Merge tag 'for-5.19/block-2022-06-02' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         /*
478          * Try batched alloc if we want more than 1 tag.
479          */
480         if (data->nr_tags > 1) {
481                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482                 if (rq)
483                         return rq;
484                 data->nr_tags = 1;
485         }
486
487         /*
488          * Waiting allocations only fail because of an inactive hctx.  In that
489          * case just retry the hctx assignment and tag allocation as CPU hotplug
490          * should have migrated us to an online CPU by now.
491          */
492         tag = blk_mq_get_tag(data);
493         if (tag == BLK_MQ_NO_TAG) {
494                 if (data->flags & BLK_MQ_REQ_NOWAIT)
495                         return NULL;
496                 /*
497                  * Give up the CPU and sleep for a random short time to
498                  * ensure that thread using a realtime scheduling class
499                  * are migrated off the CPU, and thus off the hctx that
500                  * is going away.
501                  */
502                 msleep(3);
503                 goto retry;
504         }
505
506         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507                                         alloc_time_ns);
508 }
509
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511                 blk_mq_req_flags_t flags)
512 {
513         struct blk_mq_alloc_data data = {
514                 .q              = q,
515                 .flags          = flags,
516                 .cmd_flags      = op,
517                 .nr_tags        = 1,
518         };
519         struct request *rq;
520         int ret;
521
522         ret = blk_queue_enter(q, flags);
523         if (ret)
524                 return ERR_PTR(ret);
525
526         rq = __blk_mq_alloc_requests(&data);
527         if (!rq)
528                 goto out_queue_exit;
529         rq->__data_len = 0;
530         rq->__sector = (sector_t) -1;
531         rq->bio = rq->biotail = NULL;
532         return rq;
533 out_queue_exit:
534         blk_queue_exit(q);
535         return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542         struct blk_mq_alloc_data data = {
543                 .q              = q,
544                 .flags          = flags,
545                 .cmd_flags      = op,
546                 .nr_tags        = 1,
547         };
548         u64 alloc_time_ns = 0;
549         unsigned int cpu;
550         unsigned int tag;
551         int ret;
552
553         /* alloc_time includes depth and tag waits */
554         if (blk_queue_rq_alloc_time(q))
555                 alloc_time_ns = ktime_get_ns();
556
557         /*
558          * If the tag allocator sleeps we could get an allocation for a
559          * different hardware context.  No need to complicate the low level
560          * allocator for this for the rare use case of a command tied to
561          * a specific queue.
562          */
563         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564                 return ERR_PTR(-EINVAL);
565
566         if (hctx_idx >= q->nr_hw_queues)
567                 return ERR_PTR(-EIO);
568
569         ret = blk_queue_enter(q, flags);
570         if (ret)
571                 return ERR_PTR(ret);
572
573         /*
574          * Check if the hardware context is actually mapped to anything.
575          * If not tell the caller that it should skip this queue.
576          */
577         ret = -EXDEV;
578         data.hctx = xa_load(&q->hctx_table, hctx_idx);
579         if (!blk_mq_hw_queue_mapped(data.hctx))
580                 goto out_queue_exit;
581         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582         data.ctx = __blk_mq_get_ctx(q, cpu);
583
584         if (!q->elevator)
585                 blk_mq_tag_busy(data.hctx);
586         else
587                 data.rq_flags |= RQF_ELV;
588
589         ret = -EWOULDBLOCK;
590         tag = blk_mq_get_tag(&data);
591         if (tag == BLK_MQ_NO_TAG)
592                 goto out_queue_exit;
593         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
594                                         alloc_time_ns);
595
596 out_queue_exit:
597         blk_queue_exit(q);
598         return ERR_PTR(ret);
599 }
600 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
601
602 static void __blk_mq_free_request(struct request *rq)
603 {
604         struct request_queue *q = rq->q;
605         struct blk_mq_ctx *ctx = rq->mq_ctx;
606         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
607         const int sched_tag = rq->internal_tag;
608
609         blk_crypto_free_request(rq);
610         blk_pm_mark_last_busy(rq);
611         rq->mq_hctx = NULL;
612         if (rq->tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
614         if (sched_tag != BLK_MQ_NO_TAG)
615                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
616         blk_mq_sched_restart(hctx);
617         blk_queue_exit(q);
618 }
619
620 void blk_mq_free_request(struct request *rq)
621 {
622         struct request_queue *q = rq->q;
623         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
624
625         if ((rq->rq_flags & RQF_ELVPRIV) &&
626             q->elevator->type->ops.finish_request)
627                 q->elevator->type->ops.finish_request(rq);
628
629         if (rq->rq_flags & RQF_MQ_INFLIGHT)
630                 __blk_mq_dec_active_requests(hctx);
631
632         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
633                 laptop_io_completion(q->disk->bdi);
634
635         rq_qos_done(q, rq);
636
637         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
638         if (req_ref_put_and_test(rq))
639                 __blk_mq_free_request(rq);
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_free_request);
642
643 void blk_mq_free_plug_rqs(struct blk_plug *plug)
644 {
645         struct request *rq;
646
647         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
648                 blk_mq_free_request(rq);
649 }
650
651 void blk_dump_rq_flags(struct request *rq, char *msg)
652 {
653         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
654                 rq->q->disk ? rq->q->disk->disk_name : "?",
655                 (unsigned long long) rq->cmd_flags);
656
657         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
658                (unsigned long long)blk_rq_pos(rq),
659                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
660         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
661                rq->bio, rq->biotail, blk_rq_bytes(rq));
662 }
663 EXPORT_SYMBOL(blk_dump_rq_flags);
664
665 static void req_bio_endio(struct request *rq, struct bio *bio,
666                           unsigned int nbytes, blk_status_t error)
667 {
668         if (unlikely(error)) {
669                 bio->bi_status = error;
670         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
671                 /*
672                  * Partial zone append completions cannot be supported as the
673                  * BIO fragments may end up not being written sequentially.
674                  */
675                 if (bio->bi_iter.bi_size != nbytes)
676                         bio->bi_status = BLK_STS_IOERR;
677                 else
678                         bio->bi_iter.bi_sector = rq->__sector;
679         }
680
681         bio_advance(bio, nbytes);
682
683         if (unlikely(rq->rq_flags & RQF_QUIET))
684                 bio_set_flag(bio, BIO_QUIET);
685         /* don't actually finish bio if it's part of flush sequence */
686         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
687                 bio_endio(bio);
688 }
689
690 static void blk_account_io_completion(struct request *req, unsigned int bytes)
691 {
692         if (req->part && blk_do_io_stat(req)) {
693                 const int sgrp = op_stat_group(req_op(req));
694
695                 part_stat_lock();
696                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
697                 part_stat_unlock();
698         }
699 }
700
701 static void blk_print_req_error(struct request *req, blk_status_t status)
702 {
703         printk_ratelimited(KERN_ERR
704                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
705                 "phys_seg %u prio class %u\n",
706                 blk_status_to_str(status),
707                 req->q->disk ? req->q->disk->disk_name : "?",
708                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
709                 req->cmd_flags & ~REQ_OP_MASK,
710                 req->nr_phys_segments,
711                 IOPRIO_PRIO_CLASS(req->ioprio));
712 }
713
714 /*
715  * Fully end IO on a request. Does not support partial completions, or
716  * errors.
717  */
718 static void blk_complete_request(struct request *req)
719 {
720         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
721         int total_bytes = blk_rq_bytes(req);
722         struct bio *bio = req->bio;
723
724         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
725
726         if (!bio)
727                 return;
728
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
731                 req->q->integrity.profile->complete_fn(req, total_bytes);
732 #endif
733
734         blk_account_io_completion(req, total_bytes);
735
736         do {
737                 struct bio *next = bio->bi_next;
738
739                 /* Completion has already been traced */
740                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
741
742                 if (req_op(req) == REQ_OP_ZONE_APPEND)
743                         bio->bi_iter.bi_sector = req->__sector;
744
745                 if (!is_flush)
746                         bio_endio(bio);
747                 bio = next;
748         } while (bio);
749
750         /*
751          * Reset counters so that the request stacking driver
752          * can find how many bytes remain in the request
753          * later.
754          */
755         req->bio = NULL;
756         req->__data_len = 0;
757 }
758
759 /**
760  * blk_update_request - Complete multiple bytes without completing the request
761  * @req:      the request being processed
762  * @error:    block status code
763  * @nr_bytes: number of bytes to complete for @req
764  *
765  * Description:
766  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
767  *     the request structure even if @req doesn't have leftover.
768  *     If @req has leftover, sets it up for the next range of segments.
769  *
770  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
771  *     %false return from this function.
772  *
773  * Note:
774  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
775  *      except in the consistency check at the end of this function.
776  *
777  * Return:
778  *     %false - this request doesn't have any more data
779  *     %true  - this request has more data
780  **/
781 bool blk_update_request(struct request *req, blk_status_t error,
782                 unsigned int nr_bytes)
783 {
784         int total_bytes;
785
786         trace_block_rq_complete(req, error, nr_bytes);
787
788         if (!req->bio)
789                 return false;
790
791 #ifdef CONFIG_BLK_DEV_INTEGRITY
792         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
793             error == BLK_STS_OK)
794                 req->q->integrity.profile->complete_fn(req, nr_bytes);
795 #endif
796
797         if (unlikely(error && !blk_rq_is_passthrough(req) &&
798                      !(req->rq_flags & RQF_QUIET)) &&
799                      !test_bit(GD_DEAD, &req->q->disk->state)) {
800                 blk_print_req_error(req, error);
801                 trace_block_rq_error(req, error, nr_bytes);
802         }
803
804         blk_account_io_completion(req, nr_bytes);
805
806         total_bytes = 0;
807         while (req->bio) {
808                 struct bio *bio = req->bio;
809                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
810
811                 if (bio_bytes == bio->bi_iter.bi_size)
812                         req->bio = bio->bi_next;
813
814                 /* Completion has already been traced */
815                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
816                 req_bio_endio(req, bio, bio_bytes, error);
817
818                 total_bytes += bio_bytes;
819                 nr_bytes -= bio_bytes;
820
821                 if (!nr_bytes)
822                         break;
823         }
824
825         /*
826          * completely done
827          */
828         if (!req->bio) {
829                 /*
830                  * Reset counters so that the request stacking driver
831                  * can find how many bytes remain in the request
832                  * later.
833                  */
834                 req->__data_len = 0;
835                 return false;
836         }
837
838         req->__data_len -= total_bytes;
839
840         /* update sector only for requests with clear definition of sector */
841         if (!blk_rq_is_passthrough(req))
842                 req->__sector += total_bytes >> 9;
843
844         /* mixed attributes always follow the first bio */
845         if (req->rq_flags & RQF_MIXED_MERGE) {
846                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
847                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
848         }
849
850         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
851                 /*
852                  * If total number of sectors is less than the first segment
853                  * size, something has gone terribly wrong.
854                  */
855                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
856                         blk_dump_rq_flags(req, "request botched");
857                         req->__data_len = blk_rq_cur_bytes(req);
858                 }
859
860                 /* recalculate the number of segments */
861                 req->nr_phys_segments = blk_recalc_rq_segments(req);
862         }
863
864         return true;
865 }
866 EXPORT_SYMBOL_GPL(blk_update_request);
867
868 static void __blk_account_io_done(struct request *req, u64 now)
869 {
870         const int sgrp = op_stat_group(req_op(req));
871
872         part_stat_lock();
873         update_io_ticks(req->part, jiffies, true);
874         part_stat_inc(req->part, ios[sgrp]);
875         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
876         part_stat_unlock();
877 }
878
879 static inline void blk_account_io_done(struct request *req, u64 now)
880 {
881         /*
882          * Account IO completion.  flush_rq isn't accounted as a
883          * normal IO on queueing nor completion.  Accounting the
884          * containing request is enough.
885          */
886         if (blk_do_io_stat(req) && req->part &&
887             !(req->rq_flags & RQF_FLUSH_SEQ))
888                 __blk_account_io_done(req, now);
889 }
890
891 static void __blk_account_io_start(struct request *rq)
892 {
893         /*
894          * All non-passthrough requests are created from a bio with one
895          * exception: when a flush command that is part of a flush sequence
896          * generated by the state machine in blk-flush.c is cloned onto the
897          * lower device by dm-multipath we can get here without a bio.
898          */
899         if (rq->bio)
900                 rq->part = rq->bio->bi_bdev;
901         else
902                 rq->part = rq->q->disk->part0;
903
904         part_stat_lock();
905         update_io_ticks(rq->part, jiffies, false);
906         part_stat_unlock();
907 }
908
909 static inline void blk_account_io_start(struct request *req)
910 {
911         if (blk_do_io_stat(req))
912                 __blk_account_io_start(req);
913 }
914
915 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
916 {
917         if (rq->rq_flags & RQF_STATS) {
918                 blk_mq_poll_stats_start(rq->q);
919                 blk_stat_add(rq, now);
920         }
921
922         blk_mq_sched_completed_request(rq, now);
923         blk_account_io_done(rq, now);
924 }
925
926 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
927 {
928         if (blk_mq_need_time_stamp(rq))
929                 __blk_mq_end_request_acct(rq, ktime_get_ns());
930
931         if (rq->end_io) {
932                 rq_qos_done(rq->q, rq);
933                 rq->end_io(rq, error);
934         } else {
935                 blk_mq_free_request(rq);
936         }
937 }
938 EXPORT_SYMBOL(__blk_mq_end_request);
939
940 void blk_mq_end_request(struct request *rq, blk_status_t error)
941 {
942         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
943                 BUG();
944         __blk_mq_end_request(rq, error);
945 }
946 EXPORT_SYMBOL(blk_mq_end_request);
947
948 #define TAG_COMP_BATCH          32
949
950 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
951                                           int *tag_array, int nr_tags)
952 {
953         struct request_queue *q = hctx->queue;
954
955         /*
956          * All requests should have been marked as RQF_MQ_INFLIGHT, so
957          * update hctx->nr_active in batch
958          */
959         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
960                 __blk_mq_sub_active_requests(hctx, nr_tags);
961
962         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
963         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
964 }
965
966 void blk_mq_end_request_batch(struct io_comp_batch *iob)
967 {
968         int tags[TAG_COMP_BATCH], nr_tags = 0;
969         struct blk_mq_hw_ctx *cur_hctx = NULL;
970         struct request *rq;
971         u64 now = 0;
972
973         if (iob->need_ts)
974                 now = ktime_get_ns();
975
976         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
977                 prefetch(rq->bio);
978                 prefetch(rq->rq_next);
979
980                 blk_complete_request(rq);
981                 if (iob->need_ts)
982                         __blk_mq_end_request_acct(rq, now);
983
984                 rq_qos_done(rq->q, rq);
985
986                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
987                 if (!req_ref_put_and_test(rq))
988                         continue;
989
990                 blk_crypto_free_request(rq);
991                 blk_pm_mark_last_busy(rq);
992
993                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
994                         if (cur_hctx)
995                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
996                         nr_tags = 0;
997                         cur_hctx = rq->mq_hctx;
998                 }
999                 tags[nr_tags++] = rq->tag;
1000         }
1001
1002         if (nr_tags)
1003                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1006
1007 static void blk_complete_reqs(struct llist_head *list)
1008 {
1009         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1010         struct request *rq, *next;
1011
1012         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1013                 rq->q->mq_ops->complete(rq);
1014 }
1015
1016 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1017 {
1018         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1019 }
1020
1021 static int blk_softirq_cpu_dead(unsigned int cpu)
1022 {
1023         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1024         return 0;
1025 }
1026
1027 static void __blk_mq_complete_request_remote(void *data)
1028 {
1029         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1030 }
1031
1032 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1033 {
1034         int cpu = raw_smp_processor_id();
1035
1036         if (!IS_ENABLED(CONFIG_SMP) ||
1037             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1038                 return false;
1039         /*
1040          * With force threaded interrupts enabled, raising softirq from an SMP
1041          * function call will always result in waking the ksoftirqd thread.
1042          * This is probably worse than completing the request on a different
1043          * cache domain.
1044          */
1045         if (force_irqthreads())
1046                 return false;
1047
1048         /* same CPU or cache domain?  Complete locally */
1049         if (cpu == rq->mq_ctx->cpu ||
1050             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1051              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1052                 return false;
1053
1054         /* don't try to IPI to an offline CPU */
1055         return cpu_online(rq->mq_ctx->cpu);
1056 }
1057
1058 static void blk_mq_complete_send_ipi(struct request *rq)
1059 {
1060         struct llist_head *list;
1061         unsigned int cpu;
1062
1063         cpu = rq->mq_ctx->cpu;
1064         list = &per_cpu(blk_cpu_done, cpu);
1065         if (llist_add(&rq->ipi_list, list)) {
1066                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1067                 smp_call_function_single_async(cpu, &rq->csd);
1068         }
1069 }
1070
1071 static void blk_mq_raise_softirq(struct request *rq)
1072 {
1073         struct llist_head *list;
1074
1075         preempt_disable();
1076         list = this_cpu_ptr(&blk_cpu_done);
1077         if (llist_add(&rq->ipi_list, list))
1078                 raise_softirq(BLOCK_SOFTIRQ);
1079         preempt_enable();
1080 }
1081
1082 bool blk_mq_complete_request_remote(struct request *rq)
1083 {
1084         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1085
1086         /*
1087          * For a polled request, always complete locally, it's pointless
1088          * to redirect the completion.
1089          */
1090         if (rq->cmd_flags & REQ_POLLED)
1091                 return false;
1092
1093         if (blk_mq_complete_need_ipi(rq)) {
1094                 blk_mq_complete_send_ipi(rq);
1095                 return true;
1096         }
1097
1098         if (rq->q->nr_hw_queues == 1) {
1099                 blk_mq_raise_softirq(rq);
1100                 return true;
1101         }
1102         return false;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1105
1106 /**
1107  * blk_mq_complete_request - end I/O on a request
1108  * @rq:         the request being processed
1109  *
1110  * Description:
1111  *      Complete a request by scheduling the ->complete_rq operation.
1112  **/
1113 void blk_mq_complete_request(struct request *rq)
1114 {
1115         if (!blk_mq_complete_request_remote(rq))
1116                 rq->q->mq_ops->complete(rq);
1117 }
1118 EXPORT_SYMBOL(blk_mq_complete_request);
1119
1120 /**
1121  * blk_mq_start_request - Start processing a request
1122  * @rq: Pointer to request to be started
1123  *
1124  * Function used by device drivers to notify the block layer that a request
1125  * is going to be processed now, so blk layer can do proper initializations
1126  * such as starting the timeout timer.
1127  */
1128 void blk_mq_start_request(struct request *rq)
1129 {
1130         struct request_queue *q = rq->q;
1131
1132         trace_block_rq_issue(rq);
1133
1134         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1135                 rq->io_start_time_ns = ktime_get_ns();
1136                 rq->stats_sectors = blk_rq_sectors(rq);
1137                 rq->rq_flags |= RQF_STATS;
1138                 rq_qos_issue(q, rq);
1139         }
1140
1141         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1142
1143         blk_add_timer(rq);
1144         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1145
1146 #ifdef CONFIG_BLK_DEV_INTEGRITY
1147         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1148                 q->integrity.profile->prepare_fn(rq);
1149 #endif
1150         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1151                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1152 }
1153 EXPORT_SYMBOL(blk_mq_start_request);
1154
1155 /**
1156  * blk_end_sync_rq - executes a completion event on a request
1157  * @rq: request to complete
1158  * @error: end I/O status of the request
1159  */
1160 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1161 {
1162         struct completion *waiting = rq->end_io_data;
1163
1164         rq->end_io_data = (void *)(uintptr_t)error;
1165
1166         /*
1167          * complete last, if this is a stack request the process (and thus
1168          * the rq pointer) could be invalid right after this complete()
1169          */
1170         complete(waiting);
1171 }
1172
1173 /*
1174  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1175  * queues. This is important for md arrays to benefit from merging
1176  * requests.
1177  */
1178 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1179 {
1180         if (plug->multiple_queues)
1181                 return BLK_MAX_REQUEST_COUNT * 2;
1182         return BLK_MAX_REQUEST_COUNT;
1183 }
1184
1185 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1186 {
1187         struct request *last = rq_list_peek(&plug->mq_list);
1188
1189         if (!plug->rq_count) {
1190                 trace_block_plug(rq->q);
1191         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1192                    (!blk_queue_nomerges(rq->q) &&
1193                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1194                 blk_mq_flush_plug_list(plug, false);
1195                 trace_block_plug(rq->q);
1196         }
1197
1198         if (!plug->multiple_queues && last && last->q != rq->q)
1199                 plug->multiple_queues = true;
1200         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1201                 plug->has_elevator = true;
1202         rq->rq_next = NULL;
1203         rq_list_add(&plug->mq_list, rq);
1204         plug->rq_count++;
1205 }
1206
1207 static void __blk_execute_rq_nowait(struct request *rq, bool at_head,
1208                 rq_end_io_fn *done, bool use_plug)
1209 {
1210         WARN_ON(irqs_disabled());
1211         WARN_ON(!blk_rq_is_passthrough(rq));
1212
1213         rq->end_io = done;
1214
1215         blk_account_io_start(rq);
1216
1217         if (use_plug && current->plug) {
1218                 blk_add_rq_to_plug(current->plug, rq);
1219                 return;
1220         }
1221         /*
1222          * don't check dying flag for MQ because the request won't
1223          * be reused after dying flag is set
1224          */
1225         blk_mq_sched_insert_request(rq, at_head, true, false);
1226 }
1227
1228
1229 /**
1230  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1231  * @rq:         request to insert
1232  * @at_head:    insert request at head or tail of queue
1233  * @done:       I/O completion handler
1234  *
1235  * Description:
1236  *    Insert a fully prepared request at the back of the I/O scheduler queue
1237  *    for execution.  Don't wait for completion.
1238  *
1239  * Note:
1240  *    This function will invoke @done directly if the queue is dead.
1241  */
1242 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1243 {
1244         __blk_execute_rq_nowait(rq, at_head, done, true);
1245
1246 }
1247 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1248
1249 static bool blk_rq_is_poll(struct request *rq)
1250 {
1251         if (!rq->mq_hctx)
1252                 return false;
1253         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1254                 return false;
1255         if (WARN_ON_ONCE(!rq->bio))
1256                 return false;
1257         return true;
1258 }
1259
1260 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1261 {
1262         do {
1263                 bio_poll(rq->bio, NULL, 0);
1264                 cond_resched();
1265         } while (!completion_done(wait));
1266 }
1267
1268 /**
1269  * blk_execute_rq - insert a request into queue for execution
1270  * @rq:         request to insert
1271  * @at_head:    insert request at head or tail of queue
1272  *
1273  * Description:
1274  *    Insert a fully prepared request at the back of the I/O scheduler queue
1275  *    for execution and wait for completion.
1276  * Return: The blk_status_t result provided to blk_mq_end_request().
1277  */
1278 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1279 {
1280         DECLARE_COMPLETION_ONSTACK(wait);
1281         unsigned long hang_check;
1282
1283         /*
1284          * iopoll requires request to be submitted to driver, so can't
1285          * use plug
1286          */
1287         rq->end_io_data = &wait;
1288         __blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq,
1289                         !blk_rq_is_poll(rq));
1290
1291         /* Prevent hang_check timer from firing at us during very long I/O */
1292         hang_check = sysctl_hung_task_timeout_secs;
1293
1294         if (blk_rq_is_poll(rq))
1295                 blk_rq_poll_completion(rq, &wait);
1296         else if (hang_check)
1297                 while (!wait_for_completion_io_timeout(&wait,
1298                                 hang_check * (HZ/2)))
1299                         ;
1300         else
1301                 wait_for_completion_io(&wait);
1302
1303         return (blk_status_t)(uintptr_t)rq->end_io_data;
1304 }
1305 EXPORT_SYMBOL(blk_execute_rq);
1306
1307 static void __blk_mq_requeue_request(struct request *rq)
1308 {
1309         struct request_queue *q = rq->q;
1310
1311         blk_mq_put_driver_tag(rq);
1312
1313         trace_block_rq_requeue(rq);
1314         rq_qos_requeue(q, rq);
1315
1316         if (blk_mq_request_started(rq)) {
1317                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1318                 rq->rq_flags &= ~RQF_TIMED_OUT;
1319         }
1320 }
1321
1322 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1323 {
1324         __blk_mq_requeue_request(rq);
1325
1326         /* this request will be re-inserted to io scheduler queue */
1327         blk_mq_sched_requeue_request(rq);
1328
1329         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1330 }
1331 EXPORT_SYMBOL(blk_mq_requeue_request);
1332
1333 static void blk_mq_requeue_work(struct work_struct *work)
1334 {
1335         struct request_queue *q =
1336                 container_of(work, struct request_queue, requeue_work.work);
1337         LIST_HEAD(rq_list);
1338         struct request *rq, *next;
1339
1340         spin_lock_irq(&q->requeue_lock);
1341         list_splice_init(&q->requeue_list, &rq_list);
1342         spin_unlock_irq(&q->requeue_lock);
1343
1344         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1345                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1346                         continue;
1347
1348                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1349                 list_del_init(&rq->queuelist);
1350                 /*
1351                  * If RQF_DONTPREP, rq has contained some driver specific
1352                  * data, so insert it to hctx dispatch list to avoid any
1353                  * merge.
1354                  */
1355                 if (rq->rq_flags & RQF_DONTPREP)
1356                         blk_mq_request_bypass_insert(rq, false, false);
1357                 else
1358                         blk_mq_sched_insert_request(rq, true, false, false);
1359         }
1360
1361         while (!list_empty(&rq_list)) {
1362                 rq = list_entry(rq_list.next, struct request, queuelist);
1363                 list_del_init(&rq->queuelist);
1364                 blk_mq_sched_insert_request(rq, false, false, false);
1365         }
1366
1367         blk_mq_run_hw_queues(q, false);
1368 }
1369
1370 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1371                                 bool kick_requeue_list)
1372 {
1373         struct request_queue *q = rq->q;
1374         unsigned long flags;
1375
1376         /*
1377          * We abuse this flag that is otherwise used by the I/O scheduler to
1378          * request head insertion from the workqueue.
1379          */
1380         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1381
1382         spin_lock_irqsave(&q->requeue_lock, flags);
1383         if (at_head) {
1384                 rq->rq_flags |= RQF_SOFTBARRIER;
1385                 list_add(&rq->queuelist, &q->requeue_list);
1386         } else {
1387                 list_add_tail(&rq->queuelist, &q->requeue_list);
1388         }
1389         spin_unlock_irqrestore(&q->requeue_lock, flags);
1390
1391         if (kick_requeue_list)
1392                 blk_mq_kick_requeue_list(q);
1393 }
1394
1395 void blk_mq_kick_requeue_list(struct request_queue *q)
1396 {
1397         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1398 }
1399 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1400
1401 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1402                                     unsigned long msecs)
1403 {
1404         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1405                                     msecs_to_jiffies(msecs));
1406 }
1407 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1408
1409 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1410                                bool reserved)
1411 {
1412         /*
1413          * If we find a request that isn't idle we know the queue is busy
1414          * as it's checked in the iter.
1415          * Return false to stop the iteration.
1416          */
1417         if (blk_mq_request_started(rq)) {
1418                 bool *busy = priv;
1419
1420                 *busy = true;
1421                 return false;
1422         }
1423
1424         return true;
1425 }
1426
1427 bool blk_mq_queue_inflight(struct request_queue *q)
1428 {
1429         bool busy = false;
1430
1431         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1432         return busy;
1433 }
1434 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1435
1436 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1437 {
1438         req->rq_flags |= RQF_TIMED_OUT;
1439         if (req->q->mq_ops->timeout) {
1440                 enum blk_eh_timer_return ret;
1441
1442                 ret = req->q->mq_ops->timeout(req, reserved);
1443                 if (ret == BLK_EH_DONE)
1444                         return;
1445                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1446         }
1447
1448         blk_add_timer(req);
1449 }
1450
1451 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1452 {
1453         unsigned long deadline;
1454
1455         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1456                 return false;
1457         if (rq->rq_flags & RQF_TIMED_OUT)
1458                 return false;
1459
1460         deadline = READ_ONCE(rq->deadline);
1461         if (time_after_eq(jiffies, deadline))
1462                 return true;
1463
1464         if (*next == 0)
1465                 *next = deadline;
1466         else if (time_after(*next, deadline))
1467                 *next = deadline;
1468         return false;
1469 }
1470
1471 void blk_mq_put_rq_ref(struct request *rq)
1472 {
1473         if (is_flush_rq(rq))
1474                 rq->end_io(rq, 0);
1475         else if (req_ref_put_and_test(rq))
1476                 __blk_mq_free_request(rq);
1477 }
1478
1479 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1480 {
1481         unsigned long *next = priv;
1482
1483         /*
1484          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1485          * be reallocated underneath the timeout handler's processing, then
1486          * the expire check is reliable. If the request is not expired, then
1487          * it was completed and reallocated as a new request after returning
1488          * from blk_mq_check_expired().
1489          */
1490         if (blk_mq_req_expired(rq, next))
1491                 blk_mq_rq_timed_out(rq, reserved);
1492         return true;
1493 }
1494
1495 static void blk_mq_timeout_work(struct work_struct *work)
1496 {
1497         struct request_queue *q =
1498                 container_of(work, struct request_queue, timeout_work);
1499         unsigned long next = 0;
1500         struct blk_mq_hw_ctx *hctx;
1501         unsigned long i;
1502
1503         /* A deadlock might occur if a request is stuck requiring a
1504          * timeout at the same time a queue freeze is waiting
1505          * completion, since the timeout code would not be able to
1506          * acquire the queue reference here.
1507          *
1508          * That's why we don't use blk_queue_enter here; instead, we use
1509          * percpu_ref_tryget directly, because we need to be able to
1510          * obtain a reference even in the short window between the queue
1511          * starting to freeze, by dropping the first reference in
1512          * blk_freeze_queue_start, and the moment the last request is
1513          * consumed, marked by the instant q_usage_counter reaches
1514          * zero.
1515          */
1516         if (!percpu_ref_tryget(&q->q_usage_counter))
1517                 return;
1518
1519         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1520
1521         if (next != 0) {
1522                 mod_timer(&q->timeout, next);
1523         } else {
1524                 /*
1525                  * Request timeouts are handled as a forward rolling timer. If
1526                  * we end up here it means that no requests are pending and
1527                  * also that no request has been pending for a while. Mark
1528                  * each hctx as idle.
1529                  */
1530                 queue_for_each_hw_ctx(q, hctx, i) {
1531                         /* the hctx may be unmapped, so check it here */
1532                         if (blk_mq_hw_queue_mapped(hctx))
1533                                 blk_mq_tag_idle(hctx);
1534                 }
1535         }
1536         blk_queue_exit(q);
1537 }
1538
1539 struct flush_busy_ctx_data {
1540         struct blk_mq_hw_ctx *hctx;
1541         struct list_head *list;
1542 };
1543
1544 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1545 {
1546         struct flush_busy_ctx_data *flush_data = data;
1547         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1548         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1549         enum hctx_type type = hctx->type;
1550
1551         spin_lock(&ctx->lock);
1552         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1553         sbitmap_clear_bit(sb, bitnr);
1554         spin_unlock(&ctx->lock);
1555         return true;
1556 }
1557
1558 /*
1559  * Process software queues that have been marked busy, splicing them
1560  * to the for-dispatch
1561  */
1562 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1563 {
1564         struct flush_busy_ctx_data data = {
1565                 .hctx = hctx,
1566                 .list = list,
1567         };
1568
1569         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1570 }
1571 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1572
1573 struct dispatch_rq_data {
1574         struct blk_mq_hw_ctx *hctx;
1575         struct request *rq;
1576 };
1577
1578 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1579                 void *data)
1580 {
1581         struct dispatch_rq_data *dispatch_data = data;
1582         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1583         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1584         enum hctx_type type = hctx->type;
1585
1586         spin_lock(&ctx->lock);
1587         if (!list_empty(&ctx->rq_lists[type])) {
1588                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1589                 list_del_init(&dispatch_data->rq->queuelist);
1590                 if (list_empty(&ctx->rq_lists[type]))
1591                         sbitmap_clear_bit(sb, bitnr);
1592         }
1593         spin_unlock(&ctx->lock);
1594
1595         return !dispatch_data->rq;
1596 }
1597
1598 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1599                                         struct blk_mq_ctx *start)
1600 {
1601         unsigned off = start ? start->index_hw[hctx->type] : 0;
1602         struct dispatch_rq_data data = {
1603                 .hctx = hctx,
1604                 .rq   = NULL,
1605         };
1606
1607         __sbitmap_for_each_set(&hctx->ctx_map, off,
1608                                dispatch_rq_from_ctx, &data);
1609
1610         return data.rq;
1611 }
1612
1613 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1614 {
1615         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1616         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1617         int tag;
1618
1619         blk_mq_tag_busy(rq->mq_hctx);
1620
1621         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1622                 bt = &rq->mq_hctx->tags->breserved_tags;
1623                 tag_offset = 0;
1624         } else {
1625                 if (!hctx_may_queue(rq->mq_hctx, bt))
1626                         return false;
1627         }
1628
1629         tag = __sbitmap_queue_get(bt);
1630         if (tag == BLK_MQ_NO_TAG)
1631                 return false;
1632
1633         rq->tag = tag + tag_offset;
1634         return true;
1635 }
1636
1637 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1638 {
1639         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1640                 return false;
1641
1642         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1643                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1644                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1645                 __blk_mq_inc_active_requests(hctx);
1646         }
1647         hctx->tags->rqs[rq->tag] = rq;
1648         return true;
1649 }
1650
1651 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1652                                 int flags, void *key)
1653 {
1654         struct blk_mq_hw_ctx *hctx;
1655
1656         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1657
1658         spin_lock(&hctx->dispatch_wait_lock);
1659         if (!list_empty(&wait->entry)) {
1660                 struct sbitmap_queue *sbq;
1661
1662                 list_del_init(&wait->entry);
1663                 sbq = &hctx->tags->bitmap_tags;
1664                 atomic_dec(&sbq->ws_active);
1665         }
1666         spin_unlock(&hctx->dispatch_wait_lock);
1667
1668         blk_mq_run_hw_queue(hctx, true);
1669         return 1;
1670 }
1671
1672 /*
1673  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1674  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1675  * restart. For both cases, take care to check the condition again after
1676  * marking us as waiting.
1677  */
1678 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1679                                  struct request *rq)
1680 {
1681         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1682         struct wait_queue_head *wq;
1683         wait_queue_entry_t *wait;
1684         bool ret;
1685
1686         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1687                 blk_mq_sched_mark_restart_hctx(hctx);
1688
1689                 /*
1690                  * It's possible that a tag was freed in the window between the
1691                  * allocation failure and adding the hardware queue to the wait
1692                  * queue.
1693                  *
1694                  * Don't clear RESTART here, someone else could have set it.
1695                  * At most this will cost an extra queue run.
1696                  */
1697                 return blk_mq_get_driver_tag(rq);
1698         }
1699
1700         wait = &hctx->dispatch_wait;
1701         if (!list_empty_careful(&wait->entry))
1702                 return false;
1703
1704         wq = &bt_wait_ptr(sbq, hctx)->wait;
1705
1706         spin_lock_irq(&wq->lock);
1707         spin_lock(&hctx->dispatch_wait_lock);
1708         if (!list_empty(&wait->entry)) {
1709                 spin_unlock(&hctx->dispatch_wait_lock);
1710                 spin_unlock_irq(&wq->lock);
1711                 return false;
1712         }
1713
1714         atomic_inc(&sbq->ws_active);
1715         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1716         __add_wait_queue(wq, wait);
1717
1718         /*
1719          * It's possible that a tag was freed in the window between the
1720          * allocation failure and adding the hardware queue to the wait
1721          * queue.
1722          */
1723         ret = blk_mq_get_driver_tag(rq);
1724         if (!ret) {
1725                 spin_unlock(&hctx->dispatch_wait_lock);
1726                 spin_unlock_irq(&wq->lock);
1727                 return false;
1728         }
1729
1730         /*
1731          * We got a tag, remove ourselves from the wait queue to ensure
1732          * someone else gets the wakeup.
1733          */
1734         list_del_init(&wait->entry);
1735         atomic_dec(&sbq->ws_active);
1736         spin_unlock(&hctx->dispatch_wait_lock);
1737         spin_unlock_irq(&wq->lock);
1738
1739         return true;
1740 }
1741
1742 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1743 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1744 /*
1745  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1746  * - EWMA is one simple way to compute running average value
1747  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1748  * - take 4 as factor for avoiding to get too small(0) result, and this
1749  *   factor doesn't matter because EWMA decreases exponentially
1750  */
1751 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1752 {
1753         unsigned int ewma;
1754
1755         ewma = hctx->dispatch_busy;
1756
1757         if (!ewma && !busy)
1758                 return;
1759
1760         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1761         if (busy)
1762                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1763         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1764
1765         hctx->dispatch_busy = ewma;
1766 }
1767
1768 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1769
1770 static void blk_mq_handle_dev_resource(struct request *rq,
1771                                        struct list_head *list)
1772 {
1773         struct request *next =
1774                 list_first_entry_or_null(list, struct request, queuelist);
1775
1776         /*
1777          * If an I/O scheduler has been configured and we got a driver tag for
1778          * the next request already, free it.
1779          */
1780         if (next)
1781                 blk_mq_put_driver_tag(next);
1782
1783         list_add(&rq->queuelist, list);
1784         __blk_mq_requeue_request(rq);
1785 }
1786
1787 static void blk_mq_handle_zone_resource(struct request *rq,
1788                                         struct list_head *zone_list)
1789 {
1790         /*
1791          * If we end up here it is because we cannot dispatch a request to a
1792          * specific zone due to LLD level zone-write locking or other zone
1793          * related resource not being available. In this case, set the request
1794          * aside in zone_list for retrying it later.
1795          */
1796         list_add(&rq->queuelist, zone_list);
1797         __blk_mq_requeue_request(rq);
1798 }
1799
1800 enum prep_dispatch {
1801         PREP_DISPATCH_OK,
1802         PREP_DISPATCH_NO_TAG,
1803         PREP_DISPATCH_NO_BUDGET,
1804 };
1805
1806 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1807                                                   bool need_budget)
1808 {
1809         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1810         int budget_token = -1;
1811
1812         if (need_budget) {
1813                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1814                 if (budget_token < 0) {
1815                         blk_mq_put_driver_tag(rq);
1816                         return PREP_DISPATCH_NO_BUDGET;
1817                 }
1818                 blk_mq_set_rq_budget_token(rq, budget_token);
1819         }
1820
1821         if (!blk_mq_get_driver_tag(rq)) {
1822                 /*
1823                  * The initial allocation attempt failed, so we need to
1824                  * rerun the hardware queue when a tag is freed. The
1825                  * waitqueue takes care of that. If the queue is run
1826                  * before we add this entry back on the dispatch list,
1827                  * we'll re-run it below.
1828                  */
1829                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1830                         /*
1831                          * All budgets not got from this function will be put
1832                          * together during handling partial dispatch
1833                          */
1834                         if (need_budget)
1835                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1836                         return PREP_DISPATCH_NO_TAG;
1837                 }
1838         }
1839
1840         return PREP_DISPATCH_OK;
1841 }
1842
1843 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1844 static void blk_mq_release_budgets(struct request_queue *q,
1845                 struct list_head *list)
1846 {
1847         struct request *rq;
1848
1849         list_for_each_entry(rq, list, queuelist) {
1850                 int budget_token = blk_mq_get_rq_budget_token(rq);
1851
1852                 if (budget_token >= 0)
1853                         blk_mq_put_dispatch_budget(q, budget_token);
1854         }
1855 }
1856
1857 /*
1858  * Returns true if we did some work AND can potentially do more.
1859  */
1860 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1861                              unsigned int nr_budgets)
1862 {
1863         enum prep_dispatch prep;
1864         struct request_queue *q = hctx->queue;
1865         struct request *rq, *nxt;
1866         int errors, queued;
1867         blk_status_t ret = BLK_STS_OK;
1868         LIST_HEAD(zone_list);
1869         bool needs_resource = false;
1870
1871         if (list_empty(list))
1872                 return false;
1873
1874         /*
1875          * Now process all the entries, sending them to the driver.
1876          */
1877         errors = queued = 0;
1878         do {
1879                 struct blk_mq_queue_data bd;
1880
1881                 rq = list_first_entry(list, struct request, queuelist);
1882
1883                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1884                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1885                 if (prep != PREP_DISPATCH_OK)
1886                         break;
1887
1888                 list_del_init(&rq->queuelist);
1889
1890                 bd.rq = rq;
1891
1892                 /*
1893                  * Flag last if we have no more requests, or if we have more
1894                  * but can't assign a driver tag to it.
1895                  */
1896                 if (list_empty(list))
1897                         bd.last = true;
1898                 else {
1899                         nxt = list_first_entry(list, struct request, queuelist);
1900                         bd.last = !blk_mq_get_driver_tag(nxt);
1901                 }
1902
1903                 /*
1904                  * once the request is queued to lld, no need to cover the
1905                  * budget any more
1906                  */
1907                 if (nr_budgets)
1908                         nr_budgets--;
1909                 ret = q->mq_ops->queue_rq(hctx, &bd);
1910                 switch (ret) {
1911                 case BLK_STS_OK:
1912                         queued++;
1913                         break;
1914                 case BLK_STS_RESOURCE:
1915                         needs_resource = true;
1916                         fallthrough;
1917                 case BLK_STS_DEV_RESOURCE:
1918                         blk_mq_handle_dev_resource(rq, list);
1919                         goto out;
1920                 case BLK_STS_ZONE_RESOURCE:
1921                         /*
1922                          * Move the request to zone_list and keep going through
1923                          * the dispatch list to find more requests the drive can
1924                          * accept.
1925                          */
1926                         blk_mq_handle_zone_resource(rq, &zone_list);
1927                         needs_resource = true;
1928                         break;
1929                 default:
1930                         errors++;
1931                         blk_mq_end_request(rq, ret);
1932                 }
1933         } while (!list_empty(list));
1934 out:
1935         if (!list_empty(&zone_list))
1936                 list_splice_tail_init(&zone_list, list);
1937
1938         /* If we didn't flush the entire list, we could have told the driver
1939          * there was more coming, but that turned out to be a lie.
1940          */
1941         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1942                 q->mq_ops->commit_rqs(hctx);
1943         /*
1944          * Any items that need requeuing? Stuff them into hctx->dispatch,
1945          * that is where we will continue on next queue run.
1946          */
1947         if (!list_empty(list)) {
1948                 bool needs_restart;
1949                 /* For non-shared tags, the RESTART check will suffice */
1950                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1951                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1952
1953                 if (nr_budgets)
1954                         blk_mq_release_budgets(q, list);
1955
1956                 spin_lock(&hctx->lock);
1957                 list_splice_tail_init(list, &hctx->dispatch);
1958                 spin_unlock(&hctx->lock);
1959
1960                 /*
1961                  * Order adding requests to hctx->dispatch and checking
1962                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1963                  * in blk_mq_sched_restart(). Avoid restart code path to
1964                  * miss the new added requests to hctx->dispatch, meantime
1965                  * SCHED_RESTART is observed here.
1966                  */
1967                 smp_mb();
1968
1969                 /*
1970                  * If SCHED_RESTART was set by the caller of this function and
1971                  * it is no longer set that means that it was cleared by another
1972                  * thread and hence that a queue rerun is needed.
1973                  *
1974                  * If 'no_tag' is set, that means that we failed getting
1975                  * a driver tag with an I/O scheduler attached. If our dispatch
1976                  * waitqueue is no longer active, ensure that we run the queue
1977                  * AFTER adding our entries back to the list.
1978                  *
1979                  * If no I/O scheduler has been configured it is possible that
1980                  * the hardware queue got stopped and restarted before requests
1981                  * were pushed back onto the dispatch list. Rerun the queue to
1982                  * avoid starvation. Notes:
1983                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1984                  *   been stopped before rerunning a queue.
1985                  * - Some but not all block drivers stop a queue before
1986                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1987                  *   and dm-rq.
1988                  *
1989                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1990                  * bit is set, run queue after a delay to avoid IO stalls
1991                  * that could otherwise occur if the queue is idle.  We'll do
1992                  * similar if we couldn't get budget or couldn't lock a zone
1993                  * and SCHED_RESTART is set.
1994                  */
1995                 needs_restart = blk_mq_sched_needs_restart(hctx);
1996                 if (prep == PREP_DISPATCH_NO_BUDGET)
1997                         needs_resource = true;
1998                 if (!needs_restart ||
1999                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2000                         blk_mq_run_hw_queue(hctx, true);
2001                 else if (needs_restart && needs_resource)
2002                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2003
2004                 blk_mq_update_dispatch_busy(hctx, true);
2005                 return false;
2006         } else
2007                 blk_mq_update_dispatch_busy(hctx, false);
2008
2009         return (queued + errors) != 0;
2010 }
2011
2012 /**
2013  * __blk_mq_run_hw_queue - Run a hardware queue.
2014  * @hctx: Pointer to the hardware queue to run.
2015  *
2016  * Send pending requests to the hardware.
2017  */
2018 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2019 {
2020         /*
2021          * We can't run the queue inline with ints disabled. Ensure that
2022          * we catch bad users of this early.
2023          */
2024         WARN_ON_ONCE(in_interrupt());
2025
2026         blk_mq_run_dispatch_ops(hctx->queue,
2027                         blk_mq_sched_dispatch_requests(hctx));
2028 }
2029
2030 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2031 {
2032         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2033
2034         if (cpu >= nr_cpu_ids)
2035                 cpu = cpumask_first(hctx->cpumask);
2036         return cpu;
2037 }
2038
2039 /*
2040  * It'd be great if the workqueue API had a way to pass
2041  * in a mask and had some smarts for more clever placement.
2042  * For now we just round-robin here, switching for every
2043  * BLK_MQ_CPU_WORK_BATCH queued items.
2044  */
2045 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2046 {
2047         bool tried = false;
2048         int next_cpu = hctx->next_cpu;
2049
2050         if (hctx->queue->nr_hw_queues == 1)
2051                 return WORK_CPU_UNBOUND;
2052
2053         if (--hctx->next_cpu_batch <= 0) {
2054 select_cpu:
2055                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2056                                 cpu_online_mask);
2057                 if (next_cpu >= nr_cpu_ids)
2058                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2059                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2060         }
2061
2062         /*
2063          * Do unbound schedule if we can't find a online CPU for this hctx,
2064          * and it should only happen in the path of handling CPU DEAD.
2065          */
2066         if (!cpu_online(next_cpu)) {
2067                 if (!tried) {
2068                         tried = true;
2069                         goto select_cpu;
2070                 }
2071
2072                 /*
2073                  * Make sure to re-select CPU next time once after CPUs
2074                  * in hctx->cpumask become online again.
2075                  */
2076                 hctx->next_cpu = next_cpu;
2077                 hctx->next_cpu_batch = 1;
2078                 return WORK_CPU_UNBOUND;
2079         }
2080
2081         hctx->next_cpu = next_cpu;
2082         return next_cpu;
2083 }
2084
2085 /**
2086  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2087  * @hctx: Pointer to the hardware queue to run.
2088  * @async: If we want to run the queue asynchronously.
2089  * @msecs: Milliseconds of delay to wait before running the queue.
2090  *
2091  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2092  * with a delay of @msecs.
2093  */
2094 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2095                                         unsigned long msecs)
2096 {
2097         if (unlikely(blk_mq_hctx_stopped(hctx)))
2098                 return;
2099
2100         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2101                 int cpu = get_cpu();
2102                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2103                         __blk_mq_run_hw_queue(hctx);
2104                         put_cpu();
2105                         return;
2106                 }
2107
2108                 put_cpu();
2109         }
2110
2111         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2112                                     msecs_to_jiffies(msecs));
2113 }
2114
2115 /**
2116  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2117  * @hctx: Pointer to the hardware queue to run.
2118  * @msecs: Milliseconds of delay to wait before running the queue.
2119  *
2120  * Run a hardware queue asynchronously with a delay of @msecs.
2121  */
2122 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2123 {
2124         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2125 }
2126 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2127
2128 /**
2129  * blk_mq_run_hw_queue - Start to run a hardware queue.
2130  * @hctx: Pointer to the hardware queue to run.
2131  * @async: If we want to run the queue asynchronously.
2132  *
2133  * Check if the request queue is not in a quiesced state and if there are
2134  * pending requests to be sent. If this is true, run the queue to send requests
2135  * to hardware.
2136  */
2137 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2138 {
2139         bool need_run;
2140
2141         /*
2142          * When queue is quiesced, we may be switching io scheduler, or
2143          * updating nr_hw_queues, or other things, and we can't run queue
2144          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2145          *
2146          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2147          * quiesced.
2148          */
2149         __blk_mq_run_dispatch_ops(hctx->queue, false,
2150                 need_run = !blk_queue_quiesced(hctx->queue) &&
2151                 blk_mq_hctx_has_pending(hctx));
2152
2153         if (need_run)
2154                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2155 }
2156 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2157
2158 /*
2159  * Is the request queue handled by an IO scheduler that does not respect
2160  * hardware queues when dispatching?
2161  */
2162 static bool blk_mq_has_sqsched(struct request_queue *q)
2163 {
2164         struct elevator_queue *e = q->elevator;
2165
2166         if (e && e->type->ops.dispatch_request &&
2167             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2168                 return true;
2169         return false;
2170 }
2171
2172 /*
2173  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2174  * scheduler.
2175  */
2176 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2177 {
2178         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2179         /*
2180          * If the IO scheduler does not respect hardware queues when
2181          * dispatching, we just don't bother with multiple HW queues and
2182          * dispatch from hctx for the current CPU since running multiple queues
2183          * just causes lock contention inside the scheduler and pointless cache
2184          * bouncing.
2185          */
2186         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2187
2188         if (!blk_mq_hctx_stopped(hctx))
2189                 return hctx;
2190         return NULL;
2191 }
2192
2193 /**
2194  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2195  * @q: Pointer to the request queue to run.
2196  * @async: If we want to run the queue asynchronously.
2197  */
2198 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2199 {
2200         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2201         unsigned long i;
2202
2203         sq_hctx = NULL;
2204         if (blk_mq_has_sqsched(q))
2205                 sq_hctx = blk_mq_get_sq_hctx(q);
2206         queue_for_each_hw_ctx(q, hctx, i) {
2207                 if (blk_mq_hctx_stopped(hctx))
2208                         continue;
2209                 /*
2210                  * Dispatch from this hctx either if there's no hctx preferred
2211                  * by IO scheduler or if it has requests that bypass the
2212                  * scheduler.
2213                  */
2214                 if (!sq_hctx || sq_hctx == hctx ||
2215                     !list_empty_careful(&hctx->dispatch))
2216                         blk_mq_run_hw_queue(hctx, async);
2217         }
2218 }
2219 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2220
2221 /**
2222  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2223  * @q: Pointer to the request queue to run.
2224  * @msecs: Milliseconds of delay to wait before running the queues.
2225  */
2226 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2227 {
2228         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2229         unsigned long i;
2230
2231         sq_hctx = NULL;
2232         if (blk_mq_has_sqsched(q))
2233                 sq_hctx = blk_mq_get_sq_hctx(q);
2234         queue_for_each_hw_ctx(q, hctx, i) {
2235                 if (blk_mq_hctx_stopped(hctx))
2236                         continue;
2237                 /*
2238                  * If there is already a run_work pending, leave the
2239                  * pending delay untouched. Otherwise, a hctx can stall
2240                  * if another hctx is re-delaying the other's work
2241                  * before the work executes.
2242                  */
2243                 if (delayed_work_pending(&hctx->run_work))
2244                         continue;
2245                 /*
2246                  * Dispatch from this hctx either if there's no hctx preferred
2247                  * by IO scheduler or if it has requests that bypass the
2248                  * scheduler.
2249                  */
2250                 if (!sq_hctx || sq_hctx == hctx ||
2251                     !list_empty_careful(&hctx->dispatch))
2252                         blk_mq_delay_run_hw_queue(hctx, msecs);
2253         }
2254 }
2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2256
2257 /**
2258  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2259  * @q: request queue.
2260  *
2261  * The caller is responsible for serializing this function against
2262  * blk_mq_{start,stop}_hw_queue().
2263  */
2264 bool blk_mq_queue_stopped(struct request_queue *q)
2265 {
2266         struct blk_mq_hw_ctx *hctx;
2267         unsigned long i;
2268
2269         queue_for_each_hw_ctx(q, hctx, i)
2270                 if (blk_mq_hctx_stopped(hctx))
2271                         return true;
2272
2273         return false;
2274 }
2275 EXPORT_SYMBOL(blk_mq_queue_stopped);
2276
2277 /*
2278  * This function is often used for pausing .queue_rq() by driver when
2279  * there isn't enough resource or some conditions aren't satisfied, and
2280  * BLK_STS_RESOURCE is usually returned.
2281  *
2282  * We do not guarantee that dispatch can be drained or blocked
2283  * after blk_mq_stop_hw_queue() returns. Please use
2284  * blk_mq_quiesce_queue() for that requirement.
2285  */
2286 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288         cancel_delayed_work(&hctx->run_work);
2289
2290         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2291 }
2292 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2293
2294 /*
2295  * This function is often used for pausing .queue_rq() by driver when
2296  * there isn't enough resource or some conditions aren't satisfied, and
2297  * BLK_STS_RESOURCE is usually returned.
2298  *
2299  * We do not guarantee that dispatch can be drained or blocked
2300  * after blk_mq_stop_hw_queues() returns. Please use
2301  * blk_mq_quiesce_queue() for that requirement.
2302  */
2303 void blk_mq_stop_hw_queues(struct request_queue *q)
2304 {
2305         struct blk_mq_hw_ctx *hctx;
2306         unsigned long i;
2307
2308         queue_for_each_hw_ctx(q, hctx, i)
2309                 blk_mq_stop_hw_queue(hctx);
2310 }
2311 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2312
2313 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2314 {
2315         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2316
2317         blk_mq_run_hw_queue(hctx, false);
2318 }
2319 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2320
2321 void blk_mq_start_hw_queues(struct request_queue *q)
2322 {
2323         struct blk_mq_hw_ctx *hctx;
2324         unsigned long i;
2325
2326         queue_for_each_hw_ctx(q, hctx, i)
2327                 blk_mq_start_hw_queue(hctx);
2328 }
2329 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2330
2331 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2332 {
2333         if (!blk_mq_hctx_stopped(hctx))
2334                 return;
2335
2336         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2337         blk_mq_run_hw_queue(hctx, async);
2338 }
2339 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2340
2341 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2342 {
2343         struct blk_mq_hw_ctx *hctx;
2344         unsigned long i;
2345
2346         queue_for_each_hw_ctx(q, hctx, i)
2347                 blk_mq_start_stopped_hw_queue(hctx, async);
2348 }
2349 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2350
2351 static void blk_mq_run_work_fn(struct work_struct *work)
2352 {
2353         struct blk_mq_hw_ctx *hctx;
2354
2355         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2356
2357         /*
2358          * If we are stopped, don't run the queue.
2359          */
2360         if (blk_mq_hctx_stopped(hctx))
2361                 return;
2362
2363         __blk_mq_run_hw_queue(hctx);
2364 }
2365
2366 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2367                                             struct request *rq,
2368                                             bool at_head)
2369 {
2370         struct blk_mq_ctx *ctx = rq->mq_ctx;
2371         enum hctx_type type = hctx->type;
2372
2373         lockdep_assert_held(&ctx->lock);
2374
2375         trace_block_rq_insert(rq);
2376
2377         if (at_head)
2378                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2379         else
2380                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2381 }
2382
2383 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2384                              bool at_head)
2385 {
2386         struct blk_mq_ctx *ctx = rq->mq_ctx;
2387
2388         lockdep_assert_held(&ctx->lock);
2389
2390         __blk_mq_insert_req_list(hctx, rq, at_head);
2391         blk_mq_hctx_mark_pending(hctx, ctx);
2392 }
2393
2394 /**
2395  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2396  * @rq: Pointer to request to be inserted.
2397  * @at_head: true if the request should be inserted at the head of the list.
2398  * @run_queue: If we should run the hardware queue after inserting the request.
2399  *
2400  * Should only be used carefully, when the caller knows we want to
2401  * bypass a potential IO scheduler on the target device.
2402  */
2403 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2404                                   bool run_queue)
2405 {
2406         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2407
2408         spin_lock(&hctx->lock);
2409         if (at_head)
2410                 list_add(&rq->queuelist, &hctx->dispatch);
2411         else
2412                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2413         spin_unlock(&hctx->lock);
2414
2415         if (run_queue)
2416                 blk_mq_run_hw_queue(hctx, false);
2417 }
2418
2419 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2420                             struct list_head *list)
2421
2422 {
2423         struct request *rq;
2424         enum hctx_type type = hctx->type;
2425
2426         /*
2427          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2428          * offline now
2429          */
2430         list_for_each_entry(rq, list, queuelist) {
2431                 BUG_ON(rq->mq_ctx != ctx);
2432                 trace_block_rq_insert(rq);
2433         }
2434
2435         spin_lock(&ctx->lock);
2436         list_splice_tail_init(list, &ctx->rq_lists[type]);
2437         blk_mq_hctx_mark_pending(hctx, ctx);
2438         spin_unlock(&ctx->lock);
2439 }
2440
2441 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2442                               bool from_schedule)
2443 {
2444         if (hctx->queue->mq_ops->commit_rqs) {
2445                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2446                 hctx->queue->mq_ops->commit_rqs(hctx);
2447         }
2448         *queued = 0;
2449 }
2450
2451 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2452                 unsigned int nr_segs)
2453 {
2454         int err;
2455
2456         if (bio->bi_opf & REQ_RAHEAD)
2457                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2458
2459         rq->__sector = bio->bi_iter.bi_sector;
2460         blk_rq_bio_prep(rq, bio, nr_segs);
2461
2462         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2463         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2464         WARN_ON_ONCE(err);
2465
2466         blk_account_io_start(rq);
2467 }
2468
2469 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2470                                             struct request *rq, bool last)
2471 {
2472         struct request_queue *q = rq->q;
2473         struct blk_mq_queue_data bd = {
2474                 .rq = rq,
2475                 .last = last,
2476         };
2477         blk_status_t ret;
2478
2479         /*
2480          * For OK queue, we are done. For error, caller may kill it.
2481          * Any other error (busy), just add it to our list as we
2482          * previously would have done.
2483          */
2484         ret = q->mq_ops->queue_rq(hctx, &bd);
2485         switch (ret) {
2486         case BLK_STS_OK:
2487                 blk_mq_update_dispatch_busy(hctx, false);
2488                 break;
2489         case BLK_STS_RESOURCE:
2490         case BLK_STS_DEV_RESOURCE:
2491                 blk_mq_update_dispatch_busy(hctx, true);
2492                 __blk_mq_requeue_request(rq);
2493                 break;
2494         default:
2495                 blk_mq_update_dispatch_busy(hctx, false);
2496                 break;
2497         }
2498
2499         return ret;
2500 }
2501
2502 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2503                                                 struct request *rq,
2504                                                 bool bypass_insert, bool last)
2505 {
2506         struct request_queue *q = rq->q;
2507         bool run_queue = true;
2508         int budget_token;
2509
2510         /*
2511          * RCU or SRCU read lock is needed before checking quiesced flag.
2512          *
2513          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2514          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2515          * and avoid driver to try to dispatch again.
2516          */
2517         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2518                 run_queue = false;
2519                 bypass_insert = false;
2520                 goto insert;
2521         }
2522
2523         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2524                 goto insert;
2525
2526         budget_token = blk_mq_get_dispatch_budget(q);
2527         if (budget_token < 0)
2528                 goto insert;
2529
2530         blk_mq_set_rq_budget_token(rq, budget_token);
2531
2532         if (!blk_mq_get_driver_tag(rq)) {
2533                 blk_mq_put_dispatch_budget(q, budget_token);
2534                 goto insert;
2535         }
2536
2537         return __blk_mq_issue_directly(hctx, rq, last);
2538 insert:
2539         if (bypass_insert)
2540                 return BLK_STS_RESOURCE;
2541
2542         blk_mq_sched_insert_request(rq, false, run_queue, false);
2543
2544         return BLK_STS_OK;
2545 }
2546
2547 /**
2548  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2549  * @hctx: Pointer of the associated hardware queue.
2550  * @rq: Pointer to request to be sent.
2551  *
2552  * If the device has enough resources to accept a new request now, send the
2553  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2554  * we can try send it another time in the future. Requests inserted at this
2555  * queue have higher priority.
2556  */
2557 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                 struct request *rq)
2559 {
2560         blk_status_t ret =
2561                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2562
2563         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2564                 blk_mq_request_bypass_insert(rq, false, true);
2565         else if (ret != BLK_STS_OK)
2566                 blk_mq_end_request(rq, ret);
2567 }
2568
2569 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2570 {
2571         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2572 }
2573
2574 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2575 {
2576         struct blk_mq_hw_ctx *hctx = NULL;
2577         struct request *rq;
2578         int queued = 0;
2579         int errors = 0;
2580
2581         while ((rq = rq_list_pop(&plug->mq_list))) {
2582                 bool last = rq_list_empty(plug->mq_list);
2583                 blk_status_t ret;
2584
2585                 if (hctx != rq->mq_hctx) {
2586                         if (hctx)
2587                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2588                         hctx = rq->mq_hctx;
2589                 }
2590
2591                 ret = blk_mq_request_issue_directly(rq, last);
2592                 switch (ret) {
2593                 case BLK_STS_OK:
2594                         queued++;
2595                         break;
2596                 case BLK_STS_RESOURCE:
2597                 case BLK_STS_DEV_RESOURCE:
2598                         blk_mq_request_bypass_insert(rq, false, last);
2599                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2600                         return;
2601                 default:
2602                         blk_mq_end_request(rq, ret);
2603                         errors++;
2604                         break;
2605                 }
2606         }
2607
2608         /*
2609          * If we didn't flush the entire list, we could have told the driver
2610          * there was more coming, but that turned out to be a lie.
2611          */
2612         if (errors)
2613                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2614 }
2615
2616 static void __blk_mq_flush_plug_list(struct request_queue *q,
2617                                      struct blk_plug *plug)
2618 {
2619         if (blk_queue_quiesced(q))
2620                 return;
2621         q->mq_ops->queue_rqs(&plug->mq_list);
2622 }
2623
2624 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2625 {
2626         struct blk_mq_hw_ctx *this_hctx = NULL;
2627         struct blk_mq_ctx *this_ctx = NULL;
2628         struct request *requeue_list = NULL;
2629         unsigned int depth = 0;
2630         LIST_HEAD(list);
2631
2632         do {
2633                 struct request *rq = rq_list_pop(&plug->mq_list);
2634
2635                 if (!this_hctx) {
2636                         this_hctx = rq->mq_hctx;
2637                         this_ctx = rq->mq_ctx;
2638                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2639                         rq_list_add(&requeue_list, rq);
2640                         continue;
2641                 }
2642                 list_add_tail(&rq->queuelist, &list);
2643                 depth++;
2644         } while (!rq_list_empty(plug->mq_list));
2645
2646         plug->mq_list = requeue_list;
2647         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2648         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2649 }
2650
2651 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2652 {
2653         struct request *rq;
2654
2655         if (rq_list_empty(plug->mq_list))
2656                 return;
2657         plug->rq_count = 0;
2658
2659         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2660                 struct request_queue *q;
2661
2662                 rq = rq_list_peek(&plug->mq_list);
2663                 q = rq->q;
2664
2665                 /*
2666                  * Peek first request and see if we have a ->queue_rqs() hook.
2667                  * If we do, we can dispatch the whole plug list in one go. We
2668                  * already know at this point that all requests belong to the
2669                  * same queue, caller must ensure that's the case.
2670                  *
2671                  * Since we pass off the full list to the driver at this point,
2672                  * we do not increment the active request count for the queue.
2673                  * Bypass shared tags for now because of that.
2674                  */
2675                 if (q->mq_ops->queue_rqs &&
2676                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2677                         blk_mq_run_dispatch_ops(q,
2678                                 __blk_mq_flush_plug_list(q, plug));
2679                         if (rq_list_empty(plug->mq_list))
2680                                 return;
2681                 }
2682
2683                 blk_mq_run_dispatch_ops(q,
2684                                 blk_mq_plug_issue_direct(plug, false));
2685                 if (rq_list_empty(plug->mq_list))
2686                         return;
2687         }
2688
2689         do {
2690                 blk_mq_dispatch_plug_list(plug, from_schedule);
2691         } while (!rq_list_empty(plug->mq_list));
2692 }
2693
2694 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2695                 struct list_head *list)
2696 {
2697         int queued = 0;
2698         int errors = 0;
2699
2700         while (!list_empty(list)) {
2701                 blk_status_t ret;
2702                 struct request *rq = list_first_entry(list, struct request,
2703                                 queuelist);
2704
2705                 list_del_init(&rq->queuelist);
2706                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2707                 if (ret != BLK_STS_OK) {
2708                         if (ret == BLK_STS_RESOURCE ||
2709                                         ret == BLK_STS_DEV_RESOURCE) {
2710                                 blk_mq_request_bypass_insert(rq, false,
2711                                                         list_empty(list));
2712                                 break;
2713                         }
2714                         blk_mq_end_request(rq, ret);
2715                         errors++;
2716                 } else
2717                         queued++;
2718         }
2719
2720         /*
2721          * If we didn't flush the entire list, we could have told
2722          * the driver there was more coming, but that turned out to
2723          * be a lie.
2724          */
2725         if ((!list_empty(list) || errors) &&
2726              hctx->queue->mq_ops->commit_rqs && queued)
2727                 hctx->queue->mq_ops->commit_rqs(hctx);
2728 }
2729
2730 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2731                                      struct bio *bio, unsigned int nr_segs)
2732 {
2733         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2734                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2735                         return true;
2736                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2737                         return true;
2738         }
2739         return false;
2740 }
2741
2742 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2743                                                struct blk_plug *plug,
2744                                                struct bio *bio,
2745                                                unsigned int nsegs)
2746 {
2747         struct blk_mq_alloc_data data = {
2748                 .q              = q,
2749                 .nr_tags        = 1,
2750                 .cmd_flags      = bio->bi_opf,
2751         };
2752         struct request *rq;
2753
2754         if (unlikely(bio_queue_enter(bio)))
2755                 return NULL;
2756
2757         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2758                 goto queue_exit;
2759
2760         rq_qos_throttle(q, bio);
2761
2762         if (plug) {
2763                 data.nr_tags = plug->nr_ios;
2764                 plug->nr_ios = 1;
2765                 data.cached_rq = &plug->cached_rq;
2766         }
2767
2768         rq = __blk_mq_alloc_requests(&data);
2769         if (rq)
2770                 return rq;
2771         rq_qos_cleanup(q, bio);
2772         if (bio->bi_opf & REQ_NOWAIT)
2773                 bio_wouldblock_error(bio);
2774 queue_exit:
2775         blk_queue_exit(q);
2776         return NULL;
2777 }
2778
2779 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2780                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2781 {
2782         struct request *rq;
2783
2784         if (!plug)
2785                 return NULL;
2786         rq = rq_list_peek(&plug->cached_rq);
2787         if (!rq || rq->q != q)
2788                 return NULL;
2789
2790         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2791                 *bio = NULL;
2792                 return NULL;
2793         }
2794
2795         rq_qos_throttle(q, *bio);
2796
2797         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2798                 return NULL;
2799         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2800                 return NULL;
2801
2802         rq->cmd_flags = (*bio)->bi_opf;
2803         plug->cached_rq = rq_list_next(rq);
2804         INIT_LIST_HEAD(&rq->queuelist);
2805         return rq;
2806 }
2807
2808 /**
2809  * blk_mq_submit_bio - Create and send a request to block device.
2810  * @bio: Bio pointer.
2811  *
2812  * Builds up a request structure from @q and @bio and send to the device. The
2813  * request may not be queued directly to hardware if:
2814  * * This request can be merged with another one
2815  * * We want to place request at plug queue for possible future merging
2816  * * There is an IO scheduler active at this queue
2817  *
2818  * It will not queue the request if there is an error with the bio, or at the
2819  * request creation.
2820  */
2821 void blk_mq_submit_bio(struct bio *bio)
2822 {
2823         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2824         struct blk_plug *plug = blk_mq_plug(q, bio);
2825         const int is_sync = op_is_sync(bio->bi_opf);
2826         struct request *rq;
2827         unsigned int nr_segs = 1;
2828         blk_status_t ret;
2829
2830         blk_queue_bounce(q, &bio);
2831         if (blk_may_split(q, bio))
2832                 __blk_queue_split(q, &bio, &nr_segs);
2833
2834         if (!bio_integrity_prep(bio))
2835                 return;
2836
2837         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2838         if (!rq) {
2839                 if (!bio)
2840                         return;
2841                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2842                 if (unlikely(!rq))
2843                         return;
2844         }
2845
2846         trace_block_getrq(bio);
2847
2848         rq_qos_track(q, rq, bio);
2849
2850         blk_mq_bio_to_request(rq, bio, nr_segs);
2851
2852         ret = blk_crypto_init_request(rq);
2853         if (ret != BLK_STS_OK) {
2854                 bio->bi_status = ret;
2855                 bio_endio(bio);
2856                 blk_mq_free_request(rq);
2857                 return;
2858         }
2859
2860         if (op_is_flush(bio->bi_opf)) {
2861                 blk_insert_flush(rq);
2862                 return;
2863         }
2864
2865         if (plug)
2866                 blk_add_rq_to_plug(plug, rq);
2867         else if ((rq->rq_flags & RQF_ELV) ||
2868                  (rq->mq_hctx->dispatch_busy &&
2869                   (q->nr_hw_queues == 1 || !is_sync)))
2870                 blk_mq_sched_insert_request(rq, false, true, true);
2871         else
2872                 blk_mq_run_dispatch_ops(rq->q,
2873                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2874 }
2875
2876 #ifdef CONFIG_BLK_MQ_STACKING
2877 /**
2878  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2879  * @rq: the request being queued
2880  */
2881 blk_status_t blk_insert_cloned_request(struct request *rq)
2882 {
2883         struct request_queue *q = rq->q;
2884         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2885         blk_status_t ret;
2886
2887         if (blk_rq_sectors(rq) > max_sectors) {
2888                 /*
2889                  * SCSI device does not have a good way to return if
2890                  * Write Same/Zero is actually supported. If a device rejects
2891                  * a non-read/write command (discard, write same,etc.) the
2892                  * low-level device driver will set the relevant queue limit to
2893                  * 0 to prevent blk-lib from issuing more of the offending
2894                  * operations. Commands queued prior to the queue limit being
2895                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2896                  * errors being propagated to upper layers.
2897                  */
2898                 if (max_sectors == 0)
2899                         return BLK_STS_NOTSUPP;
2900
2901                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2902                         __func__, blk_rq_sectors(rq), max_sectors);
2903                 return BLK_STS_IOERR;
2904         }
2905
2906         /*
2907          * The queue settings related to segment counting may differ from the
2908          * original queue.
2909          */
2910         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2911         if (rq->nr_phys_segments > queue_max_segments(q)) {
2912                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2913                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2914                 return BLK_STS_IOERR;
2915         }
2916
2917         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2918                 return BLK_STS_IOERR;
2919
2920         if (blk_crypto_insert_cloned_request(rq))
2921                 return BLK_STS_IOERR;
2922
2923         blk_account_io_start(rq);
2924
2925         /*
2926          * Since we have a scheduler attached on the top device,
2927          * bypass a potential scheduler on the bottom device for
2928          * insert.
2929          */
2930         blk_mq_run_dispatch_ops(q,
2931                         ret = blk_mq_request_issue_directly(rq, true));
2932         if (ret)
2933                 blk_account_io_done(rq, ktime_get_ns());
2934         return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2937
2938 /**
2939  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2940  * @rq: the clone request to be cleaned up
2941  *
2942  * Description:
2943  *     Free all bios in @rq for a cloned request.
2944  */
2945 void blk_rq_unprep_clone(struct request *rq)
2946 {
2947         struct bio *bio;
2948
2949         while ((bio = rq->bio) != NULL) {
2950                 rq->bio = bio->bi_next;
2951
2952                 bio_put(bio);
2953         }
2954 }
2955 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2956
2957 /**
2958  * blk_rq_prep_clone - Helper function to setup clone request
2959  * @rq: the request to be setup
2960  * @rq_src: original request to be cloned
2961  * @bs: bio_set that bios for clone are allocated from
2962  * @gfp_mask: memory allocation mask for bio
2963  * @bio_ctr: setup function to be called for each clone bio.
2964  *           Returns %0 for success, non %0 for failure.
2965  * @data: private data to be passed to @bio_ctr
2966  *
2967  * Description:
2968  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2969  *     Also, pages which the original bios are pointing to are not copied
2970  *     and the cloned bios just point same pages.
2971  *     So cloned bios must be completed before original bios, which means
2972  *     the caller must complete @rq before @rq_src.
2973  */
2974 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2975                       struct bio_set *bs, gfp_t gfp_mask,
2976                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2977                       void *data)
2978 {
2979         struct bio *bio, *bio_src;
2980
2981         if (!bs)
2982                 bs = &fs_bio_set;
2983
2984         __rq_for_each_bio(bio_src, rq_src) {
2985                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2986                                       bs);
2987                 if (!bio)
2988                         goto free_and_out;
2989
2990                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2991                         goto free_and_out;
2992
2993                 if (rq->bio) {
2994                         rq->biotail->bi_next = bio;
2995                         rq->biotail = bio;
2996                 } else {
2997                         rq->bio = rq->biotail = bio;
2998                 }
2999                 bio = NULL;
3000         }
3001
3002         /* Copy attributes of the original request to the clone request. */
3003         rq->__sector = blk_rq_pos(rq_src);
3004         rq->__data_len = blk_rq_bytes(rq_src);
3005         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3006                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3007                 rq->special_vec = rq_src->special_vec;
3008         }
3009         rq->nr_phys_segments = rq_src->nr_phys_segments;
3010         rq->ioprio = rq_src->ioprio;
3011
3012         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3013                 goto free_and_out;
3014
3015         return 0;
3016
3017 free_and_out:
3018         if (bio)
3019                 bio_put(bio);
3020         blk_rq_unprep_clone(rq);
3021
3022         return -ENOMEM;
3023 }
3024 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3025 #endif /* CONFIG_BLK_MQ_STACKING */
3026
3027 /*
3028  * Steal bios from a request and add them to a bio list.
3029  * The request must not have been partially completed before.
3030  */
3031 void blk_steal_bios(struct bio_list *list, struct request *rq)
3032 {
3033         if (rq->bio) {
3034                 if (list->tail)
3035                         list->tail->bi_next = rq->bio;
3036                 else
3037                         list->head = rq->bio;
3038                 list->tail = rq->biotail;
3039
3040                 rq->bio = NULL;
3041                 rq->biotail = NULL;
3042         }
3043
3044         rq->__data_len = 0;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_steal_bios);
3047
3048 static size_t order_to_size(unsigned int order)
3049 {
3050         return (size_t)PAGE_SIZE << order;
3051 }
3052
3053 /* called before freeing request pool in @tags */
3054 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3055                                     struct blk_mq_tags *tags)
3056 {
3057         struct page *page;
3058         unsigned long flags;
3059
3060         /* There is no need to clear a driver tags own mapping */
3061         if (drv_tags == tags)
3062                 return;
3063
3064         list_for_each_entry(page, &tags->page_list, lru) {
3065                 unsigned long start = (unsigned long)page_address(page);
3066                 unsigned long end = start + order_to_size(page->private);
3067                 int i;
3068
3069                 for (i = 0; i < drv_tags->nr_tags; i++) {
3070                         struct request *rq = drv_tags->rqs[i];
3071                         unsigned long rq_addr = (unsigned long)rq;
3072
3073                         if (rq_addr >= start && rq_addr < end) {
3074                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3075                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3076                         }
3077                 }
3078         }
3079
3080         /*
3081          * Wait until all pending iteration is done.
3082          *
3083          * Request reference is cleared and it is guaranteed to be observed
3084          * after the ->lock is released.
3085          */
3086         spin_lock_irqsave(&drv_tags->lock, flags);
3087         spin_unlock_irqrestore(&drv_tags->lock, flags);
3088 }
3089
3090 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3091                      unsigned int hctx_idx)
3092 {
3093         struct blk_mq_tags *drv_tags;
3094         struct page *page;
3095
3096         if (list_empty(&tags->page_list))
3097                 return;
3098
3099         if (blk_mq_is_shared_tags(set->flags))
3100                 drv_tags = set->shared_tags;
3101         else
3102                 drv_tags = set->tags[hctx_idx];
3103
3104         if (tags->static_rqs && set->ops->exit_request) {
3105                 int i;
3106
3107                 for (i = 0; i < tags->nr_tags; i++) {
3108                         struct request *rq = tags->static_rqs[i];
3109
3110                         if (!rq)
3111                                 continue;
3112                         set->ops->exit_request(set, rq, hctx_idx);
3113                         tags->static_rqs[i] = NULL;
3114                 }
3115         }
3116
3117         blk_mq_clear_rq_mapping(drv_tags, tags);
3118
3119         while (!list_empty(&tags->page_list)) {
3120                 page = list_first_entry(&tags->page_list, struct page, lru);
3121                 list_del_init(&page->lru);
3122                 /*
3123                  * Remove kmemleak object previously allocated in
3124                  * blk_mq_alloc_rqs().
3125                  */
3126                 kmemleak_free(page_address(page));
3127                 __free_pages(page, page->private);
3128         }
3129 }
3130
3131 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3132 {
3133         kfree(tags->rqs);
3134         tags->rqs = NULL;
3135         kfree(tags->static_rqs);
3136         tags->static_rqs = NULL;
3137
3138         blk_mq_free_tags(tags);
3139 }
3140
3141 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3142                 unsigned int hctx_idx)
3143 {
3144         int i;
3145
3146         for (i = 0; i < set->nr_maps; i++) {
3147                 unsigned int start = set->map[i].queue_offset;
3148                 unsigned int end = start + set->map[i].nr_queues;
3149
3150                 if (hctx_idx >= start && hctx_idx < end)
3151                         break;
3152         }
3153
3154         if (i >= set->nr_maps)
3155                 i = HCTX_TYPE_DEFAULT;
3156
3157         return i;
3158 }
3159
3160 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3161                 unsigned int hctx_idx)
3162 {
3163         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3164
3165         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3166 }
3167
3168 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3169                                                unsigned int hctx_idx,
3170                                                unsigned int nr_tags,
3171                                                unsigned int reserved_tags)
3172 {
3173         int node = blk_mq_get_hctx_node(set, hctx_idx);
3174         struct blk_mq_tags *tags;
3175
3176         if (node == NUMA_NO_NODE)
3177                 node = set->numa_node;
3178
3179         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3180                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3181         if (!tags)
3182                 return NULL;
3183
3184         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3185                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3186                                  node);
3187         if (!tags->rqs) {
3188                 blk_mq_free_tags(tags);
3189                 return NULL;
3190         }
3191
3192         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3193                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3194                                         node);
3195         if (!tags->static_rqs) {
3196                 kfree(tags->rqs);
3197                 blk_mq_free_tags(tags);
3198                 return NULL;
3199         }
3200
3201         return tags;
3202 }
3203
3204 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3205                                unsigned int hctx_idx, int node)
3206 {
3207         int ret;
3208
3209         if (set->ops->init_request) {
3210                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3211                 if (ret)
3212                         return ret;
3213         }
3214
3215         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3216         return 0;
3217 }
3218
3219 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3220                             struct blk_mq_tags *tags,
3221                             unsigned int hctx_idx, unsigned int depth)
3222 {
3223         unsigned int i, j, entries_per_page, max_order = 4;
3224         int node = blk_mq_get_hctx_node(set, hctx_idx);
3225         size_t rq_size, left;
3226
3227         if (node == NUMA_NO_NODE)
3228                 node = set->numa_node;
3229
3230         INIT_LIST_HEAD(&tags->page_list);
3231
3232         /*
3233          * rq_size is the size of the request plus driver payload, rounded
3234          * to the cacheline size
3235          */
3236         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3237                                 cache_line_size());
3238         left = rq_size * depth;
3239
3240         for (i = 0; i < depth; ) {
3241                 int this_order = max_order;
3242                 struct page *page;
3243                 int to_do;
3244                 void *p;
3245
3246                 while (this_order && left < order_to_size(this_order - 1))
3247                         this_order--;
3248
3249                 do {
3250                         page = alloc_pages_node(node,
3251                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3252                                 this_order);
3253                         if (page)
3254                                 break;
3255                         if (!this_order--)
3256                                 break;
3257                         if (order_to_size(this_order) < rq_size)
3258                                 break;
3259                 } while (1);
3260
3261                 if (!page)
3262                         goto fail;
3263
3264                 page->private = this_order;
3265                 list_add_tail(&page->lru, &tags->page_list);
3266
3267                 p = page_address(page);
3268                 /*
3269                  * Allow kmemleak to scan these pages as they contain pointers
3270                  * to additional allocations like via ops->init_request().
3271                  */
3272                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3273                 entries_per_page = order_to_size(this_order) / rq_size;
3274                 to_do = min(entries_per_page, depth - i);
3275                 left -= to_do * rq_size;
3276                 for (j = 0; j < to_do; j++) {
3277                         struct request *rq = p;
3278
3279                         tags->static_rqs[i] = rq;
3280                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3281                                 tags->static_rqs[i] = NULL;
3282                                 goto fail;
3283                         }
3284
3285                         p += rq_size;
3286                         i++;
3287                 }
3288         }
3289         return 0;
3290
3291 fail:
3292         blk_mq_free_rqs(set, tags, hctx_idx);
3293         return -ENOMEM;
3294 }
3295
3296 struct rq_iter_data {
3297         struct blk_mq_hw_ctx *hctx;
3298         bool has_rq;
3299 };
3300
3301 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3302 {
3303         struct rq_iter_data *iter_data = data;
3304
3305         if (rq->mq_hctx != iter_data->hctx)
3306                 return true;
3307         iter_data->has_rq = true;
3308         return false;
3309 }
3310
3311 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3312 {
3313         struct blk_mq_tags *tags = hctx->sched_tags ?
3314                         hctx->sched_tags : hctx->tags;
3315         struct rq_iter_data data = {
3316                 .hctx   = hctx,
3317         };
3318
3319         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3320         return data.has_rq;
3321 }
3322
3323 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3324                 struct blk_mq_hw_ctx *hctx)
3325 {
3326         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3327                 return false;
3328         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3329                 return false;
3330         return true;
3331 }
3332
3333 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3334 {
3335         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3336                         struct blk_mq_hw_ctx, cpuhp_online);
3337
3338         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3339             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3340                 return 0;
3341
3342         /*
3343          * Prevent new request from being allocated on the current hctx.
3344          *
3345          * The smp_mb__after_atomic() Pairs with the implied barrier in
3346          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3347          * seen once we return from the tag allocator.
3348          */
3349         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3350         smp_mb__after_atomic();
3351
3352         /*
3353          * Try to grab a reference to the queue and wait for any outstanding
3354          * requests.  If we could not grab a reference the queue has been
3355          * frozen and there are no requests.
3356          */
3357         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3358                 while (blk_mq_hctx_has_requests(hctx))
3359                         msleep(5);
3360                 percpu_ref_put(&hctx->queue->q_usage_counter);
3361         }
3362
3363         return 0;
3364 }
3365
3366 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3367 {
3368         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3369                         struct blk_mq_hw_ctx, cpuhp_online);
3370
3371         if (cpumask_test_cpu(cpu, hctx->cpumask))
3372                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3373         return 0;
3374 }
3375
3376 /*
3377  * 'cpu' is going away. splice any existing rq_list entries from this
3378  * software queue to the hw queue dispatch list, and ensure that it
3379  * gets run.
3380  */
3381 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3382 {
3383         struct blk_mq_hw_ctx *hctx;
3384         struct blk_mq_ctx *ctx;
3385         LIST_HEAD(tmp);
3386         enum hctx_type type;
3387
3388         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3389         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3390                 return 0;
3391
3392         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3393         type = hctx->type;
3394
3395         spin_lock(&ctx->lock);
3396         if (!list_empty(&ctx->rq_lists[type])) {
3397                 list_splice_init(&ctx->rq_lists[type], &tmp);
3398                 blk_mq_hctx_clear_pending(hctx, ctx);
3399         }
3400         spin_unlock(&ctx->lock);
3401
3402         if (list_empty(&tmp))
3403                 return 0;
3404
3405         spin_lock(&hctx->lock);
3406         list_splice_tail_init(&tmp, &hctx->dispatch);
3407         spin_unlock(&hctx->lock);
3408
3409         blk_mq_run_hw_queue(hctx, true);
3410         return 0;
3411 }
3412
3413 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3414 {
3415         if (!(hctx->flags & BLK_MQ_F_STACKING))
3416                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3417                                                     &hctx->cpuhp_online);
3418         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3419                                             &hctx->cpuhp_dead);
3420 }
3421
3422 /*
3423  * Before freeing hw queue, clearing the flush request reference in
3424  * tags->rqs[] for avoiding potential UAF.
3425  */
3426 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3427                 unsigned int queue_depth, struct request *flush_rq)
3428 {
3429         int i;
3430         unsigned long flags;
3431
3432         /* The hw queue may not be mapped yet */
3433         if (!tags)
3434                 return;
3435
3436         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3437
3438         for (i = 0; i < queue_depth; i++)
3439                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3440
3441         /*
3442          * Wait until all pending iteration is done.
3443          *
3444          * Request reference is cleared and it is guaranteed to be observed
3445          * after the ->lock is released.
3446          */
3447         spin_lock_irqsave(&tags->lock, flags);
3448         spin_unlock_irqrestore(&tags->lock, flags);
3449 }
3450
3451 /* hctx->ctxs will be freed in queue's release handler */
3452 static void blk_mq_exit_hctx(struct request_queue *q,
3453                 struct blk_mq_tag_set *set,
3454                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3455 {
3456         struct request *flush_rq = hctx->fq->flush_rq;
3457
3458         if (blk_mq_hw_queue_mapped(hctx))
3459                 blk_mq_tag_idle(hctx);
3460
3461         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3462                         set->queue_depth, flush_rq);
3463         if (set->ops->exit_request)
3464                 set->ops->exit_request(set, flush_rq, hctx_idx);
3465
3466         if (set->ops->exit_hctx)
3467                 set->ops->exit_hctx(hctx, hctx_idx);
3468
3469         blk_mq_remove_cpuhp(hctx);
3470
3471         xa_erase(&q->hctx_table, hctx_idx);
3472
3473         spin_lock(&q->unused_hctx_lock);
3474         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3475         spin_unlock(&q->unused_hctx_lock);
3476 }
3477
3478 static void blk_mq_exit_hw_queues(struct request_queue *q,
3479                 struct blk_mq_tag_set *set, int nr_queue)
3480 {
3481         struct blk_mq_hw_ctx *hctx;
3482         unsigned long i;
3483
3484         queue_for_each_hw_ctx(q, hctx, i) {
3485                 if (i == nr_queue)
3486                         break;
3487                 blk_mq_exit_hctx(q, set, hctx, i);
3488         }
3489 }
3490
3491 static int blk_mq_init_hctx(struct request_queue *q,
3492                 struct blk_mq_tag_set *set,
3493                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3494 {
3495         hctx->queue_num = hctx_idx;
3496
3497         if (!(hctx->flags & BLK_MQ_F_STACKING))
3498                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3499                                 &hctx->cpuhp_online);
3500         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3501
3502         hctx->tags = set->tags[hctx_idx];
3503
3504         if (set->ops->init_hctx &&
3505             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3506                 goto unregister_cpu_notifier;
3507
3508         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3509                                 hctx->numa_node))
3510                 goto exit_hctx;
3511
3512         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3513                 goto exit_flush_rq;
3514
3515         return 0;
3516
3517  exit_flush_rq:
3518         if (set->ops->exit_request)
3519                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3520  exit_hctx:
3521         if (set->ops->exit_hctx)
3522                 set->ops->exit_hctx(hctx, hctx_idx);
3523  unregister_cpu_notifier:
3524         blk_mq_remove_cpuhp(hctx);
3525         return -1;
3526 }
3527
3528 static struct blk_mq_hw_ctx *
3529 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3530                 int node)
3531 {
3532         struct blk_mq_hw_ctx *hctx;
3533         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3534
3535         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3536         if (!hctx)
3537                 goto fail_alloc_hctx;
3538
3539         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3540                 goto free_hctx;
3541
3542         atomic_set(&hctx->nr_active, 0);
3543         if (node == NUMA_NO_NODE)
3544                 node = set->numa_node;
3545         hctx->numa_node = node;
3546
3547         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3548         spin_lock_init(&hctx->lock);
3549         INIT_LIST_HEAD(&hctx->dispatch);
3550         hctx->queue = q;
3551         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3552
3553         INIT_LIST_HEAD(&hctx->hctx_list);
3554
3555         /*
3556          * Allocate space for all possible cpus to avoid allocation at
3557          * runtime
3558          */
3559         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3560                         gfp, node);
3561         if (!hctx->ctxs)
3562                 goto free_cpumask;
3563
3564         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3565                                 gfp, node, false, false))
3566                 goto free_ctxs;
3567         hctx->nr_ctx = 0;
3568
3569         spin_lock_init(&hctx->dispatch_wait_lock);
3570         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3571         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3572
3573         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3574         if (!hctx->fq)
3575                 goto free_bitmap;
3576
3577         blk_mq_hctx_kobj_init(hctx);
3578
3579         return hctx;
3580
3581  free_bitmap:
3582         sbitmap_free(&hctx->ctx_map);
3583  free_ctxs:
3584         kfree(hctx->ctxs);
3585  free_cpumask:
3586         free_cpumask_var(hctx->cpumask);
3587  free_hctx:
3588         kfree(hctx);
3589  fail_alloc_hctx:
3590         return NULL;
3591 }
3592
3593 static void blk_mq_init_cpu_queues(struct request_queue *q,
3594                                    unsigned int nr_hw_queues)
3595 {
3596         struct blk_mq_tag_set *set = q->tag_set;
3597         unsigned int i, j;
3598
3599         for_each_possible_cpu(i) {
3600                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3601                 struct blk_mq_hw_ctx *hctx;
3602                 int k;
3603
3604                 __ctx->cpu = i;
3605                 spin_lock_init(&__ctx->lock);
3606                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3607                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3608
3609                 __ctx->queue = q;
3610
3611                 /*
3612                  * Set local node, IFF we have more than one hw queue. If
3613                  * not, we remain on the home node of the device
3614                  */
3615                 for (j = 0; j < set->nr_maps; j++) {
3616                         hctx = blk_mq_map_queue_type(q, j, i);
3617                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3618                                 hctx->numa_node = cpu_to_node(i);
3619                 }
3620         }
3621 }
3622
3623 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3624                                              unsigned int hctx_idx,
3625                                              unsigned int depth)
3626 {
3627         struct blk_mq_tags *tags;
3628         int ret;
3629
3630         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3631         if (!tags)
3632                 return NULL;
3633
3634         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3635         if (ret) {
3636                 blk_mq_free_rq_map(tags);
3637                 return NULL;
3638         }
3639
3640         return tags;
3641 }
3642
3643 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3644                                        int hctx_idx)
3645 {
3646         if (blk_mq_is_shared_tags(set->flags)) {
3647                 set->tags[hctx_idx] = set->shared_tags;
3648
3649                 return true;
3650         }
3651
3652         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3653                                                        set->queue_depth);
3654
3655         return set->tags[hctx_idx];
3656 }
3657
3658 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659                              struct blk_mq_tags *tags,
3660                              unsigned int hctx_idx)
3661 {
3662         if (tags) {
3663                 blk_mq_free_rqs(set, tags, hctx_idx);
3664                 blk_mq_free_rq_map(tags);
3665         }
3666 }
3667
3668 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3669                                       unsigned int hctx_idx)
3670 {
3671         if (!blk_mq_is_shared_tags(set->flags))
3672                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3673
3674         set->tags[hctx_idx] = NULL;
3675 }
3676
3677 static void blk_mq_map_swqueue(struct request_queue *q)
3678 {
3679         unsigned int j, hctx_idx;
3680         unsigned long i;
3681         struct blk_mq_hw_ctx *hctx;
3682         struct blk_mq_ctx *ctx;
3683         struct blk_mq_tag_set *set = q->tag_set;
3684
3685         queue_for_each_hw_ctx(q, hctx, i) {
3686                 cpumask_clear(hctx->cpumask);
3687                 hctx->nr_ctx = 0;
3688                 hctx->dispatch_from = NULL;
3689         }
3690
3691         /*
3692          * Map software to hardware queues.
3693          *
3694          * If the cpu isn't present, the cpu is mapped to first hctx.
3695          */
3696         for_each_possible_cpu(i) {
3697
3698                 ctx = per_cpu_ptr(q->queue_ctx, i);
3699                 for (j = 0; j < set->nr_maps; j++) {
3700                         if (!set->map[j].nr_queues) {
3701                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3702                                                 HCTX_TYPE_DEFAULT, i);
3703                                 continue;
3704                         }
3705                         hctx_idx = set->map[j].mq_map[i];
3706                         /* unmapped hw queue can be remapped after CPU topo changed */
3707                         if (!set->tags[hctx_idx] &&
3708                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3709                                 /*
3710                                  * If tags initialization fail for some hctx,
3711                                  * that hctx won't be brought online.  In this
3712                                  * case, remap the current ctx to hctx[0] which
3713                                  * is guaranteed to always have tags allocated
3714                                  */
3715                                 set->map[j].mq_map[i] = 0;
3716                         }
3717
3718                         hctx = blk_mq_map_queue_type(q, j, i);
3719                         ctx->hctxs[j] = hctx;
3720                         /*
3721                          * If the CPU is already set in the mask, then we've
3722                          * mapped this one already. This can happen if
3723                          * devices share queues across queue maps.
3724                          */
3725                         if (cpumask_test_cpu(i, hctx->cpumask))
3726                                 continue;
3727
3728                         cpumask_set_cpu(i, hctx->cpumask);
3729                         hctx->type = j;
3730                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3731                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3732
3733                         /*
3734                          * If the nr_ctx type overflows, we have exceeded the
3735                          * amount of sw queues we can support.
3736                          */
3737                         BUG_ON(!hctx->nr_ctx);
3738                 }
3739
3740                 for (; j < HCTX_MAX_TYPES; j++)
3741                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3742                                         HCTX_TYPE_DEFAULT, i);
3743         }
3744
3745         queue_for_each_hw_ctx(q, hctx, i) {
3746                 /*
3747                  * If no software queues are mapped to this hardware queue,
3748                  * disable it and free the request entries.
3749                  */
3750                 if (!hctx->nr_ctx) {
3751                         /* Never unmap queue 0.  We need it as a
3752                          * fallback in case of a new remap fails
3753                          * allocation
3754                          */
3755                         if (i)
3756                                 __blk_mq_free_map_and_rqs(set, i);
3757
3758                         hctx->tags = NULL;
3759                         continue;
3760                 }
3761
3762                 hctx->tags = set->tags[i];
3763                 WARN_ON(!hctx->tags);
3764
3765                 /*
3766                  * Set the map size to the number of mapped software queues.
3767                  * This is more accurate and more efficient than looping
3768                  * over all possibly mapped software queues.
3769                  */
3770                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3771
3772                 /*
3773                  * Initialize batch roundrobin counts
3774                  */
3775                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3776                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3777         }
3778 }
3779
3780 /*
3781  * Caller needs to ensure that we're either frozen/quiesced, or that
3782  * the queue isn't live yet.
3783  */
3784 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3785 {
3786         struct blk_mq_hw_ctx *hctx;
3787         unsigned long i;
3788
3789         queue_for_each_hw_ctx(q, hctx, i) {
3790                 if (shared) {
3791                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3792                 } else {
3793                         blk_mq_tag_idle(hctx);
3794                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3795                 }
3796         }
3797 }
3798
3799 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3800                                          bool shared)
3801 {
3802         struct request_queue *q;
3803
3804         lockdep_assert_held(&set->tag_list_lock);
3805
3806         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3807                 blk_mq_freeze_queue(q);
3808                 queue_set_hctx_shared(q, shared);
3809                 blk_mq_unfreeze_queue(q);
3810         }
3811 }
3812
3813 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3814 {
3815         struct blk_mq_tag_set *set = q->tag_set;
3816
3817         mutex_lock(&set->tag_list_lock);
3818         list_del(&q->tag_set_list);
3819         if (list_is_singular(&set->tag_list)) {
3820                 /* just transitioned to unshared */
3821                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3822                 /* update existing queue */
3823                 blk_mq_update_tag_set_shared(set, false);
3824         }
3825         mutex_unlock(&set->tag_list_lock);
3826         INIT_LIST_HEAD(&q->tag_set_list);
3827 }
3828
3829 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3830                                      struct request_queue *q)
3831 {
3832         mutex_lock(&set->tag_list_lock);
3833
3834         /*
3835          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3836          */
3837         if (!list_empty(&set->tag_list) &&
3838             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3839                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3840                 /* update existing queue */
3841                 blk_mq_update_tag_set_shared(set, true);
3842         }
3843         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3844                 queue_set_hctx_shared(q, true);
3845         list_add_tail(&q->tag_set_list, &set->tag_list);
3846
3847         mutex_unlock(&set->tag_list_lock);
3848 }
3849
3850 /* All allocations will be freed in release handler of q->mq_kobj */
3851 static int blk_mq_alloc_ctxs(struct request_queue *q)
3852 {
3853         struct blk_mq_ctxs *ctxs;
3854         int cpu;
3855
3856         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3857         if (!ctxs)
3858                 return -ENOMEM;
3859
3860         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3861         if (!ctxs->queue_ctx)
3862                 goto fail;
3863
3864         for_each_possible_cpu(cpu) {
3865                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3866                 ctx->ctxs = ctxs;
3867         }
3868
3869         q->mq_kobj = &ctxs->kobj;
3870         q->queue_ctx = ctxs->queue_ctx;
3871
3872         return 0;
3873  fail:
3874         kfree(ctxs);
3875         return -ENOMEM;
3876 }
3877
3878 /*
3879  * It is the actual release handler for mq, but we do it from
3880  * request queue's release handler for avoiding use-after-free
3881  * and headache because q->mq_kobj shouldn't have been introduced,
3882  * but we can't group ctx/kctx kobj without it.
3883  */
3884 void blk_mq_release(struct request_queue *q)
3885 {
3886         struct blk_mq_hw_ctx *hctx, *next;
3887         unsigned long i;
3888
3889         queue_for_each_hw_ctx(q, hctx, i)
3890                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3891
3892         /* all hctx are in .unused_hctx_list now */
3893         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3894                 list_del_init(&hctx->hctx_list);
3895                 kobject_put(&hctx->kobj);
3896         }
3897
3898         xa_destroy(&q->hctx_table);
3899
3900         /*
3901          * release .mq_kobj and sw queue's kobject now because
3902          * both share lifetime with request queue.
3903          */
3904         blk_mq_sysfs_deinit(q);
3905 }
3906
3907 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3908                 void *queuedata)
3909 {
3910         struct request_queue *q;
3911         int ret;
3912
3913         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3914         if (!q)
3915                 return ERR_PTR(-ENOMEM);
3916         q->queuedata = queuedata;
3917         ret = blk_mq_init_allocated_queue(set, q);
3918         if (ret) {
3919                 blk_cleanup_queue(q);
3920                 return ERR_PTR(ret);
3921         }
3922         return q;
3923 }
3924
3925 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3926 {
3927         return blk_mq_init_queue_data(set, NULL);
3928 }
3929 EXPORT_SYMBOL(blk_mq_init_queue);
3930
3931 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3932                 struct lock_class_key *lkclass)
3933 {
3934         struct request_queue *q;
3935         struct gendisk *disk;
3936
3937         q = blk_mq_init_queue_data(set, queuedata);
3938         if (IS_ERR(q))
3939                 return ERR_CAST(q);
3940
3941         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3942         if (!disk) {
3943                 blk_cleanup_queue(q);
3944                 return ERR_PTR(-ENOMEM);
3945         }
3946         return disk;
3947 }
3948 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3949
3950 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3951                 struct blk_mq_tag_set *set, struct request_queue *q,
3952                 int hctx_idx, int node)
3953 {
3954         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3955
3956         /* reuse dead hctx first */
3957         spin_lock(&q->unused_hctx_lock);
3958         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3959                 if (tmp->numa_node == node) {
3960                         hctx = tmp;
3961                         break;
3962                 }
3963         }
3964         if (hctx)
3965                 list_del_init(&hctx->hctx_list);
3966         spin_unlock(&q->unused_hctx_lock);
3967
3968         if (!hctx)
3969                 hctx = blk_mq_alloc_hctx(q, set, node);
3970         if (!hctx)
3971                 goto fail;
3972
3973         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3974                 goto free_hctx;
3975
3976         return hctx;
3977
3978  free_hctx:
3979         kobject_put(&hctx->kobj);
3980  fail:
3981         return NULL;
3982 }
3983
3984 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3985                                                 struct request_queue *q)
3986 {
3987         struct blk_mq_hw_ctx *hctx;
3988         unsigned long i, j;
3989
3990         /* protect against switching io scheduler  */
3991         mutex_lock(&q->sysfs_lock);
3992         for (i = 0; i < set->nr_hw_queues; i++) {
3993                 int old_node;
3994                 int node = blk_mq_get_hctx_node(set, i);
3995                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3996
3997                 if (old_hctx) {
3998                         old_node = old_hctx->numa_node;
3999                         blk_mq_exit_hctx(q, set, old_hctx, i);
4000                 }
4001
4002                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4003                         if (!old_hctx)
4004                                 break;
4005                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4006                                         node, old_node);
4007                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4008                         WARN_ON_ONCE(!hctx);
4009                 }
4010         }
4011         /*
4012          * Increasing nr_hw_queues fails. Free the newly allocated
4013          * hctxs and keep the previous q->nr_hw_queues.
4014          */
4015         if (i != set->nr_hw_queues) {
4016                 j = q->nr_hw_queues;
4017         } else {
4018                 j = i;
4019                 q->nr_hw_queues = set->nr_hw_queues;
4020         }
4021
4022         xa_for_each_start(&q->hctx_table, j, hctx, j)
4023                 blk_mq_exit_hctx(q, set, hctx, j);
4024         mutex_unlock(&q->sysfs_lock);
4025 }
4026
4027 static void blk_mq_update_poll_flag(struct request_queue *q)
4028 {
4029         struct blk_mq_tag_set *set = q->tag_set;
4030
4031         if (set->nr_maps > HCTX_TYPE_POLL &&
4032             set->map[HCTX_TYPE_POLL].nr_queues)
4033                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4034         else
4035                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4036 }
4037
4038 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4039                 struct request_queue *q)
4040 {
4041         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4042                         !!(set->flags & BLK_MQ_F_BLOCKING));
4043
4044         /* mark the queue as mq asap */
4045         q->mq_ops = set->ops;
4046
4047         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4048                                              blk_mq_poll_stats_bkt,
4049                                              BLK_MQ_POLL_STATS_BKTS, q);
4050         if (!q->poll_cb)
4051                 goto err_exit;
4052
4053         if (blk_mq_alloc_ctxs(q))
4054                 goto err_poll;
4055
4056         /* init q->mq_kobj and sw queues' kobjects */
4057         blk_mq_sysfs_init(q);
4058
4059         INIT_LIST_HEAD(&q->unused_hctx_list);
4060         spin_lock_init(&q->unused_hctx_lock);
4061
4062         xa_init(&q->hctx_table);
4063
4064         blk_mq_realloc_hw_ctxs(set, q);
4065         if (!q->nr_hw_queues)
4066                 goto err_hctxs;
4067
4068         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4069         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4070
4071         q->tag_set = set;
4072
4073         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4074         blk_mq_update_poll_flag(q);
4075
4076         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4077         INIT_LIST_HEAD(&q->requeue_list);
4078         spin_lock_init(&q->requeue_lock);
4079
4080         q->nr_requests = set->queue_depth;
4081
4082         /*
4083          * Default to classic polling
4084          */
4085         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4086
4087         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4088         blk_mq_add_queue_tag_set(set, q);
4089         blk_mq_map_swqueue(q);
4090         return 0;
4091
4092 err_hctxs:
4093         xa_destroy(&q->hctx_table);
4094         q->nr_hw_queues = 0;
4095         blk_mq_sysfs_deinit(q);
4096 err_poll:
4097         blk_stat_free_callback(q->poll_cb);
4098         q->poll_cb = NULL;
4099 err_exit:
4100         q->mq_ops = NULL;
4101         return -ENOMEM;
4102 }
4103 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4104
4105 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4106 void blk_mq_exit_queue(struct request_queue *q)
4107 {
4108         struct blk_mq_tag_set *set = q->tag_set;
4109
4110         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4111         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4112         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4113         blk_mq_del_queue_tag_set(q);
4114 }
4115
4116 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4117 {
4118         int i;
4119
4120         if (blk_mq_is_shared_tags(set->flags)) {
4121                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4122                                                 BLK_MQ_NO_HCTX_IDX,
4123                                                 set->queue_depth);
4124                 if (!set->shared_tags)
4125                         return -ENOMEM;
4126         }
4127
4128         for (i = 0; i < set->nr_hw_queues; i++) {
4129                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4130                         goto out_unwind;
4131                 cond_resched();
4132         }
4133
4134         return 0;
4135
4136 out_unwind:
4137         while (--i >= 0)
4138                 __blk_mq_free_map_and_rqs(set, i);
4139
4140         if (blk_mq_is_shared_tags(set->flags)) {
4141                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4142                                         BLK_MQ_NO_HCTX_IDX);
4143         }
4144
4145         return -ENOMEM;
4146 }
4147
4148 /*
4149  * Allocate the request maps associated with this tag_set. Note that this
4150  * may reduce the depth asked for, if memory is tight. set->queue_depth
4151  * will be updated to reflect the allocated depth.
4152  */
4153 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4154 {
4155         unsigned int depth;
4156         int err;
4157
4158         depth = set->queue_depth;
4159         do {
4160                 err = __blk_mq_alloc_rq_maps(set);
4161                 if (!err)
4162                         break;
4163
4164                 set->queue_depth >>= 1;
4165                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4166                         err = -ENOMEM;
4167                         break;
4168                 }
4169         } while (set->queue_depth);
4170
4171         if (!set->queue_depth || err) {
4172                 pr_err("blk-mq: failed to allocate request map\n");
4173                 return -ENOMEM;
4174         }
4175
4176         if (depth != set->queue_depth)
4177                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4178                                                 depth, set->queue_depth);
4179
4180         return 0;
4181 }
4182
4183 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4184 {
4185         /*
4186          * blk_mq_map_queues() and multiple .map_queues() implementations
4187          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4188          * number of hardware queues.
4189          */
4190         if (set->nr_maps == 1)
4191                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4192
4193         if (set->ops->map_queues && !is_kdump_kernel()) {
4194                 int i;
4195
4196                 /*
4197                  * transport .map_queues is usually done in the following
4198                  * way:
4199                  *
4200                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4201                  *      mask = get_cpu_mask(queue)
4202                  *      for_each_cpu(cpu, mask)
4203                  *              set->map[x].mq_map[cpu] = queue;
4204                  * }
4205                  *
4206                  * When we need to remap, the table has to be cleared for
4207                  * killing stale mapping since one CPU may not be mapped
4208                  * to any hw queue.
4209                  */
4210                 for (i = 0; i < set->nr_maps; i++)
4211                         blk_mq_clear_mq_map(&set->map[i]);
4212
4213                 return set->ops->map_queues(set);
4214         } else {
4215                 BUG_ON(set->nr_maps > 1);
4216                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4217         }
4218 }
4219
4220 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4221                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4222 {
4223         struct blk_mq_tags **new_tags;
4224
4225         if (cur_nr_hw_queues >= new_nr_hw_queues)
4226                 return 0;
4227
4228         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4229                                 GFP_KERNEL, set->numa_node);
4230         if (!new_tags)
4231                 return -ENOMEM;
4232
4233         if (set->tags)
4234                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4235                        sizeof(*set->tags));
4236         kfree(set->tags);
4237         set->tags = new_tags;
4238         set->nr_hw_queues = new_nr_hw_queues;
4239
4240         return 0;
4241 }
4242
4243 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4244                                 int new_nr_hw_queues)
4245 {
4246         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4247 }
4248
4249 /*
4250  * Alloc a tag set to be associated with one or more request queues.
4251  * May fail with EINVAL for various error conditions. May adjust the
4252  * requested depth down, if it's too large. In that case, the set
4253  * value will be stored in set->queue_depth.
4254  */
4255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4256 {
4257         int i, ret;
4258
4259         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4260
4261         if (!set->nr_hw_queues)
4262                 return -EINVAL;
4263         if (!set->queue_depth)
4264                 return -EINVAL;
4265         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4266                 return -EINVAL;
4267
4268         if (!set->ops->queue_rq)
4269                 return -EINVAL;
4270
4271         if (!set->ops->get_budget ^ !set->ops->put_budget)
4272                 return -EINVAL;
4273
4274         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4275                 pr_info("blk-mq: reduced tag depth to %u\n",
4276                         BLK_MQ_MAX_DEPTH);
4277                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4278         }
4279
4280         if (!set->nr_maps)
4281                 set->nr_maps = 1;
4282         else if (set->nr_maps > HCTX_MAX_TYPES)
4283                 return -EINVAL;
4284
4285         /*
4286          * If a crashdump is active, then we are potentially in a very
4287          * memory constrained environment. Limit us to 1 queue and
4288          * 64 tags to prevent using too much memory.
4289          */
4290         if (is_kdump_kernel()) {
4291                 set->nr_hw_queues = 1;
4292                 set->nr_maps = 1;
4293                 set->queue_depth = min(64U, set->queue_depth);
4294         }
4295         /*
4296          * There is no use for more h/w queues than cpus if we just have
4297          * a single map
4298          */
4299         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4300                 set->nr_hw_queues = nr_cpu_ids;
4301
4302         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4303                 return -ENOMEM;
4304
4305         ret = -ENOMEM;
4306         for (i = 0; i < set->nr_maps; i++) {
4307                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4308                                                   sizeof(set->map[i].mq_map[0]),
4309                                                   GFP_KERNEL, set->numa_node);
4310                 if (!set->map[i].mq_map)
4311                         goto out_free_mq_map;
4312                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4313         }
4314
4315         ret = blk_mq_update_queue_map(set);
4316         if (ret)
4317                 goto out_free_mq_map;
4318
4319         ret = blk_mq_alloc_set_map_and_rqs(set);
4320         if (ret)
4321                 goto out_free_mq_map;
4322
4323         mutex_init(&set->tag_list_lock);
4324         INIT_LIST_HEAD(&set->tag_list);
4325
4326         return 0;
4327
4328 out_free_mq_map:
4329         for (i = 0; i < set->nr_maps; i++) {
4330                 kfree(set->map[i].mq_map);
4331                 set->map[i].mq_map = NULL;
4332         }
4333         kfree(set->tags);
4334         set->tags = NULL;
4335         return ret;
4336 }
4337 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4338
4339 /* allocate and initialize a tagset for a simple single-queue device */
4340 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4341                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4342                 unsigned int set_flags)
4343 {
4344         memset(set, 0, sizeof(*set));
4345         set->ops = ops;
4346         set->nr_hw_queues = 1;
4347         set->nr_maps = 1;
4348         set->queue_depth = queue_depth;
4349         set->numa_node = NUMA_NO_NODE;
4350         set->flags = set_flags;
4351         return blk_mq_alloc_tag_set(set);
4352 }
4353 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4354
4355 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4356 {
4357         int i, j;
4358
4359         for (i = 0; i < set->nr_hw_queues; i++)
4360                 __blk_mq_free_map_and_rqs(set, i);
4361
4362         if (blk_mq_is_shared_tags(set->flags)) {
4363                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4364                                         BLK_MQ_NO_HCTX_IDX);
4365         }
4366
4367         for (j = 0; j < set->nr_maps; j++) {
4368                 kfree(set->map[j].mq_map);
4369                 set->map[j].mq_map = NULL;
4370         }
4371
4372         kfree(set->tags);
4373         set->tags = NULL;
4374 }
4375 EXPORT_SYMBOL(blk_mq_free_tag_set);
4376
4377 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4378 {
4379         struct blk_mq_tag_set *set = q->tag_set;
4380         struct blk_mq_hw_ctx *hctx;
4381         int ret;
4382         unsigned long i;
4383
4384         if (!set)
4385                 return -EINVAL;
4386
4387         if (q->nr_requests == nr)
4388                 return 0;
4389
4390         blk_mq_freeze_queue(q);
4391         blk_mq_quiesce_queue(q);
4392
4393         ret = 0;
4394         queue_for_each_hw_ctx(q, hctx, i) {
4395                 if (!hctx->tags)
4396                         continue;
4397                 /*
4398                  * If we're using an MQ scheduler, just update the scheduler
4399                  * queue depth. This is similar to what the old code would do.
4400                  */
4401                 if (hctx->sched_tags) {
4402                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4403                                                       nr, true);
4404                 } else {
4405                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4406                                                       false);
4407                 }
4408                 if (ret)
4409                         break;
4410                 if (q->elevator && q->elevator->type->ops.depth_updated)
4411                         q->elevator->type->ops.depth_updated(hctx);
4412         }
4413         if (!ret) {
4414                 q->nr_requests = nr;
4415                 if (blk_mq_is_shared_tags(set->flags)) {
4416                         if (q->elevator)
4417                                 blk_mq_tag_update_sched_shared_tags(q);
4418                         else
4419                                 blk_mq_tag_resize_shared_tags(set, nr);
4420                 }
4421         }
4422
4423         blk_mq_unquiesce_queue(q);
4424         blk_mq_unfreeze_queue(q);
4425
4426         return ret;
4427 }
4428
4429 /*
4430  * request_queue and elevator_type pair.
4431  * It is just used by __blk_mq_update_nr_hw_queues to cache
4432  * the elevator_type associated with a request_queue.
4433  */
4434 struct blk_mq_qe_pair {
4435         struct list_head node;
4436         struct request_queue *q;
4437         struct elevator_type *type;
4438 };
4439
4440 /*
4441  * Cache the elevator_type in qe pair list and switch the
4442  * io scheduler to 'none'
4443  */
4444 static bool blk_mq_elv_switch_none(struct list_head *head,
4445                 struct request_queue *q)
4446 {
4447         struct blk_mq_qe_pair *qe;
4448
4449         if (!q->elevator)
4450                 return true;
4451
4452         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4453         if (!qe)
4454                 return false;
4455
4456         INIT_LIST_HEAD(&qe->node);
4457         qe->q = q;
4458         qe->type = q->elevator->type;
4459         list_add(&qe->node, head);
4460
4461         mutex_lock(&q->sysfs_lock);
4462         /*
4463          * After elevator_switch_mq, the previous elevator_queue will be
4464          * released by elevator_release. The reference of the io scheduler
4465          * module get by elevator_get will also be put. So we need to get
4466          * a reference of the io scheduler module here to prevent it to be
4467          * removed.
4468          */
4469         __module_get(qe->type->elevator_owner);
4470         elevator_switch_mq(q, NULL);
4471         mutex_unlock(&q->sysfs_lock);
4472
4473         return true;
4474 }
4475
4476 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4477                                                 struct request_queue *q)
4478 {
4479         struct blk_mq_qe_pair *qe;
4480
4481         list_for_each_entry(qe, head, node)
4482                 if (qe->q == q)
4483                         return qe;
4484
4485         return NULL;
4486 }
4487
4488 static void blk_mq_elv_switch_back(struct list_head *head,
4489                                   struct request_queue *q)
4490 {
4491         struct blk_mq_qe_pair *qe;
4492         struct elevator_type *t;
4493
4494         qe = blk_lookup_qe_pair(head, q);
4495         if (!qe)
4496                 return;
4497         t = qe->type;
4498         list_del(&qe->node);
4499         kfree(qe);
4500
4501         mutex_lock(&q->sysfs_lock);
4502         elevator_switch_mq(q, t);
4503         mutex_unlock(&q->sysfs_lock);
4504 }
4505
4506 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4507                                                         int nr_hw_queues)
4508 {
4509         struct request_queue *q;
4510         LIST_HEAD(head);
4511         int prev_nr_hw_queues;
4512
4513         lockdep_assert_held(&set->tag_list_lock);
4514
4515         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4516                 nr_hw_queues = nr_cpu_ids;
4517         if (nr_hw_queues < 1)
4518                 return;
4519         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4520                 return;
4521
4522         list_for_each_entry(q, &set->tag_list, tag_set_list)
4523                 blk_mq_freeze_queue(q);
4524         /*
4525          * Switch IO scheduler to 'none', cleaning up the data associated
4526          * with the previous scheduler. We will switch back once we are done
4527          * updating the new sw to hw queue mappings.
4528          */
4529         list_for_each_entry(q, &set->tag_list, tag_set_list)
4530                 if (!blk_mq_elv_switch_none(&head, q))
4531                         goto switch_back;
4532
4533         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4534                 blk_mq_debugfs_unregister_hctxs(q);
4535                 blk_mq_sysfs_unregister(q);
4536         }
4537
4538         prev_nr_hw_queues = set->nr_hw_queues;
4539         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4540             0)
4541                 goto reregister;
4542
4543         set->nr_hw_queues = nr_hw_queues;
4544 fallback:
4545         blk_mq_update_queue_map(set);
4546         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547                 blk_mq_realloc_hw_ctxs(set, q);
4548                 blk_mq_update_poll_flag(q);
4549                 if (q->nr_hw_queues != set->nr_hw_queues) {
4550                         int i = prev_nr_hw_queues;
4551
4552                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4553                                         nr_hw_queues, prev_nr_hw_queues);
4554                         for (; i < set->nr_hw_queues; i++)
4555                                 __blk_mq_free_map_and_rqs(set, i);
4556
4557                         set->nr_hw_queues = prev_nr_hw_queues;
4558                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4559                         goto fallback;
4560                 }
4561                 blk_mq_map_swqueue(q);
4562         }
4563
4564 reregister:
4565         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4566                 blk_mq_sysfs_register(q);
4567                 blk_mq_debugfs_register_hctxs(q);
4568         }
4569
4570 switch_back:
4571         list_for_each_entry(q, &set->tag_list, tag_set_list)
4572                 blk_mq_elv_switch_back(&head, q);
4573
4574         list_for_each_entry(q, &set->tag_list, tag_set_list)
4575                 blk_mq_unfreeze_queue(q);
4576 }
4577
4578 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4579 {
4580         mutex_lock(&set->tag_list_lock);
4581         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4582         mutex_unlock(&set->tag_list_lock);
4583 }
4584 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4585
4586 /* Enable polling stats and return whether they were already enabled. */
4587 static bool blk_poll_stats_enable(struct request_queue *q)
4588 {
4589         if (q->poll_stat)
4590                 return true;
4591
4592         return blk_stats_alloc_enable(q);
4593 }
4594
4595 static void blk_mq_poll_stats_start(struct request_queue *q)
4596 {
4597         /*
4598          * We don't arm the callback if polling stats are not enabled or the
4599          * callback is already active.
4600          */
4601         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4602                 return;
4603
4604         blk_stat_activate_msecs(q->poll_cb, 100);
4605 }
4606
4607 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4608 {
4609         struct request_queue *q = cb->data;
4610         int bucket;
4611
4612         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4613                 if (cb->stat[bucket].nr_samples)
4614                         q->poll_stat[bucket] = cb->stat[bucket];
4615         }
4616 }
4617
4618 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4619                                        struct request *rq)
4620 {
4621         unsigned long ret = 0;
4622         int bucket;
4623
4624         /*
4625          * If stats collection isn't on, don't sleep but turn it on for
4626          * future users
4627          */
4628         if (!blk_poll_stats_enable(q))
4629                 return 0;
4630
4631         /*
4632          * As an optimistic guess, use half of the mean service time
4633          * for this type of request. We can (and should) make this smarter.
4634          * For instance, if the completion latencies are tight, we can
4635          * get closer than just half the mean. This is especially
4636          * important on devices where the completion latencies are longer
4637          * than ~10 usec. We do use the stats for the relevant IO size
4638          * if available which does lead to better estimates.
4639          */
4640         bucket = blk_mq_poll_stats_bkt(rq);
4641         if (bucket < 0)
4642                 return ret;
4643
4644         if (q->poll_stat[bucket].nr_samples)
4645                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4646
4647         return ret;
4648 }
4649
4650 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4651 {
4652         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4653         struct request *rq = blk_qc_to_rq(hctx, qc);
4654         struct hrtimer_sleeper hs;
4655         enum hrtimer_mode mode;
4656         unsigned int nsecs;
4657         ktime_t kt;
4658
4659         /*
4660          * If a request has completed on queue that uses an I/O scheduler, we
4661          * won't get back a request from blk_qc_to_rq.
4662          */
4663         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4664                 return false;
4665
4666         /*
4667          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4668          *
4669          *  0:  use half of prev avg
4670          * >0:  use this specific value
4671          */
4672         if (q->poll_nsec > 0)
4673                 nsecs = q->poll_nsec;
4674         else
4675                 nsecs = blk_mq_poll_nsecs(q, rq);
4676
4677         if (!nsecs)
4678                 return false;
4679
4680         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4681
4682         /*
4683          * This will be replaced with the stats tracking code, using
4684          * 'avg_completion_time / 2' as the pre-sleep target.
4685          */
4686         kt = nsecs;
4687
4688         mode = HRTIMER_MODE_REL;
4689         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4690         hrtimer_set_expires(&hs.timer, kt);
4691
4692         do {
4693                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4694                         break;
4695                 set_current_state(TASK_UNINTERRUPTIBLE);
4696                 hrtimer_sleeper_start_expires(&hs, mode);
4697                 if (hs.task)
4698                         io_schedule();
4699                 hrtimer_cancel(&hs.timer);
4700                 mode = HRTIMER_MODE_ABS;
4701         } while (hs.task && !signal_pending(current));
4702
4703         __set_current_state(TASK_RUNNING);
4704         destroy_hrtimer_on_stack(&hs.timer);
4705
4706         /*
4707          * If we sleep, have the caller restart the poll loop to reset the
4708          * state.  Like for the other success return cases, the caller is
4709          * responsible for checking if the IO completed.  If the IO isn't
4710          * complete, we'll get called again and will go straight to the busy
4711          * poll loop.
4712          */
4713         return true;
4714 }
4715
4716 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4717                                struct io_comp_batch *iob, unsigned int flags)
4718 {
4719         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4720         long state = get_current_state();
4721         int ret;
4722
4723         do {
4724                 ret = q->mq_ops->poll(hctx, iob);
4725                 if (ret > 0) {
4726                         __set_current_state(TASK_RUNNING);
4727                         return ret;
4728                 }
4729
4730                 if (signal_pending_state(state, current))
4731                         __set_current_state(TASK_RUNNING);
4732                 if (task_is_running(current))
4733                         return 1;
4734
4735                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4736                         break;
4737                 cpu_relax();
4738         } while (!need_resched());
4739
4740         __set_current_state(TASK_RUNNING);
4741         return 0;
4742 }
4743
4744 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4745                 unsigned int flags)
4746 {
4747         if (!(flags & BLK_POLL_NOSLEEP) &&
4748             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4749                 if (blk_mq_poll_hybrid(q, cookie))
4750                         return 1;
4751         }
4752         return blk_mq_poll_classic(q, cookie, iob, flags);
4753 }
4754
4755 unsigned int blk_mq_rq_cpu(struct request *rq)
4756 {
4757         return rq->mq_ctx->cpu;
4758 }
4759 EXPORT_SYMBOL(blk_mq_rq_cpu);
4760
4761 void blk_mq_cancel_work_sync(struct request_queue *q)
4762 {
4763         if (queue_is_mq(q)) {
4764                 struct blk_mq_hw_ctx *hctx;
4765                 unsigned long i;
4766
4767                 cancel_delayed_work_sync(&q->requeue_work);
4768
4769                 queue_for_each_hw_ctx(q, hctx, i)
4770                         cancel_delayed_work_sync(&hctx->run_work);
4771         }
4772 }
4773
4774 static int __init blk_mq_init(void)
4775 {
4776         int i;
4777
4778         for_each_possible_cpu(i)
4779                 init_llist_head(&per_cpu(blk_cpu_done, i));
4780         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4781
4782         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4783                                   "block/softirq:dead", NULL,
4784                                   blk_softirq_cpu_dead);
4785         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4786                                 blk_mq_hctx_notify_dead);
4787         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4788                                 blk_mq_hctx_notify_online,
4789                                 blk_mq_hctx_notify_offline);
4790         return 0;
4791 }
4792 subsys_initcall(blk_mq_init);