Merge tag 'for-linus-6.7a-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  */
776                 if (bio->bi_iter.bi_size != nbytes)
777                         bio->bi_status = BLK_STS_IOERR;
778                 else
779                         bio->bi_iter.bi_sector = rq->__sector;
780         }
781
782         bio_advance(bio, nbytes);
783
784         if (unlikely(rq->rq_flags & RQF_QUIET))
785                 bio_set_flag(bio, BIO_QUIET);
786         /* don't actually finish bio if it's part of flush sequence */
787         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788                 bio_endio(bio);
789 }
790
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793         if (req->part && blk_do_io_stat(req)) {
794                 const int sgrp = op_stat_group(req_op(req));
795
796                 part_stat_lock();
797                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798                 part_stat_unlock();
799         }
800 }
801
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804         printk_ratelimited(KERN_ERR
805                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806                 "phys_seg %u prio class %u\n",
807                 blk_status_to_str(status),
808                 req->q->disk ? req->q->disk->disk_name : "?",
809                 blk_rq_pos(req), (__force u32)req_op(req),
810                 blk_op_str(req_op(req)),
811                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812                 req->nr_phys_segments,
813                 IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823         int total_bytes = blk_rq_bytes(req);
824         struct bio *bio = req->bio;
825
826         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827
828         if (!bio)
829                 return;
830
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833                 req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835
836         /*
837          * Upper layers may call blk_crypto_evict_key() anytime after the last
838          * bio_endio().  Therefore, the keyslot must be released before that.
839          */
840         blk_crypto_rq_put_keyslot(req);
841
842         blk_account_io_completion(req, total_bytes);
843
844         do {
845                 struct bio *next = bio->bi_next;
846
847                 /* Completion has already been traced */
848                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850                 if (req_op(req) == REQ_OP_ZONE_APPEND)
851                         bio->bi_iter.bi_sector = req->__sector;
852
853                 if (!is_flush)
854                         bio_endio(bio);
855                 bio = next;
856         } while (bio);
857
858         /*
859          * Reset counters so that the request stacking driver
860          * can find how many bytes remain in the request
861          * later.
862          */
863         if (!req->end_io) {
864                 req->bio = NULL;
865                 req->__data_len = 0;
866         }
867 }
868
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892                 unsigned int nr_bytes)
893 {
894         int total_bytes;
895
896         trace_block_rq_complete(req, error, nr_bytes);
897
898         if (!req->bio)
899                 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903             error == BLK_STS_OK)
904                 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907         /*
908          * Upper layers may call blk_crypto_evict_key() anytime after the last
909          * bio_endio().  Therefore, the keyslot must be released before that.
910          */
911         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912                 __blk_crypto_rq_put_keyslot(req);
913
914         if (unlikely(error && !blk_rq_is_passthrough(req) &&
915                      !(req->rq_flags & RQF_QUIET)) &&
916                      !test_bit(GD_DEAD, &req->q->disk->state)) {
917                 blk_print_req_error(req, error);
918                 trace_block_rq_error(req, error, nr_bytes);
919         }
920
921         blk_account_io_completion(req, nr_bytes);
922
923         total_bytes = 0;
924         while (req->bio) {
925                 struct bio *bio = req->bio;
926                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927
928                 if (bio_bytes == bio->bi_iter.bi_size)
929                         req->bio = bio->bi_next;
930
931                 /* Completion has already been traced */
932                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933                 req_bio_endio(req, bio, bio_bytes, error);
934
935                 total_bytes += bio_bytes;
936                 nr_bytes -= bio_bytes;
937
938                 if (!nr_bytes)
939                         break;
940         }
941
942         /*
943          * completely done
944          */
945         if (!req->bio) {
946                 /*
947                  * Reset counters so that the request stacking driver
948                  * can find how many bytes remain in the request
949                  * later.
950                  */
951                 req->__data_len = 0;
952                 return false;
953         }
954
955         req->__data_len -= total_bytes;
956
957         /* update sector only for requests with clear definition of sector */
958         if (!blk_rq_is_passthrough(req))
959                 req->__sector += total_bytes >> 9;
960
961         /* mixed attributes always follow the first bio */
962         if (req->rq_flags & RQF_MIXED_MERGE) {
963                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
964                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965         }
966
967         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968                 /*
969                  * If total number of sectors is less than the first segment
970                  * size, something has gone terribly wrong.
971                  */
972                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973                         blk_dump_rq_flags(req, "request botched");
974                         req->__data_len = blk_rq_cur_bytes(req);
975                 }
976
977                 /* recalculate the number of segments */
978                 req->nr_phys_segments = blk_recalc_rq_segments(req);
979         }
980
981         return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987         trace_block_io_done(req);
988
989         /*
990          * Account IO completion.  flush_rq isn't accounted as a
991          * normal IO on queueing nor completion.  Accounting the
992          * containing request is enough.
993          */
994         if (blk_do_io_stat(req) && req->part &&
995             !(req->rq_flags & RQF_FLUSH_SEQ)) {
996                 const int sgrp = op_stat_group(req_op(req));
997
998                 part_stat_lock();
999                 update_io_ticks(req->part, jiffies, true);
1000                 part_stat_inc(req->part, ios[sgrp]);
1001                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008         trace_block_io_start(req);
1009
1010         if (blk_do_io_stat(req)) {
1011                 /*
1012                  * All non-passthrough requests are created from a bio with one
1013                  * exception: when a flush command that is part of a flush sequence
1014                  * generated by the state machine in blk-flush.c is cloned onto the
1015                  * lower device by dm-multipath we can get here without a bio.
1016                  */
1017                 if (req->bio)
1018                         req->part = req->bio->bi_bdev;
1019                 else
1020                         req->part = req->q->disk->part0;
1021
1022                 part_stat_lock();
1023                 update_io_ticks(req->part, jiffies, false);
1024                 part_stat_unlock();
1025         }
1026 }
1027
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030         if (rq->rq_flags & RQF_STATS)
1031                 blk_stat_add(rq, now);
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         blk_mq_finish_request(rq);
1043
1044         if (rq->end_io) {
1045                 rq_qos_done(rq->q, rq);
1046                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047                         blk_mq_free_request(rq);
1048         } else {
1049                 blk_mq_free_request(rq);
1050         }
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057                 BUG();
1058         __blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061
1062 #define TAG_COMP_BATCH          32
1063
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065                                           int *tag_array, int nr_tags)
1066 {
1067         struct request_queue *q = hctx->queue;
1068
1069         blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266                 q->integrity.profile->prepare_fn(rq);
1267 #endif
1268         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280         if (plug->multiple_queues)
1281                 return BLK_MAX_REQUEST_COUNT * 2;
1282         return BLK_MAX_REQUEST_COUNT;
1283 }
1284
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287         struct request *last = rq_list_peek(&plug->mq_list);
1288
1289         if (!plug->rq_count) {
1290                 trace_block_plug(rq->q);
1291         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292                    (!blk_queue_nomerges(rq->q) &&
1293                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294                 blk_mq_flush_plug_list(plug, false);
1295                 last = NULL;
1296                 trace_block_plug(rq->q);
1297         }
1298
1299         if (!plug->multiple_queues && last && last->q != rq->q)
1300                 plug->multiple_queues = true;
1301         /*
1302          * Any request allocated from sched tags can't be issued to
1303          * ->queue_rqs() directly
1304          */
1305         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306                 plug->has_elevator = true;
1307         rq->rq_next = NULL;
1308         rq_list_add(&plug->mq_list, rq);
1309         plug->rq_count++;
1310 }
1311
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:         request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327
1328         WARN_ON(irqs_disabled());
1329         WARN_ON(!blk_rq_is_passthrough(rq));
1330
1331         blk_account_io_start(rq);
1332
1333         /*
1334          * As plugging can be enabled for passthrough requests on a zoned
1335          * device, directly accessing the plug instead of using blk_mq_plug()
1336          * should not have any consequences.
1337          */
1338         if (current->plug && !at_head) {
1339                 blk_add_rq_to_plug(current->plug, rq);
1340                 return;
1341         }
1342
1343         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347
1348 struct blk_rq_wait {
1349         struct completion done;
1350         blk_status_t ret;
1351 };
1352
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355         struct blk_rq_wait *wait = rq->end_io_data;
1356
1357         wait->ret = ret;
1358         complete(&wait->done);
1359         return RQ_END_IO_NONE;
1360 }
1361
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364         if (!rq->mq_hctx)
1365                 return false;
1366         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367                 return false;
1368         return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374         do {
1375                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376                 cond_resched();
1377         } while (!completion_done(wait));
1378 }
1379
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:         request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393         struct blk_rq_wait wait = {
1394                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395         };
1396
1397         WARN_ON(irqs_disabled());
1398         WARN_ON(!blk_rq_is_passthrough(rq));
1399
1400         rq->end_io_data = &wait;
1401         rq->end_io = blk_end_sync_rq;
1402
1403         blk_account_io_start(rq);
1404         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405         blk_mq_run_hw_queue(hctx, false);
1406
1407         if (blk_rq_is_poll(rq)) {
1408                 blk_rq_poll_completion(rq, &wait.done);
1409         } else {
1410                 /*
1411                  * Prevent hang_check timer from firing at us during very long
1412                  * I/O
1413                  */
1414                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1415
1416                 if (hang_check)
1417                         while (!wait_for_completion_io_timeout(&wait.done,
1418                                         hang_check * (HZ/2)))
1419                                 ;
1420                 else
1421                         wait_for_completion_io(&wait.done);
1422         }
1423
1424         return wait.ret;
1425 }
1426 EXPORT_SYMBOL(blk_execute_rq);
1427
1428 static void __blk_mq_requeue_request(struct request *rq)
1429 {
1430         struct request_queue *q = rq->q;
1431
1432         blk_mq_put_driver_tag(rq);
1433
1434         trace_block_rq_requeue(rq);
1435         rq_qos_requeue(q, rq);
1436
1437         if (blk_mq_request_started(rq)) {
1438                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1439                 rq->rq_flags &= ~RQF_TIMED_OUT;
1440         }
1441 }
1442
1443 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1444 {
1445         struct request_queue *q = rq->q;
1446         unsigned long flags;
1447
1448         __blk_mq_requeue_request(rq);
1449
1450         /* this request will be re-inserted to io scheduler queue */
1451         blk_mq_sched_requeue_request(rq);
1452
1453         spin_lock_irqsave(&q->requeue_lock, flags);
1454         list_add_tail(&rq->queuelist, &q->requeue_list);
1455         spin_unlock_irqrestore(&q->requeue_lock, flags);
1456
1457         if (kick_requeue_list)
1458                 blk_mq_kick_requeue_list(q);
1459 }
1460 EXPORT_SYMBOL(blk_mq_requeue_request);
1461
1462 static void blk_mq_requeue_work(struct work_struct *work)
1463 {
1464         struct request_queue *q =
1465                 container_of(work, struct request_queue, requeue_work.work);
1466         LIST_HEAD(rq_list);
1467         LIST_HEAD(flush_list);
1468         struct request *rq;
1469
1470         spin_lock_irq(&q->requeue_lock);
1471         list_splice_init(&q->requeue_list, &rq_list);
1472         list_splice_init(&q->flush_list, &flush_list);
1473         spin_unlock_irq(&q->requeue_lock);
1474
1475         while (!list_empty(&rq_list)) {
1476                 rq = list_entry(rq_list.next, struct request, queuelist);
1477                 /*
1478                  * If RQF_DONTPREP ist set, the request has been started by the
1479                  * driver already and might have driver-specific data allocated
1480                  * already.  Insert it into the hctx dispatch list to avoid
1481                  * block layer merges for the request.
1482                  */
1483                 if (rq->rq_flags & RQF_DONTPREP) {
1484                         list_del_init(&rq->queuelist);
1485                         blk_mq_request_bypass_insert(rq, 0);
1486                 } else {
1487                         list_del_init(&rq->queuelist);
1488                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1489                 }
1490         }
1491
1492         while (!list_empty(&flush_list)) {
1493                 rq = list_entry(flush_list.next, struct request, queuelist);
1494                 list_del_init(&rq->queuelist);
1495                 blk_mq_insert_request(rq, 0);
1496         }
1497
1498         blk_mq_run_hw_queues(q, false);
1499 }
1500
1501 void blk_mq_kick_requeue_list(struct request_queue *q)
1502 {
1503         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1504 }
1505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1506
1507 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1508                                     unsigned long msecs)
1509 {
1510         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1511                                     msecs_to_jiffies(msecs));
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1514
1515 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1516 {
1517         /*
1518          * If we find a request that isn't idle we know the queue is busy
1519          * as it's checked in the iter.
1520          * Return false to stop the iteration.
1521          */
1522         if (blk_mq_request_started(rq)) {
1523                 bool *busy = priv;
1524
1525                 *busy = true;
1526                 return false;
1527         }
1528
1529         return true;
1530 }
1531
1532 bool blk_mq_queue_inflight(struct request_queue *q)
1533 {
1534         bool busy = false;
1535
1536         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1537         return busy;
1538 }
1539 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1540
1541 static void blk_mq_rq_timed_out(struct request *req)
1542 {
1543         req->rq_flags |= RQF_TIMED_OUT;
1544         if (req->q->mq_ops->timeout) {
1545                 enum blk_eh_timer_return ret;
1546
1547                 ret = req->q->mq_ops->timeout(req);
1548                 if (ret == BLK_EH_DONE)
1549                         return;
1550                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1551         }
1552
1553         blk_add_timer(req);
1554 }
1555
1556 struct blk_expired_data {
1557         bool has_timedout_rq;
1558         unsigned long next;
1559         unsigned long timeout_start;
1560 };
1561
1562 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1563 {
1564         unsigned long deadline;
1565
1566         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1567                 return false;
1568         if (rq->rq_flags & RQF_TIMED_OUT)
1569                 return false;
1570
1571         deadline = READ_ONCE(rq->deadline);
1572         if (time_after_eq(expired->timeout_start, deadline))
1573                 return true;
1574
1575         if (expired->next == 0)
1576                 expired->next = deadline;
1577         else if (time_after(expired->next, deadline))
1578                 expired->next = deadline;
1579         return false;
1580 }
1581
1582 void blk_mq_put_rq_ref(struct request *rq)
1583 {
1584         if (is_flush_rq(rq)) {
1585                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1586                         blk_mq_free_request(rq);
1587         } else if (req_ref_put_and_test(rq)) {
1588                 __blk_mq_free_request(rq);
1589         }
1590 }
1591
1592 static bool blk_mq_check_expired(struct request *rq, void *priv)
1593 {
1594         struct blk_expired_data *expired = priv;
1595
1596         /*
1597          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1598          * be reallocated underneath the timeout handler's processing, then
1599          * the expire check is reliable. If the request is not expired, then
1600          * it was completed and reallocated as a new request after returning
1601          * from blk_mq_check_expired().
1602          */
1603         if (blk_mq_req_expired(rq, expired)) {
1604                 expired->has_timedout_rq = true;
1605                 return false;
1606         }
1607         return true;
1608 }
1609
1610 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1611 {
1612         struct blk_expired_data *expired = priv;
1613
1614         if (blk_mq_req_expired(rq, expired))
1615                 blk_mq_rq_timed_out(rq);
1616         return true;
1617 }
1618
1619 static void blk_mq_timeout_work(struct work_struct *work)
1620 {
1621         struct request_queue *q =
1622                 container_of(work, struct request_queue, timeout_work);
1623         struct blk_expired_data expired = {
1624                 .timeout_start = jiffies,
1625         };
1626         struct blk_mq_hw_ctx *hctx;
1627         unsigned long i;
1628
1629         /* A deadlock might occur if a request is stuck requiring a
1630          * timeout at the same time a queue freeze is waiting
1631          * completion, since the timeout code would not be able to
1632          * acquire the queue reference here.
1633          *
1634          * That's why we don't use blk_queue_enter here; instead, we use
1635          * percpu_ref_tryget directly, because we need to be able to
1636          * obtain a reference even in the short window between the queue
1637          * starting to freeze, by dropping the first reference in
1638          * blk_freeze_queue_start, and the moment the last request is
1639          * consumed, marked by the instant q_usage_counter reaches
1640          * zero.
1641          */
1642         if (!percpu_ref_tryget(&q->q_usage_counter))
1643                 return;
1644
1645         /* check if there is any timed-out request */
1646         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1647         if (expired.has_timedout_rq) {
1648                 /*
1649                  * Before walking tags, we must ensure any submit started
1650                  * before the current time has finished. Since the submit
1651                  * uses srcu or rcu, wait for a synchronization point to
1652                  * ensure all running submits have finished
1653                  */
1654                 blk_mq_wait_quiesce_done(q->tag_set);
1655
1656                 expired.next = 0;
1657                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1658         }
1659
1660         if (expired.next != 0) {
1661                 mod_timer(&q->timeout, expired.next);
1662         } else {
1663                 /*
1664                  * Request timeouts are handled as a forward rolling timer. If
1665                  * we end up here it means that no requests are pending and
1666                  * also that no request has been pending for a while. Mark
1667                  * each hctx as idle.
1668                  */
1669                 queue_for_each_hw_ctx(q, hctx, i) {
1670                         /* the hctx may be unmapped, so check it here */
1671                         if (blk_mq_hw_queue_mapped(hctx))
1672                                 blk_mq_tag_idle(hctx);
1673                 }
1674         }
1675         blk_queue_exit(q);
1676 }
1677
1678 struct flush_busy_ctx_data {
1679         struct blk_mq_hw_ctx *hctx;
1680         struct list_head *list;
1681 };
1682
1683 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1684 {
1685         struct flush_busy_ctx_data *flush_data = data;
1686         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1687         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1688         enum hctx_type type = hctx->type;
1689
1690         spin_lock(&ctx->lock);
1691         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1692         sbitmap_clear_bit(sb, bitnr);
1693         spin_unlock(&ctx->lock);
1694         return true;
1695 }
1696
1697 /*
1698  * Process software queues that have been marked busy, splicing them
1699  * to the for-dispatch
1700  */
1701 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1702 {
1703         struct flush_busy_ctx_data data = {
1704                 .hctx = hctx,
1705                 .list = list,
1706         };
1707
1708         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1709 }
1710 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1711
1712 struct dispatch_rq_data {
1713         struct blk_mq_hw_ctx *hctx;
1714         struct request *rq;
1715 };
1716
1717 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1718                 void *data)
1719 {
1720         struct dispatch_rq_data *dispatch_data = data;
1721         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1722         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1723         enum hctx_type type = hctx->type;
1724
1725         spin_lock(&ctx->lock);
1726         if (!list_empty(&ctx->rq_lists[type])) {
1727                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1728                 list_del_init(&dispatch_data->rq->queuelist);
1729                 if (list_empty(&ctx->rq_lists[type]))
1730                         sbitmap_clear_bit(sb, bitnr);
1731         }
1732         spin_unlock(&ctx->lock);
1733
1734         return !dispatch_data->rq;
1735 }
1736
1737 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1738                                         struct blk_mq_ctx *start)
1739 {
1740         unsigned off = start ? start->index_hw[hctx->type] : 0;
1741         struct dispatch_rq_data data = {
1742                 .hctx = hctx,
1743                 .rq   = NULL,
1744         };
1745
1746         __sbitmap_for_each_set(&hctx->ctx_map, off,
1747                                dispatch_rq_from_ctx, &data);
1748
1749         return data.rq;
1750 }
1751
1752 bool __blk_mq_alloc_driver_tag(struct request *rq)
1753 {
1754         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1755         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1756         int tag;
1757
1758         blk_mq_tag_busy(rq->mq_hctx);
1759
1760         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1761                 bt = &rq->mq_hctx->tags->breserved_tags;
1762                 tag_offset = 0;
1763         } else {
1764                 if (!hctx_may_queue(rq->mq_hctx, bt))
1765                         return false;
1766         }
1767
1768         tag = __sbitmap_queue_get(bt);
1769         if (tag == BLK_MQ_NO_TAG)
1770                 return false;
1771
1772         rq->tag = tag + tag_offset;
1773         blk_mq_inc_active_requests(rq->mq_hctx);
1774         return true;
1775 }
1776
1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778                                 int flags, void *key)
1779 {
1780         struct blk_mq_hw_ctx *hctx;
1781
1782         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783
1784         spin_lock(&hctx->dispatch_wait_lock);
1785         if (!list_empty(&wait->entry)) {
1786                 struct sbitmap_queue *sbq;
1787
1788                 list_del_init(&wait->entry);
1789                 sbq = &hctx->tags->bitmap_tags;
1790                 atomic_dec(&sbq->ws_active);
1791         }
1792         spin_unlock(&hctx->dispatch_wait_lock);
1793
1794         blk_mq_run_hw_queue(hctx, true);
1795         return 1;
1796 }
1797
1798 /*
1799  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801  * restart. For both cases, take care to check the condition again after
1802  * marking us as waiting.
1803  */
1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805                                  struct request *rq)
1806 {
1807         struct sbitmap_queue *sbq;
1808         struct wait_queue_head *wq;
1809         wait_queue_entry_t *wait;
1810         bool ret;
1811
1812         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813             !(blk_mq_is_shared_tags(hctx->flags))) {
1814                 blk_mq_sched_mark_restart_hctx(hctx);
1815
1816                 /*
1817                  * It's possible that a tag was freed in the window between the
1818                  * allocation failure and adding the hardware queue to the wait
1819                  * queue.
1820                  *
1821                  * Don't clear RESTART here, someone else could have set it.
1822                  * At most this will cost an extra queue run.
1823                  */
1824                 return blk_mq_get_driver_tag(rq);
1825         }
1826
1827         wait = &hctx->dispatch_wait;
1828         if (!list_empty_careful(&wait->entry))
1829                 return false;
1830
1831         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832                 sbq = &hctx->tags->breserved_tags;
1833         else
1834                 sbq = &hctx->tags->bitmap_tags;
1835         wq = &bt_wait_ptr(sbq, hctx)->wait;
1836
1837         spin_lock_irq(&wq->lock);
1838         spin_lock(&hctx->dispatch_wait_lock);
1839         if (!list_empty(&wait->entry)) {
1840                 spin_unlock(&hctx->dispatch_wait_lock);
1841                 spin_unlock_irq(&wq->lock);
1842                 return false;
1843         }
1844
1845         atomic_inc(&sbq->ws_active);
1846         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847         __add_wait_queue(wq, wait);
1848
1849         /*
1850          * It's possible that a tag was freed in the window between the
1851          * allocation failure and adding the hardware queue to the wait
1852          * queue.
1853          */
1854         ret = blk_mq_get_driver_tag(rq);
1855         if (!ret) {
1856                 spin_unlock(&hctx->dispatch_wait_lock);
1857                 spin_unlock_irq(&wq->lock);
1858                 return false;
1859         }
1860
1861         /*
1862          * We got a tag, remove ourselves from the wait queue to ensure
1863          * someone else gets the wakeup.
1864          */
1865         list_del_init(&wait->entry);
1866         atomic_dec(&sbq->ws_active);
1867         spin_unlock(&hctx->dispatch_wait_lock);
1868         spin_unlock_irq(&wq->lock);
1869
1870         return true;
1871 }
1872
1873 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1874 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1875 /*
1876  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1877  * - EWMA is one simple way to compute running average value
1878  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1879  * - take 4 as factor for avoiding to get too small(0) result, and this
1880  *   factor doesn't matter because EWMA decreases exponentially
1881  */
1882 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1883 {
1884         unsigned int ewma;
1885
1886         ewma = hctx->dispatch_busy;
1887
1888         if (!ewma && !busy)
1889                 return;
1890
1891         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1892         if (busy)
1893                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1894         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1895
1896         hctx->dispatch_busy = ewma;
1897 }
1898
1899 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1900
1901 static void blk_mq_handle_dev_resource(struct request *rq,
1902                                        struct list_head *list)
1903 {
1904         list_add(&rq->queuelist, list);
1905         __blk_mq_requeue_request(rq);
1906 }
1907
1908 static void blk_mq_handle_zone_resource(struct request *rq,
1909                                         struct list_head *zone_list)
1910 {
1911         /*
1912          * If we end up here it is because we cannot dispatch a request to a
1913          * specific zone due to LLD level zone-write locking or other zone
1914          * related resource not being available. In this case, set the request
1915          * aside in zone_list for retrying it later.
1916          */
1917         list_add(&rq->queuelist, zone_list);
1918         __blk_mq_requeue_request(rq);
1919 }
1920
1921 enum prep_dispatch {
1922         PREP_DISPATCH_OK,
1923         PREP_DISPATCH_NO_TAG,
1924         PREP_DISPATCH_NO_BUDGET,
1925 };
1926
1927 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1928                                                   bool need_budget)
1929 {
1930         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1931         int budget_token = -1;
1932
1933         if (need_budget) {
1934                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1935                 if (budget_token < 0) {
1936                         blk_mq_put_driver_tag(rq);
1937                         return PREP_DISPATCH_NO_BUDGET;
1938                 }
1939                 blk_mq_set_rq_budget_token(rq, budget_token);
1940         }
1941
1942         if (!blk_mq_get_driver_tag(rq)) {
1943                 /*
1944                  * The initial allocation attempt failed, so we need to
1945                  * rerun the hardware queue when a tag is freed. The
1946                  * waitqueue takes care of that. If the queue is run
1947                  * before we add this entry back on the dispatch list,
1948                  * we'll re-run it below.
1949                  */
1950                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1951                         /*
1952                          * All budgets not got from this function will be put
1953                          * together during handling partial dispatch
1954                          */
1955                         if (need_budget)
1956                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1957                         return PREP_DISPATCH_NO_TAG;
1958                 }
1959         }
1960
1961         return PREP_DISPATCH_OK;
1962 }
1963
1964 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1965 static void blk_mq_release_budgets(struct request_queue *q,
1966                 struct list_head *list)
1967 {
1968         struct request *rq;
1969
1970         list_for_each_entry(rq, list, queuelist) {
1971                 int budget_token = blk_mq_get_rq_budget_token(rq);
1972
1973                 if (budget_token >= 0)
1974                         blk_mq_put_dispatch_budget(q, budget_token);
1975         }
1976 }
1977
1978 /*
1979  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1980  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1981  * details)
1982  * Attention, we should explicitly call this in unusual cases:
1983  *  1) did not queue everything initially scheduled to queue
1984  *  2) the last attempt to queue a request failed
1985  */
1986 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1987                               bool from_schedule)
1988 {
1989         if (hctx->queue->mq_ops->commit_rqs && queued) {
1990                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1991                 hctx->queue->mq_ops->commit_rqs(hctx);
1992         }
1993 }
1994
1995 /*
1996  * Returns true if we did some work AND can potentially do more.
1997  */
1998 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1999                              unsigned int nr_budgets)
2000 {
2001         enum prep_dispatch prep;
2002         struct request_queue *q = hctx->queue;
2003         struct request *rq;
2004         int queued;
2005         blk_status_t ret = BLK_STS_OK;
2006         LIST_HEAD(zone_list);
2007         bool needs_resource = false;
2008
2009         if (list_empty(list))
2010                 return false;
2011
2012         /*
2013          * Now process all the entries, sending them to the driver.
2014          */
2015         queued = 0;
2016         do {
2017                 struct blk_mq_queue_data bd;
2018
2019                 rq = list_first_entry(list, struct request, queuelist);
2020
2021                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2022                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2023                 if (prep != PREP_DISPATCH_OK)
2024                         break;
2025
2026                 list_del_init(&rq->queuelist);
2027
2028                 bd.rq = rq;
2029                 bd.last = list_empty(list);
2030
2031                 /*
2032                  * once the request is queued to lld, no need to cover the
2033                  * budget any more
2034                  */
2035                 if (nr_budgets)
2036                         nr_budgets--;
2037                 ret = q->mq_ops->queue_rq(hctx, &bd);
2038                 switch (ret) {
2039                 case BLK_STS_OK:
2040                         queued++;
2041                         break;
2042                 case BLK_STS_RESOURCE:
2043                         needs_resource = true;
2044                         fallthrough;
2045                 case BLK_STS_DEV_RESOURCE:
2046                         blk_mq_handle_dev_resource(rq, list);
2047                         goto out;
2048                 case BLK_STS_ZONE_RESOURCE:
2049                         /*
2050                          * Move the request to zone_list and keep going through
2051                          * the dispatch list to find more requests the drive can
2052                          * accept.
2053                          */
2054                         blk_mq_handle_zone_resource(rq, &zone_list);
2055                         needs_resource = true;
2056                         break;
2057                 default:
2058                         blk_mq_end_request(rq, ret);
2059                 }
2060         } while (!list_empty(list));
2061 out:
2062         if (!list_empty(&zone_list))
2063                 list_splice_tail_init(&zone_list, list);
2064
2065         /* If we didn't flush the entire list, we could have told the driver
2066          * there was more coming, but that turned out to be a lie.
2067          */
2068         if (!list_empty(list) || ret != BLK_STS_OK)
2069                 blk_mq_commit_rqs(hctx, queued, false);
2070
2071         /*
2072          * Any items that need requeuing? Stuff them into hctx->dispatch,
2073          * that is where we will continue on next queue run.
2074          */
2075         if (!list_empty(list)) {
2076                 bool needs_restart;
2077                 /* For non-shared tags, the RESTART check will suffice */
2078                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2079                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2080                         blk_mq_is_shared_tags(hctx->flags));
2081
2082                 if (nr_budgets)
2083                         blk_mq_release_budgets(q, list);
2084
2085                 spin_lock(&hctx->lock);
2086                 list_splice_tail_init(list, &hctx->dispatch);
2087                 spin_unlock(&hctx->lock);
2088
2089                 /*
2090                  * Order adding requests to hctx->dispatch and checking
2091                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2092                  * in blk_mq_sched_restart(). Avoid restart code path to
2093                  * miss the new added requests to hctx->dispatch, meantime
2094                  * SCHED_RESTART is observed here.
2095                  */
2096                 smp_mb();
2097
2098                 /*
2099                  * If SCHED_RESTART was set by the caller of this function and
2100                  * it is no longer set that means that it was cleared by another
2101                  * thread and hence that a queue rerun is needed.
2102                  *
2103                  * If 'no_tag' is set, that means that we failed getting
2104                  * a driver tag with an I/O scheduler attached. If our dispatch
2105                  * waitqueue is no longer active, ensure that we run the queue
2106                  * AFTER adding our entries back to the list.
2107                  *
2108                  * If no I/O scheduler has been configured it is possible that
2109                  * the hardware queue got stopped and restarted before requests
2110                  * were pushed back onto the dispatch list. Rerun the queue to
2111                  * avoid starvation. Notes:
2112                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2113                  *   been stopped before rerunning a queue.
2114                  * - Some but not all block drivers stop a queue before
2115                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2116                  *   and dm-rq.
2117                  *
2118                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2119                  * bit is set, run queue after a delay to avoid IO stalls
2120                  * that could otherwise occur if the queue is idle.  We'll do
2121                  * similar if we couldn't get budget or couldn't lock a zone
2122                  * and SCHED_RESTART is set.
2123                  */
2124                 needs_restart = blk_mq_sched_needs_restart(hctx);
2125                 if (prep == PREP_DISPATCH_NO_BUDGET)
2126                         needs_resource = true;
2127                 if (!needs_restart ||
2128                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2129                         blk_mq_run_hw_queue(hctx, true);
2130                 else if (needs_resource)
2131                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2132
2133                 blk_mq_update_dispatch_busy(hctx, true);
2134                 return false;
2135         }
2136
2137         blk_mq_update_dispatch_busy(hctx, false);
2138         return true;
2139 }
2140
2141 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2142 {
2143         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2144
2145         if (cpu >= nr_cpu_ids)
2146                 cpu = cpumask_first(hctx->cpumask);
2147         return cpu;
2148 }
2149
2150 /*
2151  * It'd be great if the workqueue API had a way to pass
2152  * in a mask and had some smarts for more clever placement.
2153  * For now we just round-robin here, switching for every
2154  * BLK_MQ_CPU_WORK_BATCH queued items.
2155  */
2156 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2157 {
2158         bool tried = false;
2159         int next_cpu = hctx->next_cpu;
2160
2161         if (hctx->queue->nr_hw_queues == 1)
2162                 return WORK_CPU_UNBOUND;
2163
2164         if (--hctx->next_cpu_batch <= 0) {
2165 select_cpu:
2166                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2167                                 cpu_online_mask);
2168                 if (next_cpu >= nr_cpu_ids)
2169                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2170                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171         }
2172
2173         /*
2174          * Do unbound schedule if we can't find a online CPU for this hctx,
2175          * and it should only happen in the path of handling CPU DEAD.
2176          */
2177         if (!cpu_online(next_cpu)) {
2178                 if (!tried) {
2179                         tried = true;
2180                         goto select_cpu;
2181                 }
2182
2183                 /*
2184                  * Make sure to re-select CPU next time once after CPUs
2185                  * in hctx->cpumask become online again.
2186                  */
2187                 hctx->next_cpu = next_cpu;
2188                 hctx->next_cpu_batch = 1;
2189                 return WORK_CPU_UNBOUND;
2190         }
2191
2192         hctx->next_cpu = next_cpu;
2193         return next_cpu;
2194 }
2195
2196 /**
2197  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2198  * @hctx: Pointer to the hardware queue to run.
2199  * @msecs: Milliseconds of delay to wait before running the queue.
2200  *
2201  * Run a hardware queue asynchronously with a delay of @msecs.
2202  */
2203 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2204 {
2205         if (unlikely(blk_mq_hctx_stopped(hctx)))
2206                 return;
2207         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2208                                     msecs_to_jiffies(msecs));
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2211
2212 /**
2213  * blk_mq_run_hw_queue - Start to run a hardware queue.
2214  * @hctx: Pointer to the hardware queue to run.
2215  * @async: If we want to run the queue asynchronously.
2216  *
2217  * Check if the request queue is not in a quiesced state and if there are
2218  * pending requests to be sent. If this is true, run the queue to send requests
2219  * to hardware.
2220  */
2221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2222 {
2223         bool need_run;
2224
2225         /*
2226          * We can't run the queue inline with interrupts disabled.
2227          */
2228         WARN_ON_ONCE(!async && in_interrupt());
2229
2230         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2231
2232         /*
2233          * When queue is quiesced, we may be switching io scheduler, or
2234          * updating nr_hw_queues, or other things, and we can't run queue
2235          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2236          *
2237          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2238          * quiesced.
2239          */
2240         __blk_mq_run_dispatch_ops(hctx->queue, false,
2241                 need_run = !blk_queue_quiesced(hctx->queue) &&
2242                 blk_mq_hctx_has_pending(hctx));
2243
2244         if (!need_run)
2245                 return;
2246
2247         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2248                 blk_mq_delay_run_hw_queue(hctx, 0);
2249                 return;
2250         }
2251
2252         blk_mq_run_dispatch_ops(hctx->queue,
2253                                 blk_mq_sched_dispatch_requests(hctx));
2254 }
2255 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2256
2257 /*
2258  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2259  * scheduler.
2260  */
2261 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2262 {
2263         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2264         /*
2265          * If the IO scheduler does not respect hardware queues when
2266          * dispatching, we just don't bother with multiple HW queues and
2267          * dispatch from hctx for the current CPU since running multiple queues
2268          * just causes lock contention inside the scheduler and pointless cache
2269          * bouncing.
2270          */
2271         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2272
2273         if (!blk_mq_hctx_stopped(hctx))
2274                 return hctx;
2275         return NULL;
2276 }
2277
2278 /**
2279  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2280  * @q: Pointer to the request queue to run.
2281  * @async: If we want to run the queue asynchronously.
2282  */
2283 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2284 {
2285         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2286         unsigned long i;
2287
2288         sq_hctx = NULL;
2289         if (blk_queue_sq_sched(q))
2290                 sq_hctx = blk_mq_get_sq_hctx(q);
2291         queue_for_each_hw_ctx(q, hctx, i) {
2292                 if (blk_mq_hctx_stopped(hctx))
2293                         continue;
2294                 /*
2295                  * Dispatch from this hctx either if there's no hctx preferred
2296                  * by IO scheduler or if it has requests that bypass the
2297                  * scheduler.
2298                  */
2299                 if (!sq_hctx || sq_hctx == hctx ||
2300                     !list_empty_careful(&hctx->dispatch))
2301                         blk_mq_run_hw_queue(hctx, async);
2302         }
2303 }
2304 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2305
2306 /**
2307  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2308  * @q: Pointer to the request queue to run.
2309  * @msecs: Milliseconds of delay to wait before running the queues.
2310  */
2311 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2312 {
2313         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2314         unsigned long i;
2315
2316         sq_hctx = NULL;
2317         if (blk_queue_sq_sched(q))
2318                 sq_hctx = blk_mq_get_sq_hctx(q);
2319         queue_for_each_hw_ctx(q, hctx, i) {
2320                 if (blk_mq_hctx_stopped(hctx))
2321                         continue;
2322                 /*
2323                  * If there is already a run_work pending, leave the
2324                  * pending delay untouched. Otherwise, a hctx can stall
2325                  * if another hctx is re-delaying the other's work
2326                  * before the work executes.
2327                  */
2328                 if (delayed_work_pending(&hctx->run_work))
2329                         continue;
2330                 /*
2331                  * Dispatch from this hctx either if there's no hctx preferred
2332                  * by IO scheduler or if it has requests that bypass the
2333                  * scheduler.
2334                  */
2335                 if (!sq_hctx || sq_hctx == hctx ||
2336                     !list_empty_careful(&hctx->dispatch))
2337                         blk_mq_delay_run_hw_queue(hctx, msecs);
2338         }
2339 }
2340 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2341
2342 /*
2343  * This function is often used for pausing .queue_rq() by driver when
2344  * there isn't enough resource or some conditions aren't satisfied, and
2345  * BLK_STS_RESOURCE is usually returned.
2346  *
2347  * We do not guarantee that dispatch can be drained or blocked
2348  * after blk_mq_stop_hw_queue() returns. Please use
2349  * blk_mq_quiesce_queue() for that requirement.
2350  */
2351 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2352 {
2353         cancel_delayed_work(&hctx->run_work);
2354
2355         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2356 }
2357 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2358
2359 /*
2360  * This function is often used for pausing .queue_rq() by driver when
2361  * there isn't enough resource or some conditions aren't satisfied, and
2362  * BLK_STS_RESOURCE is usually returned.
2363  *
2364  * We do not guarantee that dispatch can be drained or blocked
2365  * after blk_mq_stop_hw_queues() returns. Please use
2366  * blk_mq_quiesce_queue() for that requirement.
2367  */
2368 void blk_mq_stop_hw_queues(struct request_queue *q)
2369 {
2370         struct blk_mq_hw_ctx *hctx;
2371         unsigned long i;
2372
2373         queue_for_each_hw_ctx(q, hctx, i)
2374                 blk_mq_stop_hw_queue(hctx);
2375 }
2376 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2377
2378 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2379 {
2380         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2381
2382         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2383 }
2384 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2385
2386 void blk_mq_start_hw_queues(struct request_queue *q)
2387 {
2388         struct blk_mq_hw_ctx *hctx;
2389         unsigned long i;
2390
2391         queue_for_each_hw_ctx(q, hctx, i)
2392                 blk_mq_start_hw_queue(hctx);
2393 }
2394 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2395
2396 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2397 {
2398         if (!blk_mq_hctx_stopped(hctx))
2399                 return;
2400
2401         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402         blk_mq_run_hw_queue(hctx, async);
2403 }
2404 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2405
2406 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2407 {
2408         struct blk_mq_hw_ctx *hctx;
2409         unsigned long i;
2410
2411         queue_for_each_hw_ctx(q, hctx, i)
2412                 blk_mq_start_stopped_hw_queue(hctx, async ||
2413                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2414 }
2415 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2416
2417 static void blk_mq_run_work_fn(struct work_struct *work)
2418 {
2419         struct blk_mq_hw_ctx *hctx =
2420                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2421
2422         blk_mq_run_dispatch_ops(hctx->queue,
2423                                 blk_mq_sched_dispatch_requests(hctx));
2424 }
2425
2426 /**
2427  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2428  * @rq: Pointer to request to be inserted.
2429  * @flags: BLK_MQ_INSERT_*
2430  *
2431  * Should only be used carefully, when the caller knows we want to
2432  * bypass a potential IO scheduler on the target device.
2433  */
2434 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2435 {
2436         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2437
2438         spin_lock(&hctx->lock);
2439         if (flags & BLK_MQ_INSERT_AT_HEAD)
2440                 list_add(&rq->queuelist, &hctx->dispatch);
2441         else
2442                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2443         spin_unlock(&hctx->lock);
2444 }
2445
2446 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2447                 struct blk_mq_ctx *ctx, struct list_head *list,
2448                 bool run_queue_async)
2449 {
2450         struct request *rq;
2451         enum hctx_type type = hctx->type;
2452
2453         /*
2454          * Try to issue requests directly if the hw queue isn't busy to save an
2455          * extra enqueue & dequeue to the sw queue.
2456          */
2457         if (!hctx->dispatch_busy && !run_queue_async) {
2458                 blk_mq_run_dispatch_ops(hctx->queue,
2459                         blk_mq_try_issue_list_directly(hctx, list));
2460                 if (list_empty(list))
2461                         goto out;
2462         }
2463
2464         /*
2465          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2466          * offline now
2467          */
2468         list_for_each_entry(rq, list, queuelist) {
2469                 BUG_ON(rq->mq_ctx != ctx);
2470                 trace_block_rq_insert(rq);
2471                 if (rq->cmd_flags & REQ_NOWAIT)
2472                         run_queue_async = true;
2473         }
2474
2475         spin_lock(&ctx->lock);
2476         list_splice_tail_init(list, &ctx->rq_lists[type]);
2477         blk_mq_hctx_mark_pending(hctx, ctx);
2478         spin_unlock(&ctx->lock);
2479 out:
2480         blk_mq_run_hw_queue(hctx, run_queue_async);
2481 }
2482
2483 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2484 {
2485         struct request_queue *q = rq->q;
2486         struct blk_mq_ctx *ctx = rq->mq_ctx;
2487         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2488
2489         if (blk_rq_is_passthrough(rq)) {
2490                 /*
2491                  * Passthrough request have to be added to hctx->dispatch
2492                  * directly.  The device may be in a situation where it can't
2493                  * handle FS request, and always returns BLK_STS_RESOURCE for
2494                  * them, which gets them added to hctx->dispatch.
2495                  *
2496                  * If a passthrough request is required to unblock the queues,
2497                  * and it is added to the scheduler queue, there is no chance to
2498                  * dispatch it given we prioritize requests in hctx->dispatch.
2499                  */
2500                 blk_mq_request_bypass_insert(rq, flags);
2501         } else if (req_op(rq) == REQ_OP_FLUSH) {
2502                 /*
2503                  * Firstly normal IO request is inserted to scheduler queue or
2504                  * sw queue, meantime we add flush request to dispatch queue(
2505                  * hctx->dispatch) directly and there is at most one in-flight
2506                  * flush request for each hw queue, so it doesn't matter to add
2507                  * flush request to tail or front of the dispatch queue.
2508                  *
2509                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2510                  * command, and queueing it will fail when there is any
2511                  * in-flight normal IO request(NCQ command). When adding flush
2512                  * rq to the front of hctx->dispatch, it is easier to introduce
2513                  * extra time to flush rq's latency because of S_SCHED_RESTART
2514                  * compared with adding to the tail of dispatch queue, then
2515                  * chance of flush merge is increased, and less flush requests
2516                  * will be issued to controller. It is observed that ~10% time
2517                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2518                  * drive when adding flush rq to the front of hctx->dispatch.
2519                  *
2520                  * Simply queue flush rq to the front of hctx->dispatch so that
2521                  * intensive flush workloads can benefit in case of NCQ HW.
2522                  */
2523                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2524         } else if (q->elevator) {
2525                 LIST_HEAD(list);
2526
2527                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2528
2529                 list_add(&rq->queuelist, &list);
2530                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2531         } else {
2532                 trace_block_rq_insert(rq);
2533
2534                 spin_lock(&ctx->lock);
2535                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2536                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2537                 else
2538                         list_add_tail(&rq->queuelist,
2539                                       &ctx->rq_lists[hctx->type]);
2540                 blk_mq_hctx_mark_pending(hctx, ctx);
2541                 spin_unlock(&ctx->lock);
2542         }
2543 }
2544
2545 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2546                 unsigned int nr_segs)
2547 {
2548         int err;
2549
2550         if (bio->bi_opf & REQ_RAHEAD)
2551                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2552
2553         rq->__sector = bio->bi_iter.bi_sector;
2554         blk_rq_bio_prep(rq, bio, nr_segs);
2555
2556         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2557         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2558         WARN_ON_ONCE(err);
2559
2560         blk_account_io_start(rq);
2561 }
2562
2563 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2564                                             struct request *rq, bool last)
2565 {
2566         struct request_queue *q = rq->q;
2567         struct blk_mq_queue_data bd = {
2568                 .rq = rq,
2569                 .last = last,
2570         };
2571         blk_status_t ret;
2572
2573         /*
2574          * For OK queue, we are done. For error, caller may kill it.
2575          * Any other error (busy), just add it to our list as we
2576          * previously would have done.
2577          */
2578         ret = q->mq_ops->queue_rq(hctx, &bd);
2579         switch (ret) {
2580         case BLK_STS_OK:
2581                 blk_mq_update_dispatch_busy(hctx, false);
2582                 break;
2583         case BLK_STS_RESOURCE:
2584         case BLK_STS_DEV_RESOURCE:
2585                 blk_mq_update_dispatch_busy(hctx, true);
2586                 __blk_mq_requeue_request(rq);
2587                 break;
2588         default:
2589                 blk_mq_update_dispatch_busy(hctx, false);
2590                 break;
2591         }
2592
2593         return ret;
2594 }
2595
2596 static bool blk_mq_get_budget_and_tag(struct request *rq)
2597 {
2598         int budget_token;
2599
2600         budget_token = blk_mq_get_dispatch_budget(rq->q);
2601         if (budget_token < 0)
2602                 return false;
2603         blk_mq_set_rq_budget_token(rq, budget_token);
2604         if (!blk_mq_get_driver_tag(rq)) {
2605                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2606                 return false;
2607         }
2608         return true;
2609 }
2610
2611 /**
2612  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2613  * @hctx: Pointer of the associated hardware queue.
2614  * @rq: Pointer to request to be sent.
2615  *
2616  * If the device has enough resources to accept a new request now, send the
2617  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2618  * we can try send it another time in the future. Requests inserted at this
2619  * queue have higher priority.
2620  */
2621 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2622                 struct request *rq)
2623 {
2624         blk_status_t ret;
2625
2626         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2627                 blk_mq_insert_request(rq, 0);
2628                 return;
2629         }
2630
2631         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2632                 blk_mq_insert_request(rq, 0);
2633                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2634                 return;
2635         }
2636
2637         ret = __blk_mq_issue_directly(hctx, rq, true);
2638         switch (ret) {
2639         case BLK_STS_OK:
2640                 break;
2641         case BLK_STS_RESOURCE:
2642         case BLK_STS_DEV_RESOURCE:
2643                 blk_mq_request_bypass_insert(rq, 0);
2644                 blk_mq_run_hw_queue(hctx, false);
2645                 break;
2646         default:
2647                 blk_mq_end_request(rq, ret);
2648                 break;
2649         }
2650 }
2651
2652 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2653 {
2654         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2655
2656         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2657                 blk_mq_insert_request(rq, 0);
2658                 return BLK_STS_OK;
2659         }
2660
2661         if (!blk_mq_get_budget_and_tag(rq))
2662                 return BLK_STS_RESOURCE;
2663         return __blk_mq_issue_directly(hctx, rq, last);
2664 }
2665
2666 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2667 {
2668         struct blk_mq_hw_ctx *hctx = NULL;
2669         struct request *rq;
2670         int queued = 0;
2671         blk_status_t ret = BLK_STS_OK;
2672
2673         while ((rq = rq_list_pop(&plug->mq_list))) {
2674                 bool last = rq_list_empty(plug->mq_list);
2675
2676                 if (hctx != rq->mq_hctx) {
2677                         if (hctx) {
2678                                 blk_mq_commit_rqs(hctx, queued, false);
2679                                 queued = 0;
2680                         }
2681                         hctx = rq->mq_hctx;
2682                 }
2683
2684                 ret = blk_mq_request_issue_directly(rq, last);
2685                 switch (ret) {
2686                 case BLK_STS_OK:
2687                         queued++;
2688                         break;
2689                 case BLK_STS_RESOURCE:
2690                 case BLK_STS_DEV_RESOURCE:
2691                         blk_mq_request_bypass_insert(rq, 0);
2692                         blk_mq_run_hw_queue(hctx, false);
2693                         goto out;
2694                 default:
2695                         blk_mq_end_request(rq, ret);
2696                         break;
2697                 }
2698         }
2699
2700 out:
2701         if (ret != BLK_STS_OK)
2702                 blk_mq_commit_rqs(hctx, queued, false);
2703 }
2704
2705 static void __blk_mq_flush_plug_list(struct request_queue *q,
2706                                      struct blk_plug *plug)
2707 {
2708         if (blk_queue_quiesced(q))
2709                 return;
2710         q->mq_ops->queue_rqs(&plug->mq_list);
2711 }
2712
2713 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2714 {
2715         struct blk_mq_hw_ctx *this_hctx = NULL;
2716         struct blk_mq_ctx *this_ctx = NULL;
2717         struct request *requeue_list = NULL;
2718         struct request **requeue_lastp = &requeue_list;
2719         unsigned int depth = 0;
2720         bool is_passthrough = false;
2721         LIST_HEAD(list);
2722
2723         do {
2724                 struct request *rq = rq_list_pop(&plug->mq_list);
2725
2726                 if (!this_hctx) {
2727                         this_hctx = rq->mq_hctx;
2728                         this_ctx = rq->mq_ctx;
2729                         is_passthrough = blk_rq_is_passthrough(rq);
2730                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2731                            is_passthrough != blk_rq_is_passthrough(rq)) {
2732                         rq_list_add_tail(&requeue_lastp, rq);
2733                         continue;
2734                 }
2735                 list_add(&rq->queuelist, &list);
2736                 depth++;
2737         } while (!rq_list_empty(plug->mq_list));
2738
2739         plug->mq_list = requeue_list;
2740         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2741
2742         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2743         /* passthrough requests should never be issued to the I/O scheduler */
2744         if (is_passthrough) {
2745                 spin_lock(&this_hctx->lock);
2746                 list_splice_tail_init(&list, &this_hctx->dispatch);
2747                 spin_unlock(&this_hctx->lock);
2748                 blk_mq_run_hw_queue(this_hctx, from_sched);
2749         } else if (this_hctx->queue->elevator) {
2750                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2751                                 &list, 0);
2752                 blk_mq_run_hw_queue(this_hctx, from_sched);
2753         } else {
2754                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2755         }
2756         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2757 }
2758
2759 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2760 {
2761         struct request *rq;
2762
2763         /*
2764          * We may have been called recursively midway through handling
2765          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2766          * To avoid mq_list changing under our feet, clear rq_count early and
2767          * bail out specifically if rq_count is 0 rather than checking
2768          * whether the mq_list is empty.
2769          */
2770         if (plug->rq_count == 0)
2771                 return;
2772         plug->rq_count = 0;
2773
2774         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2775                 struct request_queue *q;
2776
2777                 rq = rq_list_peek(&plug->mq_list);
2778                 q = rq->q;
2779
2780                 /*
2781                  * Peek first request and see if we have a ->queue_rqs() hook.
2782                  * If we do, we can dispatch the whole plug list in one go. We
2783                  * already know at this point that all requests belong to the
2784                  * same queue, caller must ensure that's the case.
2785                  */
2786                 if (q->mq_ops->queue_rqs) {
2787                         blk_mq_run_dispatch_ops(q,
2788                                 __blk_mq_flush_plug_list(q, plug));
2789                         if (rq_list_empty(plug->mq_list))
2790                                 return;
2791                 }
2792
2793                 blk_mq_run_dispatch_ops(q,
2794                                 blk_mq_plug_issue_direct(plug));
2795                 if (rq_list_empty(plug->mq_list))
2796                         return;
2797         }
2798
2799         do {
2800                 blk_mq_dispatch_plug_list(plug, from_schedule);
2801         } while (!rq_list_empty(plug->mq_list));
2802 }
2803
2804 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805                 struct list_head *list)
2806 {
2807         int queued = 0;
2808         blk_status_t ret = BLK_STS_OK;
2809
2810         while (!list_empty(list)) {
2811                 struct request *rq = list_first_entry(list, struct request,
2812                                 queuelist);
2813
2814                 list_del_init(&rq->queuelist);
2815                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2816                 switch (ret) {
2817                 case BLK_STS_OK:
2818                         queued++;
2819                         break;
2820                 case BLK_STS_RESOURCE:
2821                 case BLK_STS_DEV_RESOURCE:
2822                         blk_mq_request_bypass_insert(rq, 0);
2823                         if (list_empty(list))
2824                                 blk_mq_run_hw_queue(hctx, false);
2825                         goto out;
2826                 default:
2827                         blk_mq_end_request(rq, ret);
2828                         break;
2829                 }
2830         }
2831
2832 out:
2833         if (ret != BLK_STS_OK)
2834                 blk_mq_commit_rqs(hctx, queued, false);
2835 }
2836
2837 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2838                                      struct bio *bio, unsigned int nr_segs)
2839 {
2840         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2841                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2842                         return true;
2843                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2844                         return true;
2845         }
2846         return false;
2847 }
2848
2849 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2850                                                struct blk_plug *plug,
2851                                                struct bio *bio,
2852                                                unsigned int nsegs)
2853 {
2854         struct blk_mq_alloc_data data = {
2855                 .q              = q,
2856                 .nr_tags        = 1,
2857                 .cmd_flags      = bio->bi_opf,
2858         };
2859         struct request *rq;
2860
2861         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2862                 return NULL;
2863
2864         rq_qos_throttle(q, bio);
2865
2866         if (plug) {
2867                 data.nr_tags = plug->nr_ios;
2868                 plug->nr_ios = 1;
2869                 data.cached_rq = &plug->cached_rq;
2870         }
2871
2872         rq = __blk_mq_alloc_requests(&data);
2873         if (rq)
2874                 return rq;
2875         rq_qos_cleanup(q, bio);
2876         if (bio->bi_opf & REQ_NOWAIT)
2877                 bio_wouldblock_error(bio);
2878         return NULL;
2879 }
2880
2881 /* return true if this @rq can be used for @bio */
2882 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2883                 struct bio *bio)
2884 {
2885         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2886         enum hctx_type hctx_type = rq->mq_hctx->type;
2887
2888         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2889
2890         if (type != hctx_type &&
2891             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2892                 return false;
2893         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2894                 return false;
2895
2896         /*
2897          * If any qos ->throttle() end up blocking, we will have flushed the
2898          * plug and hence killed the cached_rq list as well. Pop this entry
2899          * before we throttle.
2900          */
2901         plug->cached_rq = rq_list_next(rq);
2902         rq_qos_throttle(rq->q, bio);
2903
2904         blk_mq_rq_time_init(rq, 0);
2905         rq->cmd_flags = bio->bi_opf;
2906         INIT_LIST_HEAD(&rq->queuelist);
2907         return true;
2908 }
2909
2910 static void bio_set_ioprio(struct bio *bio)
2911 {
2912         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2913         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2914                 bio->bi_ioprio = get_current_ioprio();
2915         blkcg_set_ioprio(bio);
2916 }
2917
2918 /**
2919  * blk_mq_submit_bio - Create and send a request to block device.
2920  * @bio: Bio pointer.
2921  *
2922  * Builds up a request structure from @q and @bio and send to the device. The
2923  * request may not be queued directly to hardware if:
2924  * * This request can be merged with another one
2925  * * We want to place request at plug queue for possible future merging
2926  * * There is an IO scheduler active at this queue
2927  *
2928  * It will not queue the request if there is an error with the bio, or at the
2929  * request creation.
2930  */
2931 void blk_mq_submit_bio(struct bio *bio)
2932 {
2933         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2934         struct blk_plug *plug = blk_mq_plug(bio);
2935         const int is_sync = op_is_sync(bio->bi_opf);
2936         struct blk_mq_hw_ctx *hctx;
2937         struct request *rq = NULL;
2938         unsigned int nr_segs = 1;
2939         blk_status_t ret;
2940
2941         bio = blk_queue_bounce(bio, q);
2942         if (bio_may_exceed_limits(bio, &q->limits)) {
2943                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2944                 if (!bio)
2945                         return;
2946         }
2947
2948         bio_set_ioprio(bio);
2949
2950         if (plug) {
2951                 rq = rq_list_peek(&plug->cached_rq);
2952                 if (rq && rq->q != q)
2953                         rq = NULL;
2954         }
2955         if (rq) {
2956                 if (!bio_integrity_prep(bio))
2957                         return;
2958                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2959                         return;
2960                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2961                         goto done;
2962                 percpu_ref_get(&q->q_usage_counter);
2963         } else {
2964                 if (unlikely(bio_queue_enter(bio)))
2965                         return;
2966                 if (!bio_integrity_prep(bio))
2967                         goto fail;
2968         }
2969
2970         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2971         if (unlikely(!rq)) {
2972 fail:
2973                 blk_queue_exit(q);
2974                 return;
2975         }
2976
2977 done:
2978         trace_block_getrq(bio);
2979
2980         rq_qos_track(q, rq, bio);
2981
2982         blk_mq_bio_to_request(rq, bio, nr_segs);
2983
2984         ret = blk_crypto_rq_get_keyslot(rq);
2985         if (ret != BLK_STS_OK) {
2986                 bio->bi_status = ret;
2987                 bio_endio(bio);
2988                 blk_mq_free_request(rq);
2989                 return;
2990         }
2991
2992         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2993                 return;
2994
2995         if (plug) {
2996                 blk_add_rq_to_plug(plug, rq);
2997                 return;
2998         }
2999
3000         hctx = rq->mq_hctx;
3001         if ((rq->rq_flags & RQF_USE_SCHED) ||
3002             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3003                 blk_mq_insert_request(rq, 0);
3004                 blk_mq_run_hw_queue(hctx, true);
3005         } else {
3006                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3007         }
3008 }
3009
3010 #ifdef CONFIG_BLK_MQ_STACKING
3011 /**
3012  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3013  * @rq: the request being queued
3014  */
3015 blk_status_t blk_insert_cloned_request(struct request *rq)
3016 {
3017         struct request_queue *q = rq->q;
3018         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3019         unsigned int max_segments = blk_rq_get_max_segments(rq);
3020         blk_status_t ret;
3021
3022         if (blk_rq_sectors(rq) > max_sectors) {
3023                 /*
3024                  * SCSI device does not have a good way to return if
3025                  * Write Same/Zero is actually supported. If a device rejects
3026                  * a non-read/write command (discard, write same,etc.) the
3027                  * low-level device driver will set the relevant queue limit to
3028                  * 0 to prevent blk-lib from issuing more of the offending
3029                  * operations. Commands queued prior to the queue limit being
3030                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3031                  * errors being propagated to upper layers.
3032                  */
3033                 if (max_sectors == 0)
3034                         return BLK_STS_NOTSUPP;
3035
3036                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3037                         __func__, blk_rq_sectors(rq), max_sectors);
3038                 return BLK_STS_IOERR;
3039         }
3040
3041         /*
3042          * The queue settings related to segment counting may differ from the
3043          * original queue.
3044          */
3045         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3046         if (rq->nr_phys_segments > max_segments) {
3047                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3048                         __func__, rq->nr_phys_segments, max_segments);
3049                 return BLK_STS_IOERR;
3050         }
3051
3052         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3053                 return BLK_STS_IOERR;
3054
3055         ret = blk_crypto_rq_get_keyslot(rq);
3056         if (ret != BLK_STS_OK)
3057                 return ret;
3058
3059         blk_account_io_start(rq);
3060
3061         /*
3062          * Since we have a scheduler attached on the top device,
3063          * bypass a potential scheduler on the bottom device for
3064          * insert.
3065          */
3066         blk_mq_run_dispatch_ops(q,
3067                         ret = blk_mq_request_issue_directly(rq, true));
3068         if (ret)
3069                 blk_account_io_done(rq, ktime_get_ns());
3070         return ret;
3071 }
3072 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3073
3074 /**
3075  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3076  * @rq: the clone request to be cleaned up
3077  *
3078  * Description:
3079  *     Free all bios in @rq for a cloned request.
3080  */
3081 void blk_rq_unprep_clone(struct request *rq)
3082 {
3083         struct bio *bio;
3084
3085         while ((bio = rq->bio) != NULL) {
3086                 rq->bio = bio->bi_next;
3087
3088                 bio_put(bio);
3089         }
3090 }
3091 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3092
3093 /**
3094  * blk_rq_prep_clone - Helper function to setup clone request
3095  * @rq: the request to be setup
3096  * @rq_src: original request to be cloned
3097  * @bs: bio_set that bios for clone are allocated from
3098  * @gfp_mask: memory allocation mask for bio
3099  * @bio_ctr: setup function to be called for each clone bio.
3100  *           Returns %0 for success, non %0 for failure.
3101  * @data: private data to be passed to @bio_ctr
3102  *
3103  * Description:
3104  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3105  *     Also, pages which the original bios are pointing to are not copied
3106  *     and the cloned bios just point same pages.
3107  *     So cloned bios must be completed before original bios, which means
3108  *     the caller must complete @rq before @rq_src.
3109  */
3110 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3111                       struct bio_set *bs, gfp_t gfp_mask,
3112                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3113                       void *data)
3114 {
3115         struct bio *bio, *bio_src;
3116
3117         if (!bs)
3118                 bs = &fs_bio_set;
3119
3120         __rq_for_each_bio(bio_src, rq_src) {
3121                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3122                                       bs);
3123                 if (!bio)
3124                         goto free_and_out;
3125
3126                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3127                         goto free_and_out;
3128
3129                 if (rq->bio) {
3130                         rq->biotail->bi_next = bio;
3131                         rq->biotail = bio;
3132                 } else {
3133                         rq->bio = rq->biotail = bio;
3134                 }
3135                 bio = NULL;
3136         }
3137
3138         /* Copy attributes of the original request to the clone request. */
3139         rq->__sector = blk_rq_pos(rq_src);
3140         rq->__data_len = blk_rq_bytes(rq_src);
3141         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3142                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3143                 rq->special_vec = rq_src->special_vec;
3144         }
3145         rq->nr_phys_segments = rq_src->nr_phys_segments;
3146         rq->ioprio = rq_src->ioprio;
3147
3148         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3149                 goto free_and_out;
3150
3151         return 0;
3152
3153 free_and_out:
3154         if (bio)
3155                 bio_put(bio);
3156         blk_rq_unprep_clone(rq);
3157
3158         return -ENOMEM;
3159 }
3160 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3161 #endif /* CONFIG_BLK_MQ_STACKING */
3162
3163 /*
3164  * Steal bios from a request and add them to a bio list.
3165  * The request must not have been partially completed before.
3166  */
3167 void blk_steal_bios(struct bio_list *list, struct request *rq)
3168 {
3169         if (rq->bio) {
3170                 if (list->tail)
3171                         list->tail->bi_next = rq->bio;
3172                 else
3173                         list->head = rq->bio;
3174                 list->tail = rq->biotail;
3175
3176                 rq->bio = NULL;
3177                 rq->biotail = NULL;
3178         }
3179
3180         rq->__data_len = 0;
3181 }
3182 EXPORT_SYMBOL_GPL(blk_steal_bios);
3183
3184 static size_t order_to_size(unsigned int order)
3185 {
3186         return (size_t)PAGE_SIZE << order;
3187 }
3188
3189 /* called before freeing request pool in @tags */
3190 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3191                                     struct blk_mq_tags *tags)
3192 {
3193         struct page *page;
3194         unsigned long flags;
3195
3196         /*
3197          * There is no need to clear mapping if driver tags is not initialized
3198          * or the mapping belongs to the driver tags.
3199          */
3200         if (!drv_tags || drv_tags == tags)
3201                 return;
3202
3203         list_for_each_entry(page, &tags->page_list, lru) {
3204                 unsigned long start = (unsigned long)page_address(page);
3205                 unsigned long end = start + order_to_size(page->private);
3206                 int i;
3207
3208                 for (i = 0; i < drv_tags->nr_tags; i++) {
3209                         struct request *rq = drv_tags->rqs[i];
3210                         unsigned long rq_addr = (unsigned long)rq;
3211
3212                         if (rq_addr >= start && rq_addr < end) {
3213                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3214                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3215                         }
3216                 }
3217         }
3218
3219         /*
3220          * Wait until all pending iteration is done.
3221          *
3222          * Request reference is cleared and it is guaranteed to be observed
3223          * after the ->lock is released.
3224          */
3225         spin_lock_irqsave(&drv_tags->lock, flags);
3226         spin_unlock_irqrestore(&drv_tags->lock, flags);
3227 }
3228
3229 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3230                      unsigned int hctx_idx)
3231 {
3232         struct blk_mq_tags *drv_tags;
3233         struct page *page;
3234
3235         if (list_empty(&tags->page_list))
3236                 return;
3237
3238         if (blk_mq_is_shared_tags(set->flags))
3239                 drv_tags = set->shared_tags;
3240         else
3241                 drv_tags = set->tags[hctx_idx];
3242
3243         if (tags->static_rqs && set->ops->exit_request) {
3244                 int i;
3245
3246                 for (i = 0; i < tags->nr_tags; i++) {
3247                         struct request *rq = tags->static_rqs[i];
3248
3249                         if (!rq)
3250                                 continue;
3251                         set->ops->exit_request(set, rq, hctx_idx);
3252                         tags->static_rqs[i] = NULL;
3253                 }
3254         }
3255
3256         blk_mq_clear_rq_mapping(drv_tags, tags);
3257
3258         while (!list_empty(&tags->page_list)) {
3259                 page = list_first_entry(&tags->page_list, struct page, lru);
3260                 list_del_init(&page->lru);
3261                 /*
3262                  * Remove kmemleak object previously allocated in
3263                  * blk_mq_alloc_rqs().
3264                  */
3265                 kmemleak_free(page_address(page));
3266                 __free_pages(page, page->private);
3267         }
3268 }
3269
3270 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3271 {
3272         kfree(tags->rqs);
3273         tags->rqs = NULL;
3274         kfree(tags->static_rqs);
3275         tags->static_rqs = NULL;
3276
3277         blk_mq_free_tags(tags);
3278 }
3279
3280 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3281                 unsigned int hctx_idx)
3282 {
3283         int i;
3284
3285         for (i = 0; i < set->nr_maps; i++) {
3286                 unsigned int start = set->map[i].queue_offset;
3287                 unsigned int end = start + set->map[i].nr_queues;
3288
3289                 if (hctx_idx >= start && hctx_idx < end)
3290                         break;
3291         }
3292
3293         if (i >= set->nr_maps)
3294                 i = HCTX_TYPE_DEFAULT;
3295
3296         return i;
3297 }
3298
3299 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3300                 unsigned int hctx_idx)
3301 {
3302         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3303
3304         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3305 }
3306
3307 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3308                                                unsigned int hctx_idx,
3309                                                unsigned int nr_tags,
3310                                                unsigned int reserved_tags)
3311 {
3312         int node = blk_mq_get_hctx_node(set, hctx_idx);
3313         struct blk_mq_tags *tags;
3314
3315         if (node == NUMA_NO_NODE)
3316                 node = set->numa_node;
3317
3318         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3319                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3320         if (!tags)
3321                 return NULL;
3322
3323         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3324                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3325                                  node);
3326         if (!tags->rqs)
3327                 goto err_free_tags;
3328
3329         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3330                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3331                                         node);
3332         if (!tags->static_rqs)
3333                 goto err_free_rqs;
3334
3335         return tags;
3336
3337 err_free_rqs:
3338         kfree(tags->rqs);
3339 err_free_tags:
3340         blk_mq_free_tags(tags);
3341         return NULL;
3342 }
3343
3344 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3345                                unsigned int hctx_idx, int node)
3346 {
3347         int ret;
3348
3349         if (set->ops->init_request) {
3350                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3351                 if (ret)
3352                         return ret;
3353         }
3354
3355         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3356         return 0;
3357 }
3358
3359 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3360                             struct blk_mq_tags *tags,
3361                             unsigned int hctx_idx, unsigned int depth)
3362 {
3363         unsigned int i, j, entries_per_page, max_order = 4;
3364         int node = blk_mq_get_hctx_node(set, hctx_idx);
3365         size_t rq_size, left;
3366
3367         if (node == NUMA_NO_NODE)
3368                 node = set->numa_node;
3369
3370         INIT_LIST_HEAD(&tags->page_list);
3371
3372         /*
3373          * rq_size is the size of the request plus driver payload, rounded
3374          * to the cacheline size
3375          */
3376         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3377                                 cache_line_size());
3378         left = rq_size * depth;
3379
3380         for (i = 0; i < depth; ) {
3381                 int this_order = max_order;
3382                 struct page *page;
3383                 int to_do;
3384                 void *p;
3385
3386                 while (this_order && left < order_to_size(this_order - 1))
3387                         this_order--;
3388
3389                 do {
3390                         page = alloc_pages_node(node,
3391                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3392                                 this_order);
3393                         if (page)
3394                                 break;
3395                         if (!this_order--)
3396                                 break;
3397                         if (order_to_size(this_order) < rq_size)
3398                                 break;
3399                 } while (1);
3400
3401                 if (!page)
3402                         goto fail;
3403
3404                 page->private = this_order;
3405                 list_add_tail(&page->lru, &tags->page_list);
3406
3407                 p = page_address(page);
3408                 /*
3409                  * Allow kmemleak to scan these pages as they contain pointers
3410                  * to additional allocations like via ops->init_request().
3411                  */
3412                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3413                 entries_per_page = order_to_size(this_order) / rq_size;
3414                 to_do = min(entries_per_page, depth - i);
3415                 left -= to_do * rq_size;
3416                 for (j = 0; j < to_do; j++) {
3417                         struct request *rq = p;
3418
3419                         tags->static_rqs[i] = rq;
3420                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3421                                 tags->static_rqs[i] = NULL;
3422                                 goto fail;
3423                         }
3424
3425                         p += rq_size;
3426                         i++;
3427                 }
3428         }
3429         return 0;
3430
3431 fail:
3432         blk_mq_free_rqs(set, tags, hctx_idx);
3433         return -ENOMEM;
3434 }
3435
3436 struct rq_iter_data {
3437         struct blk_mq_hw_ctx *hctx;
3438         bool has_rq;
3439 };
3440
3441 static bool blk_mq_has_request(struct request *rq, void *data)
3442 {
3443         struct rq_iter_data *iter_data = data;
3444
3445         if (rq->mq_hctx != iter_data->hctx)
3446                 return true;
3447         iter_data->has_rq = true;
3448         return false;
3449 }
3450
3451 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3452 {
3453         struct blk_mq_tags *tags = hctx->sched_tags ?
3454                         hctx->sched_tags : hctx->tags;
3455         struct rq_iter_data data = {
3456                 .hctx   = hctx,
3457         };
3458
3459         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3460         return data.has_rq;
3461 }
3462
3463 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3464                 struct blk_mq_hw_ctx *hctx)
3465 {
3466         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3467                 return false;
3468         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3469                 return false;
3470         return true;
3471 }
3472
3473 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3474 {
3475         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3476                         struct blk_mq_hw_ctx, cpuhp_online);
3477
3478         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3479             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3480                 return 0;
3481
3482         /*
3483          * Prevent new request from being allocated on the current hctx.
3484          *
3485          * The smp_mb__after_atomic() Pairs with the implied barrier in
3486          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3487          * seen once we return from the tag allocator.
3488          */
3489         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3490         smp_mb__after_atomic();
3491
3492         /*
3493          * Try to grab a reference to the queue and wait for any outstanding
3494          * requests.  If we could not grab a reference the queue has been
3495          * frozen and there are no requests.
3496          */
3497         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3498                 while (blk_mq_hctx_has_requests(hctx))
3499                         msleep(5);
3500                 percpu_ref_put(&hctx->queue->q_usage_counter);
3501         }
3502
3503         return 0;
3504 }
3505
3506 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3507 {
3508         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3509                         struct blk_mq_hw_ctx, cpuhp_online);
3510
3511         if (cpumask_test_cpu(cpu, hctx->cpumask))
3512                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3513         return 0;
3514 }
3515
3516 /*
3517  * 'cpu' is going away. splice any existing rq_list entries from this
3518  * software queue to the hw queue dispatch list, and ensure that it
3519  * gets run.
3520  */
3521 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3522 {
3523         struct blk_mq_hw_ctx *hctx;
3524         struct blk_mq_ctx *ctx;
3525         LIST_HEAD(tmp);
3526         enum hctx_type type;
3527
3528         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3529         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3530                 return 0;
3531
3532         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3533         type = hctx->type;
3534
3535         spin_lock(&ctx->lock);
3536         if (!list_empty(&ctx->rq_lists[type])) {
3537                 list_splice_init(&ctx->rq_lists[type], &tmp);
3538                 blk_mq_hctx_clear_pending(hctx, ctx);
3539         }
3540         spin_unlock(&ctx->lock);
3541
3542         if (list_empty(&tmp))
3543                 return 0;
3544
3545         spin_lock(&hctx->lock);
3546         list_splice_tail_init(&tmp, &hctx->dispatch);
3547         spin_unlock(&hctx->lock);
3548
3549         blk_mq_run_hw_queue(hctx, true);
3550         return 0;
3551 }
3552
3553 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3554 {
3555         if (!(hctx->flags & BLK_MQ_F_STACKING))
3556                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3557                                                     &hctx->cpuhp_online);
3558         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3559                                             &hctx->cpuhp_dead);
3560 }
3561
3562 /*
3563  * Before freeing hw queue, clearing the flush request reference in
3564  * tags->rqs[] for avoiding potential UAF.
3565  */
3566 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3567                 unsigned int queue_depth, struct request *flush_rq)
3568 {
3569         int i;
3570         unsigned long flags;
3571
3572         /* The hw queue may not be mapped yet */
3573         if (!tags)
3574                 return;
3575
3576         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3577
3578         for (i = 0; i < queue_depth; i++)
3579                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3580
3581         /*
3582          * Wait until all pending iteration is done.
3583          *
3584          * Request reference is cleared and it is guaranteed to be observed
3585          * after the ->lock is released.
3586          */
3587         spin_lock_irqsave(&tags->lock, flags);
3588         spin_unlock_irqrestore(&tags->lock, flags);
3589 }
3590
3591 /* hctx->ctxs will be freed in queue's release handler */
3592 static void blk_mq_exit_hctx(struct request_queue *q,
3593                 struct blk_mq_tag_set *set,
3594                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3595 {
3596         struct request *flush_rq = hctx->fq->flush_rq;
3597
3598         if (blk_mq_hw_queue_mapped(hctx))
3599                 blk_mq_tag_idle(hctx);
3600
3601         if (blk_queue_init_done(q))
3602                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3603                                 set->queue_depth, flush_rq);
3604         if (set->ops->exit_request)
3605                 set->ops->exit_request(set, flush_rq, hctx_idx);
3606
3607         if (set->ops->exit_hctx)
3608                 set->ops->exit_hctx(hctx, hctx_idx);
3609
3610         blk_mq_remove_cpuhp(hctx);
3611
3612         xa_erase(&q->hctx_table, hctx_idx);
3613
3614         spin_lock(&q->unused_hctx_lock);
3615         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3616         spin_unlock(&q->unused_hctx_lock);
3617 }
3618
3619 static void blk_mq_exit_hw_queues(struct request_queue *q,
3620                 struct blk_mq_tag_set *set, int nr_queue)
3621 {
3622         struct blk_mq_hw_ctx *hctx;
3623         unsigned long i;
3624
3625         queue_for_each_hw_ctx(q, hctx, i) {
3626                 if (i == nr_queue)
3627                         break;
3628                 blk_mq_exit_hctx(q, set, hctx, i);
3629         }
3630 }
3631
3632 static int blk_mq_init_hctx(struct request_queue *q,
3633                 struct blk_mq_tag_set *set,
3634                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3635 {
3636         hctx->queue_num = hctx_idx;
3637
3638         if (!(hctx->flags & BLK_MQ_F_STACKING))
3639                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3640                                 &hctx->cpuhp_online);
3641         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3642
3643         hctx->tags = set->tags[hctx_idx];
3644
3645         if (set->ops->init_hctx &&
3646             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3647                 goto unregister_cpu_notifier;
3648
3649         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3650                                 hctx->numa_node))
3651                 goto exit_hctx;
3652
3653         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3654                 goto exit_flush_rq;
3655
3656         return 0;
3657
3658  exit_flush_rq:
3659         if (set->ops->exit_request)
3660                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3661  exit_hctx:
3662         if (set->ops->exit_hctx)
3663                 set->ops->exit_hctx(hctx, hctx_idx);
3664  unregister_cpu_notifier:
3665         blk_mq_remove_cpuhp(hctx);
3666         return -1;
3667 }
3668
3669 static struct blk_mq_hw_ctx *
3670 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3671                 int node)
3672 {
3673         struct blk_mq_hw_ctx *hctx;
3674         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3675
3676         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3677         if (!hctx)
3678                 goto fail_alloc_hctx;
3679
3680         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3681                 goto free_hctx;
3682
3683         atomic_set(&hctx->nr_active, 0);
3684         if (node == NUMA_NO_NODE)
3685                 node = set->numa_node;
3686         hctx->numa_node = node;
3687
3688         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3689         spin_lock_init(&hctx->lock);
3690         INIT_LIST_HEAD(&hctx->dispatch);
3691         hctx->queue = q;
3692         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3693
3694         INIT_LIST_HEAD(&hctx->hctx_list);
3695
3696         /*
3697          * Allocate space for all possible cpus to avoid allocation at
3698          * runtime
3699          */
3700         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3701                         gfp, node);
3702         if (!hctx->ctxs)
3703                 goto free_cpumask;
3704
3705         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3706                                 gfp, node, false, false))
3707                 goto free_ctxs;
3708         hctx->nr_ctx = 0;
3709
3710         spin_lock_init(&hctx->dispatch_wait_lock);
3711         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3712         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3713
3714         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3715         if (!hctx->fq)
3716                 goto free_bitmap;
3717
3718         blk_mq_hctx_kobj_init(hctx);
3719
3720         return hctx;
3721
3722  free_bitmap:
3723         sbitmap_free(&hctx->ctx_map);
3724  free_ctxs:
3725         kfree(hctx->ctxs);
3726  free_cpumask:
3727         free_cpumask_var(hctx->cpumask);
3728  free_hctx:
3729         kfree(hctx);
3730  fail_alloc_hctx:
3731         return NULL;
3732 }
3733
3734 static void blk_mq_init_cpu_queues(struct request_queue *q,
3735                                    unsigned int nr_hw_queues)
3736 {
3737         struct blk_mq_tag_set *set = q->tag_set;
3738         unsigned int i, j;
3739
3740         for_each_possible_cpu(i) {
3741                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3742                 struct blk_mq_hw_ctx *hctx;
3743                 int k;
3744
3745                 __ctx->cpu = i;
3746                 spin_lock_init(&__ctx->lock);
3747                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3748                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3749
3750                 __ctx->queue = q;
3751
3752                 /*
3753                  * Set local node, IFF we have more than one hw queue. If
3754                  * not, we remain on the home node of the device
3755                  */
3756                 for (j = 0; j < set->nr_maps; j++) {
3757                         hctx = blk_mq_map_queue_type(q, j, i);
3758                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3759                                 hctx->numa_node = cpu_to_node(i);
3760                 }
3761         }
3762 }
3763
3764 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3765                                              unsigned int hctx_idx,
3766                                              unsigned int depth)
3767 {
3768         struct blk_mq_tags *tags;
3769         int ret;
3770
3771         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3772         if (!tags)
3773                 return NULL;
3774
3775         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3776         if (ret) {
3777                 blk_mq_free_rq_map(tags);
3778                 return NULL;
3779         }
3780
3781         return tags;
3782 }
3783
3784 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3785                                        int hctx_idx)
3786 {
3787         if (blk_mq_is_shared_tags(set->flags)) {
3788                 set->tags[hctx_idx] = set->shared_tags;
3789
3790                 return true;
3791         }
3792
3793         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3794                                                        set->queue_depth);
3795
3796         return set->tags[hctx_idx];
3797 }
3798
3799 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3800                              struct blk_mq_tags *tags,
3801                              unsigned int hctx_idx)
3802 {
3803         if (tags) {
3804                 blk_mq_free_rqs(set, tags, hctx_idx);
3805                 blk_mq_free_rq_map(tags);
3806         }
3807 }
3808
3809 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3810                                       unsigned int hctx_idx)
3811 {
3812         if (!blk_mq_is_shared_tags(set->flags))
3813                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3814
3815         set->tags[hctx_idx] = NULL;
3816 }
3817
3818 static void blk_mq_map_swqueue(struct request_queue *q)
3819 {
3820         unsigned int j, hctx_idx;
3821         unsigned long i;
3822         struct blk_mq_hw_ctx *hctx;
3823         struct blk_mq_ctx *ctx;
3824         struct blk_mq_tag_set *set = q->tag_set;
3825
3826         queue_for_each_hw_ctx(q, hctx, i) {
3827                 cpumask_clear(hctx->cpumask);
3828                 hctx->nr_ctx = 0;
3829                 hctx->dispatch_from = NULL;
3830         }
3831
3832         /*
3833          * Map software to hardware queues.
3834          *
3835          * If the cpu isn't present, the cpu is mapped to first hctx.
3836          */
3837         for_each_possible_cpu(i) {
3838
3839                 ctx = per_cpu_ptr(q->queue_ctx, i);
3840                 for (j = 0; j < set->nr_maps; j++) {
3841                         if (!set->map[j].nr_queues) {
3842                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3843                                                 HCTX_TYPE_DEFAULT, i);
3844                                 continue;
3845                         }
3846                         hctx_idx = set->map[j].mq_map[i];
3847                         /* unmapped hw queue can be remapped after CPU topo changed */
3848                         if (!set->tags[hctx_idx] &&
3849                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3850                                 /*
3851                                  * If tags initialization fail for some hctx,
3852                                  * that hctx won't be brought online.  In this
3853                                  * case, remap the current ctx to hctx[0] which
3854                                  * is guaranteed to always have tags allocated
3855                                  */
3856                                 set->map[j].mq_map[i] = 0;
3857                         }
3858
3859                         hctx = blk_mq_map_queue_type(q, j, i);
3860                         ctx->hctxs[j] = hctx;
3861                         /*
3862                          * If the CPU is already set in the mask, then we've
3863                          * mapped this one already. This can happen if
3864                          * devices share queues across queue maps.
3865                          */
3866                         if (cpumask_test_cpu(i, hctx->cpumask))
3867                                 continue;
3868
3869                         cpumask_set_cpu(i, hctx->cpumask);
3870                         hctx->type = j;
3871                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3872                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3873
3874                         /*
3875                          * If the nr_ctx type overflows, we have exceeded the
3876                          * amount of sw queues we can support.
3877                          */
3878                         BUG_ON(!hctx->nr_ctx);
3879                 }
3880
3881                 for (; j < HCTX_MAX_TYPES; j++)
3882                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3883                                         HCTX_TYPE_DEFAULT, i);
3884         }
3885
3886         queue_for_each_hw_ctx(q, hctx, i) {
3887                 /*
3888                  * If no software queues are mapped to this hardware queue,
3889                  * disable it and free the request entries.
3890                  */
3891                 if (!hctx->nr_ctx) {
3892                         /* Never unmap queue 0.  We need it as a
3893                          * fallback in case of a new remap fails
3894                          * allocation
3895                          */
3896                         if (i)
3897                                 __blk_mq_free_map_and_rqs(set, i);
3898
3899                         hctx->tags = NULL;
3900                         continue;
3901                 }
3902
3903                 hctx->tags = set->tags[i];
3904                 WARN_ON(!hctx->tags);
3905
3906                 /*
3907                  * Set the map size to the number of mapped software queues.
3908                  * This is more accurate and more efficient than looping
3909                  * over all possibly mapped software queues.
3910                  */
3911                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3912
3913                 /*
3914                  * Initialize batch roundrobin counts
3915                  */
3916                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3917                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3918         }
3919 }
3920
3921 /*
3922  * Caller needs to ensure that we're either frozen/quiesced, or that
3923  * the queue isn't live yet.
3924  */
3925 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3926 {
3927         struct blk_mq_hw_ctx *hctx;
3928         unsigned long i;
3929
3930         queue_for_each_hw_ctx(q, hctx, i) {
3931                 if (shared) {
3932                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3933                 } else {
3934                         blk_mq_tag_idle(hctx);
3935                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3936                 }
3937         }
3938 }
3939
3940 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3941                                          bool shared)
3942 {
3943         struct request_queue *q;
3944
3945         lockdep_assert_held(&set->tag_list_lock);
3946
3947         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3948                 blk_mq_freeze_queue(q);
3949                 queue_set_hctx_shared(q, shared);
3950                 blk_mq_unfreeze_queue(q);
3951         }
3952 }
3953
3954 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3955 {
3956         struct blk_mq_tag_set *set = q->tag_set;
3957
3958         mutex_lock(&set->tag_list_lock);
3959         list_del(&q->tag_set_list);
3960         if (list_is_singular(&set->tag_list)) {
3961                 /* just transitioned to unshared */
3962                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3963                 /* update existing queue */
3964                 blk_mq_update_tag_set_shared(set, false);
3965         }
3966         mutex_unlock(&set->tag_list_lock);
3967         INIT_LIST_HEAD(&q->tag_set_list);
3968 }
3969
3970 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3971                                      struct request_queue *q)
3972 {
3973         mutex_lock(&set->tag_list_lock);
3974
3975         /*
3976          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3977          */
3978         if (!list_empty(&set->tag_list) &&
3979             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3980                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3981                 /* update existing queue */
3982                 blk_mq_update_tag_set_shared(set, true);
3983         }
3984         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3985                 queue_set_hctx_shared(q, true);
3986         list_add_tail(&q->tag_set_list, &set->tag_list);
3987
3988         mutex_unlock(&set->tag_list_lock);
3989 }
3990
3991 /* All allocations will be freed in release handler of q->mq_kobj */
3992 static int blk_mq_alloc_ctxs(struct request_queue *q)
3993 {
3994         struct blk_mq_ctxs *ctxs;
3995         int cpu;
3996
3997         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3998         if (!ctxs)
3999                 return -ENOMEM;
4000
4001         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4002         if (!ctxs->queue_ctx)
4003                 goto fail;
4004
4005         for_each_possible_cpu(cpu) {
4006                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4007                 ctx->ctxs = ctxs;
4008         }
4009
4010         q->mq_kobj = &ctxs->kobj;
4011         q->queue_ctx = ctxs->queue_ctx;
4012
4013         return 0;
4014  fail:
4015         kfree(ctxs);
4016         return -ENOMEM;
4017 }
4018
4019 /*
4020  * It is the actual release handler for mq, but we do it from
4021  * request queue's release handler for avoiding use-after-free
4022  * and headache because q->mq_kobj shouldn't have been introduced,
4023  * but we can't group ctx/kctx kobj without it.
4024  */
4025 void blk_mq_release(struct request_queue *q)
4026 {
4027         struct blk_mq_hw_ctx *hctx, *next;
4028         unsigned long i;
4029
4030         queue_for_each_hw_ctx(q, hctx, i)
4031                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4032
4033         /* all hctx are in .unused_hctx_list now */
4034         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4035                 list_del_init(&hctx->hctx_list);
4036                 kobject_put(&hctx->kobj);
4037         }
4038
4039         xa_destroy(&q->hctx_table);
4040
4041         /*
4042          * release .mq_kobj and sw queue's kobject now because
4043          * both share lifetime with request queue.
4044          */
4045         blk_mq_sysfs_deinit(q);
4046 }
4047
4048 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4049                 void *queuedata)
4050 {
4051         struct request_queue *q;
4052         int ret;
4053
4054         q = blk_alloc_queue(set->numa_node);
4055         if (!q)
4056                 return ERR_PTR(-ENOMEM);
4057         q->queuedata = queuedata;
4058         ret = blk_mq_init_allocated_queue(set, q);
4059         if (ret) {
4060                 blk_put_queue(q);
4061                 return ERR_PTR(ret);
4062         }
4063         return q;
4064 }
4065
4066 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4067 {
4068         return blk_mq_init_queue_data(set, NULL);
4069 }
4070 EXPORT_SYMBOL(blk_mq_init_queue);
4071
4072 /**
4073  * blk_mq_destroy_queue - shutdown a request queue
4074  * @q: request queue to shutdown
4075  *
4076  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4077  * requests will be failed with -ENODEV. The caller is responsible for dropping
4078  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4079  *
4080  * Context: can sleep
4081  */
4082 void blk_mq_destroy_queue(struct request_queue *q)
4083 {
4084         WARN_ON_ONCE(!queue_is_mq(q));
4085         WARN_ON_ONCE(blk_queue_registered(q));
4086
4087         might_sleep();
4088
4089         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4090         blk_queue_start_drain(q);
4091         blk_mq_freeze_queue_wait(q);
4092
4093         blk_sync_queue(q);
4094         blk_mq_cancel_work_sync(q);
4095         blk_mq_exit_queue(q);
4096 }
4097 EXPORT_SYMBOL(blk_mq_destroy_queue);
4098
4099 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4100                 struct lock_class_key *lkclass)
4101 {
4102         struct request_queue *q;
4103         struct gendisk *disk;
4104
4105         q = blk_mq_init_queue_data(set, queuedata);
4106         if (IS_ERR(q))
4107                 return ERR_CAST(q);
4108
4109         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4110         if (!disk) {
4111                 blk_mq_destroy_queue(q);
4112                 blk_put_queue(q);
4113                 return ERR_PTR(-ENOMEM);
4114         }
4115         set_bit(GD_OWNS_QUEUE, &disk->state);
4116         return disk;
4117 }
4118 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4119
4120 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4121                 struct lock_class_key *lkclass)
4122 {
4123         struct gendisk *disk;
4124
4125         if (!blk_get_queue(q))
4126                 return NULL;
4127         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4128         if (!disk)
4129                 blk_put_queue(q);
4130         return disk;
4131 }
4132 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4133
4134 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4135                 struct blk_mq_tag_set *set, struct request_queue *q,
4136                 int hctx_idx, int node)
4137 {
4138         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4139
4140         /* reuse dead hctx first */
4141         spin_lock(&q->unused_hctx_lock);
4142         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4143                 if (tmp->numa_node == node) {
4144                         hctx = tmp;
4145                         break;
4146                 }
4147         }
4148         if (hctx)
4149                 list_del_init(&hctx->hctx_list);
4150         spin_unlock(&q->unused_hctx_lock);
4151
4152         if (!hctx)
4153                 hctx = blk_mq_alloc_hctx(q, set, node);
4154         if (!hctx)
4155                 goto fail;
4156
4157         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4158                 goto free_hctx;
4159
4160         return hctx;
4161
4162  free_hctx:
4163         kobject_put(&hctx->kobj);
4164  fail:
4165         return NULL;
4166 }
4167
4168 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4169                                                 struct request_queue *q)
4170 {
4171         struct blk_mq_hw_ctx *hctx;
4172         unsigned long i, j;
4173
4174         /* protect against switching io scheduler  */
4175         mutex_lock(&q->sysfs_lock);
4176         for (i = 0; i < set->nr_hw_queues; i++) {
4177                 int old_node;
4178                 int node = blk_mq_get_hctx_node(set, i);
4179                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4180
4181                 if (old_hctx) {
4182                         old_node = old_hctx->numa_node;
4183                         blk_mq_exit_hctx(q, set, old_hctx, i);
4184                 }
4185
4186                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4187                         if (!old_hctx)
4188                                 break;
4189                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4190                                         node, old_node);
4191                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4192                         WARN_ON_ONCE(!hctx);
4193                 }
4194         }
4195         /*
4196          * Increasing nr_hw_queues fails. Free the newly allocated
4197          * hctxs and keep the previous q->nr_hw_queues.
4198          */
4199         if (i != set->nr_hw_queues) {
4200                 j = q->nr_hw_queues;
4201         } else {
4202                 j = i;
4203                 q->nr_hw_queues = set->nr_hw_queues;
4204         }
4205
4206         xa_for_each_start(&q->hctx_table, j, hctx, j)
4207                 blk_mq_exit_hctx(q, set, hctx, j);
4208         mutex_unlock(&q->sysfs_lock);
4209 }
4210
4211 static void blk_mq_update_poll_flag(struct request_queue *q)
4212 {
4213         struct blk_mq_tag_set *set = q->tag_set;
4214
4215         if (set->nr_maps > HCTX_TYPE_POLL &&
4216             set->map[HCTX_TYPE_POLL].nr_queues)
4217                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4218         else
4219                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4220 }
4221
4222 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4223                 struct request_queue *q)
4224 {
4225         /* mark the queue as mq asap */
4226         q->mq_ops = set->ops;
4227
4228         if (blk_mq_alloc_ctxs(q))
4229                 goto err_exit;
4230
4231         /* init q->mq_kobj and sw queues' kobjects */
4232         blk_mq_sysfs_init(q);
4233
4234         INIT_LIST_HEAD(&q->unused_hctx_list);
4235         spin_lock_init(&q->unused_hctx_lock);
4236
4237         xa_init(&q->hctx_table);
4238
4239         blk_mq_realloc_hw_ctxs(set, q);
4240         if (!q->nr_hw_queues)
4241                 goto err_hctxs;
4242
4243         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4244         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4245
4246         q->tag_set = set;
4247
4248         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4249         blk_mq_update_poll_flag(q);
4250
4251         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4252         INIT_LIST_HEAD(&q->flush_list);
4253         INIT_LIST_HEAD(&q->requeue_list);
4254         spin_lock_init(&q->requeue_lock);
4255
4256         q->nr_requests = set->queue_depth;
4257
4258         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4259         blk_mq_add_queue_tag_set(set, q);
4260         blk_mq_map_swqueue(q);
4261         return 0;
4262
4263 err_hctxs:
4264         blk_mq_release(q);
4265 err_exit:
4266         q->mq_ops = NULL;
4267         return -ENOMEM;
4268 }
4269 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4270
4271 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4272 void blk_mq_exit_queue(struct request_queue *q)
4273 {
4274         struct blk_mq_tag_set *set = q->tag_set;
4275
4276         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4277         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4278         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4279         blk_mq_del_queue_tag_set(q);
4280 }
4281
4282 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4283 {
4284         int i;
4285
4286         if (blk_mq_is_shared_tags(set->flags)) {
4287                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4288                                                 BLK_MQ_NO_HCTX_IDX,
4289                                                 set->queue_depth);
4290                 if (!set->shared_tags)
4291                         return -ENOMEM;
4292         }
4293
4294         for (i = 0; i < set->nr_hw_queues; i++) {
4295                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4296                         goto out_unwind;
4297                 cond_resched();
4298         }
4299
4300         return 0;
4301
4302 out_unwind:
4303         while (--i >= 0)
4304                 __blk_mq_free_map_and_rqs(set, i);
4305
4306         if (blk_mq_is_shared_tags(set->flags)) {
4307                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4308                                         BLK_MQ_NO_HCTX_IDX);
4309         }
4310
4311         return -ENOMEM;
4312 }
4313
4314 /*
4315  * Allocate the request maps associated with this tag_set. Note that this
4316  * may reduce the depth asked for, if memory is tight. set->queue_depth
4317  * will be updated to reflect the allocated depth.
4318  */
4319 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4320 {
4321         unsigned int depth;
4322         int err;
4323
4324         depth = set->queue_depth;
4325         do {
4326                 err = __blk_mq_alloc_rq_maps(set);
4327                 if (!err)
4328                         break;
4329
4330                 set->queue_depth >>= 1;
4331                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4332                         err = -ENOMEM;
4333                         break;
4334                 }
4335         } while (set->queue_depth);
4336
4337         if (!set->queue_depth || err) {
4338                 pr_err("blk-mq: failed to allocate request map\n");
4339                 return -ENOMEM;
4340         }
4341
4342         if (depth != set->queue_depth)
4343                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4344                                                 depth, set->queue_depth);
4345
4346         return 0;
4347 }
4348
4349 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4350 {
4351         /*
4352          * blk_mq_map_queues() and multiple .map_queues() implementations
4353          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4354          * number of hardware queues.
4355          */
4356         if (set->nr_maps == 1)
4357                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4358
4359         if (set->ops->map_queues && !is_kdump_kernel()) {
4360                 int i;
4361
4362                 /*
4363                  * transport .map_queues is usually done in the following
4364                  * way:
4365                  *
4366                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4367                  *      mask = get_cpu_mask(queue)
4368                  *      for_each_cpu(cpu, mask)
4369                  *              set->map[x].mq_map[cpu] = queue;
4370                  * }
4371                  *
4372                  * When we need to remap, the table has to be cleared for
4373                  * killing stale mapping since one CPU may not be mapped
4374                  * to any hw queue.
4375                  */
4376                 for (i = 0; i < set->nr_maps; i++)
4377                         blk_mq_clear_mq_map(&set->map[i]);
4378
4379                 set->ops->map_queues(set);
4380         } else {
4381                 BUG_ON(set->nr_maps > 1);
4382                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4383         }
4384 }
4385
4386 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4387                                        int new_nr_hw_queues)
4388 {
4389         struct blk_mq_tags **new_tags;
4390         int i;
4391
4392         if (set->nr_hw_queues >= new_nr_hw_queues)
4393                 goto done;
4394
4395         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4396                                 GFP_KERNEL, set->numa_node);
4397         if (!new_tags)
4398                 return -ENOMEM;
4399
4400         if (set->tags)
4401                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4402                        sizeof(*set->tags));
4403         kfree(set->tags);
4404         set->tags = new_tags;
4405
4406         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4407                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4408                         while (--i >= set->nr_hw_queues)
4409                                 __blk_mq_free_map_and_rqs(set, i);
4410                         return -ENOMEM;
4411                 }
4412                 cond_resched();
4413         }
4414
4415 done:
4416         set->nr_hw_queues = new_nr_hw_queues;
4417         return 0;
4418 }
4419
4420 /*
4421  * Alloc a tag set to be associated with one or more request queues.
4422  * May fail with EINVAL for various error conditions. May adjust the
4423  * requested depth down, if it's too large. In that case, the set
4424  * value will be stored in set->queue_depth.
4425  */
4426 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4427 {
4428         int i, ret;
4429
4430         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4431
4432         if (!set->nr_hw_queues)
4433                 return -EINVAL;
4434         if (!set->queue_depth)
4435                 return -EINVAL;
4436         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4437                 return -EINVAL;
4438
4439         if (!set->ops->queue_rq)
4440                 return -EINVAL;
4441
4442         if (!set->ops->get_budget ^ !set->ops->put_budget)
4443                 return -EINVAL;
4444
4445         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4446                 pr_info("blk-mq: reduced tag depth to %u\n",
4447                         BLK_MQ_MAX_DEPTH);
4448                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4449         }
4450
4451         if (!set->nr_maps)
4452                 set->nr_maps = 1;
4453         else if (set->nr_maps > HCTX_MAX_TYPES)
4454                 return -EINVAL;
4455
4456         /*
4457          * If a crashdump is active, then we are potentially in a very
4458          * memory constrained environment. Limit us to 1 queue and
4459          * 64 tags to prevent using too much memory.
4460          */
4461         if (is_kdump_kernel()) {
4462                 set->nr_hw_queues = 1;
4463                 set->nr_maps = 1;
4464                 set->queue_depth = min(64U, set->queue_depth);
4465         }
4466         /*
4467          * There is no use for more h/w queues than cpus if we just have
4468          * a single map
4469          */
4470         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4471                 set->nr_hw_queues = nr_cpu_ids;
4472
4473         if (set->flags & BLK_MQ_F_BLOCKING) {
4474                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4475                 if (!set->srcu)
4476                         return -ENOMEM;
4477                 ret = init_srcu_struct(set->srcu);
4478                 if (ret)
4479                         goto out_free_srcu;
4480         }
4481
4482         ret = -ENOMEM;
4483         set->tags = kcalloc_node(set->nr_hw_queues,
4484                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4485                                  set->numa_node);
4486         if (!set->tags)
4487                 goto out_cleanup_srcu;
4488
4489         for (i = 0; i < set->nr_maps; i++) {
4490                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4491                                                   sizeof(set->map[i].mq_map[0]),
4492                                                   GFP_KERNEL, set->numa_node);
4493                 if (!set->map[i].mq_map)
4494                         goto out_free_mq_map;
4495                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4496         }
4497
4498         blk_mq_update_queue_map(set);
4499
4500         ret = blk_mq_alloc_set_map_and_rqs(set);
4501         if (ret)
4502                 goto out_free_mq_map;
4503
4504         mutex_init(&set->tag_list_lock);
4505         INIT_LIST_HEAD(&set->tag_list);
4506
4507         return 0;
4508
4509 out_free_mq_map:
4510         for (i = 0; i < set->nr_maps; i++) {
4511                 kfree(set->map[i].mq_map);
4512                 set->map[i].mq_map = NULL;
4513         }
4514         kfree(set->tags);
4515         set->tags = NULL;
4516 out_cleanup_srcu:
4517         if (set->flags & BLK_MQ_F_BLOCKING)
4518                 cleanup_srcu_struct(set->srcu);
4519 out_free_srcu:
4520         if (set->flags & BLK_MQ_F_BLOCKING)
4521                 kfree(set->srcu);
4522         return ret;
4523 }
4524 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4525
4526 /* allocate and initialize a tagset for a simple single-queue device */
4527 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4528                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4529                 unsigned int set_flags)
4530 {
4531         memset(set, 0, sizeof(*set));
4532         set->ops = ops;
4533         set->nr_hw_queues = 1;
4534         set->nr_maps = 1;
4535         set->queue_depth = queue_depth;
4536         set->numa_node = NUMA_NO_NODE;
4537         set->flags = set_flags;
4538         return blk_mq_alloc_tag_set(set);
4539 }
4540 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4541
4542 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4543 {
4544         int i, j;
4545
4546         for (i = 0; i < set->nr_hw_queues; i++)
4547                 __blk_mq_free_map_and_rqs(set, i);
4548
4549         if (blk_mq_is_shared_tags(set->flags)) {
4550                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4551                                         BLK_MQ_NO_HCTX_IDX);
4552         }
4553
4554         for (j = 0; j < set->nr_maps; j++) {
4555                 kfree(set->map[j].mq_map);
4556                 set->map[j].mq_map = NULL;
4557         }
4558
4559         kfree(set->tags);
4560         set->tags = NULL;
4561         if (set->flags & BLK_MQ_F_BLOCKING) {
4562                 cleanup_srcu_struct(set->srcu);
4563                 kfree(set->srcu);
4564         }
4565 }
4566 EXPORT_SYMBOL(blk_mq_free_tag_set);
4567
4568 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4569 {
4570         struct blk_mq_tag_set *set = q->tag_set;
4571         struct blk_mq_hw_ctx *hctx;
4572         int ret;
4573         unsigned long i;
4574
4575         if (!set)
4576                 return -EINVAL;
4577
4578         if (q->nr_requests == nr)
4579                 return 0;
4580
4581         blk_mq_freeze_queue(q);
4582         blk_mq_quiesce_queue(q);
4583
4584         ret = 0;
4585         queue_for_each_hw_ctx(q, hctx, i) {
4586                 if (!hctx->tags)
4587                         continue;
4588                 /*
4589                  * If we're using an MQ scheduler, just update the scheduler
4590                  * queue depth. This is similar to what the old code would do.
4591                  */
4592                 if (hctx->sched_tags) {
4593                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4594                                                       nr, true);
4595                 } else {
4596                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4597                                                       false);
4598                 }
4599                 if (ret)
4600                         break;
4601                 if (q->elevator && q->elevator->type->ops.depth_updated)
4602                         q->elevator->type->ops.depth_updated(hctx);
4603         }
4604         if (!ret) {
4605                 q->nr_requests = nr;
4606                 if (blk_mq_is_shared_tags(set->flags)) {
4607                         if (q->elevator)
4608                                 blk_mq_tag_update_sched_shared_tags(q);
4609                         else
4610                                 blk_mq_tag_resize_shared_tags(set, nr);
4611                 }
4612         }
4613
4614         blk_mq_unquiesce_queue(q);
4615         blk_mq_unfreeze_queue(q);
4616
4617         return ret;
4618 }
4619
4620 /*
4621  * request_queue and elevator_type pair.
4622  * It is just used by __blk_mq_update_nr_hw_queues to cache
4623  * the elevator_type associated with a request_queue.
4624  */
4625 struct blk_mq_qe_pair {
4626         struct list_head node;
4627         struct request_queue *q;
4628         struct elevator_type *type;
4629 };
4630
4631 /*
4632  * Cache the elevator_type in qe pair list and switch the
4633  * io scheduler to 'none'
4634  */
4635 static bool blk_mq_elv_switch_none(struct list_head *head,
4636                 struct request_queue *q)
4637 {
4638         struct blk_mq_qe_pair *qe;
4639
4640         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4641         if (!qe)
4642                 return false;
4643
4644         /* q->elevator needs protection from ->sysfs_lock */
4645         mutex_lock(&q->sysfs_lock);
4646
4647         /* the check has to be done with holding sysfs_lock */
4648         if (!q->elevator) {
4649                 kfree(qe);
4650                 goto unlock;
4651         }
4652
4653         INIT_LIST_HEAD(&qe->node);
4654         qe->q = q;
4655         qe->type = q->elevator->type;
4656         /* keep a reference to the elevator module as we'll switch back */
4657         __elevator_get(qe->type);
4658         list_add(&qe->node, head);
4659         elevator_disable(q);
4660 unlock:
4661         mutex_unlock(&q->sysfs_lock);
4662
4663         return true;
4664 }
4665
4666 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4667                                                 struct request_queue *q)
4668 {
4669         struct blk_mq_qe_pair *qe;
4670
4671         list_for_each_entry(qe, head, node)
4672                 if (qe->q == q)
4673                         return qe;
4674
4675         return NULL;
4676 }
4677
4678 static void blk_mq_elv_switch_back(struct list_head *head,
4679                                   struct request_queue *q)
4680 {
4681         struct blk_mq_qe_pair *qe;
4682         struct elevator_type *t;
4683
4684         qe = blk_lookup_qe_pair(head, q);
4685         if (!qe)
4686                 return;
4687         t = qe->type;
4688         list_del(&qe->node);
4689         kfree(qe);
4690
4691         mutex_lock(&q->sysfs_lock);
4692         elevator_switch(q, t);
4693         /* drop the reference acquired in blk_mq_elv_switch_none */
4694         elevator_put(t);
4695         mutex_unlock(&q->sysfs_lock);
4696 }
4697
4698 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4699                                                         int nr_hw_queues)
4700 {
4701         struct request_queue *q;
4702         LIST_HEAD(head);
4703         int prev_nr_hw_queues = set->nr_hw_queues;
4704         int i;
4705
4706         lockdep_assert_held(&set->tag_list_lock);
4707
4708         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4709                 nr_hw_queues = nr_cpu_ids;
4710         if (nr_hw_queues < 1)
4711                 return;
4712         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4713                 return;
4714
4715         list_for_each_entry(q, &set->tag_list, tag_set_list)
4716                 blk_mq_freeze_queue(q);
4717         /*
4718          * Switch IO scheduler to 'none', cleaning up the data associated
4719          * with the previous scheduler. We will switch back once we are done
4720          * updating the new sw to hw queue mappings.
4721          */
4722         list_for_each_entry(q, &set->tag_list, tag_set_list)
4723                 if (!blk_mq_elv_switch_none(&head, q))
4724                         goto switch_back;
4725
4726         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4727                 blk_mq_debugfs_unregister_hctxs(q);
4728                 blk_mq_sysfs_unregister_hctxs(q);
4729         }
4730
4731         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4732                 goto reregister;
4733
4734 fallback:
4735         blk_mq_update_queue_map(set);
4736         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4737                 blk_mq_realloc_hw_ctxs(set, q);
4738                 blk_mq_update_poll_flag(q);
4739                 if (q->nr_hw_queues != set->nr_hw_queues) {
4740                         int i = prev_nr_hw_queues;
4741
4742                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4743                                         nr_hw_queues, prev_nr_hw_queues);
4744                         for (; i < set->nr_hw_queues; i++)
4745                                 __blk_mq_free_map_and_rqs(set, i);
4746
4747                         set->nr_hw_queues = prev_nr_hw_queues;
4748                         goto fallback;
4749                 }
4750                 blk_mq_map_swqueue(q);
4751         }
4752
4753 reregister:
4754         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4755                 blk_mq_sysfs_register_hctxs(q);
4756                 blk_mq_debugfs_register_hctxs(q);
4757         }
4758
4759 switch_back:
4760         list_for_each_entry(q, &set->tag_list, tag_set_list)
4761                 blk_mq_elv_switch_back(&head, q);
4762
4763         list_for_each_entry(q, &set->tag_list, tag_set_list)
4764                 blk_mq_unfreeze_queue(q);
4765
4766         /* Free the excess tags when nr_hw_queues shrink. */
4767         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4768                 __blk_mq_free_map_and_rqs(set, i);
4769 }
4770
4771 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4772 {
4773         mutex_lock(&set->tag_list_lock);
4774         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4775         mutex_unlock(&set->tag_list_lock);
4776 }
4777 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4778
4779 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4780                          struct io_comp_batch *iob, unsigned int flags)
4781 {
4782         long state = get_current_state();
4783         int ret;
4784
4785         do {
4786                 ret = q->mq_ops->poll(hctx, iob);
4787                 if (ret > 0) {
4788                         __set_current_state(TASK_RUNNING);
4789                         return ret;
4790                 }
4791
4792                 if (signal_pending_state(state, current))
4793                         __set_current_state(TASK_RUNNING);
4794                 if (task_is_running(current))
4795                         return 1;
4796
4797                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4798                         break;
4799                 cpu_relax();
4800         } while (!need_resched());
4801
4802         __set_current_state(TASK_RUNNING);
4803         return 0;
4804 }
4805
4806 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4807                 struct io_comp_batch *iob, unsigned int flags)
4808 {
4809         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4810
4811         return blk_hctx_poll(q, hctx, iob, flags);
4812 }
4813
4814 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4815                 unsigned int poll_flags)
4816 {
4817         struct request_queue *q = rq->q;
4818         int ret;
4819
4820         if (!blk_rq_is_poll(rq))
4821                 return 0;
4822         if (!percpu_ref_tryget(&q->q_usage_counter))
4823                 return 0;
4824
4825         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4826         blk_queue_exit(q);
4827
4828         return ret;
4829 }
4830 EXPORT_SYMBOL_GPL(blk_rq_poll);
4831
4832 unsigned int blk_mq_rq_cpu(struct request *rq)
4833 {
4834         return rq->mq_ctx->cpu;
4835 }
4836 EXPORT_SYMBOL(blk_mq_rq_cpu);
4837
4838 void blk_mq_cancel_work_sync(struct request_queue *q)
4839 {
4840         struct blk_mq_hw_ctx *hctx;
4841         unsigned long i;
4842
4843         cancel_delayed_work_sync(&q->requeue_work);
4844
4845         queue_for_each_hw_ctx(q, hctx, i)
4846                 cancel_delayed_work_sync(&hctx->run_work);
4847 }
4848
4849 static int __init blk_mq_init(void)
4850 {
4851         int i;
4852
4853         for_each_possible_cpu(i)
4854                 init_llist_head(&per_cpu(blk_cpu_done, i));
4855         for_each_possible_cpu(i)
4856                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4857                          __blk_mq_complete_request_remote, NULL);
4858         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4859
4860         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4861                                   "block/softirq:dead", NULL,
4862                                   blk_softirq_cpu_dead);
4863         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4864                                 blk_mq_hctx_notify_dead);
4865         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4866                                 blk_mq_hctx_notify_online,
4867                                 blk_mq_hctx_notify_offline);
4868         return 0;
4869 }
4870 subsys_initcall(blk_mq_init);