Merge tag 'nfs-for-6.5-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!mi->part->bd_partno || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = ktime_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = ktime_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         /* caller already holds a reference, add for remainder */
429         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430         data->nr_tags -= nr;
431
432         return rq_list_pop(data->cached_rq);
433 }
434
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437         struct request_queue *q = data->q;
438         u64 alloc_time_ns = 0;
439         struct request *rq;
440         unsigned int tag;
441
442         /* alloc_time includes depth and tag waits */
443         if (blk_queue_rq_alloc_time(q))
444                 alloc_time_ns = ktime_get_ns();
445
446         if (data->cmd_flags & REQ_NOWAIT)
447                 data->flags |= BLK_MQ_REQ_NOWAIT;
448
449         if (q->elevator) {
450                 /*
451                  * All requests use scheduler tags when an I/O scheduler is
452                  * enabled for the queue.
453                  */
454                 data->rq_flags |= RQF_SCHED_TAGS;
455
456                 /*
457                  * Flush/passthrough requests are special and go directly to the
458                  * dispatch list.
459                  */
460                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
461                     !blk_op_is_passthrough(data->cmd_flags)) {
462                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
463
464                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
465
466                         data->rq_flags |= RQF_USE_SCHED;
467                         if (ops->limit_depth)
468                                 ops->limit_depth(data->cmd_flags, data);
469                 }
470         }
471
472 retry:
473         data->ctx = blk_mq_get_ctx(q);
474         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
475         if (!(data->rq_flags & RQF_SCHED_TAGS))
476                 blk_mq_tag_busy(data->hctx);
477
478         if (data->flags & BLK_MQ_REQ_RESERVED)
479                 data->rq_flags |= RQF_RESV;
480
481         /*
482          * Try batched alloc if we want more than 1 tag.
483          */
484         if (data->nr_tags > 1) {
485                 rq = __blk_mq_alloc_requests_batch(data);
486                 if (rq) {
487                         blk_mq_rq_time_init(rq, alloc_time_ns);
488                         return rq;
489                 }
490                 data->nr_tags = 1;
491         }
492
493         /*
494          * Waiting allocations only fail because of an inactive hctx.  In that
495          * case just retry the hctx assignment and tag allocation as CPU hotplug
496          * should have migrated us to an online CPU by now.
497          */
498         tag = blk_mq_get_tag(data);
499         if (tag == BLK_MQ_NO_TAG) {
500                 if (data->flags & BLK_MQ_REQ_NOWAIT)
501                         return NULL;
502                 /*
503                  * Give up the CPU and sleep for a random short time to
504                  * ensure that thread using a realtime scheduling class
505                  * are migrated off the CPU, and thus off the hctx that
506                  * is going away.
507                  */
508                 msleep(3);
509                 goto retry;
510         }
511
512         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
513         blk_mq_rq_time_init(rq, alloc_time_ns);
514         return rq;
515 }
516
517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
518                                             struct blk_plug *plug,
519                                             blk_opf_t opf,
520                                             blk_mq_req_flags_t flags)
521 {
522         struct blk_mq_alloc_data data = {
523                 .q              = q,
524                 .flags          = flags,
525                 .cmd_flags      = opf,
526                 .nr_tags        = plug->nr_ios,
527                 .cached_rq      = &plug->cached_rq,
528         };
529         struct request *rq;
530
531         if (blk_queue_enter(q, flags))
532                 return NULL;
533
534         plug->nr_ios = 1;
535
536         rq = __blk_mq_alloc_requests(&data);
537         if (unlikely(!rq))
538                 blk_queue_exit(q);
539         return rq;
540 }
541
542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
543                                                    blk_opf_t opf,
544                                                    blk_mq_req_flags_t flags)
545 {
546         struct blk_plug *plug = current->plug;
547         struct request *rq;
548
549         if (!plug)
550                 return NULL;
551
552         if (rq_list_empty(plug->cached_rq)) {
553                 if (plug->nr_ios == 1)
554                         return NULL;
555                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
556                 if (!rq)
557                         return NULL;
558         } else {
559                 rq = rq_list_peek(&plug->cached_rq);
560                 if (!rq || rq->q != q)
561                         return NULL;
562
563                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
564                         return NULL;
565                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
566                         return NULL;
567
568                 plug->cached_rq = rq_list_next(rq);
569                 blk_mq_rq_time_init(rq, 0);
570         }
571
572         rq->cmd_flags = opf;
573         INIT_LIST_HEAD(&rq->queuelist);
574         return rq;
575 }
576
577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
578                 blk_mq_req_flags_t flags)
579 {
580         struct request *rq;
581
582         rq = blk_mq_alloc_cached_request(q, opf, flags);
583         if (!rq) {
584                 struct blk_mq_alloc_data data = {
585                         .q              = q,
586                         .flags          = flags,
587                         .cmd_flags      = opf,
588                         .nr_tags        = 1,
589                 };
590                 int ret;
591
592                 ret = blk_queue_enter(q, flags);
593                 if (ret)
594                         return ERR_PTR(ret);
595
596                 rq = __blk_mq_alloc_requests(&data);
597                 if (!rq)
598                         goto out_queue_exit;
599         }
600         rq->__data_len = 0;
601         rq->__sector = (sector_t) -1;
602         rq->bio = rq->biotail = NULL;
603         return rq;
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(-EWOULDBLOCK);
607 }
608 EXPORT_SYMBOL(blk_mq_alloc_request);
609
610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
611         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
612 {
613         struct blk_mq_alloc_data data = {
614                 .q              = q,
615                 .flags          = flags,
616                 .cmd_flags      = opf,
617                 .nr_tags        = 1,
618         };
619         u64 alloc_time_ns = 0;
620         struct request *rq;
621         unsigned int cpu;
622         unsigned int tag;
623         int ret;
624
625         /* alloc_time includes depth and tag waits */
626         if (blk_queue_rq_alloc_time(q))
627                 alloc_time_ns = ktime_get_ns();
628
629         /*
630          * If the tag allocator sleeps we could get an allocation for a
631          * different hardware context.  No need to complicate the low level
632          * allocator for this for the rare use case of a command tied to
633          * a specific queue.
634          */
635         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
636             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
637                 return ERR_PTR(-EINVAL);
638
639         if (hctx_idx >= q->nr_hw_queues)
640                 return ERR_PTR(-EIO);
641
642         ret = blk_queue_enter(q, flags);
643         if (ret)
644                 return ERR_PTR(ret);
645
646         /*
647          * Check if the hardware context is actually mapped to anything.
648          * If not tell the caller that it should skip this queue.
649          */
650         ret = -EXDEV;
651         data.hctx = xa_load(&q->hctx_table, hctx_idx);
652         if (!blk_mq_hw_queue_mapped(data.hctx))
653                 goto out_queue_exit;
654         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
655         if (cpu >= nr_cpu_ids)
656                 goto out_queue_exit;
657         data.ctx = __blk_mq_get_ctx(q, cpu);
658
659         if (q->elevator)
660                 data.rq_flags |= RQF_SCHED_TAGS;
661         else
662                 blk_mq_tag_busy(data.hctx);
663
664         if (flags & BLK_MQ_REQ_RESERVED)
665                 data.rq_flags |= RQF_RESV;
666
667         ret = -EWOULDBLOCK;
668         tag = blk_mq_get_tag(&data);
669         if (tag == BLK_MQ_NO_TAG)
670                 goto out_queue_exit;
671         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
672         blk_mq_rq_time_init(rq, alloc_time_ns);
673         rq->__data_len = 0;
674         rq->__sector = (sector_t) -1;
675         rq->bio = rq->biotail = NULL;
676         return rq;
677
678 out_queue_exit:
679         blk_queue_exit(q);
680         return ERR_PTR(ret);
681 }
682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
683
684 static void blk_mq_finish_request(struct request *rq)
685 {
686         struct request_queue *q = rq->q;
687
688         if (rq->rq_flags & RQF_USE_SCHED) {
689                 q->elevator->type->ops.finish_request(rq);
690                 /*
691                  * For postflush request that may need to be
692                  * completed twice, we should clear this flag
693                  * to avoid double finish_request() on the rq.
694                  */
695                 rq->rq_flags &= ~RQF_USE_SCHED;
696         }
697 }
698
699 static void __blk_mq_free_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702         struct blk_mq_ctx *ctx = rq->mq_ctx;
703         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
704         const int sched_tag = rq->internal_tag;
705
706         blk_crypto_free_request(rq);
707         blk_pm_mark_last_busy(rq);
708         rq->mq_hctx = NULL;
709
710         if (rq->rq_flags & RQF_MQ_INFLIGHT)
711                 __blk_mq_dec_active_requests(hctx);
712
713         if (rq->tag != BLK_MQ_NO_TAG)
714                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
715         if (sched_tag != BLK_MQ_NO_TAG)
716                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
717         blk_mq_sched_restart(hctx);
718         blk_queue_exit(q);
719 }
720
721 void blk_mq_free_request(struct request *rq)
722 {
723         struct request_queue *q = rq->q;
724
725         blk_mq_finish_request(rq);
726
727         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
728                 laptop_io_completion(q->disk->bdi);
729
730         rq_qos_done(q, rq);
731
732         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
733         if (req_ref_put_and_test(rq))
734                 __blk_mq_free_request(rq);
735 }
736 EXPORT_SYMBOL_GPL(blk_mq_free_request);
737
738 void blk_mq_free_plug_rqs(struct blk_plug *plug)
739 {
740         struct request *rq;
741
742         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
743                 blk_mq_free_request(rq);
744 }
745
746 void blk_dump_rq_flags(struct request *rq, char *msg)
747 {
748         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
749                 rq->q->disk ? rq->q->disk->disk_name : "?",
750                 (__force unsigned long long) rq->cmd_flags);
751
752         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
753                (unsigned long long)blk_rq_pos(rq),
754                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
755         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
756                rq->bio, rq->biotail, blk_rq_bytes(rq));
757 }
758 EXPORT_SYMBOL(blk_dump_rq_flags);
759
760 static void req_bio_endio(struct request *rq, struct bio *bio,
761                           unsigned int nbytes, blk_status_t error)
762 {
763         if (unlikely(error)) {
764                 bio->bi_status = error;
765         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
766                 /*
767                  * Partial zone append completions cannot be supported as the
768                  * BIO fragments may end up not being written sequentially.
769                  */
770                 if (bio->bi_iter.bi_size != nbytes)
771                         bio->bi_status = BLK_STS_IOERR;
772                 else
773                         bio->bi_iter.bi_sector = rq->__sector;
774         }
775
776         bio_advance(bio, nbytes);
777
778         if (unlikely(rq->rq_flags & RQF_QUIET))
779                 bio_set_flag(bio, BIO_QUIET);
780         /* don't actually finish bio if it's part of flush sequence */
781         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
782                 bio_endio(bio);
783 }
784
785 static void blk_account_io_completion(struct request *req, unsigned int bytes)
786 {
787         if (req->part && blk_do_io_stat(req)) {
788                 const int sgrp = op_stat_group(req_op(req));
789
790                 part_stat_lock();
791                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
792                 part_stat_unlock();
793         }
794 }
795
796 static void blk_print_req_error(struct request *req, blk_status_t status)
797 {
798         printk_ratelimited(KERN_ERR
799                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
800                 "phys_seg %u prio class %u\n",
801                 blk_status_to_str(status),
802                 req->q->disk ? req->q->disk->disk_name : "?",
803                 blk_rq_pos(req), (__force u32)req_op(req),
804                 blk_op_str(req_op(req)),
805                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
806                 req->nr_phys_segments,
807                 IOPRIO_PRIO_CLASS(req->ioprio));
808 }
809
810 /*
811  * Fully end IO on a request. Does not support partial completions, or
812  * errors.
813  */
814 static void blk_complete_request(struct request *req)
815 {
816         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
817         int total_bytes = blk_rq_bytes(req);
818         struct bio *bio = req->bio;
819
820         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
821
822         if (!bio)
823                 return;
824
825 #ifdef CONFIG_BLK_DEV_INTEGRITY
826         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
827                 req->q->integrity.profile->complete_fn(req, total_bytes);
828 #endif
829
830         /*
831          * Upper layers may call blk_crypto_evict_key() anytime after the last
832          * bio_endio().  Therefore, the keyslot must be released before that.
833          */
834         blk_crypto_rq_put_keyslot(req);
835
836         blk_account_io_completion(req, total_bytes);
837
838         do {
839                 struct bio *next = bio->bi_next;
840
841                 /* Completion has already been traced */
842                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
843
844                 if (req_op(req) == REQ_OP_ZONE_APPEND)
845                         bio->bi_iter.bi_sector = req->__sector;
846
847                 if (!is_flush)
848                         bio_endio(bio);
849                 bio = next;
850         } while (bio);
851
852         /*
853          * Reset counters so that the request stacking driver
854          * can find how many bytes remain in the request
855          * later.
856          */
857         if (!req->end_io) {
858                 req->bio = NULL;
859                 req->__data_len = 0;
860         }
861 }
862
863 /**
864  * blk_update_request - Complete multiple bytes without completing the request
865  * @req:      the request being processed
866  * @error:    block status code
867  * @nr_bytes: number of bytes to complete for @req
868  *
869  * Description:
870  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
871  *     the request structure even if @req doesn't have leftover.
872  *     If @req has leftover, sets it up for the next range of segments.
873  *
874  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
875  *     %false return from this function.
876  *
877  * Note:
878  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
879  *      except in the consistency check at the end of this function.
880  *
881  * Return:
882  *     %false - this request doesn't have any more data
883  *     %true  - this request has more data
884  **/
885 bool blk_update_request(struct request *req, blk_status_t error,
886                 unsigned int nr_bytes)
887 {
888         int total_bytes;
889
890         trace_block_rq_complete(req, error, nr_bytes);
891
892         if (!req->bio)
893                 return false;
894
895 #ifdef CONFIG_BLK_DEV_INTEGRITY
896         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
897             error == BLK_STS_OK)
898                 req->q->integrity.profile->complete_fn(req, nr_bytes);
899 #endif
900
901         /*
902          * Upper layers may call blk_crypto_evict_key() anytime after the last
903          * bio_endio().  Therefore, the keyslot must be released before that.
904          */
905         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
906                 __blk_crypto_rq_put_keyslot(req);
907
908         if (unlikely(error && !blk_rq_is_passthrough(req) &&
909                      !(req->rq_flags & RQF_QUIET)) &&
910                      !test_bit(GD_DEAD, &req->q->disk->state)) {
911                 blk_print_req_error(req, error);
912                 trace_block_rq_error(req, error, nr_bytes);
913         }
914
915         blk_account_io_completion(req, nr_bytes);
916
917         total_bytes = 0;
918         while (req->bio) {
919                 struct bio *bio = req->bio;
920                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921
922                 if (bio_bytes == bio->bi_iter.bi_size)
923                         req->bio = bio->bi_next;
924
925                 /* Completion has already been traced */
926                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927                 req_bio_endio(req, bio, bio_bytes, error);
928
929                 total_bytes += bio_bytes;
930                 nr_bytes -= bio_bytes;
931
932                 if (!nr_bytes)
933                         break;
934         }
935
936         /*
937          * completely done
938          */
939         if (!req->bio) {
940                 /*
941                  * Reset counters so that the request stacking driver
942                  * can find how many bytes remain in the request
943                  * later.
944                  */
945                 req->__data_len = 0;
946                 return false;
947         }
948
949         req->__data_len -= total_bytes;
950
951         /* update sector only for requests with clear definition of sector */
952         if (!blk_rq_is_passthrough(req))
953                 req->__sector += total_bytes >> 9;
954
955         /* mixed attributes always follow the first bio */
956         if (req->rq_flags & RQF_MIXED_MERGE) {
957                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959         }
960
961         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962                 /*
963                  * If total number of sectors is less than the first segment
964                  * size, something has gone terribly wrong.
965                  */
966                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967                         blk_dump_rq_flags(req, "request botched");
968                         req->__data_len = blk_rq_cur_bytes(req);
969                 }
970
971                 /* recalculate the number of segments */
972                 req->nr_phys_segments = blk_recalc_rq_segments(req);
973         }
974
975         return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978
979 static inline void blk_account_io_done(struct request *req, u64 now)
980 {
981         trace_block_io_done(req);
982
983         /*
984          * Account IO completion.  flush_rq isn't accounted as a
985          * normal IO on queueing nor completion.  Accounting the
986          * containing request is enough.
987          */
988         if (blk_do_io_stat(req) && req->part &&
989             !(req->rq_flags & RQF_FLUSH_SEQ)) {
990                 const int sgrp = op_stat_group(req_op(req));
991
992                 part_stat_lock();
993                 update_io_ticks(req->part, jiffies, true);
994                 part_stat_inc(req->part, ios[sgrp]);
995                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
996                 part_stat_unlock();
997         }
998 }
999
1000 static inline void blk_account_io_start(struct request *req)
1001 {
1002         trace_block_io_start(req);
1003
1004         if (blk_do_io_stat(req)) {
1005                 /*
1006                  * All non-passthrough requests are created from a bio with one
1007                  * exception: when a flush command that is part of a flush sequence
1008                  * generated by the state machine in blk-flush.c is cloned onto the
1009                  * lower device by dm-multipath we can get here without a bio.
1010                  */
1011                 if (req->bio)
1012                         req->part = req->bio->bi_bdev;
1013                 else
1014                         req->part = req->q->disk->part0;
1015
1016                 part_stat_lock();
1017                 update_io_ticks(req->part, jiffies, false);
1018                 part_stat_unlock();
1019         }
1020 }
1021
1022 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1023 {
1024         if (rq->rq_flags & RQF_STATS)
1025                 blk_stat_add(rq, now);
1026
1027         blk_mq_sched_completed_request(rq, now);
1028         blk_account_io_done(rq, now);
1029 }
1030
1031 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1032 {
1033         if (blk_mq_need_time_stamp(rq))
1034                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1035
1036         blk_mq_finish_request(rq);
1037
1038         if (rq->end_io) {
1039                 rq_qos_done(rq->q, rq);
1040                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1041                         blk_mq_free_request(rq);
1042         } else {
1043                 blk_mq_free_request(rq);
1044         }
1045 }
1046 EXPORT_SYMBOL(__blk_mq_end_request);
1047
1048 void blk_mq_end_request(struct request *rq, blk_status_t error)
1049 {
1050         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1051                 BUG();
1052         __blk_mq_end_request(rq, error);
1053 }
1054 EXPORT_SYMBOL(blk_mq_end_request);
1055
1056 #define TAG_COMP_BATCH          32
1057
1058 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1059                                           int *tag_array, int nr_tags)
1060 {
1061         struct request_queue *q = hctx->queue;
1062
1063         /*
1064          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1065          * update hctx->nr_active in batch
1066          */
1067         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1068                 __blk_mq_sub_active_requests(hctx, nr_tags);
1069
1070         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1071         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1072 }
1073
1074 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1075 {
1076         int tags[TAG_COMP_BATCH], nr_tags = 0;
1077         struct blk_mq_hw_ctx *cur_hctx = NULL;
1078         struct request *rq;
1079         u64 now = 0;
1080
1081         if (iob->need_ts)
1082                 now = ktime_get_ns();
1083
1084         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1085                 prefetch(rq->bio);
1086                 prefetch(rq->rq_next);
1087
1088                 blk_complete_request(rq);
1089                 if (iob->need_ts)
1090                         __blk_mq_end_request_acct(rq, now);
1091
1092                 blk_mq_finish_request(rq);
1093
1094                 rq_qos_done(rq->q, rq);
1095
1096                 /*
1097                  * If end_io handler returns NONE, then it still has
1098                  * ownership of the request.
1099                  */
1100                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1101                         continue;
1102
1103                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1104                 if (!req_ref_put_and_test(rq))
1105                         continue;
1106
1107                 blk_crypto_free_request(rq);
1108                 blk_pm_mark_last_busy(rq);
1109
1110                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1111                         if (cur_hctx)
1112                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1113                         nr_tags = 0;
1114                         cur_hctx = rq->mq_hctx;
1115                 }
1116                 tags[nr_tags++] = rq->tag;
1117         }
1118
1119         if (nr_tags)
1120                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1121 }
1122 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1123
1124 static void blk_complete_reqs(struct llist_head *list)
1125 {
1126         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1127         struct request *rq, *next;
1128
1129         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1130                 rq->q->mq_ops->complete(rq);
1131 }
1132
1133 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1134 {
1135         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1136 }
1137
1138 static int blk_softirq_cpu_dead(unsigned int cpu)
1139 {
1140         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1141         return 0;
1142 }
1143
1144 static void __blk_mq_complete_request_remote(void *data)
1145 {
1146         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1147 }
1148
1149 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1150 {
1151         int cpu = raw_smp_processor_id();
1152
1153         if (!IS_ENABLED(CONFIG_SMP) ||
1154             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1155                 return false;
1156         /*
1157          * With force threaded interrupts enabled, raising softirq from an SMP
1158          * function call will always result in waking the ksoftirqd thread.
1159          * This is probably worse than completing the request on a different
1160          * cache domain.
1161          */
1162         if (force_irqthreads())
1163                 return false;
1164
1165         /* same CPU or cache domain?  Complete locally */
1166         if (cpu == rq->mq_ctx->cpu ||
1167             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1168              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1169                 return false;
1170
1171         /* don't try to IPI to an offline CPU */
1172         return cpu_online(rq->mq_ctx->cpu);
1173 }
1174
1175 static void blk_mq_complete_send_ipi(struct request *rq)
1176 {
1177         struct llist_head *list;
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         list = &per_cpu(blk_cpu_done, cpu);
1182         if (llist_add(&rq->ipi_list, list)) {
1183                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1184                 smp_call_function_single_async(cpu, &rq->csd);
1185         }
1186 }
1187
1188 static void blk_mq_raise_softirq(struct request *rq)
1189 {
1190         struct llist_head *list;
1191
1192         preempt_disable();
1193         list = this_cpu_ptr(&blk_cpu_done);
1194         if (llist_add(&rq->ipi_list, list))
1195                 raise_softirq(BLOCK_SOFTIRQ);
1196         preempt_enable();
1197 }
1198
1199 bool blk_mq_complete_request_remote(struct request *rq)
1200 {
1201         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202
1203         /*
1204          * For request which hctx has only one ctx mapping,
1205          * or a polled request, always complete locally,
1206          * it's pointless to redirect the completion.
1207          */
1208         if ((rq->mq_hctx->nr_ctx == 1 &&
1209              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210              rq->cmd_flags & REQ_POLLED)
1211                 return false;
1212
1213         if (blk_mq_complete_need_ipi(rq)) {
1214                 blk_mq_complete_send_ipi(rq);
1215                 return true;
1216         }
1217
1218         if (rq->q->nr_hw_queues == 1) {
1219                 blk_mq_raise_softirq(rq);
1220                 return true;
1221         }
1222         return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:         the request being processed
1229  *
1230  * Description:
1231  *      Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235         if (!blk_mq_complete_request_remote(rq))
1236                 rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250         struct request_queue *q = rq->q;
1251
1252         trace_block_rq_issue(rq);
1253
1254         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255                 rq->io_start_time_ns = ktime_get_ns();
1256                 rq->stats_sectors = blk_rq_sectors(rq);
1257                 rq->rq_flags |= RQF_STATS;
1258                 rq_qos_issue(q, rq);
1259         }
1260
1261         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263         blk_add_timer(rq);
1264         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268                 q->integrity.profile->prepare_fn(rq);
1269 #endif
1270         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274
1275 /*
1276  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277  * queues. This is important for md arrays to benefit from merging
1278  * requests.
1279  */
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282         if (plug->multiple_queues)
1283                 return BLK_MAX_REQUEST_COUNT * 2;
1284         return BLK_MAX_REQUEST_COUNT;
1285 }
1286
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289         struct request *last = rq_list_peek(&plug->mq_list);
1290
1291         if (!plug->rq_count) {
1292                 trace_block_plug(rq->q);
1293         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294                    (!blk_queue_nomerges(rq->q) &&
1295                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296                 blk_mq_flush_plug_list(plug, false);
1297                 last = NULL;
1298                 trace_block_plug(rq->q);
1299         }
1300
1301         if (!plug->multiple_queues && last && last->q != rq->q)
1302                 plug->multiple_queues = true;
1303         /*
1304          * Any request allocated from sched tags can't be issued to
1305          * ->queue_rqs() directly
1306          */
1307         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1308                 plug->has_elevator = true;
1309         rq->rq_next = NULL;
1310         rq_list_add(&plug->mq_list, rq);
1311         plug->rq_count++;
1312 }
1313
1314 /**
1315  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1316  * @rq:         request to insert
1317  * @at_head:    insert request at head or tail of queue
1318  *
1319  * Description:
1320  *    Insert a fully prepared request at the back of the I/O scheduler queue
1321  *    for execution.  Don't wait for completion.
1322  *
1323  * Note:
1324  *    This function will invoke @done directly if the queue is dead.
1325  */
1326 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1327 {
1328         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1329
1330         WARN_ON(irqs_disabled());
1331         WARN_ON(!blk_rq_is_passthrough(rq));
1332
1333         blk_account_io_start(rq);
1334
1335         /*
1336          * As plugging can be enabled for passthrough requests on a zoned
1337          * device, directly accessing the plug instead of using blk_mq_plug()
1338          * should not have any consequences.
1339          */
1340         if (current->plug && !at_head) {
1341                 blk_add_rq_to_plug(current->plug, rq);
1342                 return;
1343         }
1344
1345         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1346         blk_mq_run_hw_queue(hctx, false);
1347 }
1348 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1349
1350 struct blk_rq_wait {
1351         struct completion done;
1352         blk_status_t ret;
1353 };
1354
1355 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1356 {
1357         struct blk_rq_wait *wait = rq->end_io_data;
1358
1359         wait->ret = ret;
1360         complete(&wait->done);
1361         return RQ_END_IO_NONE;
1362 }
1363
1364 bool blk_rq_is_poll(struct request *rq)
1365 {
1366         if (!rq->mq_hctx)
1367                 return false;
1368         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1369                 return false;
1370         return true;
1371 }
1372 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1373
1374 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1375 {
1376         do {
1377                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1378                 cond_resched();
1379         } while (!completion_done(wait));
1380 }
1381
1382 /**
1383  * blk_execute_rq - insert a request into queue for execution
1384  * @rq:         request to insert
1385  * @at_head:    insert request at head or tail of queue
1386  *
1387  * Description:
1388  *    Insert a fully prepared request at the back of the I/O scheduler queue
1389  *    for execution and wait for completion.
1390  * Return: The blk_status_t result provided to blk_mq_end_request().
1391  */
1392 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1393 {
1394         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1395         struct blk_rq_wait wait = {
1396                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1397         };
1398
1399         WARN_ON(irqs_disabled());
1400         WARN_ON(!blk_rq_is_passthrough(rq));
1401
1402         rq->end_io_data = &wait;
1403         rq->end_io = blk_end_sync_rq;
1404
1405         blk_account_io_start(rq);
1406         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1407         blk_mq_run_hw_queue(hctx, false);
1408
1409         if (blk_rq_is_poll(rq)) {
1410                 blk_rq_poll_completion(rq, &wait.done);
1411         } else {
1412                 /*
1413                  * Prevent hang_check timer from firing at us during very long
1414                  * I/O
1415                  */
1416                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1417
1418                 if (hang_check)
1419                         while (!wait_for_completion_io_timeout(&wait.done,
1420                                         hang_check * (HZ/2)))
1421                                 ;
1422                 else
1423                         wait_for_completion_io(&wait.done);
1424         }
1425
1426         return wait.ret;
1427 }
1428 EXPORT_SYMBOL(blk_execute_rq);
1429
1430 static void __blk_mq_requeue_request(struct request *rq)
1431 {
1432         struct request_queue *q = rq->q;
1433
1434         blk_mq_put_driver_tag(rq);
1435
1436         trace_block_rq_requeue(rq);
1437         rq_qos_requeue(q, rq);
1438
1439         if (blk_mq_request_started(rq)) {
1440                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1441                 rq->rq_flags &= ~RQF_TIMED_OUT;
1442         }
1443 }
1444
1445 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1446 {
1447         struct request_queue *q = rq->q;
1448         unsigned long flags;
1449
1450         __blk_mq_requeue_request(rq);
1451
1452         /* this request will be re-inserted to io scheduler queue */
1453         blk_mq_sched_requeue_request(rq);
1454
1455         spin_lock_irqsave(&q->requeue_lock, flags);
1456         list_add_tail(&rq->queuelist, &q->requeue_list);
1457         spin_unlock_irqrestore(&q->requeue_lock, flags);
1458
1459         if (kick_requeue_list)
1460                 blk_mq_kick_requeue_list(q);
1461 }
1462 EXPORT_SYMBOL(blk_mq_requeue_request);
1463
1464 static void blk_mq_requeue_work(struct work_struct *work)
1465 {
1466         struct request_queue *q =
1467                 container_of(work, struct request_queue, requeue_work.work);
1468         LIST_HEAD(rq_list);
1469         LIST_HEAD(flush_list);
1470         struct request *rq;
1471
1472         spin_lock_irq(&q->requeue_lock);
1473         list_splice_init(&q->requeue_list, &rq_list);
1474         list_splice_init(&q->flush_list, &flush_list);
1475         spin_unlock_irq(&q->requeue_lock);
1476
1477         while (!list_empty(&rq_list)) {
1478                 rq = list_entry(rq_list.next, struct request, queuelist);
1479                 /*
1480                  * If RQF_DONTPREP ist set, the request has been started by the
1481                  * driver already and might have driver-specific data allocated
1482                  * already.  Insert it into the hctx dispatch list to avoid
1483                  * block layer merges for the request.
1484                  */
1485                 if (rq->rq_flags & RQF_DONTPREP) {
1486                         list_del_init(&rq->queuelist);
1487                         blk_mq_request_bypass_insert(rq, 0);
1488                 } else {
1489                         list_del_init(&rq->queuelist);
1490                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1491                 }
1492         }
1493
1494         while (!list_empty(&flush_list)) {
1495                 rq = list_entry(flush_list.next, struct request, queuelist);
1496                 list_del_init(&rq->queuelist);
1497                 blk_mq_insert_request(rq, 0);
1498         }
1499
1500         blk_mq_run_hw_queues(q, false);
1501 }
1502
1503 void blk_mq_kick_requeue_list(struct request_queue *q)
1504 {
1505         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1506 }
1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1508
1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1510                                     unsigned long msecs)
1511 {
1512         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1513                                     msecs_to_jiffies(msecs));
1514 }
1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1516
1517 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1518 {
1519         /*
1520          * If we find a request that isn't idle we know the queue is busy
1521          * as it's checked in the iter.
1522          * Return false to stop the iteration.
1523          */
1524         if (blk_mq_request_started(rq)) {
1525                 bool *busy = priv;
1526
1527                 *busy = true;
1528                 return false;
1529         }
1530
1531         return true;
1532 }
1533
1534 bool blk_mq_queue_inflight(struct request_queue *q)
1535 {
1536         bool busy = false;
1537
1538         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1539         return busy;
1540 }
1541 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1542
1543 static void blk_mq_rq_timed_out(struct request *req)
1544 {
1545         req->rq_flags |= RQF_TIMED_OUT;
1546         if (req->q->mq_ops->timeout) {
1547                 enum blk_eh_timer_return ret;
1548
1549                 ret = req->q->mq_ops->timeout(req);
1550                 if (ret == BLK_EH_DONE)
1551                         return;
1552                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1553         }
1554
1555         blk_add_timer(req);
1556 }
1557
1558 struct blk_expired_data {
1559         bool has_timedout_rq;
1560         unsigned long next;
1561         unsigned long timeout_start;
1562 };
1563
1564 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1565 {
1566         unsigned long deadline;
1567
1568         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1569                 return false;
1570         if (rq->rq_flags & RQF_TIMED_OUT)
1571                 return false;
1572
1573         deadline = READ_ONCE(rq->deadline);
1574         if (time_after_eq(expired->timeout_start, deadline))
1575                 return true;
1576
1577         if (expired->next == 0)
1578                 expired->next = deadline;
1579         else if (time_after(expired->next, deadline))
1580                 expired->next = deadline;
1581         return false;
1582 }
1583
1584 void blk_mq_put_rq_ref(struct request *rq)
1585 {
1586         if (is_flush_rq(rq)) {
1587                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1588                         blk_mq_free_request(rq);
1589         } else if (req_ref_put_and_test(rq)) {
1590                 __blk_mq_free_request(rq);
1591         }
1592 }
1593
1594 static bool blk_mq_check_expired(struct request *rq, void *priv)
1595 {
1596         struct blk_expired_data *expired = priv;
1597
1598         /*
1599          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1600          * be reallocated underneath the timeout handler's processing, then
1601          * the expire check is reliable. If the request is not expired, then
1602          * it was completed and reallocated as a new request after returning
1603          * from blk_mq_check_expired().
1604          */
1605         if (blk_mq_req_expired(rq, expired)) {
1606                 expired->has_timedout_rq = true;
1607                 return false;
1608         }
1609         return true;
1610 }
1611
1612 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1613 {
1614         struct blk_expired_data *expired = priv;
1615
1616         if (blk_mq_req_expired(rq, expired))
1617                 blk_mq_rq_timed_out(rq);
1618         return true;
1619 }
1620
1621 static void blk_mq_timeout_work(struct work_struct *work)
1622 {
1623         struct request_queue *q =
1624                 container_of(work, struct request_queue, timeout_work);
1625         struct blk_expired_data expired = {
1626                 .timeout_start = jiffies,
1627         };
1628         struct blk_mq_hw_ctx *hctx;
1629         unsigned long i;
1630
1631         /* A deadlock might occur if a request is stuck requiring a
1632          * timeout at the same time a queue freeze is waiting
1633          * completion, since the timeout code would not be able to
1634          * acquire the queue reference here.
1635          *
1636          * That's why we don't use blk_queue_enter here; instead, we use
1637          * percpu_ref_tryget directly, because we need to be able to
1638          * obtain a reference even in the short window between the queue
1639          * starting to freeze, by dropping the first reference in
1640          * blk_freeze_queue_start, and the moment the last request is
1641          * consumed, marked by the instant q_usage_counter reaches
1642          * zero.
1643          */
1644         if (!percpu_ref_tryget(&q->q_usage_counter))
1645                 return;
1646
1647         /* check if there is any timed-out request */
1648         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1649         if (expired.has_timedout_rq) {
1650                 /*
1651                  * Before walking tags, we must ensure any submit started
1652                  * before the current time has finished. Since the submit
1653                  * uses srcu or rcu, wait for a synchronization point to
1654                  * ensure all running submits have finished
1655                  */
1656                 blk_mq_wait_quiesce_done(q->tag_set);
1657
1658                 expired.next = 0;
1659                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1660         }
1661
1662         if (expired.next != 0) {
1663                 mod_timer(&q->timeout, expired.next);
1664         } else {
1665                 /*
1666                  * Request timeouts are handled as a forward rolling timer. If
1667                  * we end up here it means that no requests are pending and
1668                  * also that no request has been pending for a while. Mark
1669                  * each hctx as idle.
1670                  */
1671                 queue_for_each_hw_ctx(q, hctx, i) {
1672                         /* the hctx may be unmapped, so check it here */
1673                         if (blk_mq_hw_queue_mapped(hctx))
1674                                 blk_mq_tag_idle(hctx);
1675                 }
1676         }
1677         blk_queue_exit(q);
1678 }
1679
1680 struct flush_busy_ctx_data {
1681         struct blk_mq_hw_ctx *hctx;
1682         struct list_head *list;
1683 };
1684
1685 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1686 {
1687         struct flush_busy_ctx_data *flush_data = data;
1688         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1689         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1690         enum hctx_type type = hctx->type;
1691
1692         spin_lock(&ctx->lock);
1693         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1694         sbitmap_clear_bit(sb, bitnr);
1695         spin_unlock(&ctx->lock);
1696         return true;
1697 }
1698
1699 /*
1700  * Process software queues that have been marked busy, splicing them
1701  * to the for-dispatch
1702  */
1703 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1704 {
1705         struct flush_busy_ctx_data data = {
1706                 .hctx = hctx,
1707                 .list = list,
1708         };
1709
1710         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1711 }
1712 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1713
1714 struct dispatch_rq_data {
1715         struct blk_mq_hw_ctx *hctx;
1716         struct request *rq;
1717 };
1718
1719 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1720                 void *data)
1721 {
1722         struct dispatch_rq_data *dispatch_data = data;
1723         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1724         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1725         enum hctx_type type = hctx->type;
1726
1727         spin_lock(&ctx->lock);
1728         if (!list_empty(&ctx->rq_lists[type])) {
1729                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1730                 list_del_init(&dispatch_data->rq->queuelist);
1731                 if (list_empty(&ctx->rq_lists[type]))
1732                         sbitmap_clear_bit(sb, bitnr);
1733         }
1734         spin_unlock(&ctx->lock);
1735
1736         return !dispatch_data->rq;
1737 }
1738
1739 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1740                                         struct blk_mq_ctx *start)
1741 {
1742         unsigned off = start ? start->index_hw[hctx->type] : 0;
1743         struct dispatch_rq_data data = {
1744                 .hctx = hctx,
1745                 .rq   = NULL,
1746         };
1747
1748         __sbitmap_for_each_set(&hctx->ctx_map, off,
1749                                dispatch_rq_from_ctx, &data);
1750
1751         return data.rq;
1752 }
1753
1754 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1755 {
1756         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1757         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1758         int tag;
1759
1760         blk_mq_tag_busy(rq->mq_hctx);
1761
1762         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1763                 bt = &rq->mq_hctx->tags->breserved_tags;
1764                 tag_offset = 0;
1765         } else {
1766                 if (!hctx_may_queue(rq->mq_hctx, bt))
1767                         return false;
1768         }
1769
1770         tag = __sbitmap_queue_get(bt);
1771         if (tag == BLK_MQ_NO_TAG)
1772                 return false;
1773
1774         rq->tag = tag + tag_offset;
1775         return true;
1776 }
1777
1778 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1779 {
1780         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1781                 return false;
1782
1783         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1784                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1785                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1786                 __blk_mq_inc_active_requests(hctx);
1787         }
1788         hctx->tags->rqs[rq->tag] = rq;
1789         return true;
1790 }
1791
1792 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1793                                 int flags, void *key)
1794 {
1795         struct blk_mq_hw_ctx *hctx;
1796
1797         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1798
1799         spin_lock(&hctx->dispatch_wait_lock);
1800         if (!list_empty(&wait->entry)) {
1801                 struct sbitmap_queue *sbq;
1802
1803                 list_del_init(&wait->entry);
1804                 sbq = &hctx->tags->bitmap_tags;
1805                 atomic_dec(&sbq->ws_active);
1806         }
1807         spin_unlock(&hctx->dispatch_wait_lock);
1808
1809         blk_mq_run_hw_queue(hctx, true);
1810         return 1;
1811 }
1812
1813 /*
1814  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1815  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1816  * restart. For both cases, take care to check the condition again after
1817  * marking us as waiting.
1818  */
1819 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1820                                  struct request *rq)
1821 {
1822         struct sbitmap_queue *sbq;
1823         struct wait_queue_head *wq;
1824         wait_queue_entry_t *wait;
1825         bool ret;
1826
1827         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1828             !(blk_mq_is_shared_tags(hctx->flags))) {
1829                 blk_mq_sched_mark_restart_hctx(hctx);
1830
1831                 /*
1832                  * It's possible that a tag was freed in the window between the
1833                  * allocation failure and adding the hardware queue to the wait
1834                  * queue.
1835                  *
1836                  * Don't clear RESTART here, someone else could have set it.
1837                  * At most this will cost an extra queue run.
1838                  */
1839                 return blk_mq_get_driver_tag(rq);
1840         }
1841
1842         wait = &hctx->dispatch_wait;
1843         if (!list_empty_careful(&wait->entry))
1844                 return false;
1845
1846         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1847                 sbq = &hctx->tags->breserved_tags;
1848         else
1849                 sbq = &hctx->tags->bitmap_tags;
1850         wq = &bt_wait_ptr(sbq, hctx)->wait;
1851
1852         spin_lock_irq(&wq->lock);
1853         spin_lock(&hctx->dispatch_wait_lock);
1854         if (!list_empty(&wait->entry)) {
1855                 spin_unlock(&hctx->dispatch_wait_lock);
1856                 spin_unlock_irq(&wq->lock);
1857                 return false;
1858         }
1859
1860         atomic_inc(&sbq->ws_active);
1861         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1862         __add_wait_queue(wq, wait);
1863
1864         /*
1865          * It's possible that a tag was freed in the window between the
1866          * allocation failure and adding the hardware queue to the wait
1867          * queue.
1868          */
1869         ret = blk_mq_get_driver_tag(rq);
1870         if (!ret) {
1871                 spin_unlock(&hctx->dispatch_wait_lock);
1872                 spin_unlock_irq(&wq->lock);
1873                 return false;
1874         }
1875
1876         /*
1877          * We got a tag, remove ourselves from the wait queue to ensure
1878          * someone else gets the wakeup.
1879          */
1880         list_del_init(&wait->entry);
1881         atomic_dec(&sbq->ws_active);
1882         spin_unlock(&hctx->dispatch_wait_lock);
1883         spin_unlock_irq(&wq->lock);
1884
1885         return true;
1886 }
1887
1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1890 /*
1891  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1892  * - EWMA is one simple way to compute running average value
1893  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1894  * - take 4 as factor for avoiding to get too small(0) result, and this
1895  *   factor doesn't matter because EWMA decreases exponentially
1896  */
1897 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1898 {
1899         unsigned int ewma;
1900
1901         ewma = hctx->dispatch_busy;
1902
1903         if (!ewma && !busy)
1904                 return;
1905
1906         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1907         if (busy)
1908                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1909         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1910
1911         hctx->dispatch_busy = ewma;
1912 }
1913
1914 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1915
1916 static void blk_mq_handle_dev_resource(struct request *rq,
1917                                        struct list_head *list)
1918 {
1919         list_add(&rq->queuelist, list);
1920         __blk_mq_requeue_request(rq);
1921 }
1922
1923 static void blk_mq_handle_zone_resource(struct request *rq,
1924                                         struct list_head *zone_list)
1925 {
1926         /*
1927          * If we end up here it is because we cannot dispatch a request to a
1928          * specific zone due to LLD level zone-write locking or other zone
1929          * related resource not being available. In this case, set the request
1930          * aside in zone_list for retrying it later.
1931          */
1932         list_add(&rq->queuelist, zone_list);
1933         __blk_mq_requeue_request(rq);
1934 }
1935
1936 enum prep_dispatch {
1937         PREP_DISPATCH_OK,
1938         PREP_DISPATCH_NO_TAG,
1939         PREP_DISPATCH_NO_BUDGET,
1940 };
1941
1942 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1943                                                   bool need_budget)
1944 {
1945         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1946         int budget_token = -1;
1947
1948         if (need_budget) {
1949                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1950                 if (budget_token < 0) {
1951                         blk_mq_put_driver_tag(rq);
1952                         return PREP_DISPATCH_NO_BUDGET;
1953                 }
1954                 blk_mq_set_rq_budget_token(rq, budget_token);
1955         }
1956
1957         if (!blk_mq_get_driver_tag(rq)) {
1958                 /*
1959                  * The initial allocation attempt failed, so we need to
1960                  * rerun the hardware queue when a tag is freed. The
1961                  * waitqueue takes care of that. If the queue is run
1962                  * before we add this entry back on the dispatch list,
1963                  * we'll re-run it below.
1964                  */
1965                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1966                         /*
1967                          * All budgets not got from this function will be put
1968                          * together during handling partial dispatch
1969                          */
1970                         if (need_budget)
1971                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1972                         return PREP_DISPATCH_NO_TAG;
1973                 }
1974         }
1975
1976         return PREP_DISPATCH_OK;
1977 }
1978
1979 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1980 static void blk_mq_release_budgets(struct request_queue *q,
1981                 struct list_head *list)
1982 {
1983         struct request *rq;
1984
1985         list_for_each_entry(rq, list, queuelist) {
1986                 int budget_token = blk_mq_get_rq_budget_token(rq);
1987
1988                 if (budget_token >= 0)
1989                         blk_mq_put_dispatch_budget(q, budget_token);
1990         }
1991 }
1992
1993 /*
1994  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1995  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1996  * details)
1997  * Attention, we should explicitly call this in unusual cases:
1998  *  1) did not queue everything initially scheduled to queue
1999  *  2) the last attempt to queue a request failed
2000  */
2001 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2002                               bool from_schedule)
2003 {
2004         if (hctx->queue->mq_ops->commit_rqs && queued) {
2005                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2006                 hctx->queue->mq_ops->commit_rqs(hctx);
2007         }
2008 }
2009
2010 /*
2011  * Returns true if we did some work AND can potentially do more.
2012  */
2013 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2014                              unsigned int nr_budgets)
2015 {
2016         enum prep_dispatch prep;
2017         struct request_queue *q = hctx->queue;
2018         struct request *rq;
2019         int queued;
2020         blk_status_t ret = BLK_STS_OK;
2021         LIST_HEAD(zone_list);
2022         bool needs_resource = false;
2023
2024         if (list_empty(list))
2025                 return false;
2026
2027         /*
2028          * Now process all the entries, sending them to the driver.
2029          */
2030         queued = 0;
2031         do {
2032                 struct blk_mq_queue_data bd;
2033
2034                 rq = list_first_entry(list, struct request, queuelist);
2035
2036                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2037                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2038                 if (prep != PREP_DISPATCH_OK)
2039                         break;
2040
2041                 list_del_init(&rq->queuelist);
2042
2043                 bd.rq = rq;
2044                 bd.last = list_empty(list);
2045
2046                 /*
2047                  * once the request is queued to lld, no need to cover the
2048                  * budget any more
2049                  */
2050                 if (nr_budgets)
2051                         nr_budgets--;
2052                 ret = q->mq_ops->queue_rq(hctx, &bd);
2053                 switch (ret) {
2054                 case BLK_STS_OK:
2055                         queued++;
2056                         break;
2057                 case BLK_STS_RESOURCE:
2058                         needs_resource = true;
2059                         fallthrough;
2060                 case BLK_STS_DEV_RESOURCE:
2061                         blk_mq_handle_dev_resource(rq, list);
2062                         goto out;
2063                 case BLK_STS_ZONE_RESOURCE:
2064                         /*
2065                          * Move the request to zone_list and keep going through
2066                          * the dispatch list to find more requests the drive can
2067                          * accept.
2068                          */
2069                         blk_mq_handle_zone_resource(rq, &zone_list);
2070                         needs_resource = true;
2071                         break;
2072                 default:
2073                         blk_mq_end_request(rq, ret);
2074                 }
2075         } while (!list_empty(list));
2076 out:
2077         if (!list_empty(&zone_list))
2078                 list_splice_tail_init(&zone_list, list);
2079
2080         /* If we didn't flush the entire list, we could have told the driver
2081          * there was more coming, but that turned out to be a lie.
2082          */
2083         if (!list_empty(list) || ret != BLK_STS_OK)
2084                 blk_mq_commit_rqs(hctx, queued, false);
2085
2086         /*
2087          * Any items that need requeuing? Stuff them into hctx->dispatch,
2088          * that is where we will continue on next queue run.
2089          */
2090         if (!list_empty(list)) {
2091                 bool needs_restart;
2092                 /* For non-shared tags, the RESTART check will suffice */
2093                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2094                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2095                         blk_mq_is_shared_tags(hctx->flags));
2096
2097                 if (nr_budgets)
2098                         blk_mq_release_budgets(q, list);
2099
2100                 spin_lock(&hctx->lock);
2101                 list_splice_tail_init(list, &hctx->dispatch);
2102                 spin_unlock(&hctx->lock);
2103
2104                 /*
2105                  * Order adding requests to hctx->dispatch and checking
2106                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2107                  * in blk_mq_sched_restart(). Avoid restart code path to
2108                  * miss the new added requests to hctx->dispatch, meantime
2109                  * SCHED_RESTART is observed here.
2110                  */
2111                 smp_mb();
2112
2113                 /*
2114                  * If SCHED_RESTART was set by the caller of this function and
2115                  * it is no longer set that means that it was cleared by another
2116                  * thread and hence that a queue rerun is needed.
2117                  *
2118                  * If 'no_tag' is set, that means that we failed getting
2119                  * a driver tag with an I/O scheduler attached. If our dispatch
2120                  * waitqueue is no longer active, ensure that we run the queue
2121                  * AFTER adding our entries back to the list.
2122                  *
2123                  * If no I/O scheduler has been configured it is possible that
2124                  * the hardware queue got stopped and restarted before requests
2125                  * were pushed back onto the dispatch list. Rerun the queue to
2126                  * avoid starvation. Notes:
2127                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2128                  *   been stopped before rerunning a queue.
2129                  * - Some but not all block drivers stop a queue before
2130                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2131                  *   and dm-rq.
2132                  *
2133                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2134                  * bit is set, run queue after a delay to avoid IO stalls
2135                  * that could otherwise occur if the queue is idle.  We'll do
2136                  * similar if we couldn't get budget or couldn't lock a zone
2137                  * and SCHED_RESTART is set.
2138                  */
2139                 needs_restart = blk_mq_sched_needs_restart(hctx);
2140                 if (prep == PREP_DISPATCH_NO_BUDGET)
2141                         needs_resource = true;
2142                 if (!needs_restart ||
2143                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2144                         blk_mq_run_hw_queue(hctx, true);
2145                 else if (needs_resource)
2146                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2147
2148                 blk_mq_update_dispatch_busy(hctx, true);
2149                 return false;
2150         }
2151
2152         blk_mq_update_dispatch_busy(hctx, false);
2153         return true;
2154 }
2155
2156 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2157 {
2158         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2159
2160         if (cpu >= nr_cpu_ids)
2161                 cpu = cpumask_first(hctx->cpumask);
2162         return cpu;
2163 }
2164
2165 /*
2166  * It'd be great if the workqueue API had a way to pass
2167  * in a mask and had some smarts for more clever placement.
2168  * For now we just round-robin here, switching for every
2169  * BLK_MQ_CPU_WORK_BATCH queued items.
2170  */
2171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2172 {
2173         bool tried = false;
2174         int next_cpu = hctx->next_cpu;
2175
2176         if (hctx->queue->nr_hw_queues == 1)
2177                 return WORK_CPU_UNBOUND;
2178
2179         if (--hctx->next_cpu_batch <= 0) {
2180 select_cpu:
2181                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2182                                 cpu_online_mask);
2183                 if (next_cpu >= nr_cpu_ids)
2184                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2185                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2186         }
2187
2188         /*
2189          * Do unbound schedule if we can't find a online CPU for this hctx,
2190          * and it should only happen in the path of handling CPU DEAD.
2191          */
2192         if (!cpu_online(next_cpu)) {
2193                 if (!tried) {
2194                         tried = true;
2195                         goto select_cpu;
2196                 }
2197
2198                 /*
2199                  * Make sure to re-select CPU next time once after CPUs
2200                  * in hctx->cpumask become online again.
2201                  */
2202                 hctx->next_cpu = next_cpu;
2203                 hctx->next_cpu_batch = 1;
2204                 return WORK_CPU_UNBOUND;
2205         }
2206
2207         hctx->next_cpu = next_cpu;
2208         return next_cpu;
2209 }
2210
2211 /**
2212  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2213  * @hctx: Pointer to the hardware queue to run.
2214  * @msecs: Milliseconds of delay to wait before running the queue.
2215  *
2216  * Run a hardware queue asynchronously with a delay of @msecs.
2217  */
2218 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2219 {
2220         if (unlikely(blk_mq_hctx_stopped(hctx)))
2221                 return;
2222         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2223                                     msecs_to_jiffies(msecs));
2224 }
2225 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2226
2227 /**
2228  * blk_mq_run_hw_queue - Start to run a hardware queue.
2229  * @hctx: Pointer to the hardware queue to run.
2230  * @async: If we want to run the queue asynchronously.
2231  *
2232  * Check if the request queue is not in a quiesced state and if there are
2233  * pending requests to be sent. If this is true, run the queue to send requests
2234  * to hardware.
2235  */
2236 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2237 {
2238         bool need_run;
2239
2240         /*
2241          * We can't run the queue inline with interrupts disabled.
2242          */
2243         WARN_ON_ONCE(!async && in_interrupt());
2244
2245         /*
2246          * When queue is quiesced, we may be switching io scheduler, or
2247          * updating nr_hw_queues, or other things, and we can't run queue
2248          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2249          *
2250          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2251          * quiesced.
2252          */
2253         __blk_mq_run_dispatch_ops(hctx->queue, false,
2254                 need_run = !blk_queue_quiesced(hctx->queue) &&
2255                 blk_mq_hctx_has_pending(hctx));
2256
2257         if (!need_run)
2258                 return;
2259
2260         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2261             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2262                 blk_mq_delay_run_hw_queue(hctx, 0);
2263                 return;
2264         }
2265
2266         blk_mq_run_dispatch_ops(hctx->queue,
2267                                 blk_mq_sched_dispatch_requests(hctx));
2268 }
2269 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2270
2271 /*
2272  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2273  * scheduler.
2274  */
2275 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2276 {
2277         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2278         /*
2279          * If the IO scheduler does not respect hardware queues when
2280          * dispatching, we just don't bother with multiple HW queues and
2281          * dispatch from hctx for the current CPU since running multiple queues
2282          * just causes lock contention inside the scheduler and pointless cache
2283          * bouncing.
2284          */
2285         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2286
2287         if (!blk_mq_hctx_stopped(hctx))
2288                 return hctx;
2289         return NULL;
2290 }
2291
2292 /**
2293  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2294  * @q: Pointer to the request queue to run.
2295  * @async: If we want to run the queue asynchronously.
2296  */
2297 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2298 {
2299         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2300         unsigned long i;
2301
2302         sq_hctx = NULL;
2303         if (blk_queue_sq_sched(q))
2304                 sq_hctx = blk_mq_get_sq_hctx(q);
2305         queue_for_each_hw_ctx(q, hctx, i) {
2306                 if (blk_mq_hctx_stopped(hctx))
2307                         continue;
2308                 /*
2309                  * Dispatch from this hctx either if there's no hctx preferred
2310                  * by IO scheduler or if it has requests that bypass the
2311                  * scheduler.
2312                  */
2313                 if (!sq_hctx || sq_hctx == hctx ||
2314                     !list_empty_careful(&hctx->dispatch))
2315                         blk_mq_run_hw_queue(hctx, async);
2316         }
2317 }
2318 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2319
2320 /**
2321  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2322  * @q: Pointer to the request queue to run.
2323  * @msecs: Milliseconds of delay to wait before running the queues.
2324  */
2325 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2326 {
2327         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2328         unsigned long i;
2329
2330         sq_hctx = NULL;
2331         if (blk_queue_sq_sched(q))
2332                 sq_hctx = blk_mq_get_sq_hctx(q);
2333         queue_for_each_hw_ctx(q, hctx, i) {
2334                 if (blk_mq_hctx_stopped(hctx))
2335                         continue;
2336                 /*
2337                  * If there is already a run_work pending, leave the
2338                  * pending delay untouched. Otherwise, a hctx can stall
2339                  * if another hctx is re-delaying the other's work
2340                  * before the work executes.
2341                  */
2342                 if (delayed_work_pending(&hctx->run_work))
2343                         continue;
2344                 /*
2345                  * Dispatch from this hctx either if there's no hctx preferred
2346                  * by IO scheduler or if it has requests that bypass the
2347                  * scheduler.
2348                  */
2349                 if (!sq_hctx || sq_hctx == hctx ||
2350                     !list_empty_careful(&hctx->dispatch))
2351                         blk_mq_delay_run_hw_queue(hctx, msecs);
2352         }
2353 }
2354 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2355
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queue() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2366 {
2367         cancel_delayed_work(&hctx->run_work);
2368
2369         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2370 }
2371 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2372
2373 /*
2374  * This function is often used for pausing .queue_rq() by driver when
2375  * there isn't enough resource or some conditions aren't satisfied, and
2376  * BLK_STS_RESOURCE is usually returned.
2377  *
2378  * We do not guarantee that dispatch can be drained or blocked
2379  * after blk_mq_stop_hw_queues() returns. Please use
2380  * blk_mq_quiesce_queue() for that requirement.
2381  */
2382 void blk_mq_stop_hw_queues(struct request_queue *q)
2383 {
2384         struct blk_mq_hw_ctx *hctx;
2385         unsigned long i;
2386
2387         queue_for_each_hw_ctx(q, hctx, i)
2388                 blk_mq_stop_hw_queue(hctx);
2389 }
2390 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2391
2392 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2393 {
2394         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395
2396         blk_mq_run_hw_queue(hctx, false);
2397 }
2398 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2399
2400 void blk_mq_start_hw_queues(struct request_queue *q)
2401 {
2402         struct blk_mq_hw_ctx *hctx;
2403         unsigned long i;
2404
2405         queue_for_each_hw_ctx(q, hctx, i)
2406                 blk_mq_start_hw_queue(hctx);
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2409
2410 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2411 {
2412         if (!blk_mq_hctx_stopped(hctx))
2413                 return;
2414
2415         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2416         blk_mq_run_hw_queue(hctx, async);
2417 }
2418 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2419
2420 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2421 {
2422         struct blk_mq_hw_ctx *hctx;
2423         unsigned long i;
2424
2425         queue_for_each_hw_ctx(q, hctx, i)
2426                 blk_mq_start_stopped_hw_queue(hctx, async);
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2429
2430 static void blk_mq_run_work_fn(struct work_struct *work)
2431 {
2432         struct blk_mq_hw_ctx *hctx =
2433                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2434
2435         blk_mq_run_dispatch_ops(hctx->queue,
2436                                 blk_mq_sched_dispatch_requests(hctx));
2437 }
2438
2439 /**
2440  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2441  * @rq: Pointer to request to be inserted.
2442  * @flags: BLK_MQ_INSERT_*
2443  *
2444  * Should only be used carefully, when the caller knows we want to
2445  * bypass a potential IO scheduler on the target device.
2446  */
2447 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2448 {
2449         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2450
2451         spin_lock(&hctx->lock);
2452         if (flags & BLK_MQ_INSERT_AT_HEAD)
2453                 list_add(&rq->queuelist, &hctx->dispatch);
2454         else
2455                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2456         spin_unlock(&hctx->lock);
2457 }
2458
2459 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2460                 struct blk_mq_ctx *ctx, struct list_head *list,
2461                 bool run_queue_async)
2462 {
2463         struct request *rq;
2464         enum hctx_type type = hctx->type;
2465
2466         /*
2467          * Try to issue requests directly if the hw queue isn't busy to save an
2468          * extra enqueue & dequeue to the sw queue.
2469          */
2470         if (!hctx->dispatch_busy && !run_queue_async) {
2471                 blk_mq_run_dispatch_ops(hctx->queue,
2472                         blk_mq_try_issue_list_directly(hctx, list));
2473                 if (list_empty(list))
2474                         goto out;
2475         }
2476
2477         /*
2478          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2479          * offline now
2480          */
2481         list_for_each_entry(rq, list, queuelist) {
2482                 BUG_ON(rq->mq_ctx != ctx);
2483                 trace_block_rq_insert(rq);
2484         }
2485
2486         spin_lock(&ctx->lock);
2487         list_splice_tail_init(list, &ctx->rq_lists[type]);
2488         blk_mq_hctx_mark_pending(hctx, ctx);
2489         spin_unlock(&ctx->lock);
2490 out:
2491         blk_mq_run_hw_queue(hctx, run_queue_async);
2492 }
2493
2494 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2495 {
2496         struct request_queue *q = rq->q;
2497         struct blk_mq_ctx *ctx = rq->mq_ctx;
2498         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2499
2500         if (blk_rq_is_passthrough(rq)) {
2501                 /*
2502                  * Passthrough request have to be added to hctx->dispatch
2503                  * directly.  The device may be in a situation where it can't
2504                  * handle FS request, and always returns BLK_STS_RESOURCE for
2505                  * them, which gets them added to hctx->dispatch.
2506                  *
2507                  * If a passthrough request is required to unblock the queues,
2508                  * and it is added to the scheduler queue, there is no chance to
2509                  * dispatch it given we prioritize requests in hctx->dispatch.
2510                  */
2511                 blk_mq_request_bypass_insert(rq, flags);
2512         } else if (req_op(rq) == REQ_OP_FLUSH) {
2513                 /*
2514                  * Firstly normal IO request is inserted to scheduler queue or
2515                  * sw queue, meantime we add flush request to dispatch queue(
2516                  * hctx->dispatch) directly and there is at most one in-flight
2517                  * flush request for each hw queue, so it doesn't matter to add
2518                  * flush request to tail or front of the dispatch queue.
2519                  *
2520                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2521                  * command, and queueing it will fail when there is any
2522                  * in-flight normal IO request(NCQ command). When adding flush
2523                  * rq to the front of hctx->dispatch, it is easier to introduce
2524                  * extra time to flush rq's latency because of S_SCHED_RESTART
2525                  * compared with adding to the tail of dispatch queue, then
2526                  * chance of flush merge is increased, and less flush requests
2527                  * will be issued to controller. It is observed that ~10% time
2528                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2529                  * drive when adding flush rq to the front of hctx->dispatch.
2530                  *
2531                  * Simply queue flush rq to the front of hctx->dispatch so that
2532                  * intensive flush workloads can benefit in case of NCQ HW.
2533                  */
2534                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2535         } else if (q->elevator) {
2536                 LIST_HEAD(list);
2537
2538                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2539
2540                 list_add(&rq->queuelist, &list);
2541                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2542         } else {
2543                 trace_block_rq_insert(rq);
2544
2545                 spin_lock(&ctx->lock);
2546                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2547                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2548                 else
2549                         list_add_tail(&rq->queuelist,
2550                                       &ctx->rq_lists[hctx->type]);
2551                 blk_mq_hctx_mark_pending(hctx, ctx);
2552                 spin_unlock(&ctx->lock);
2553         }
2554 }
2555
2556 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2557                 unsigned int nr_segs)
2558 {
2559         int err;
2560
2561         if (bio->bi_opf & REQ_RAHEAD)
2562                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2563
2564         rq->__sector = bio->bi_iter.bi_sector;
2565         blk_rq_bio_prep(rq, bio, nr_segs);
2566
2567         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2568         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2569         WARN_ON_ONCE(err);
2570
2571         blk_account_io_start(rq);
2572 }
2573
2574 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2575                                             struct request *rq, bool last)
2576 {
2577         struct request_queue *q = rq->q;
2578         struct blk_mq_queue_data bd = {
2579                 .rq = rq,
2580                 .last = last,
2581         };
2582         blk_status_t ret;
2583
2584         /*
2585          * For OK queue, we are done. For error, caller may kill it.
2586          * Any other error (busy), just add it to our list as we
2587          * previously would have done.
2588          */
2589         ret = q->mq_ops->queue_rq(hctx, &bd);
2590         switch (ret) {
2591         case BLK_STS_OK:
2592                 blk_mq_update_dispatch_busy(hctx, false);
2593                 break;
2594         case BLK_STS_RESOURCE:
2595         case BLK_STS_DEV_RESOURCE:
2596                 blk_mq_update_dispatch_busy(hctx, true);
2597                 __blk_mq_requeue_request(rq);
2598                 break;
2599         default:
2600                 blk_mq_update_dispatch_busy(hctx, false);
2601                 break;
2602         }
2603
2604         return ret;
2605 }
2606
2607 static bool blk_mq_get_budget_and_tag(struct request *rq)
2608 {
2609         int budget_token;
2610
2611         budget_token = blk_mq_get_dispatch_budget(rq->q);
2612         if (budget_token < 0)
2613                 return false;
2614         blk_mq_set_rq_budget_token(rq, budget_token);
2615         if (!blk_mq_get_driver_tag(rq)) {
2616                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2617                 return false;
2618         }
2619         return true;
2620 }
2621
2622 /**
2623  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2624  * @hctx: Pointer of the associated hardware queue.
2625  * @rq: Pointer to request to be sent.
2626  *
2627  * If the device has enough resources to accept a new request now, send the
2628  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2629  * we can try send it another time in the future. Requests inserted at this
2630  * queue have higher priority.
2631  */
2632 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2633                 struct request *rq)
2634 {
2635         blk_status_t ret;
2636
2637         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2638                 blk_mq_insert_request(rq, 0);
2639                 return;
2640         }
2641
2642         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2643                 blk_mq_insert_request(rq, 0);
2644                 blk_mq_run_hw_queue(hctx, false);
2645                 return;
2646         }
2647
2648         ret = __blk_mq_issue_directly(hctx, rq, true);
2649         switch (ret) {
2650         case BLK_STS_OK:
2651                 break;
2652         case BLK_STS_RESOURCE:
2653         case BLK_STS_DEV_RESOURCE:
2654                 blk_mq_request_bypass_insert(rq, 0);
2655                 blk_mq_run_hw_queue(hctx, false);
2656                 break;
2657         default:
2658                 blk_mq_end_request(rq, ret);
2659                 break;
2660         }
2661 }
2662
2663 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2664 {
2665         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2666
2667         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2668                 blk_mq_insert_request(rq, 0);
2669                 return BLK_STS_OK;
2670         }
2671
2672         if (!blk_mq_get_budget_and_tag(rq))
2673                 return BLK_STS_RESOURCE;
2674         return __blk_mq_issue_directly(hctx, rq, last);
2675 }
2676
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679         struct blk_mq_hw_ctx *hctx = NULL;
2680         struct request *rq;
2681         int queued = 0;
2682         blk_status_t ret = BLK_STS_OK;
2683
2684         while ((rq = rq_list_pop(&plug->mq_list))) {
2685                 bool last = rq_list_empty(plug->mq_list);
2686
2687                 if (hctx != rq->mq_hctx) {
2688                         if (hctx) {
2689                                 blk_mq_commit_rqs(hctx, queued, false);
2690                                 queued = 0;
2691                         }
2692                         hctx = rq->mq_hctx;
2693                 }
2694
2695                 ret = blk_mq_request_issue_directly(rq, last);
2696                 switch (ret) {
2697                 case BLK_STS_OK:
2698                         queued++;
2699                         break;
2700                 case BLK_STS_RESOURCE:
2701                 case BLK_STS_DEV_RESOURCE:
2702                         blk_mq_request_bypass_insert(rq, 0);
2703                         blk_mq_run_hw_queue(hctx, false);
2704                         goto out;
2705                 default:
2706                         blk_mq_end_request(rq, ret);
2707                         break;
2708                 }
2709         }
2710
2711 out:
2712         if (ret != BLK_STS_OK)
2713                 blk_mq_commit_rqs(hctx, queued, false);
2714 }
2715
2716 static void __blk_mq_flush_plug_list(struct request_queue *q,
2717                                      struct blk_plug *plug)
2718 {
2719         if (blk_queue_quiesced(q))
2720                 return;
2721         q->mq_ops->queue_rqs(&plug->mq_list);
2722 }
2723
2724 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2725 {
2726         struct blk_mq_hw_ctx *this_hctx = NULL;
2727         struct blk_mq_ctx *this_ctx = NULL;
2728         struct request *requeue_list = NULL;
2729         struct request **requeue_lastp = &requeue_list;
2730         unsigned int depth = 0;
2731         bool is_passthrough = false;
2732         LIST_HEAD(list);
2733
2734         do {
2735                 struct request *rq = rq_list_pop(&plug->mq_list);
2736
2737                 if (!this_hctx) {
2738                         this_hctx = rq->mq_hctx;
2739                         this_ctx = rq->mq_ctx;
2740                         is_passthrough = blk_rq_is_passthrough(rq);
2741                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2742                            is_passthrough != blk_rq_is_passthrough(rq)) {
2743                         rq_list_add_tail(&requeue_lastp, rq);
2744                         continue;
2745                 }
2746                 list_add(&rq->queuelist, &list);
2747                 depth++;
2748         } while (!rq_list_empty(plug->mq_list));
2749
2750         plug->mq_list = requeue_list;
2751         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2752
2753         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2754         /* passthrough requests should never be issued to the I/O scheduler */
2755         if (is_passthrough) {
2756                 spin_lock(&this_hctx->lock);
2757                 list_splice_tail_init(&list, &this_hctx->dispatch);
2758                 spin_unlock(&this_hctx->lock);
2759                 blk_mq_run_hw_queue(this_hctx, from_sched);
2760         } else if (this_hctx->queue->elevator) {
2761                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2762                                 &list, 0);
2763                 blk_mq_run_hw_queue(this_hctx, from_sched);
2764         } else {
2765                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2766         }
2767         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2768 }
2769
2770 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2771 {
2772         struct request *rq;
2773
2774         /*
2775          * We may have been called recursively midway through handling
2776          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2777          * To avoid mq_list changing under our feet, clear rq_count early and
2778          * bail out specifically if rq_count is 0 rather than checking
2779          * whether the mq_list is empty.
2780          */
2781         if (plug->rq_count == 0)
2782                 return;
2783         plug->rq_count = 0;
2784
2785         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2786                 struct request_queue *q;
2787
2788                 rq = rq_list_peek(&plug->mq_list);
2789                 q = rq->q;
2790
2791                 /*
2792                  * Peek first request and see if we have a ->queue_rqs() hook.
2793                  * If we do, we can dispatch the whole plug list in one go. We
2794                  * already know at this point that all requests belong to the
2795                  * same queue, caller must ensure that's the case.
2796                  *
2797                  * Since we pass off the full list to the driver at this point,
2798                  * we do not increment the active request count for the queue.
2799                  * Bypass shared tags for now because of that.
2800                  */
2801                 if (q->mq_ops->queue_rqs &&
2802                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2803                         blk_mq_run_dispatch_ops(q,
2804                                 __blk_mq_flush_plug_list(q, plug));
2805                         if (rq_list_empty(plug->mq_list))
2806                                 return;
2807                 }
2808
2809                 blk_mq_run_dispatch_ops(q,
2810                                 blk_mq_plug_issue_direct(plug));
2811                 if (rq_list_empty(plug->mq_list))
2812                         return;
2813         }
2814
2815         do {
2816                 blk_mq_dispatch_plug_list(plug, from_schedule);
2817         } while (!rq_list_empty(plug->mq_list));
2818 }
2819
2820 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2821                 struct list_head *list)
2822 {
2823         int queued = 0;
2824         blk_status_t ret = BLK_STS_OK;
2825
2826         while (!list_empty(list)) {
2827                 struct request *rq = list_first_entry(list, struct request,
2828                                 queuelist);
2829
2830                 list_del_init(&rq->queuelist);
2831                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2832                 switch (ret) {
2833                 case BLK_STS_OK:
2834                         queued++;
2835                         break;
2836                 case BLK_STS_RESOURCE:
2837                 case BLK_STS_DEV_RESOURCE:
2838                         blk_mq_request_bypass_insert(rq, 0);
2839                         if (list_empty(list))
2840                                 blk_mq_run_hw_queue(hctx, false);
2841                         goto out;
2842                 default:
2843                         blk_mq_end_request(rq, ret);
2844                         break;
2845                 }
2846         }
2847
2848 out:
2849         if (ret != BLK_STS_OK)
2850                 blk_mq_commit_rqs(hctx, queued, false);
2851 }
2852
2853 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2854                                      struct bio *bio, unsigned int nr_segs)
2855 {
2856         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2857                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2858                         return true;
2859                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2860                         return true;
2861         }
2862         return false;
2863 }
2864
2865 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2866                                                struct blk_plug *plug,
2867                                                struct bio *bio,
2868                                                unsigned int nsegs)
2869 {
2870         struct blk_mq_alloc_data data = {
2871                 .q              = q,
2872                 .nr_tags        = 1,
2873                 .cmd_flags      = bio->bi_opf,
2874         };
2875         struct request *rq;
2876
2877         if (unlikely(bio_queue_enter(bio)))
2878                 return NULL;
2879
2880         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2881                 goto queue_exit;
2882
2883         rq_qos_throttle(q, bio);
2884
2885         if (plug) {
2886                 data.nr_tags = plug->nr_ios;
2887                 plug->nr_ios = 1;
2888                 data.cached_rq = &plug->cached_rq;
2889         }
2890
2891         rq = __blk_mq_alloc_requests(&data);
2892         if (rq)
2893                 return rq;
2894         rq_qos_cleanup(q, bio);
2895         if (bio->bi_opf & REQ_NOWAIT)
2896                 bio_wouldblock_error(bio);
2897 queue_exit:
2898         blk_queue_exit(q);
2899         return NULL;
2900 }
2901
2902 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2903                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2904 {
2905         struct request *rq;
2906         enum hctx_type type, hctx_type;
2907
2908         if (!plug)
2909                 return NULL;
2910         rq = rq_list_peek(&plug->cached_rq);
2911         if (!rq || rq->q != q)
2912                 return NULL;
2913
2914         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2915                 *bio = NULL;
2916                 return NULL;
2917         }
2918
2919         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2920         hctx_type = rq->mq_hctx->type;
2921         if (type != hctx_type &&
2922             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2923                 return NULL;
2924         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2925                 return NULL;
2926
2927         /*
2928          * If any qos ->throttle() end up blocking, we will have flushed the
2929          * plug and hence killed the cached_rq list as well. Pop this entry
2930          * before we throttle.
2931          */
2932         plug->cached_rq = rq_list_next(rq);
2933         rq_qos_throttle(q, *bio);
2934
2935         blk_mq_rq_time_init(rq, 0);
2936         rq->cmd_flags = (*bio)->bi_opf;
2937         INIT_LIST_HEAD(&rq->queuelist);
2938         return rq;
2939 }
2940
2941 static void bio_set_ioprio(struct bio *bio)
2942 {
2943         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2944         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2945                 bio->bi_ioprio = get_current_ioprio();
2946         blkcg_set_ioprio(bio);
2947 }
2948
2949 /**
2950  * blk_mq_submit_bio - Create and send a request to block device.
2951  * @bio: Bio pointer.
2952  *
2953  * Builds up a request structure from @q and @bio and send to the device. The
2954  * request may not be queued directly to hardware if:
2955  * * This request can be merged with another one
2956  * * We want to place request at plug queue for possible future merging
2957  * * There is an IO scheduler active at this queue
2958  *
2959  * It will not queue the request if there is an error with the bio, or at the
2960  * request creation.
2961  */
2962 void blk_mq_submit_bio(struct bio *bio)
2963 {
2964         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2965         struct blk_plug *plug = blk_mq_plug(bio);
2966         const int is_sync = op_is_sync(bio->bi_opf);
2967         struct blk_mq_hw_ctx *hctx;
2968         struct request *rq;
2969         unsigned int nr_segs = 1;
2970         blk_status_t ret;
2971
2972         bio = blk_queue_bounce(bio, q);
2973         if (bio_may_exceed_limits(bio, &q->limits)) {
2974                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2975                 if (!bio)
2976                         return;
2977         }
2978
2979         if (!bio_integrity_prep(bio))
2980                 return;
2981
2982         bio_set_ioprio(bio);
2983
2984         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2985         if (!rq) {
2986                 if (!bio)
2987                         return;
2988                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2989                 if (unlikely(!rq))
2990                         return;
2991         }
2992
2993         trace_block_getrq(bio);
2994
2995         rq_qos_track(q, rq, bio);
2996
2997         blk_mq_bio_to_request(rq, bio, nr_segs);
2998
2999         ret = blk_crypto_rq_get_keyslot(rq);
3000         if (ret != BLK_STS_OK) {
3001                 bio->bi_status = ret;
3002                 bio_endio(bio);
3003                 blk_mq_free_request(rq);
3004                 return;
3005         }
3006
3007         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3008                 return;
3009
3010         if (plug) {
3011                 blk_add_rq_to_plug(plug, rq);
3012                 return;
3013         }
3014
3015         hctx = rq->mq_hctx;
3016         if ((rq->rq_flags & RQF_USE_SCHED) ||
3017             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3018                 blk_mq_insert_request(rq, 0);
3019                 blk_mq_run_hw_queue(hctx, true);
3020         } else {
3021                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3022         }
3023 }
3024
3025 #ifdef CONFIG_BLK_MQ_STACKING
3026 /**
3027  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3028  * @rq: the request being queued
3029  */
3030 blk_status_t blk_insert_cloned_request(struct request *rq)
3031 {
3032         struct request_queue *q = rq->q;
3033         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3034         unsigned int max_segments = blk_rq_get_max_segments(rq);
3035         blk_status_t ret;
3036
3037         if (blk_rq_sectors(rq) > max_sectors) {
3038                 /*
3039                  * SCSI device does not have a good way to return if
3040                  * Write Same/Zero is actually supported. If a device rejects
3041                  * a non-read/write command (discard, write same,etc.) the
3042                  * low-level device driver will set the relevant queue limit to
3043                  * 0 to prevent blk-lib from issuing more of the offending
3044                  * operations. Commands queued prior to the queue limit being
3045                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3046                  * errors being propagated to upper layers.
3047                  */
3048                 if (max_sectors == 0)
3049                         return BLK_STS_NOTSUPP;
3050
3051                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3052                         __func__, blk_rq_sectors(rq), max_sectors);
3053                 return BLK_STS_IOERR;
3054         }
3055
3056         /*
3057          * The queue settings related to segment counting may differ from the
3058          * original queue.
3059          */
3060         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3061         if (rq->nr_phys_segments > max_segments) {
3062                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3063                         __func__, rq->nr_phys_segments, max_segments);
3064                 return BLK_STS_IOERR;
3065         }
3066
3067         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3068                 return BLK_STS_IOERR;
3069
3070         ret = blk_crypto_rq_get_keyslot(rq);
3071         if (ret != BLK_STS_OK)
3072                 return ret;
3073
3074         blk_account_io_start(rq);
3075
3076         /*
3077          * Since we have a scheduler attached on the top device,
3078          * bypass a potential scheduler on the bottom device for
3079          * insert.
3080          */
3081         blk_mq_run_dispatch_ops(q,
3082                         ret = blk_mq_request_issue_directly(rq, true));
3083         if (ret)
3084                 blk_account_io_done(rq, ktime_get_ns());
3085         return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3088
3089 /**
3090  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3091  * @rq: the clone request to be cleaned up
3092  *
3093  * Description:
3094  *     Free all bios in @rq for a cloned request.
3095  */
3096 void blk_rq_unprep_clone(struct request *rq)
3097 {
3098         struct bio *bio;
3099
3100         while ((bio = rq->bio) != NULL) {
3101                 rq->bio = bio->bi_next;
3102
3103                 bio_put(bio);
3104         }
3105 }
3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3107
3108 /**
3109  * blk_rq_prep_clone - Helper function to setup clone request
3110  * @rq: the request to be setup
3111  * @rq_src: original request to be cloned
3112  * @bs: bio_set that bios for clone are allocated from
3113  * @gfp_mask: memory allocation mask for bio
3114  * @bio_ctr: setup function to be called for each clone bio.
3115  *           Returns %0 for success, non %0 for failure.
3116  * @data: private data to be passed to @bio_ctr
3117  *
3118  * Description:
3119  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3120  *     Also, pages which the original bios are pointing to are not copied
3121  *     and the cloned bios just point same pages.
3122  *     So cloned bios must be completed before original bios, which means
3123  *     the caller must complete @rq before @rq_src.
3124  */
3125 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3126                       struct bio_set *bs, gfp_t gfp_mask,
3127                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3128                       void *data)
3129 {
3130         struct bio *bio, *bio_src;
3131
3132         if (!bs)
3133                 bs = &fs_bio_set;
3134
3135         __rq_for_each_bio(bio_src, rq_src) {
3136                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3137                                       bs);
3138                 if (!bio)
3139                         goto free_and_out;
3140
3141                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3142                         goto free_and_out;
3143
3144                 if (rq->bio) {
3145                         rq->biotail->bi_next = bio;
3146                         rq->biotail = bio;
3147                 } else {
3148                         rq->bio = rq->biotail = bio;
3149                 }
3150                 bio = NULL;
3151         }
3152
3153         /* Copy attributes of the original request to the clone request. */
3154         rq->__sector = blk_rq_pos(rq_src);
3155         rq->__data_len = blk_rq_bytes(rq_src);
3156         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3157                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3158                 rq->special_vec = rq_src->special_vec;
3159         }
3160         rq->nr_phys_segments = rq_src->nr_phys_segments;
3161         rq->ioprio = rq_src->ioprio;
3162
3163         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3164                 goto free_and_out;
3165
3166         return 0;
3167
3168 free_and_out:
3169         if (bio)
3170                 bio_put(bio);
3171         blk_rq_unprep_clone(rq);
3172
3173         return -ENOMEM;
3174 }
3175 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3176 #endif /* CONFIG_BLK_MQ_STACKING */
3177
3178 /*
3179  * Steal bios from a request and add them to a bio list.
3180  * The request must not have been partially completed before.
3181  */
3182 void blk_steal_bios(struct bio_list *list, struct request *rq)
3183 {
3184         if (rq->bio) {
3185                 if (list->tail)
3186                         list->tail->bi_next = rq->bio;
3187                 else
3188                         list->head = rq->bio;
3189                 list->tail = rq->biotail;
3190
3191                 rq->bio = NULL;
3192                 rq->biotail = NULL;
3193         }
3194
3195         rq->__data_len = 0;
3196 }
3197 EXPORT_SYMBOL_GPL(blk_steal_bios);
3198
3199 static size_t order_to_size(unsigned int order)
3200 {
3201         return (size_t)PAGE_SIZE << order;
3202 }
3203
3204 /* called before freeing request pool in @tags */
3205 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3206                                     struct blk_mq_tags *tags)
3207 {
3208         struct page *page;
3209         unsigned long flags;
3210
3211         /*
3212          * There is no need to clear mapping if driver tags is not initialized
3213          * or the mapping belongs to the driver tags.
3214          */
3215         if (!drv_tags || drv_tags == tags)
3216                 return;
3217
3218         list_for_each_entry(page, &tags->page_list, lru) {
3219                 unsigned long start = (unsigned long)page_address(page);
3220                 unsigned long end = start + order_to_size(page->private);
3221                 int i;
3222
3223                 for (i = 0; i < drv_tags->nr_tags; i++) {
3224                         struct request *rq = drv_tags->rqs[i];
3225                         unsigned long rq_addr = (unsigned long)rq;
3226
3227                         if (rq_addr >= start && rq_addr < end) {
3228                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3229                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3230                         }
3231                 }
3232         }
3233
3234         /*
3235          * Wait until all pending iteration is done.
3236          *
3237          * Request reference is cleared and it is guaranteed to be observed
3238          * after the ->lock is released.
3239          */
3240         spin_lock_irqsave(&drv_tags->lock, flags);
3241         spin_unlock_irqrestore(&drv_tags->lock, flags);
3242 }
3243
3244 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3245                      unsigned int hctx_idx)
3246 {
3247         struct blk_mq_tags *drv_tags;
3248         struct page *page;
3249
3250         if (list_empty(&tags->page_list))
3251                 return;
3252
3253         if (blk_mq_is_shared_tags(set->flags))
3254                 drv_tags = set->shared_tags;
3255         else
3256                 drv_tags = set->tags[hctx_idx];
3257
3258         if (tags->static_rqs && set->ops->exit_request) {
3259                 int i;
3260
3261                 for (i = 0; i < tags->nr_tags; i++) {
3262                         struct request *rq = tags->static_rqs[i];
3263
3264                         if (!rq)
3265                                 continue;
3266                         set->ops->exit_request(set, rq, hctx_idx);
3267                         tags->static_rqs[i] = NULL;
3268                 }
3269         }
3270
3271         blk_mq_clear_rq_mapping(drv_tags, tags);
3272
3273         while (!list_empty(&tags->page_list)) {
3274                 page = list_first_entry(&tags->page_list, struct page, lru);
3275                 list_del_init(&page->lru);
3276                 /*
3277                  * Remove kmemleak object previously allocated in
3278                  * blk_mq_alloc_rqs().
3279                  */
3280                 kmemleak_free(page_address(page));
3281                 __free_pages(page, page->private);
3282         }
3283 }
3284
3285 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3286 {
3287         kfree(tags->rqs);
3288         tags->rqs = NULL;
3289         kfree(tags->static_rqs);
3290         tags->static_rqs = NULL;
3291
3292         blk_mq_free_tags(tags);
3293 }
3294
3295 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3296                 unsigned int hctx_idx)
3297 {
3298         int i;
3299
3300         for (i = 0; i < set->nr_maps; i++) {
3301                 unsigned int start = set->map[i].queue_offset;
3302                 unsigned int end = start + set->map[i].nr_queues;
3303
3304                 if (hctx_idx >= start && hctx_idx < end)
3305                         break;
3306         }
3307
3308         if (i >= set->nr_maps)
3309                 i = HCTX_TYPE_DEFAULT;
3310
3311         return i;
3312 }
3313
3314 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3315                 unsigned int hctx_idx)
3316 {
3317         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3318
3319         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3320 }
3321
3322 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3323                                                unsigned int hctx_idx,
3324                                                unsigned int nr_tags,
3325                                                unsigned int reserved_tags)
3326 {
3327         int node = blk_mq_get_hctx_node(set, hctx_idx);
3328         struct blk_mq_tags *tags;
3329
3330         if (node == NUMA_NO_NODE)
3331                 node = set->numa_node;
3332
3333         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3334                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3335         if (!tags)
3336                 return NULL;
3337
3338         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3339                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3340                                  node);
3341         if (!tags->rqs)
3342                 goto err_free_tags;
3343
3344         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3345                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3346                                         node);
3347         if (!tags->static_rqs)
3348                 goto err_free_rqs;
3349
3350         return tags;
3351
3352 err_free_rqs:
3353         kfree(tags->rqs);
3354 err_free_tags:
3355         blk_mq_free_tags(tags);
3356         return NULL;
3357 }
3358
3359 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3360                                unsigned int hctx_idx, int node)
3361 {
3362         int ret;
3363
3364         if (set->ops->init_request) {
3365                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3366                 if (ret)
3367                         return ret;
3368         }
3369
3370         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3371         return 0;
3372 }
3373
3374 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3375                             struct blk_mq_tags *tags,
3376                             unsigned int hctx_idx, unsigned int depth)
3377 {
3378         unsigned int i, j, entries_per_page, max_order = 4;
3379         int node = blk_mq_get_hctx_node(set, hctx_idx);
3380         size_t rq_size, left;
3381
3382         if (node == NUMA_NO_NODE)
3383                 node = set->numa_node;
3384
3385         INIT_LIST_HEAD(&tags->page_list);
3386
3387         /*
3388          * rq_size is the size of the request plus driver payload, rounded
3389          * to the cacheline size
3390          */
3391         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3392                                 cache_line_size());
3393         left = rq_size * depth;
3394
3395         for (i = 0; i < depth; ) {
3396                 int this_order = max_order;
3397                 struct page *page;
3398                 int to_do;
3399                 void *p;
3400
3401                 while (this_order && left < order_to_size(this_order - 1))
3402                         this_order--;
3403
3404                 do {
3405                         page = alloc_pages_node(node,
3406                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3407                                 this_order);
3408                         if (page)
3409                                 break;
3410                         if (!this_order--)
3411                                 break;
3412                         if (order_to_size(this_order) < rq_size)
3413                                 break;
3414                 } while (1);
3415
3416                 if (!page)
3417                         goto fail;
3418
3419                 page->private = this_order;
3420                 list_add_tail(&page->lru, &tags->page_list);
3421
3422                 p = page_address(page);
3423                 /*
3424                  * Allow kmemleak to scan these pages as they contain pointers
3425                  * to additional allocations like via ops->init_request().
3426                  */
3427                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3428                 entries_per_page = order_to_size(this_order) / rq_size;
3429                 to_do = min(entries_per_page, depth - i);
3430                 left -= to_do * rq_size;
3431                 for (j = 0; j < to_do; j++) {
3432                         struct request *rq = p;
3433
3434                         tags->static_rqs[i] = rq;
3435                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3436                                 tags->static_rqs[i] = NULL;
3437                                 goto fail;
3438                         }
3439
3440                         p += rq_size;
3441                         i++;
3442                 }
3443         }
3444         return 0;
3445
3446 fail:
3447         blk_mq_free_rqs(set, tags, hctx_idx);
3448         return -ENOMEM;
3449 }
3450
3451 struct rq_iter_data {
3452         struct blk_mq_hw_ctx *hctx;
3453         bool has_rq;
3454 };
3455
3456 static bool blk_mq_has_request(struct request *rq, void *data)
3457 {
3458         struct rq_iter_data *iter_data = data;
3459
3460         if (rq->mq_hctx != iter_data->hctx)
3461                 return true;
3462         iter_data->has_rq = true;
3463         return false;
3464 }
3465
3466 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3467 {
3468         struct blk_mq_tags *tags = hctx->sched_tags ?
3469                         hctx->sched_tags : hctx->tags;
3470         struct rq_iter_data data = {
3471                 .hctx   = hctx,
3472         };
3473
3474         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3475         return data.has_rq;
3476 }
3477
3478 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3479                 struct blk_mq_hw_ctx *hctx)
3480 {
3481         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3482                 return false;
3483         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3484                 return false;
3485         return true;
3486 }
3487
3488 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3489 {
3490         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3491                         struct blk_mq_hw_ctx, cpuhp_online);
3492
3493         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3494             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3495                 return 0;
3496
3497         /*
3498          * Prevent new request from being allocated on the current hctx.
3499          *
3500          * The smp_mb__after_atomic() Pairs with the implied barrier in
3501          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3502          * seen once we return from the tag allocator.
3503          */
3504         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3505         smp_mb__after_atomic();
3506
3507         /*
3508          * Try to grab a reference to the queue and wait for any outstanding
3509          * requests.  If we could not grab a reference the queue has been
3510          * frozen and there are no requests.
3511          */
3512         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3513                 while (blk_mq_hctx_has_requests(hctx))
3514                         msleep(5);
3515                 percpu_ref_put(&hctx->queue->q_usage_counter);
3516         }
3517
3518         return 0;
3519 }
3520
3521 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3522 {
3523         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3524                         struct blk_mq_hw_ctx, cpuhp_online);
3525
3526         if (cpumask_test_cpu(cpu, hctx->cpumask))
3527                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3528         return 0;
3529 }
3530
3531 /*
3532  * 'cpu' is going away. splice any existing rq_list entries from this
3533  * software queue to the hw queue dispatch list, and ensure that it
3534  * gets run.
3535  */
3536 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3537 {
3538         struct blk_mq_hw_ctx *hctx;
3539         struct blk_mq_ctx *ctx;
3540         LIST_HEAD(tmp);
3541         enum hctx_type type;
3542
3543         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3544         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3545                 return 0;
3546
3547         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3548         type = hctx->type;
3549
3550         spin_lock(&ctx->lock);
3551         if (!list_empty(&ctx->rq_lists[type])) {
3552                 list_splice_init(&ctx->rq_lists[type], &tmp);
3553                 blk_mq_hctx_clear_pending(hctx, ctx);
3554         }
3555         spin_unlock(&ctx->lock);
3556
3557         if (list_empty(&tmp))
3558                 return 0;
3559
3560         spin_lock(&hctx->lock);
3561         list_splice_tail_init(&tmp, &hctx->dispatch);
3562         spin_unlock(&hctx->lock);
3563
3564         blk_mq_run_hw_queue(hctx, true);
3565         return 0;
3566 }
3567
3568 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3569 {
3570         if (!(hctx->flags & BLK_MQ_F_STACKING))
3571                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3572                                                     &hctx->cpuhp_online);
3573         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3574                                             &hctx->cpuhp_dead);
3575 }
3576
3577 /*
3578  * Before freeing hw queue, clearing the flush request reference in
3579  * tags->rqs[] for avoiding potential UAF.
3580  */
3581 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3582                 unsigned int queue_depth, struct request *flush_rq)
3583 {
3584         int i;
3585         unsigned long flags;
3586
3587         /* The hw queue may not be mapped yet */
3588         if (!tags)
3589                 return;
3590
3591         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3592
3593         for (i = 0; i < queue_depth; i++)
3594                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3595
3596         /*
3597          * Wait until all pending iteration is done.
3598          *
3599          * Request reference is cleared and it is guaranteed to be observed
3600          * after the ->lock is released.
3601          */
3602         spin_lock_irqsave(&tags->lock, flags);
3603         spin_unlock_irqrestore(&tags->lock, flags);
3604 }
3605
3606 /* hctx->ctxs will be freed in queue's release handler */
3607 static void blk_mq_exit_hctx(struct request_queue *q,
3608                 struct blk_mq_tag_set *set,
3609                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3610 {
3611         struct request *flush_rq = hctx->fq->flush_rq;
3612
3613         if (blk_mq_hw_queue_mapped(hctx))
3614                 blk_mq_tag_idle(hctx);
3615
3616         if (blk_queue_init_done(q))
3617                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3618                                 set->queue_depth, flush_rq);
3619         if (set->ops->exit_request)
3620                 set->ops->exit_request(set, flush_rq, hctx_idx);
3621
3622         if (set->ops->exit_hctx)
3623                 set->ops->exit_hctx(hctx, hctx_idx);
3624
3625         blk_mq_remove_cpuhp(hctx);
3626
3627         xa_erase(&q->hctx_table, hctx_idx);
3628
3629         spin_lock(&q->unused_hctx_lock);
3630         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3631         spin_unlock(&q->unused_hctx_lock);
3632 }
3633
3634 static void blk_mq_exit_hw_queues(struct request_queue *q,
3635                 struct blk_mq_tag_set *set, int nr_queue)
3636 {
3637         struct blk_mq_hw_ctx *hctx;
3638         unsigned long i;
3639
3640         queue_for_each_hw_ctx(q, hctx, i) {
3641                 if (i == nr_queue)
3642                         break;
3643                 blk_mq_exit_hctx(q, set, hctx, i);
3644         }
3645 }
3646
3647 static int blk_mq_init_hctx(struct request_queue *q,
3648                 struct blk_mq_tag_set *set,
3649                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3650 {
3651         hctx->queue_num = hctx_idx;
3652
3653         if (!(hctx->flags & BLK_MQ_F_STACKING))
3654                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3655                                 &hctx->cpuhp_online);
3656         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3657
3658         hctx->tags = set->tags[hctx_idx];
3659
3660         if (set->ops->init_hctx &&
3661             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3662                 goto unregister_cpu_notifier;
3663
3664         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3665                                 hctx->numa_node))
3666                 goto exit_hctx;
3667
3668         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3669                 goto exit_flush_rq;
3670
3671         return 0;
3672
3673  exit_flush_rq:
3674         if (set->ops->exit_request)
3675                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3676  exit_hctx:
3677         if (set->ops->exit_hctx)
3678                 set->ops->exit_hctx(hctx, hctx_idx);
3679  unregister_cpu_notifier:
3680         blk_mq_remove_cpuhp(hctx);
3681         return -1;
3682 }
3683
3684 static struct blk_mq_hw_ctx *
3685 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3686                 int node)
3687 {
3688         struct blk_mq_hw_ctx *hctx;
3689         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3690
3691         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3692         if (!hctx)
3693                 goto fail_alloc_hctx;
3694
3695         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3696                 goto free_hctx;
3697
3698         atomic_set(&hctx->nr_active, 0);
3699         if (node == NUMA_NO_NODE)
3700                 node = set->numa_node;
3701         hctx->numa_node = node;
3702
3703         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3704         spin_lock_init(&hctx->lock);
3705         INIT_LIST_HEAD(&hctx->dispatch);
3706         hctx->queue = q;
3707         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3708
3709         INIT_LIST_HEAD(&hctx->hctx_list);
3710
3711         /*
3712          * Allocate space for all possible cpus to avoid allocation at
3713          * runtime
3714          */
3715         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3716                         gfp, node);
3717         if (!hctx->ctxs)
3718                 goto free_cpumask;
3719
3720         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3721                                 gfp, node, false, false))
3722                 goto free_ctxs;
3723         hctx->nr_ctx = 0;
3724
3725         spin_lock_init(&hctx->dispatch_wait_lock);
3726         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3727         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3728
3729         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3730         if (!hctx->fq)
3731                 goto free_bitmap;
3732
3733         blk_mq_hctx_kobj_init(hctx);
3734
3735         return hctx;
3736
3737  free_bitmap:
3738         sbitmap_free(&hctx->ctx_map);
3739  free_ctxs:
3740         kfree(hctx->ctxs);
3741  free_cpumask:
3742         free_cpumask_var(hctx->cpumask);
3743  free_hctx:
3744         kfree(hctx);
3745  fail_alloc_hctx:
3746         return NULL;
3747 }
3748
3749 static void blk_mq_init_cpu_queues(struct request_queue *q,
3750                                    unsigned int nr_hw_queues)
3751 {
3752         struct blk_mq_tag_set *set = q->tag_set;
3753         unsigned int i, j;
3754
3755         for_each_possible_cpu(i) {
3756                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3757                 struct blk_mq_hw_ctx *hctx;
3758                 int k;
3759
3760                 __ctx->cpu = i;
3761                 spin_lock_init(&__ctx->lock);
3762                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3763                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3764
3765                 __ctx->queue = q;
3766
3767                 /*
3768                  * Set local node, IFF we have more than one hw queue. If
3769                  * not, we remain on the home node of the device
3770                  */
3771                 for (j = 0; j < set->nr_maps; j++) {
3772                         hctx = blk_mq_map_queue_type(q, j, i);
3773                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3774                                 hctx->numa_node = cpu_to_node(i);
3775                 }
3776         }
3777 }
3778
3779 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3780                                              unsigned int hctx_idx,
3781                                              unsigned int depth)
3782 {
3783         struct blk_mq_tags *tags;
3784         int ret;
3785
3786         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3787         if (!tags)
3788                 return NULL;
3789
3790         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3791         if (ret) {
3792                 blk_mq_free_rq_map(tags);
3793                 return NULL;
3794         }
3795
3796         return tags;
3797 }
3798
3799 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3800                                        int hctx_idx)
3801 {
3802         if (blk_mq_is_shared_tags(set->flags)) {
3803                 set->tags[hctx_idx] = set->shared_tags;
3804
3805                 return true;
3806         }
3807
3808         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3809                                                        set->queue_depth);
3810
3811         return set->tags[hctx_idx];
3812 }
3813
3814 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3815                              struct blk_mq_tags *tags,
3816                              unsigned int hctx_idx)
3817 {
3818         if (tags) {
3819                 blk_mq_free_rqs(set, tags, hctx_idx);
3820                 blk_mq_free_rq_map(tags);
3821         }
3822 }
3823
3824 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3825                                       unsigned int hctx_idx)
3826 {
3827         if (!blk_mq_is_shared_tags(set->flags))
3828                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3829
3830         set->tags[hctx_idx] = NULL;
3831 }
3832
3833 static void blk_mq_map_swqueue(struct request_queue *q)
3834 {
3835         unsigned int j, hctx_idx;
3836         unsigned long i;
3837         struct blk_mq_hw_ctx *hctx;
3838         struct blk_mq_ctx *ctx;
3839         struct blk_mq_tag_set *set = q->tag_set;
3840
3841         queue_for_each_hw_ctx(q, hctx, i) {
3842                 cpumask_clear(hctx->cpumask);
3843                 hctx->nr_ctx = 0;
3844                 hctx->dispatch_from = NULL;
3845         }
3846
3847         /*
3848          * Map software to hardware queues.
3849          *
3850          * If the cpu isn't present, the cpu is mapped to first hctx.
3851          */
3852         for_each_possible_cpu(i) {
3853
3854                 ctx = per_cpu_ptr(q->queue_ctx, i);
3855                 for (j = 0; j < set->nr_maps; j++) {
3856                         if (!set->map[j].nr_queues) {
3857                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3858                                                 HCTX_TYPE_DEFAULT, i);
3859                                 continue;
3860                         }
3861                         hctx_idx = set->map[j].mq_map[i];
3862                         /* unmapped hw queue can be remapped after CPU topo changed */
3863                         if (!set->tags[hctx_idx] &&
3864                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3865                                 /*
3866                                  * If tags initialization fail for some hctx,
3867                                  * that hctx won't be brought online.  In this
3868                                  * case, remap the current ctx to hctx[0] which
3869                                  * is guaranteed to always have tags allocated
3870                                  */
3871                                 set->map[j].mq_map[i] = 0;
3872                         }
3873
3874                         hctx = blk_mq_map_queue_type(q, j, i);
3875                         ctx->hctxs[j] = hctx;
3876                         /*
3877                          * If the CPU is already set in the mask, then we've
3878                          * mapped this one already. This can happen if
3879                          * devices share queues across queue maps.
3880                          */
3881                         if (cpumask_test_cpu(i, hctx->cpumask))
3882                                 continue;
3883
3884                         cpumask_set_cpu(i, hctx->cpumask);
3885                         hctx->type = j;
3886                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3887                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3888
3889                         /*
3890                          * If the nr_ctx type overflows, we have exceeded the
3891                          * amount of sw queues we can support.
3892                          */
3893                         BUG_ON(!hctx->nr_ctx);
3894                 }
3895
3896                 for (; j < HCTX_MAX_TYPES; j++)
3897                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3898                                         HCTX_TYPE_DEFAULT, i);
3899         }
3900
3901         queue_for_each_hw_ctx(q, hctx, i) {
3902                 /*
3903                  * If no software queues are mapped to this hardware queue,
3904                  * disable it and free the request entries.
3905                  */
3906                 if (!hctx->nr_ctx) {
3907                         /* Never unmap queue 0.  We need it as a
3908                          * fallback in case of a new remap fails
3909                          * allocation
3910                          */
3911                         if (i)
3912                                 __blk_mq_free_map_and_rqs(set, i);
3913
3914                         hctx->tags = NULL;
3915                         continue;
3916                 }
3917
3918                 hctx->tags = set->tags[i];
3919                 WARN_ON(!hctx->tags);
3920
3921                 /*
3922                  * Set the map size to the number of mapped software queues.
3923                  * This is more accurate and more efficient than looping
3924                  * over all possibly mapped software queues.
3925                  */
3926                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3927
3928                 /*
3929                  * Initialize batch roundrobin counts
3930                  */
3931                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3932                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3933         }
3934 }
3935
3936 /*
3937  * Caller needs to ensure that we're either frozen/quiesced, or that
3938  * the queue isn't live yet.
3939  */
3940 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3941 {
3942         struct blk_mq_hw_ctx *hctx;
3943         unsigned long i;
3944
3945         queue_for_each_hw_ctx(q, hctx, i) {
3946                 if (shared) {
3947                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3948                 } else {
3949                         blk_mq_tag_idle(hctx);
3950                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3951                 }
3952         }
3953 }
3954
3955 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3956                                          bool shared)
3957 {
3958         struct request_queue *q;
3959
3960         lockdep_assert_held(&set->tag_list_lock);
3961
3962         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3963                 blk_mq_freeze_queue(q);
3964                 queue_set_hctx_shared(q, shared);
3965                 blk_mq_unfreeze_queue(q);
3966         }
3967 }
3968
3969 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3970 {
3971         struct blk_mq_tag_set *set = q->tag_set;
3972
3973         mutex_lock(&set->tag_list_lock);
3974         list_del(&q->tag_set_list);
3975         if (list_is_singular(&set->tag_list)) {
3976                 /* just transitioned to unshared */
3977                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3978                 /* update existing queue */
3979                 blk_mq_update_tag_set_shared(set, false);
3980         }
3981         mutex_unlock(&set->tag_list_lock);
3982         INIT_LIST_HEAD(&q->tag_set_list);
3983 }
3984
3985 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3986                                      struct request_queue *q)
3987 {
3988         mutex_lock(&set->tag_list_lock);
3989
3990         /*
3991          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3992          */
3993         if (!list_empty(&set->tag_list) &&
3994             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3995                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3996                 /* update existing queue */
3997                 blk_mq_update_tag_set_shared(set, true);
3998         }
3999         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4000                 queue_set_hctx_shared(q, true);
4001         list_add_tail(&q->tag_set_list, &set->tag_list);
4002
4003         mutex_unlock(&set->tag_list_lock);
4004 }
4005
4006 /* All allocations will be freed in release handler of q->mq_kobj */
4007 static int blk_mq_alloc_ctxs(struct request_queue *q)
4008 {
4009         struct blk_mq_ctxs *ctxs;
4010         int cpu;
4011
4012         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4013         if (!ctxs)
4014                 return -ENOMEM;
4015
4016         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4017         if (!ctxs->queue_ctx)
4018                 goto fail;
4019
4020         for_each_possible_cpu(cpu) {
4021                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4022                 ctx->ctxs = ctxs;
4023         }
4024
4025         q->mq_kobj = &ctxs->kobj;
4026         q->queue_ctx = ctxs->queue_ctx;
4027
4028         return 0;
4029  fail:
4030         kfree(ctxs);
4031         return -ENOMEM;
4032 }
4033
4034 /*
4035  * It is the actual release handler for mq, but we do it from
4036  * request queue's release handler for avoiding use-after-free
4037  * and headache because q->mq_kobj shouldn't have been introduced,
4038  * but we can't group ctx/kctx kobj without it.
4039  */
4040 void blk_mq_release(struct request_queue *q)
4041 {
4042         struct blk_mq_hw_ctx *hctx, *next;
4043         unsigned long i;
4044
4045         queue_for_each_hw_ctx(q, hctx, i)
4046                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4047
4048         /* all hctx are in .unused_hctx_list now */
4049         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4050                 list_del_init(&hctx->hctx_list);
4051                 kobject_put(&hctx->kobj);
4052         }
4053
4054         xa_destroy(&q->hctx_table);
4055
4056         /*
4057          * release .mq_kobj and sw queue's kobject now because
4058          * both share lifetime with request queue.
4059          */
4060         blk_mq_sysfs_deinit(q);
4061 }
4062
4063 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4064                 void *queuedata)
4065 {
4066         struct request_queue *q;
4067         int ret;
4068
4069         q = blk_alloc_queue(set->numa_node);
4070         if (!q)
4071                 return ERR_PTR(-ENOMEM);
4072         q->queuedata = queuedata;
4073         ret = blk_mq_init_allocated_queue(set, q);
4074         if (ret) {
4075                 blk_put_queue(q);
4076                 return ERR_PTR(ret);
4077         }
4078         return q;
4079 }
4080
4081 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4082 {
4083         return blk_mq_init_queue_data(set, NULL);
4084 }
4085 EXPORT_SYMBOL(blk_mq_init_queue);
4086
4087 /**
4088  * blk_mq_destroy_queue - shutdown a request queue
4089  * @q: request queue to shutdown
4090  *
4091  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4092  * requests will be failed with -ENODEV. The caller is responsible for dropping
4093  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4094  *
4095  * Context: can sleep
4096  */
4097 void blk_mq_destroy_queue(struct request_queue *q)
4098 {
4099         WARN_ON_ONCE(!queue_is_mq(q));
4100         WARN_ON_ONCE(blk_queue_registered(q));
4101
4102         might_sleep();
4103
4104         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4105         blk_queue_start_drain(q);
4106         blk_mq_freeze_queue_wait(q);
4107
4108         blk_sync_queue(q);
4109         blk_mq_cancel_work_sync(q);
4110         blk_mq_exit_queue(q);
4111 }
4112 EXPORT_SYMBOL(blk_mq_destroy_queue);
4113
4114 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4115                 struct lock_class_key *lkclass)
4116 {
4117         struct request_queue *q;
4118         struct gendisk *disk;
4119
4120         q = blk_mq_init_queue_data(set, queuedata);
4121         if (IS_ERR(q))
4122                 return ERR_CAST(q);
4123
4124         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4125         if (!disk) {
4126                 blk_mq_destroy_queue(q);
4127                 blk_put_queue(q);
4128                 return ERR_PTR(-ENOMEM);
4129         }
4130         set_bit(GD_OWNS_QUEUE, &disk->state);
4131         return disk;
4132 }
4133 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4134
4135 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4136                 struct lock_class_key *lkclass)
4137 {
4138         struct gendisk *disk;
4139
4140         if (!blk_get_queue(q))
4141                 return NULL;
4142         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4143         if (!disk)
4144                 blk_put_queue(q);
4145         return disk;
4146 }
4147 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4148
4149 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4150                 struct blk_mq_tag_set *set, struct request_queue *q,
4151                 int hctx_idx, int node)
4152 {
4153         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4154
4155         /* reuse dead hctx first */
4156         spin_lock(&q->unused_hctx_lock);
4157         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4158                 if (tmp->numa_node == node) {
4159                         hctx = tmp;
4160                         break;
4161                 }
4162         }
4163         if (hctx)
4164                 list_del_init(&hctx->hctx_list);
4165         spin_unlock(&q->unused_hctx_lock);
4166
4167         if (!hctx)
4168                 hctx = blk_mq_alloc_hctx(q, set, node);
4169         if (!hctx)
4170                 goto fail;
4171
4172         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4173                 goto free_hctx;
4174
4175         return hctx;
4176
4177  free_hctx:
4178         kobject_put(&hctx->kobj);
4179  fail:
4180         return NULL;
4181 }
4182
4183 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4184                                                 struct request_queue *q)
4185 {
4186         struct blk_mq_hw_ctx *hctx;
4187         unsigned long i, j;
4188
4189         /* protect against switching io scheduler  */
4190         mutex_lock(&q->sysfs_lock);
4191         for (i = 0; i < set->nr_hw_queues; i++) {
4192                 int old_node;
4193                 int node = blk_mq_get_hctx_node(set, i);
4194                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4195
4196                 if (old_hctx) {
4197                         old_node = old_hctx->numa_node;
4198                         blk_mq_exit_hctx(q, set, old_hctx, i);
4199                 }
4200
4201                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4202                         if (!old_hctx)
4203                                 break;
4204                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4205                                         node, old_node);
4206                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4207                         WARN_ON_ONCE(!hctx);
4208                 }
4209         }
4210         /*
4211          * Increasing nr_hw_queues fails. Free the newly allocated
4212          * hctxs and keep the previous q->nr_hw_queues.
4213          */
4214         if (i != set->nr_hw_queues) {
4215                 j = q->nr_hw_queues;
4216         } else {
4217                 j = i;
4218                 q->nr_hw_queues = set->nr_hw_queues;
4219         }
4220
4221         xa_for_each_start(&q->hctx_table, j, hctx, j)
4222                 blk_mq_exit_hctx(q, set, hctx, j);
4223         mutex_unlock(&q->sysfs_lock);
4224 }
4225
4226 static void blk_mq_update_poll_flag(struct request_queue *q)
4227 {
4228         struct blk_mq_tag_set *set = q->tag_set;
4229
4230         if (set->nr_maps > HCTX_TYPE_POLL &&
4231             set->map[HCTX_TYPE_POLL].nr_queues)
4232                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4233         else
4234                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4235 }
4236
4237 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4238                 struct request_queue *q)
4239 {
4240         /* mark the queue as mq asap */
4241         q->mq_ops = set->ops;
4242
4243         if (blk_mq_alloc_ctxs(q))
4244                 goto err_exit;
4245
4246         /* init q->mq_kobj and sw queues' kobjects */
4247         blk_mq_sysfs_init(q);
4248
4249         INIT_LIST_HEAD(&q->unused_hctx_list);
4250         spin_lock_init(&q->unused_hctx_lock);
4251
4252         xa_init(&q->hctx_table);
4253
4254         blk_mq_realloc_hw_ctxs(set, q);
4255         if (!q->nr_hw_queues)
4256                 goto err_hctxs;
4257
4258         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4259         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4260
4261         q->tag_set = set;
4262
4263         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4264         blk_mq_update_poll_flag(q);
4265
4266         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4267         INIT_LIST_HEAD(&q->flush_list);
4268         INIT_LIST_HEAD(&q->requeue_list);
4269         spin_lock_init(&q->requeue_lock);
4270
4271         q->nr_requests = set->queue_depth;
4272
4273         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4274         blk_mq_add_queue_tag_set(set, q);
4275         blk_mq_map_swqueue(q);
4276         return 0;
4277
4278 err_hctxs:
4279         blk_mq_release(q);
4280 err_exit:
4281         q->mq_ops = NULL;
4282         return -ENOMEM;
4283 }
4284 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4285
4286 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4287 void blk_mq_exit_queue(struct request_queue *q)
4288 {
4289         struct blk_mq_tag_set *set = q->tag_set;
4290
4291         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4292         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4293         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4294         blk_mq_del_queue_tag_set(q);
4295 }
4296
4297 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4298 {
4299         int i;
4300
4301         if (blk_mq_is_shared_tags(set->flags)) {
4302                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4303                                                 BLK_MQ_NO_HCTX_IDX,
4304                                                 set->queue_depth);
4305                 if (!set->shared_tags)
4306                         return -ENOMEM;
4307         }
4308
4309         for (i = 0; i < set->nr_hw_queues; i++) {
4310                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4311                         goto out_unwind;
4312                 cond_resched();
4313         }
4314
4315         return 0;
4316
4317 out_unwind:
4318         while (--i >= 0)
4319                 __blk_mq_free_map_and_rqs(set, i);
4320
4321         if (blk_mq_is_shared_tags(set->flags)) {
4322                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4323                                         BLK_MQ_NO_HCTX_IDX);
4324         }
4325
4326         return -ENOMEM;
4327 }
4328
4329 /*
4330  * Allocate the request maps associated with this tag_set. Note that this
4331  * may reduce the depth asked for, if memory is tight. set->queue_depth
4332  * will be updated to reflect the allocated depth.
4333  */
4334 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4335 {
4336         unsigned int depth;
4337         int err;
4338
4339         depth = set->queue_depth;
4340         do {
4341                 err = __blk_mq_alloc_rq_maps(set);
4342                 if (!err)
4343                         break;
4344
4345                 set->queue_depth >>= 1;
4346                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4347                         err = -ENOMEM;
4348                         break;
4349                 }
4350         } while (set->queue_depth);
4351
4352         if (!set->queue_depth || err) {
4353                 pr_err("blk-mq: failed to allocate request map\n");
4354                 return -ENOMEM;
4355         }
4356
4357         if (depth != set->queue_depth)
4358                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4359                                                 depth, set->queue_depth);
4360
4361         return 0;
4362 }
4363
4364 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4365 {
4366         /*
4367          * blk_mq_map_queues() and multiple .map_queues() implementations
4368          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4369          * number of hardware queues.
4370          */
4371         if (set->nr_maps == 1)
4372                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4373
4374         if (set->ops->map_queues && !is_kdump_kernel()) {
4375                 int i;
4376
4377                 /*
4378                  * transport .map_queues is usually done in the following
4379                  * way:
4380                  *
4381                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4382                  *      mask = get_cpu_mask(queue)
4383                  *      for_each_cpu(cpu, mask)
4384                  *              set->map[x].mq_map[cpu] = queue;
4385                  * }
4386                  *
4387                  * When we need to remap, the table has to be cleared for
4388                  * killing stale mapping since one CPU may not be mapped
4389                  * to any hw queue.
4390                  */
4391                 for (i = 0; i < set->nr_maps; i++)
4392                         blk_mq_clear_mq_map(&set->map[i]);
4393
4394                 set->ops->map_queues(set);
4395         } else {
4396                 BUG_ON(set->nr_maps > 1);
4397                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4398         }
4399 }
4400
4401 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4402                                        int new_nr_hw_queues)
4403 {
4404         struct blk_mq_tags **new_tags;
4405
4406         if (set->nr_hw_queues >= new_nr_hw_queues)
4407                 goto done;
4408
4409         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4410                                 GFP_KERNEL, set->numa_node);
4411         if (!new_tags)
4412                 return -ENOMEM;
4413
4414         if (set->tags)
4415                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4416                        sizeof(*set->tags));
4417         kfree(set->tags);
4418         set->tags = new_tags;
4419 done:
4420         set->nr_hw_queues = new_nr_hw_queues;
4421         return 0;
4422 }
4423
4424 /*
4425  * Alloc a tag set to be associated with one or more request queues.
4426  * May fail with EINVAL for various error conditions. May adjust the
4427  * requested depth down, if it's too large. In that case, the set
4428  * value will be stored in set->queue_depth.
4429  */
4430 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4431 {
4432         int i, ret;
4433
4434         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4435
4436         if (!set->nr_hw_queues)
4437                 return -EINVAL;
4438         if (!set->queue_depth)
4439                 return -EINVAL;
4440         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4441                 return -EINVAL;
4442
4443         if (!set->ops->queue_rq)
4444                 return -EINVAL;
4445
4446         if (!set->ops->get_budget ^ !set->ops->put_budget)
4447                 return -EINVAL;
4448
4449         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4450                 pr_info("blk-mq: reduced tag depth to %u\n",
4451                         BLK_MQ_MAX_DEPTH);
4452                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4453         }
4454
4455         if (!set->nr_maps)
4456                 set->nr_maps = 1;
4457         else if (set->nr_maps > HCTX_MAX_TYPES)
4458                 return -EINVAL;
4459
4460         /*
4461          * If a crashdump is active, then we are potentially in a very
4462          * memory constrained environment. Limit us to 1 queue and
4463          * 64 tags to prevent using too much memory.
4464          */
4465         if (is_kdump_kernel()) {
4466                 set->nr_hw_queues = 1;
4467                 set->nr_maps = 1;
4468                 set->queue_depth = min(64U, set->queue_depth);
4469         }
4470         /*
4471          * There is no use for more h/w queues than cpus if we just have
4472          * a single map
4473          */
4474         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4475                 set->nr_hw_queues = nr_cpu_ids;
4476
4477         if (set->flags & BLK_MQ_F_BLOCKING) {
4478                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4479                 if (!set->srcu)
4480                         return -ENOMEM;
4481                 ret = init_srcu_struct(set->srcu);
4482                 if (ret)
4483                         goto out_free_srcu;
4484         }
4485
4486         ret = -ENOMEM;
4487         set->tags = kcalloc_node(set->nr_hw_queues,
4488                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4489                                  set->numa_node);
4490         if (!set->tags)
4491                 goto out_cleanup_srcu;
4492
4493         for (i = 0; i < set->nr_maps; i++) {
4494                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4495                                                   sizeof(set->map[i].mq_map[0]),
4496                                                   GFP_KERNEL, set->numa_node);
4497                 if (!set->map[i].mq_map)
4498                         goto out_free_mq_map;
4499                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4500         }
4501
4502         blk_mq_update_queue_map(set);
4503
4504         ret = blk_mq_alloc_set_map_and_rqs(set);
4505         if (ret)
4506                 goto out_free_mq_map;
4507
4508         mutex_init(&set->tag_list_lock);
4509         INIT_LIST_HEAD(&set->tag_list);
4510
4511         return 0;
4512
4513 out_free_mq_map:
4514         for (i = 0; i < set->nr_maps; i++) {
4515                 kfree(set->map[i].mq_map);
4516                 set->map[i].mq_map = NULL;
4517         }
4518         kfree(set->tags);
4519         set->tags = NULL;
4520 out_cleanup_srcu:
4521         if (set->flags & BLK_MQ_F_BLOCKING)
4522                 cleanup_srcu_struct(set->srcu);
4523 out_free_srcu:
4524         if (set->flags & BLK_MQ_F_BLOCKING)
4525                 kfree(set->srcu);
4526         return ret;
4527 }
4528 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4529
4530 /* allocate and initialize a tagset for a simple single-queue device */
4531 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4532                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4533                 unsigned int set_flags)
4534 {
4535         memset(set, 0, sizeof(*set));
4536         set->ops = ops;
4537         set->nr_hw_queues = 1;
4538         set->nr_maps = 1;
4539         set->queue_depth = queue_depth;
4540         set->numa_node = NUMA_NO_NODE;
4541         set->flags = set_flags;
4542         return blk_mq_alloc_tag_set(set);
4543 }
4544 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4545
4546 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4547 {
4548         int i, j;
4549
4550         for (i = 0; i < set->nr_hw_queues; i++)
4551                 __blk_mq_free_map_and_rqs(set, i);
4552
4553         if (blk_mq_is_shared_tags(set->flags)) {
4554                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4555                                         BLK_MQ_NO_HCTX_IDX);
4556         }
4557
4558         for (j = 0; j < set->nr_maps; j++) {
4559                 kfree(set->map[j].mq_map);
4560                 set->map[j].mq_map = NULL;
4561         }
4562
4563         kfree(set->tags);
4564         set->tags = NULL;
4565         if (set->flags & BLK_MQ_F_BLOCKING) {
4566                 cleanup_srcu_struct(set->srcu);
4567                 kfree(set->srcu);
4568         }
4569 }
4570 EXPORT_SYMBOL(blk_mq_free_tag_set);
4571
4572 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4573 {
4574         struct blk_mq_tag_set *set = q->tag_set;
4575         struct blk_mq_hw_ctx *hctx;
4576         int ret;
4577         unsigned long i;
4578
4579         if (!set)
4580                 return -EINVAL;
4581
4582         if (q->nr_requests == nr)
4583                 return 0;
4584
4585         blk_mq_freeze_queue(q);
4586         blk_mq_quiesce_queue(q);
4587
4588         ret = 0;
4589         queue_for_each_hw_ctx(q, hctx, i) {
4590                 if (!hctx->tags)
4591                         continue;
4592                 /*
4593                  * If we're using an MQ scheduler, just update the scheduler
4594                  * queue depth. This is similar to what the old code would do.
4595                  */
4596                 if (hctx->sched_tags) {
4597                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4598                                                       nr, true);
4599                 } else {
4600                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4601                                                       false);
4602                 }
4603                 if (ret)
4604                         break;
4605                 if (q->elevator && q->elevator->type->ops.depth_updated)
4606                         q->elevator->type->ops.depth_updated(hctx);
4607         }
4608         if (!ret) {
4609                 q->nr_requests = nr;
4610                 if (blk_mq_is_shared_tags(set->flags)) {
4611                         if (q->elevator)
4612                                 blk_mq_tag_update_sched_shared_tags(q);
4613                         else
4614                                 blk_mq_tag_resize_shared_tags(set, nr);
4615                 }
4616         }
4617
4618         blk_mq_unquiesce_queue(q);
4619         blk_mq_unfreeze_queue(q);
4620
4621         return ret;
4622 }
4623
4624 /*
4625  * request_queue and elevator_type pair.
4626  * It is just used by __blk_mq_update_nr_hw_queues to cache
4627  * the elevator_type associated with a request_queue.
4628  */
4629 struct blk_mq_qe_pair {
4630         struct list_head node;
4631         struct request_queue *q;
4632         struct elevator_type *type;
4633 };
4634
4635 /*
4636  * Cache the elevator_type in qe pair list and switch the
4637  * io scheduler to 'none'
4638  */
4639 static bool blk_mq_elv_switch_none(struct list_head *head,
4640                 struct request_queue *q)
4641 {
4642         struct blk_mq_qe_pair *qe;
4643
4644         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4645         if (!qe)
4646                 return false;
4647
4648         /* q->elevator needs protection from ->sysfs_lock */
4649         mutex_lock(&q->sysfs_lock);
4650
4651         /* the check has to be done with holding sysfs_lock */
4652         if (!q->elevator) {
4653                 kfree(qe);
4654                 goto unlock;
4655         }
4656
4657         INIT_LIST_HEAD(&qe->node);
4658         qe->q = q;
4659         qe->type = q->elevator->type;
4660         /* keep a reference to the elevator module as we'll switch back */
4661         __elevator_get(qe->type);
4662         list_add(&qe->node, head);
4663         elevator_disable(q);
4664 unlock:
4665         mutex_unlock(&q->sysfs_lock);
4666
4667         return true;
4668 }
4669
4670 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4671                                                 struct request_queue *q)
4672 {
4673         struct blk_mq_qe_pair *qe;
4674
4675         list_for_each_entry(qe, head, node)
4676                 if (qe->q == q)
4677                         return qe;
4678
4679         return NULL;
4680 }
4681
4682 static void blk_mq_elv_switch_back(struct list_head *head,
4683                                   struct request_queue *q)
4684 {
4685         struct blk_mq_qe_pair *qe;
4686         struct elevator_type *t;
4687
4688         qe = blk_lookup_qe_pair(head, q);
4689         if (!qe)
4690                 return;
4691         t = qe->type;
4692         list_del(&qe->node);
4693         kfree(qe);
4694
4695         mutex_lock(&q->sysfs_lock);
4696         elevator_switch(q, t);
4697         /* drop the reference acquired in blk_mq_elv_switch_none */
4698         elevator_put(t);
4699         mutex_unlock(&q->sysfs_lock);
4700 }
4701
4702 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4703                                                         int nr_hw_queues)
4704 {
4705         struct request_queue *q;
4706         LIST_HEAD(head);
4707         int prev_nr_hw_queues;
4708
4709         lockdep_assert_held(&set->tag_list_lock);
4710
4711         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4712                 nr_hw_queues = nr_cpu_ids;
4713         if (nr_hw_queues < 1)
4714                 return;
4715         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4716                 return;
4717
4718         list_for_each_entry(q, &set->tag_list, tag_set_list)
4719                 blk_mq_freeze_queue(q);
4720         /*
4721          * Switch IO scheduler to 'none', cleaning up the data associated
4722          * with the previous scheduler. We will switch back once we are done
4723          * updating the new sw to hw queue mappings.
4724          */
4725         list_for_each_entry(q, &set->tag_list, tag_set_list)
4726                 if (!blk_mq_elv_switch_none(&head, q))
4727                         goto switch_back;
4728
4729         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4730                 blk_mq_debugfs_unregister_hctxs(q);
4731                 blk_mq_sysfs_unregister_hctxs(q);
4732         }
4733
4734         prev_nr_hw_queues = set->nr_hw_queues;
4735         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4736                 goto reregister;
4737
4738 fallback:
4739         blk_mq_update_queue_map(set);
4740         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4741                 blk_mq_realloc_hw_ctxs(set, q);
4742                 blk_mq_update_poll_flag(q);
4743                 if (q->nr_hw_queues != set->nr_hw_queues) {
4744                         int i = prev_nr_hw_queues;
4745
4746                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4747                                         nr_hw_queues, prev_nr_hw_queues);
4748                         for (; i < set->nr_hw_queues; i++)
4749                                 __blk_mq_free_map_and_rqs(set, i);
4750
4751                         set->nr_hw_queues = prev_nr_hw_queues;
4752                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4753                         goto fallback;
4754                 }
4755                 blk_mq_map_swqueue(q);
4756         }
4757
4758 reregister:
4759         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4760                 blk_mq_sysfs_register_hctxs(q);
4761                 blk_mq_debugfs_register_hctxs(q);
4762         }
4763
4764 switch_back:
4765         list_for_each_entry(q, &set->tag_list, tag_set_list)
4766                 blk_mq_elv_switch_back(&head, q);
4767
4768         list_for_each_entry(q, &set->tag_list, tag_set_list)
4769                 blk_mq_unfreeze_queue(q);
4770 }
4771
4772 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4773 {
4774         mutex_lock(&set->tag_list_lock);
4775         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4776         mutex_unlock(&set->tag_list_lock);
4777 }
4778 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4779
4780 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4781                          struct io_comp_batch *iob, unsigned int flags)
4782 {
4783         long state = get_current_state();
4784         int ret;
4785
4786         do {
4787                 ret = q->mq_ops->poll(hctx, iob);
4788                 if (ret > 0) {
4789                         __set_current_state(TASK_RUNNING);
4790                         return ret;
4791                 }
4792
4793                 if (signal_pending_state(state, current))
4794                         __set_current_state(TASK_RUNNING);
4795                 if (task_is_running(current))
4796                         return 1;
4797
4798                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4799                         break;
4800                 cpu_relax();
4801         } while (!need_resched());
4802
4803         __set_current_state(TASK_RUNNING);
4804         return 0;
4805 }
4806
4807 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4808                 struct io_comp_batch *iob, unsigned int flags)
4809 {
4810         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4811
4812         return blk_hctx_poll(q, hctx, iob, flags);
4813 }
4814
4815 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4816                 unsigned int poll_flags)
4817 {
4818         struct request_queue *q = rq->q;
4819         int ret;
4820
4821         if (!blk_rq_is_poll(rq))
4822                 return 0;
4823         if (!percpu_ref_tryget(&q->q_usage_counter))
4824                 return 0;
4825
4826         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4827         blk_queue_exit(q);
4828
4829         return ret;
4830 }
4831 EXPORT_SYMBOL_GPL(blk_rq_poll);
4832
4833 unsigned int blk_mq_rq_cpu(struct request *rq)
4834 {
4835         return rq->mq_ctx->cpu;
4836 }
4837 EXPORT_SYMBOL(blk_mq_rq_cpu);
4838
4839 void blk_mq_cancel_work_sync(struct request_queue *q)
4840 {
4841         struct blk_mq_hw_ctx *hctx;
4842         unsigned long i;
4843
4844         cancel_delayed_work_sync(&q->requeue_work);
4845
4846         queue_for_each_hw_ctx(q, hctx, i)
4847                 cancel_delayed_work_sync(&hctx->run_work);
4848 }
4849
4850 static int __init blk_mq_init(void)
4851 {
4852         int i;
4853
4854         for_each_possible_cpu(i)
4855                 init_llist_head(&per_cpu(blk_cpu_done, i));
4856         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4857
4858         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4859                                   "block/softirq:dead", NULL,
4860                                   blk_softirq_cpu_dead);
4861         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4862                                 blk_mq_hctx_notify_dead);
4863         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4864                                 blk_mq_hctx_notify_online,
4865                                 blk_mq_hctx_notify_offline);
4866         return 0;
4867 }
4868 subsys_initcall(blk_mq_init);