpu(i, hctx->cpumask);
2397                 ctx->index_hw = hctx->nr_ctx;
2398                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2399         }
2400
2401         mutex_unlock(&q->sysfs_lock);
2402
2403         queue_for_each_hw_ctx(q, hctx, i) {
2404                 /*
2405                  * If no software queues are mapped to this hardware queue,
2406                  * disable it and free the request entries.
2407                  */
2408                 if (!hctx->nr_ctx) {
2409                         /* Never unmap queue 0.  We need it as a
2410                          * fallback in case of a new remap fails
2411                          * allocation
2412                          */
2413                         if (i && set->tags[i])
2414                                 blk_mq_free_map_and_requests(set, i);
2415
2416                         hctx->tags = NULL;
2417                         continue;
2418                 }
2419
2420                 hctx->tags = set->tags[i];
2421                 WARN_ON(!hctx->tags);
2422
2423                 /*
2424                  * Set the map size to the number of mapped software queues.
2425                  * This is more accurate and more efficient than looping
2426                  * over all possibly mapped software queues.
2427                  */
2428                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2429
2430                 /*
2431                  * Initialize batch roundrobin counts
2432                  */
2433                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2434                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2435         }
2436 }
2437
2438 /*
2439  * Caller needs to ensure that we're either frozen/quiesced, or that
2440  * the queue isn't live yet.
2441  */
2442 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2443 {
2444         struct blk_mq_hw_ctx *hctx;
2445         int i;
2446
2447         queue_for_each_hw_ctx(q, hctx, i) {
2448                 if (shared) {
2449                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2450                                 atomic_inc(&q->shared_hctx_restart);
2451                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2452                 } else {
2453                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2454                                 atomic_dec(&q->shared_hctx_restart);
2455                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2456                 }
2457         }
2458 }
2459
2460 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2461                                         bool shared)
2462 {
2463         struct request_queue *q;
2464
2465         lockdep_assert_held(&set->tag_list_lock);
2466
2467         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2468                 blk_mq_freeze_queue(q);
2469                 queue_set_hctx_shared(q, shared);
2470                 blk_mq_unfreeze_queue(q);
2471         }
2472 }
2473
2474 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2475 {
2476         struct blk_mq_tag_set *set = q->tag_set;
2477
2478         mutex_lock(&set->tag_list_lock);
2479         list_del_rcu(&q->tag_set_list);
2480         INIT_LIST_HEAD(&q->tag_set_list);
2481         if (list_is_singular(&set->tag_list)) {
2482                 /* just transitioned to unshared */
2483                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2484                 /* update existing queue */
2485                 blk_mq_update_tag_set_depth(set, false);
2486         }
2487         mutex_unlock(&set->tag_list_lock);
2488
2489         synchronize_rcu();
2490 }
2491
2492 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2493                                      struct request_queue *q)
2494 {
2495         q->tag_set = set;
2496
2497         mutex_lock(&set->tag_list_lock);
2498
2499         /*
2500          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2501          */
2502         if (!list_empty(&set->tag_list) &&
2503             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2504                 set->flags |= BLK_MQ_F_TAG_SHARED;
2505                 /* update existing queue */
2506                 blk_mq_update_tag_set_depth(set, true);
2507         }
2508         if (set->flags & BLK_MQ_F_TAG_SHARED)
2509                 queue_set_hctx_shared(q, true);
2510         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2511
2512         mutex_unlock(&set->tag_list_lock);
2513 }
2514
2515 /*
2516  * It is the actual release handler for mq, but we do it from
2517  * request queue's release handler for avoiding use-after-free
2518  * and headache because q->mq_kobj shouldn't have been introduced,
2519  * but we can't group ctx/kctx kobj without it.
2520  */
2521 void blk_mq_release(struct request_queue *q)
2522 {
2523         struct blk_mq_hw_ctx *hctx;
2524         unsigned int i;
2525
2526         /* hctx kobj stays in hctx */
2527         queue_for_each_hw_ctx(q, hctx, i) {
2528                 if (!hctx)
2529                         continue;
2530                 kobject_put(&hctx->kobj);
2531         }
2532
2533         q->mq_map = NULL;
2534
2535         kfree(q->queue_hw_ctx);
2536
2537         /*
2538          * release .mq_kobj and sw queue's kobject now because
2539          * both share lifetime with request queue.
2540          */
2541         blk_mq_sysfs_deinit(q);
2542
2543         free_percpu(q->queue_ctx);
2544 }
2545
2546 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2547 {
2548         struct request_queue *uninit_q, *q;
2549
2550         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2551         if (!uninit_q)
2552                 return ERR_PTR(-ENOMEM);
2553
2554         q = blk_mq_init_allocated_queue(set, uninit_q);
2555         if (IS_ERR(q))
2556                 blk_cleanup_queue(uninit_q);
2557
2558         return q;
2559 }
2560 EXPORT_SYMBOL(blk_mq_init_queue);
2561
2562 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2563 {
2564         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2565
2566         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2567                            __alignof__(struct blk_mq_hw_ctx)) !=
2568                      sizeof(struct blk_mq_hw_ctx));
2569
2570         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2571                 hw_ctx_size += sizeof(struct srcu_struct);
2572
2573         return hw_ctx_size;
2574 }
2575
2576 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2577                                                 struct request_queue *q)
2578 {
2579         int i, j;
2580         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2581
2582         blk_mq_sysfs_unregister(q);
2583
2584         /* protect against switching io scheduler  */
2585         mutex_lock(&q->sysfs_lock);
2586         for (i = 0; i < set->nr_hw_queues; i++) {
2587                 int node;
2588
2589                 if (hctxs[i])
2590                         continue;
2591
2592                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2593                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2594                                         GFP_KERNEL, node);
2595                 if (!hctxs[i])
2596                         break;
2597
2598                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2599                                                 node)) {
2600                         kfree(hctxs[i]);
2601                         hctxs[i] = NULL;
2602                         break;
2603                 }
2604
2605                 atomic_set(&hctxs[i]->nr_active, 0);
2606                 hctxs[i]->numa_node = node;
2607                 hctxs[i]->queue_num = i;
2608
2609                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2610                         free_cpumask_var(hctxs[i]->cpumask);
2611                         kfree(hctxs[i]);
2612                         hctxs[i] = NULL;
2613                         break;
2614                 }
2615                 blk_mq_hctx_kobj_init(hctxs[i]);
2616         }
2617         for (j = i; j < q->nr_hw_queues; j++) {
2618                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2619
2620                 if (hctx) {
2621                         if (hctx->tags)
2622                                 blk_mq_free_map_and_requests(set, j);
2623                         blk_mq_exit_hctx(q, set, hctx, j);
2624                         kobject_put(&hctx->kobj);
2625                         hctxs[j] = NULL;
2626
2627                 }
2628         }
2629         q->nr_hw_queues = i;
2630         mutex_unlock(&q->sysfs_lock);
2631         blk_mq_sysfs_register(q);
2632 }
2633
2634 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2635                                                   struct request_queue *q)
2636 {
2637         /* mark the queue as mq asap */
2638         q->mq_ops = set->ops;
2639
2640         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2641                                              blk_mq_poll_stats_bkt,
2642                                              BLK_MQ_POLL_STATS_BKTS, q);
2643         if (!q->poll_cb)
2644                 goto err_exit;
2645
2646         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2647         if (!q->queue_ctx)
2648                 goto err_exit;
2649
2650         /* init q->mq_kobj and sw queues' kobjects */
2651         blk_mq_sysfs_init(q);
2652
2653         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2654                                                 GFP_KERNEL, set->numa_node);
2655         if (!q->queue_hw_ctx)
2656                 goto err_percpu;
2657
2658         q->mq_map = set->mq_map;
2659
2660         blk_mq_realloc_hw_ctxs(set, q);
2661         if (!q->nr_hw_queues)
2662                 goto err_hctxs;
2663
2664         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2665         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2666
2667         q->nr_queues = nr_cpu_ids;
2668
2669         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2670
2671         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2672                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2673
2674         q->sg_reserved_size = INT_MAX;
2675
2676         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2677         INIT_LIST_HEAD(&q->requeue_list);
2678         spin_lock_init(&q->requeue_lock);
2679
2680         blk_queue_make_request(q, blk_mq_make_request);
2681         if (q->mq_ops->poll)
2682                 q->poll_fn = blk_mq_poll;
2683
2684         /*
2685          * Do this after blk_queue_make_request() overrides it...
2686          */
2687         q->nr_requests = set->queue_depth;
2688
2689         /*
2690          * Default to classic polling
2691          */
2692         q->poll_nsec = -1;
2693
2694         if (set->ops->complete)
2695                 blk_queue_softirq_done(q, set->ops->complete);
2696
2697         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2698         blk_mq_add_queue_tag_set(set, q);
2699         blk_mq_map_swqueue(q);
2700
2701         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2702                 int ret;
2703
2704                 ret = blk_mq_sched_init(q);
2705                 if (ret)
2706                         return ERR_PTR(ret);
2707         }
2708
2709         return q;
2710
2711 err_hctxs:
2712         kfree(q->queue_hw_ctx);
2713 err_percpu:
2714         free_percpu(q->queue_ctx);
2715 err_exit:
2716         q->mq_ops = NULL;
2717         return ERR_PTR(-ENOMEM);
2718 }
2719 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2720
2721 void blk_mq_free_queue(struct request_queue *q)
2722 {
2723         struct blk_mq_tag_set   *set = q->tag_set;
2724
2725         blk_mq_del_queue_tag_set(q);
2726         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2727 }
2728
2729 /* Basically redo blk_mq_init_queue with queue frozen */
2730 static void blk_mq_queue_reinit(struct request_queue *q)
2731 {
2732         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2733
2734         blk_mq_debugfs_unregister_hctxs(q);
2735         blk_mq_sysfs_unregister(q);
2736
2737         /*
2738          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2739          * we should change hctx numa_node according to the new topology (this
2740          * involves freeing and re-allocating memory, worth doing?)
2741          */
2742         blk_mq_map_swqueue(q);
2743
2744         blk_mq_sysfs_register(q);
2745         blk_mq_debugfs_register_hctxs(q);
2746 }
2747
2748 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2749 {
2750         int i;
2751
2752         for (i = 0; i < set->nr_hw_queues; i++)
2753                 if (!__blk_mq_alloc_rq_map(set, i))
2754                         goto out_unwind;
2755
2756         return 0;
2757
2758 out_unwind:
2759         while (--i >= 0)
2760                 blk_mq_free_rq_map(set->tags[i]);
2761
2762         return -ENOMEM;
2763 }
2764
2765 /*
2766  * Allocate the request maps associated with this tag_set. Note that this
2767  * may reduce the depth asked for, if memory is tight. set->queue_depth
2768  * will be updated to reflect the allocated depth.
2769  */
2770 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2771 {
2772         unsigned int depth;
2773         int err;
2774
2775         depth = set->queue_depth;
2776         do {
2777                 err = __blk_mq_alloc_rq_maps(set);
2778                 if (!err)
2779                         break;
2780
2781                 set->queue_depth >>= 1;
2782                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2783                         err = -ENOMEM;
2784                         break;
2785                 }
2786         } while (set->queue_depth);
2787
2788         if (!set->queue_depth || err) {
2789                 pr_err("blk-mq: failed to allocate request map\n");
2790                 return -ENOMEM;
2791         }
2792
2793         if (depth != set->queue_depth)
2794                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2795                                                 depth, set->queue_depth);
2796
2797         return 0;
2798 }
2799
2800 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2801 {
2802         if (set->ops->map_queues) {
2803                 int cpu;
2804                 /*
2805                  * transport .map_queues is usually done in the following
2806                  * way:
2807                  *
2808                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2809                  *      mask = get_cpu_mask(queue)
2810                  *      for_each_cpu(cpu, mask)
2811                  *              set->mq_map[cpu] = queue;
2812                  * }
2813                  *
2814                  * When we need to remap, the table has to be cleared for
2815                  * killing stale mapping since one CPU may not be mapped
2816                  * to any hw queue.
2817                  */
2818                 for_each_possible_cpu(cpu)
2819                         set->mq_map[cpu] = 0;
2820
2821                 return set->ops->map_queues(set);
2822         } else
2823                 return blk_mq_map_queues(set);
2824 }
2825
2826 /*
2827  * Alloc a tag set to be associated with one or more request queues.
2828  * May fail with EINVAL for various error conditions. May adjust the
2829  * requested depth down, if if it too large. In that case, the set
2830  * value will be stored in set->queue_depth.
2831  */
2832 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2833 {
2834         int ret;
2835
2836         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2837
2838         if (!set->nr_hw_queues)
2839                 return -EINVAL;
2840         if (!set->queue_depth)
2841                 return -EINVAL;
2842         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2843                 return -EINVAL;
2844
2845         if (!set->ops->queue_rq)
2846                 return -EINVAL;
2847
2848         if (!set->ops->get_budget ^ !set->ops->put_budget)
2849                 return -EINVAL;
2850
2851         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2852                 pr_info("blk-mq: reduced tag depth to %u\n",
2853                         BLK_MQ_MAX_DEPTH);
2854                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2855         }
2856
2857         /*
2858          * If a crashdump is active, then we are potentially in a very
2859          * memory constrained environment. Limit us to 1 queue and
2860          * 64 tags to prevent using too much memory.
2861          */
2862         if (is_kdump_kernel()) {
2863                 set->nr_hw_queues = 1;
2864                 set->queue_depth = min(64U, set->queue_depth);
2865         }
2866         /*
2867          * There is no use for more h/w queues than cpus.
2868          */
2869         if (set->nr_hw_queues > nr_cpu_ids)
2870                 set->nr_hw_queues = nr_cpu_ids;
2871
2872         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2873                                  GFP_KERNEL, set->numa_node);
2874         if (!set->tags)
2875                 return -ENOMEM;
2876
2877         ret = -ENOMEM;
2878         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2879                         GFP_KERNEL, set->numa_node);
2880         if (!set->mq_map)
2881                 goto out_free_tags;
2882
2883         ret = blk_mq_update_queue_map(set);
2884         if (ret)
2885                 goto out_free_mq_map;
2886
2887         ret = blk_mq_alloc_rq_maps(set);
2888         if (ret)
2889                 goto out_free_mq_map;
2890
2891         mutex_init(&set->tag_list_lock);
2892         INIT_LIST_HEAD(&set->tag_list);
2893
2894         return 0;
2895
2896 out_free_mq_map:
2897         kfree(set->mq_map);
2898         set->mq_map = NULL;
2899 out_free_tags:
2900         kfree(set->tags);
2901         set->tags = NULL;
2902         return ret;
2903 }
2904 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2905
2906 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2907 {
2908         int i;
2909
2910         for (i = 0; i < nr_cpu_ids; i++)
2911                 blk_mq_free_map_and_requests(set, i);
2912
2913         kfree(set->mq_map);
2914         set->mq_map = NULL;
2915
2916         kfree(set->tags);
2917         set->tags = NULL;
2918 }
2919 EXPORT_SYMBOL(blk_mq_free_tag_set);
2920
2921 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2922 {
2923         struct blk_mq_tag_set *set = q->tag_set;
2924         struct blk_mq_hw_ctx *hctx;
2925         int i, ret;
2926
2927         if (!set)
2928                 return -EINVAL;
2929
2930         blk_mq_freeze_queue(q);
2931         blk_mq_quiesce_queue(q);
2932
2933         ret = 0;
2934         queue_for_each_hw_ctx(q, hctx, i) {
2935                 if (!hctx->tags)
2936                         continue;
2937                 /*
2938                  * If we're using an MQ scheduler, just update the scheduler
2939                  * queue depth. This is similar to what the old code would do.
2940                  */
2941                 if (!hctx->sched_tags) {
2942                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2943                                                         false);
2944                 } else {
2945                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2946                                                         nr, true);
2947                 }
2948                 if (ret)
2949                         break;
2950         }
2951
2952         if (!ret)
2953                 q->nr_requests = nr;
2954
2955         blk_mq_unquiesce_queue(q);
2956         blk_mq_unfreeze_queue(q);
2957
2958         return ret;
2959 }
2960
2961 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2962                                                         int nr_hw_queues)
2963 {
2964         struct request_queue *q;
2965
2966         lockdep_assert_held(&set->tag_list_lock);
2967
2968         if (nr_hw_queues > nr_cpu_ids)
2969                 nr_hw_queues = nr_cpu_ids;
2970         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2971                 return;
2972
2973         list_for_each_entry(q, &set->tag_list, tag_set_list)
2974                 blk_mq_freeze_queue(q);
2975
2976         set->nr_hw_queues = nr_hw_queues;
2977         blk_mq_update_queue_map(set);
2978         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2979                 blk_mq_realloc_hw_ctxs(set, q);
2980                 blk_mq_queue_reinit(q);
2981         }
2982
2983         list_for_each_entry(q, &set->tag_list, tag_set_list)
2984                 blk_mq_unfreeze_queue(q);
2985 }
2986
2987 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2988 {
2989         mutex_lock(&set->tag_list_lock);
2990         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2991         mutex_unlock(&set->tag_list_lock);
2992 }
2993 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2994
2995 /* Enable polling stats and return whether they were already enabled. */
2996 static bool blk_poll_stats_enable(struct request_queue *q)
2997 {
2998         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2999             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3000                 return true;
3001         blk_stat_add_callback(q, q->poll_cb);
3002         return false;
3003 }
3004
3005 static void blk_mq_poll_stats_start(struct request_queue *q)
3006 {
3007         /*
3008          * We don't arm the callback if polling stats are not enabled or the
3009          * callback is already active.
3010          */
3011         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3012             blk_stat_is_active(q->poll_cb))
3013                 return;
3014
3015         blk_stat_activate_msecs(q->poll_cb, 100);
3016 }
3017
3018 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3019 {
3020         struct request_queue *q = cb->data;
3021         int bucket;
3022
3023         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3024                 if (cb->stat[bucket].nr_samples)
3025                         q->poll_stat[bucket] = cb->stat[bucket];
3026         }
3027 }
3028
3029 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3030                                        struct blk_mq_hw_ctx *hctx,
3031                                        struct request *rq)
3032 {
3033         unsigned long ret = 0;
3034         int bucket;
3035
3036         /*
3037          * If stats collection isn't on, don't sleep but turn it on for
3038          * future users
3039          */
3040         if (!blk_poll_stats_enable(q))
3041                 return 0;
3042
3043         /*
3044          * As an optimistic guess, use half of the mean service time
3045          * for this type of request. We can (and should) make this smarter.
3046          * For instance, if the completion latencies are tight, we can
3047          * get closer than just half the mean. This is especially
3048          * important on devices where the completion latencies are longer
3049          * than ~10 usec. We do use the stats for the relevant IO size
3050          * if available which does lead to better estimates.
3051          */
3052         bucket = blk_mq_poll_stats_bkt(rq);
3053         if (bucket < 0)
3054                 return ret;
3055
3056         if (q->poll_stat[bucket].nr_samples)
3057                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3058
3059         return ret;
3060 }
3061
3062 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3063                                      struct blk_mq_hw_ctx *hctx,
3064                                      struct request *rq)
3065 {
3066         struct hrtimer_sleeper hs;
3067         enum hrtimer_mode mode;
3068         unsigned int nsecs;
3069         ktime_t kt;
3070
3071         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3072                 return false;
3073
3074         /*
3075          * poll_nsec can be:
3076          *
3077          * -1:  don't ever hybrid sleep
3078          *  0:  use half of prev avg
3079          * >0:  use this specific value
3080          */
3081         if (q->poll_nsec == -1)
3082                 return false;
3083         else if (q->poll_nsec > 0)
3084                 nsecs = q->poll_nsec;
3085         else
3086                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3087
3088         if (!nsecs)
3089                 return false;
3090
3091         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3092
3093         /*
3094          * This will be replaced with the stats tracking code, using
3095          * 'avg_completion_time / 2' as the pre-sleep target.
3096          */
3097         kt = nsecs;
3098
3099         mode = HRTIMER_MODE_REL;
3100         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3101         hrtimer_set_expires(&hs.timer, kt);
3102
3103         hrtimer_init_sleeper(&hs, current);
3104         do {
3105                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3106                         break;
3107                 set_current_state(TASK_UNINTERRUPTIBLE);
3108                 hrtimer_start_expires(&hs.timer, mode);
3109                 if (hs.task)
3110                         io_schedule();
3111                 hrtimer_cancel(&hs.timer);
3112                 mode = HRTIMER_MODE_ABS;
3113         } while (hs.task && !signal_pending(current));
3114
3115         __set_current_state(TASK_RUNNING);
3116         destroy_hrtimer_on_stack(&hs.timer);
3117         return true;
3118 }
3119
3120 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3121 {
3122         struct request_queue *q = hctx->queue;
3123         long state;
3124
3125         /*
3126          * If we sleep, have the caller restart the poll loop to reset
3127          * the state. Like for the other success return cases, the
3128          * caller is responsible for checking if the IO completed. If
3129          * the IO isn't complete, we'll get called again and will go
3130          * straight to the busy poll loop.
3131          */
3132         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3133                 return true;
3134
3135         hctx->poll_considered++;
3136
3137         state = current->state;
3138         while (!need_resched()) {
3139                 int ret;
3140
3141                 hctx->poll_invoked++;
3142
3143                 ret = q->mq_ops->poll(hctx, rq->tag);
3144                 if (ret > 0) {
3145                         hctx->poll_success++;
3146                         set_current_state(TASK_RUNNING);
3147                         return true;
3148                 }
3149
3150                 if (signal_pending_state(state, current))
3151                         set_current_state(TASK_RUNNING);
3152
3153                 if (current->state == TASK_RUNNING)
3154                         return true;
3155                 if (ret < 0)
3156                         break;
3157                 cpu_relax();
3158         }
3159
3160         __set_current_state(TASK_RUNNING);
3161         return false;
3162 }
3163
3164 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3165 {
3166         struct blk_mq_hw_ctx *hctx;
3167         struct request *rq;
3168
3169         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3170                 return false;
3171
3172         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3173         if (!blk_qc_t_is_internal(cookie))
3174                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3175         else {
3176                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3177                 /*
3178                  * With scheduling, if the request has completed, we'll
3179                  * get a NULL return here, as we clear the sched tag when
3180                  * that happens. The request still remains valid, like always,
3181                  * so we should be safe with just the NULL check.
3182                  */
3183                 if (!rq)
3184                         return false;
3185         }
3186
3187         return __blk_mq_poll(hctx, rq);
3188 }
3189
3190 static int __init blk_mq_init(void)
3191 {
3192         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3193                                 blk_mq_hctx_notify_dead);
3194         return 0;
3195 }
3196 subsys_initcall(blk_mq_init);