Merge tag 'timers-v5.18-rc1' of https://git.linaro.org/people/daniel.lezcano/linux...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78                 blk_qc_t qc)
79 {
80         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82         if (qc & BLK_QC_T_INTERNAL)
83                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84         return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90                 (rq->tag != -1 ?
91                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100         return !list_empty_careful(&hctx->dispatch) ||
101                 sbitmap_any_bit_set(&hctx->ctx_map) ||
102                         blk_mq_sched_has_work(hctx);
103 }
104
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109                                      struct blk_mq_ctx *ctx)
110 {
111         const int bit = ctx->index_hw[hctx->type];
112
113         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114                 sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118                                       struct blk_mq_ctx *ctx)
119 {
120         const int bit = ctx->index_hw[hctx->type];
121
122         sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124
125 struct mq_inflight {
126         struct block_device *part;
127         unsigned int inflight[2];
128 };
129
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         if (blk_queue_has_srcu(q))
263                 synchronize_srcu(q->srcu);
264         else
265                 synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280         blk_mq_quiesce_queue_nowait(q);
281         blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294         unsigned long flags;
295         bool run_queue = false;
296
297         spin_lock_irqsave(&q->queue_lock, flags);
298         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299                 ;
300         } else if (!--q->quiesce_depth) {
301                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302                 run_queue = true;
303         }
304         spin_unlock_irqrestore(&q->queue_lock, flags);
305
306         /* dispatch requests which are inserted during quiescing */
307         if (run_queue)
308                 blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314         struct blk_mq_hw_ctx *hctx;
315         unsigned int i;
316
317         queue_for_each_hw_ctx(q, hctx, i)
318                 if (blk_mq_hw_queue_mapped(hctx))
319                         blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324         memset(rq, 0, sizeof(*rq));
325
326         INIT_LIST_HEAD(&rq->queuelist);
327         rq->q = q;
328         rq->__sector = (sector_t) -1;
329         INIT_HLIST_NODE(&rq->hash);
330         RB_CLEAR_NODE(&rq->rb_node);
331         rq->tag = BLK_MQ_NO_TAG;
332         rq->internal_tag = BLK_MQ_NO_TAG;
333         rq->start_time_ns = ktime_get_ns();
334         rq->part = NULL;
335         blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342         struct blk_mq_ctx *ctx = data->ctx;
343         struct blk_mq_hw_ctx *hctx = data->hctx;
344         struct request_queue *q = data->q;
345         struct request *rq = tags->static_rqs[tag];
346
347         rq->q = q;
348         rq->mq_ctx = ctx;
349         rq->mq_hctx = hctx;
350         rq->cmd_flags = data->cmd_flags;
351
352         if (data->flags & BLK_MQ_REQ_PM)
353                 data->rq_flags |= RQF_PM;
354         if (blk_queue_io_stat(q))
355                 data->rq_flags |= RQF_IO_STAT;
356         rq->rq_flags = data->rq_flags;
357
358         if (!(data->rq_flags & RQF_ELV)) {
359                 rq->tag = tag;
360                 rq->internal_tag = BLK_MQ_NO_TAG;
361         } else {
362                 rq->tag = BLK_MQ_NO_TAG;
363                 rq->internal_tag = tag;
364         }
365         rq->timeout = 0;
366
367         if (blk_mq_need_time_stamp(rq))
368                 rq->start_time_ns = ktime_get_ns();
369         else
370                 rq->start_time_ns = 0;
371         rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373         rq->alloc_time_ns = alloc_time_ns;
374 #endif
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_ELV) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (!op_is_flush(data->cmd_flags) &&
397                     e->type->ops.prepare_request) {
398                         e->type->ops.prepare_request(rq);
399                         rq->rq_flags |= RQF_ELVPRIV;
400                 }
401         }
402
403         return rq;
404 }
405
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408                 u64 alloc_time_ns)
409 {
410         unsigned int tag, tag_offset;
411         struct blk_mq_tags *tags;
412         struct request *rq;
413         unsigned long tag_mask;
414         int i, nr = 0;
415
416         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417         if (unlikely(!tag_mask))
418                 return NULL;
419
420         tags = blk_mq_tags_from_data(data);
421         for (i = 0; tag_mask; i++) {
422                 if (!(tag_mask & (1UL << i)))
423                         continue;
424                 tag = tag_offset + i;
425                 prefetch(tags->static_rqs[tag]);
426                 tag_mask &= ~(1UL << i);
427                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428                 rq_list_add(data->cached_rq, rq);
429                 nr++;
430         }
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 struct elevator_queue *e = q->elevator;
454
455                 data->rq_flags |= RQF_ELV;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list. Don't include reserved tags in the
460                  * limiting, as it isn't useful.
461                  */
462                 if (!op_is_flush(data->cmd_flags) &&
463                     !blk_op_is_passthrough(data->cmd_flags) &&
464                     e->type->ops.limit_depth &&
465                     !(data->flags & BLK_MQ_REQ_RESERVED))
466                         e->type->ops.limit_depth(data->cmd_flags, data);
467         }
468
469 retry:
470         data->ctx = blk_mq_get_ctx(q);
471         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472         if (!(data->rq_flags & RQF_ELV))
473                 blk_mq_tag_busy(data->hctx);
474
475         /*
476          * Try batched alloc if we want more than 1 tag.
477          */
478         if (data->nr_tags > 1) {
479                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480                 if (rq)
481                         return rq;
482                 data->nr_tags = 1;
483         }
484
485         /*
486          * Waiting allocations only fail because of an inactive hctx.  In that
487          * case just retry the hctx assignment and tag allocation as CPU hotplug
488          * should have migrated us to an online CPU by now.
489          */
490         tag = blk_mq_get_tag(data);
491         if (tag == BLK_MQ_NO_TAG) {
492                 if (data->flags & BLK_MQ_REQ_NOWAIT)
493                         return NULL;
494                 /*
495                  * Give up the CPU and sleep for a random short time to
496                  * ensure that thread using a realtime scheduling class
497                  * are migrated off the CPU, and thus off the hctx that
498                  * is going away.
499                  */
500                 msleep(3);
501                 goto retry;
502         }
503
504         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505                                         alloc_time_ns);
506 }
507
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509                 blk_mq_req_flags_t flags)
510 {
511         struct blk_mq_alloc_data data = {
512                 .q              = q,
513                 .flags          = flags,
514                 .cmd_flags      = op,
515                 .nr_tags        = 1,
516         };
517         struct request *rq;
518         int ret;
519
520         ret = blk_queue_enter(q, flags);
521         if (ret)
522                 return ERR_PTR(ret);
523
524         rq = __blk_mq_alloc_requests(&data);
525         if (!rq)
526                 goto out_queue_exit;
527         rq->__data_len = 0;
528         rq->__sector = (sector_t) -1;
529         rq->bio = rq->biotail = NULL;
530         return rq;
531 out_queue_exit:
532         blk_queue_exit(q);
533         return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540         struct blk_mq_alloc_data data = {
541                 .q              = q,
542                 .flags          = flags,
543                 .cmd_flags      = op,
544                 .nr_tags        = 1,
545         };
546         u64 alloc_time_ns = 0;
547         unsigned int cpu;
548         unsigned int tag;
549         int ret;
550
551         /* alloc_time includes depth and tag waits */
552         if (blk_queue_rq_alloc_time(q))
553                 alloc_time_ns = ktime_get_ns();
554
555         /*
556          * If the tag allocator sleeps we could get an allocation for a
557          * different hardware context.  No need to complicate the low level
558          * allocator for this for the rare use case of a command tied to
559          * a specific queue.
560          */
561         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562                 return ERR_PTR(-EINVAL);
563
564         if (hctx_idx >= q->nr_hw_queues)
565                 return ERR_PTR(-EIO);
566
567         ret = blk_queue_enter(q, flags);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         /*
572          * Check if the hardware context is actually mapped to anything.
573          * If not tell the caller that it should skip this queue.
574          */
575         ret = -EXDEV;
576         data.hctx = q->queue_hw_ctx[hctx_idx];
577         if (!blk_mq_hw_queue_mapped(data.hctx))
578                 goto out_queue_exit;
579         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580         data.ctx = __blk_mq_get_ctx(q, cpu);
581
582         if (!q->elevator)
583                 blk_mq_tag_busy(data.hctx);
584         else
585                 data.rq_flags |= RQF_ELV;
586
587         ret = -EWOULDBLOCK;
588         tag = blk_mq_get_tag(&data);
589         if (tag == BLK_MQ_NO_TAG)
590                 goto out_queue_exit;
591         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592                                         alloc_time_ns);
593
594 out_queue_exit:
595         blk_queue_exit(q);
596         return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
600 static void __blk_mq_free_request(struct request *rq)
601 {
602         struct request_queue *q = rq->q;
603         struct blk_mq_ctx *ctx = rq->mq_ctx;
604         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605         const int sched_tag = rq->internal_tag;
606
607         blk_crypto_free_request(rq);
608         blk_pm_mark_last_busy(rq);
609         rq->mq_hctx = NULL;
610         if (rq->tag != BLK_MQ_NO_TAG)
611                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612         if (sched_tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614         blk_mq_sched_restart(hctx);
615         blk_queue_exit(q);
616 }
617
618 void blk_mq_free_request(struct request *rq)
619 {
620         struct request_queue *q = rq->q;
621         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622
623         if ((rq->rq_flags & RQF_ELVPRIV) &&
624             q->elevator->type->ops.finish_request)
625                 q->elevator->type->ops.finish_request(rq);
626
627         if (rq->rq_flags & RQF_MQ_INFLIGHT)
628                 __blk_mq_dec_active_requests(hctx);
629
630         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631                 laptop_io_completion(q->disk->bdi);
632
633         rq_qos_done(q, rq);
634
635         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636         if (req_ref_put_and_test(rq))
637                 __blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643         struct request *rq;
644
645         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646                 blk_mq_free_request(rq);
647 }
648
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652                 rq->q->disk ? rq->q->disk->disk_name : "?",
653                 (unsigned long long) rq->cmd_flags);
654
655         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656                (unsigned long long)blk_rq_pos(rq),
657                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659                rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664                           unsigned int nbytes, blk_status_t error)
665 {
666         if (unlikely(error)) {
667                 bio->bi_status = error;
668         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669                 /*
670                  * Partial zone append completions cannot be supported as the
671                  * BIO fragments may end up not being written sequentially.
672                  */
673                 if (bio->bi_iter.bi_size != nbytes)
674                         bio->bi_status = BLK_STS_IOERR;
675                 else
676                         bio->bi_iter.bi_sector = rq->__sector;
677         }
678
679         bio_advance(bio, nbytes);
680
681         if (unlikely(rq->rq_flags & RQF_QUIET))
682                 bio_set_flag(bio, BIO_QUIET);
683         /* don't actually finish bio if it's part of flush sequence */
684         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685                 bio_endio(bio);
686 }
687
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690         if (req->part && blk_do_io_stat(req)) {
691                 const int sgrp = op_stat_group(req_op(req));
692
693                 part_stat_lock();
694                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695                 part_stat_unlock();
696         }
697 }
698
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701         printk_ratelimited(KERN_ERR
702                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703                 "phys_seg %u prio class %u\n",
704                 blk_status_to_str(status),
705                 req->q->disk ? req->q->disk->disk_name : "?",
706                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707                 req->cmd_flags & ~REQ_OP_MASK,
708                 req->nr_phys_segments,
709                 IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719         int total_bytes = blk_rq_bytes(req);
720         struct bio *bio = req->bio;
721
722         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724         if (!bio)
725                 return;
726
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729                 req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731
732         blk_account_io_completion(req, total_bytes);
733
734         do {
735                 struct bio *next = bio->bi_next;
736
737                 /* Completion has already been traced */
738                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739
740                 if (req_op(req) == REQ_OP_ZONE_APPEND)
741                         bio->bi_iter.bi_sector = req->__sector;
742
743                 if (!is_flush)
744                         bio_endio(bio);
745                 bio = next;
746         } while (bio);
747
748         /*
749          * Reset counters so that the request stacking driver
750          * can find how many bytes remain in the request
751          * later.
752          */
753         req->bio = NULL;
754         req->__data_len = 0;
755 }
756
757 /**
758  * blk_update_request - Complete multiple bytes without completing the request
759  * @req:      the request being processed
760  * @error:    block status code
761  * @nr_bytes: number of bytes to complete for @req
762  *
763  * Description:
764  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
765  *     the request structure even if @req doesn't have leftover.
766  *     If @req has leftover, sets it up for the next range of segments.
767  *
768  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
769  *     %false return from this function.
770  *
771  * Note:
772  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
773  *      except in the consistency check at the end of this function.
774  *
775  * Return:
776  *     %false - this request doesn't have any more data
777  *     %true  - this request has more data
778  **/
779 bool blk_update_request(struct request *req, blk_status_t error,
780                 unsigned int nr_bytes)
781 {
782         int total_bytes;
783
784         trace_block_rq_complete(req, error, nr_bytes);
785
786         if (!req->bio)
787                 return false;
788
789 #ifdef CONFIG_BLK_DEV_INTEGRITY
790         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
791             error == BLK_STS_OK)
792                 req->q->integrity.profile->complete_fn(req, nr_bytes);
793 #endif
794
795         if (unlikely(error && !blk_rq_is_passthrough(req) &&
796                      !(req->rq_flags & RQF_QUIET)))
797                 blk_print_req_error(req, error);
798
799         blk_account_io_completion(req, nr_bytes);
800
801         total_bytes = 0;
802         while (req->bio) {
803                 struct bio *bio = req->bio;
804                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
805
806                 if (bio_bytes == bio->bi_iter.bi_size)
807                         req->bio = bio->bi_next;
808
809                 /* Completion has already been traced */
810                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
811                 req_bio_endio(req, bio, bio_bytes, error);
812
813                 total_bytes += bio_bytes;
814                 nr_bytes -= bio_bytes;
815
816                 if (!nr_bytes)
817                         break;
818         }
819
820         /*
821          * completely done
822          */
823         if (!req->bio) {
824                 /*
825                  * Reset counters so that the request stacking driver
826                  * can find how many bytes remain in the request
827                  * later.
828                  */
829                 req->__data_len = 0;
830                 return false;
831         }
832
833         req->__data_len -= total_bytes;
834
835         /* update sector only for requests with clear definition of sector */
836         if (!blk_rq_is_passthrough(req))
837                 req->__sector += total_bytes >> 9;
838
839         /* mixed attributes always follow the first bio */
840         if (req->rq_flags & RQF_MIXED_MERGE) {
841                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
842                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
843         }
844
845         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
846                 /*
847                  * If total number of sectors is less than the first segment
848                  * size, something has gone terribly wrong.
849                  */
850                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
851                         blk_dump_rq_flags(req, "request botched");
852                         req->__data_len = blk_rq_cur_bytes(req);
853                 }
854
855                 /* recalculate the number of segments */
856                 req->nr_phys_segments = blk_recalc_rq_segments(req);
857         }
858
859         return true;
860 }
861 EXPORT_SYMBOL_GPL(blk_update_request);
862
863 static void __blk_account_io_done(struct request *req, u64 now)
864 {
865         const int sgrp = op_stat_group(req_op(req));
866
867         part_stat_lock();
868         update_io_ticks(req->part, jiffies, true);
869         part_stat_inc(req->part, ios[sgrp]);
870         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
871         part_stat_unlock();
872 }
873
874 static inline void blk_account_io_done(struct request *req, u64 now)
875 {
876         /*
877          * Account IO completion.  flush_rq isn't accounted as a
878          * normal IO on queueing nor completion.  Accounting the
879          * containing request is enough.
880          */
881         if (blk_do_io_stat(req) && req->part &&
882             !(req->rq_flags & RQF_FLUSH_SEQ))
883                 __blk_account_io_done(req, now);
884 }
885
886 static void __blk_account_io_start(struct request *rq)
887 {
888         /* passthrough requests can hold bios that do not have ->bi_bdev set */
889         if (rq->bio && rq->bio->bi_bdev)
890                 rq->part = rq->bio->bi_bdev;
891         else if (rq->q->disk)
892                 rq->part = rq->q->disk->part0;
893
894         part_stat_lock();
895         update_io_ticks(rq->part, jiffies, false);
896         part_stat_unlock();
897 }
898
899 static inline void blk_account_io_start(struct request *req)
900 {
901         if (blk_do_io_stat(req))
902                 __blk_account_io_start(req);
903 }
904
905 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
906 {
907         if (rq->rq_flags & RQF_STATS) {
908                 blk_mq_poll_stats_start(rq->q);
909                 blk_stat_add(rq, now);
910         }
911
912         blk_mq_sched_completed_request(rq, now);
913         blk_account_io_done(rq, now);
914 }
915
916 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
917 {
918         if (blk_mq_need_time_stamp(rq))
919                 __blk_mq_end_request_acct(rq, ktime_get_ns());
920
921         if (rq->end_io) {
922                 rq_qos_done(rq->q, rq);
923                 rq->end_io(rq, error);
924         } else {
925                 blk_mq_free_request(rq);
926         }
927 }
928 EXPORT_SYMBOL(__blk_mq_end_request);
929
930 void blk_mq_end_request(struct request *rq, blk_status_t error)
931 {
932         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
933                 BUG();
934         __blk_mq_end_request(rq, error);
935 }
936 EXPORT_SYMBOL(blk_mq_end_request);
937
938 #define TAG_COMP_BATCH          32
939
940 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
941                                           int *tag_array, int nr_tags)
942 {
943         struct request_queue *q = hctx->queue;
944
945         /*
946          * All requests should have been marked as RQF_MQ_INFLIGHT, so
947          * update hctx->nr_active in batch
948          */
949         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
950                 __blk_mq_sub_active_requests(hctx, nr_tags);
951
952         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
953         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
954 }
955
956 void blk_mq_end_request_batch(struct io_comp_batch *iob)
957 {
958         int tags[TAG_COMP_BATCH], nr_tags = 0;
959         struct blk_mq_hw_ctx *cur_hctx = NULL;
960         struct request *rq;
961         u64 now = 0;
962
963         if (iob->need_ts)
964                 now = ktime_get_ns();
965
966         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
967                 prefetch(rq->bio);
968                 prefetch(rq->rq_next);
969
970                 blk_complete_request(rq);
971                 if (iob->need_ts)
972                         __blk_mq_end_request_acct(rq, now);
973
974                 rq_qos_done(rq->q, rq);
975
976                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
977                 if (!req_ref_put_and_test(rq))
978                         continue;
979
980                 blk_crypto_free_request(rq);
981                 blk_pm_mark_last_busy(rq);
982
983                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
984                         if (cur_hctx)
985                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
986                         nr_tags = 0;
987                         cur_hctx = rq->mq_hctx;
988                 }
989                 tags[nr_tags++] = rq->tag;
990         }
991
992         if (nr_tags)
993                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994 }
995 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
996
997 static void blk_complete_reqs(struct llist_head *list)
998 {
999         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1000         struct request *rq, *next;
1001
1002         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1003                 rq->q->mq_ops->complete(rq);
1004 }
1005
1006 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1007 {
1008         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1009 }
1010
1011 static int blk_softirq_cpu_dead(unsigned int cpu)
1012 {
1013         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1014         return 0;
1015 }
1016
1017 static void __blk_mq_complete_request_remote(void *data)
1018 {
1019         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1020 }
1021
1022 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1023 {
1024         int cpu = raw_smp_processor_id();
1025
1026         if (!IS_ENABLED(CONFIG_SMP) ||
1027             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1028                 return false;
1029         /*
1030          * With force threaded interrupts enabled, raising softirq from an SMP
1031          * function call will always result in waking the ksoftirqd thread.
1032          * This is probably worse than completing the request on a different
1033          * cache domain.
1034          */
1035         if (force_irqthreads())
1036                 return false;
1037
1038         /* same CPU or cache domain?  Complete locally */
1039         if (cpu == rq->mq_ctx->cpu ||
1040             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1041              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1042                 return false;
1043
1044         /* don't try to IPI to an offline CPU */
1045         return cpu_online(rq->mq_ctx->cpu);
1046 }
1047
1048 static void blk_mq_complete_send_ipi(struct request *rq)
1049 {
1050         struct llist_head *list;
1051         unsigned int cpu;
1052
1053         cpu = rq->mq_ctx->cpu;
1054         list = &per_cpu(blk_cpu_done, cpu);
1055         if (llist_add(&rq->ipi_list, list)) {
1056                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1057                 smp_call_function_single_async(cpu, &rq->csd);
1058         }
1059 }
1060
1061 static void blk_mq_raise_softirq(struct request *rq)
1062 {
1063         struct llist_head *list;
1064
1065         preempt_disable();
1066         list = this_cpu_ptr(&blk_cpu_done);
1067         if (llist_add(&rq->ipi_list, list))
1068                 raise_softirq(BLOCK_SOFTIRQ);
1069         preempt_enable();
1070 }
1071
1072 bool blk_mq_complete_request_remote(struct request *rq)
1073 {
1074         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1075
1076         /*
1077          * For a polled request, always complete locallly, it's pointless
1078          * to redirect the completion.
1079          */
1080         if (rq->cmd_flags & REQ_POLLED)
1081                 return false;
1082
1083         if (blk_mq_complete_need_ipi(rq)) {
1084                 blk_mq_complete_send_ipi(rq);
1085                 return true;
1086         }
1087
1088         if (rq->q->nr_hw_queues == 1) {
1089                 blk_mq_raise_softirq(rq);
1090                 return true;
1091         }
1092         return false;
1093 }
1094 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1095
1096 /**
1097  * blk_mq_complete_request - end I/O on a request
1098  * @rq:         the request being processed
1099  *
1100  * Description:
1101  *      Complete a request by scheduling the ->complete_rq operation.
1102  **/
1103 void blk_mq_complete_request(struct request *rq)
1104 {
1105         if (!blk_mq_complete_request_remote(rq))
1106                 rq->q->mq_ops->complete(rq);
1107 }
1108 EXPORT_SYMBOL(blk_mq_complete_request);
1109
1110 /**
1111  * blk_mq_start_request - Start processing a request
1112  * @rq: Pointer to request to be started
1113  *
1114  * Function used by device drivers to notify the block layer that a request
1115  * is going to be processed now, so blk layer can do proper initializations
1116  * such as starting the timeout timer.
1117  */
1118 void blk_mq_start_request(struct request *rq)
1119 {
1120         struct request_queue *q = rq->q;
1121
1122         trace_block_rq_issue(rq);
1123
1124         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1125                 u64 start_time;
1126 #ifdef CONFIG_BLK_CGROUP
1127                 if (rq->bio)
1128                         start_time = bio_issue_time(&rq->bio->bi_issue);
1129                 else
1130 #endif
1131                         start_time = ktime_get_ns();
1132                 rq->io_start_time_ns = start_time;
1133                 rq->stats_sectors = blk_rq_sectors(rq);
1134                 rq->rq_flags |= RQF_STATS;
1135                 rq_qos_issue(q, rq);
1136         }
1137
1138         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1139
1140         blk_add_timer(rq);
1141         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1142
1143 #ifdef CONFIG_BLK_DEV_INTEGRITY
1144         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1145                 q->integrity.profile->prepare_fn(rq);
1146 #endif
1147         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1148                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1149 }
1150 EXPORT_SYMBOL(blk_mq_start_request);
1151
1152 /**
1153  * blk_end_sync_rq - executes a completion event on a request
1154  * @rq: request to complete
1155  * @error: end I/O status of the request
1156  */
1157 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1158 {
1159         struct completion *waiting = rq->end_io_data;
1160
1161         rq->end_io_data = (void *)(uintptr_t)error;
1162
1163         /*
1164          * complete last, if this is a stack request the process (and thus
1165          * the rq pointer) could be invalid right after this complete()
1166          */
1167         complete(waiting);
1168 }
1169
1170 /**
1171  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1172  * @rq:         request to insert
1173  * @at_head:    insert request at head or tail of queue
1174  * @done:       I/O completion handler
1175  *
1176  * Description:
1177  *    Insert a fully prepared request at the back of the I/O scheduler queue
1178  *    for execution.  Don't wait for completion.
1179  *
1180  * Note:
1181  *    This function will invoke @done directly if the queue is dead.
1182  */
1183 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1184 {
1185         WARN_ON(irqs_disabled());
1186         WARN_ON(!blk_rq_is_passthrough(rq));
1187
1188         rq->end_io = done;
1189
1190         blk_account_io_start(rq);
1191
1192         /*
1193          * don't check dying flag for MQ because the request won't
1194          * be reused after dying flag is set
1195          */
1196         blk_mq_sched_insert_request(rq, at_head, true, false);
1197 }
1198 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1199
1200 static bool blk_rq_is_poll(struct request *rq)
1201 {
1202         if (!rq->mq_hctx)
1203                 return false;
1204         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1205                 return false;
1206         if (WARN_ON_ONCE(!rq->bio))
1207                 return false;
1208         return true;
1209 }
1210
1211 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1212 {
1213         do {
1214                 bio_poll(rq->bio, NULL, 0);
1215                 cond_resched();
1216         } while (!completion_done(wait));
1217 }
1218
1219 /**
1220  * blk_execute_rq - insert a request into queue for execution
1221  * @rq:         request to insert
1222  * @at_head:    insert request at head or tail of queue
1223  *
1224  * Description:
1225  *    Insert a fully prepared request at the back of the I/O scheduler queue
1226  *    for execution and wait for completion.
1227  * Return: The blk_status_t result provided to blk_mq_end_request().
1228  */
1229 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1230 {
1231         DECLARE_COMPLETION_ONSTACK(wait);
1232         unsigned long hang_check;
1233
1234         rq->end_io_data = &wait;
1235         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1236
1237         /* Prevent hang_check timer from firing at us during very long I/O */
1238         hang_check = sysctl_hung_task_timeout_secs;
1239
1240         if (blk_rq_is_poll(rq))
1241                 blk_rq_poll_completion(rq, &wait);
1242         else if (hang_check)
1243                 while (!wait_for_completion_io_timeout(&wait,
1244                                 hang_check * (HZ/2)))
1245                         ;
1246         else
1247                 wait_for_completion_io(&wait);
1248
1249         return (blk_status_t)(uintptr_t)rq->end_io_data;
1250 }
1251 EXPORT_SYMBOL(blk_execute_rq);
1252
1253 static void __blk_mq_requeue_request(struct request *rq)
1254 {
1255         struct request_queue *q = rq->q;
1256
1257         blk_mq_put_driver_tag(rq);
1258
1259         trace_block_rq_requeue(rq);
1260         rq_qos_requeue(q, rq);
1261
1262         if (blk_mq_request_started(rq)) {
1263                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1264                 rq->rq_flags &= ~RQF_TIMED_OUT;
1265         }
1266 }
1267
1268 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1269 {
1270         __blk_mq_requeue_request(rq);
1271
1272         /* this request will be re-inserted to io scheduler queue */
1273         blk_mq_sched_requeue_request(rq);
1274
1275         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1276 }
1277 EXPORT_SYMBOL(blk_mq_requeue_request);
1278
1279 static void blk_mq_requeue_work(struct work_struct *work)
1280 {
1281         struct request_queue *q =
1282                 container_of(work, struct request_queue, requeue_work.work);
1283         LIST_HEAD(rq_list);
1284         struct request *rq, *next;
1285
1286         spin_lock_irq(&q->requeue_lock);
1287         list_splice_init(&q->requeue_list, &rq_list);
1288         spin_unlock_irq(&q->requeue_lock);
1289
1290         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1291                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1292                         continue;
1293
1294                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1295                 list_del_init(&rq->queuelist);
1296                 /*
1297                  * If RQF_DONTPREP, rq has contained some driver specific
1298                  * data, so insert it to hctx dispatch list to avoid any
1299                  * merge.
1300                  */
1301                 if (rq->rq_flags & RQF_DONTPREP)
1302                         blk_mq_request_bypass_insert(rq, false, false);
1303                 else
1304                         blk_mq_sched_insert_request(rq, true, false, false);
1305         }
1306
1307         while (!list_empty(&rq_list)) {
1308                 rq = list_entry(rq_list.next, struct request, queuelist);
1309                 list_del_init(&rq->queuelist);
1310                 blk_mq_sched_insert_request(rq, false, false, false);
1311         }
1312
1313         blk_mq_run_hw_queues(q, false);
1314 }
1315
1316 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1317                                 bool kick_requeue_list)
1318 {
1319         struct request_queue *q = rq->q;
1320         unsigned long flags;
1321
1322         /*
1323          * We abuse this flag that is otherwise used by the I/O scheduler to
1324          * request head insertion from the workqueue.
1325          */
1326         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1327
1328         spin_lock_irqsave(&q->requeue_lock, flags);
1329         if (at_head) {
1330                 rq->rq_flags |= RQF_SOFTBARRIER;
1331                 list_add(&rq->queuelist, &q->requeue_list);
1332         } else {
1333                 list_add_tail(&rq->queuelist, &q->requeue_list);
1334         }
1335         spin_unlock_irqrestore(&q->requeue_lock, flags);
1336
1337         if (kick_requeue_list)
1338                 blk_mq_kick_requeue_list(q);
1339 }
1340
1341 void blk_mq_kick_requeue_list(struct request_queue *q)
1342 {
1343         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1344 }
1345 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1346
1347 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1348                                     unsigned long msecs)
1349 {
1350         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1351                                     msecs_to_jiffies(msecs));
1352 }
1353 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1354
1355 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1356                                bool reserved)
1357 {
1358         /*
1359          * If we find a request that isn't idle we know the queue is busy
1360          * as it's checked in the iter.
1361          * Return false to stop the iteration.
1362          */
1363         if (blk_mq_request_started(rq)) {
1364                 bool *busy = priv;
1365
1366                 *busy = true;
1367                 return false;
1368         }
1369
1370         return true;
1371 }
1372
1373 bool blk_mq_queue_inflight(struct request_queue *q)
1374 {
1375         bool busy = false;
1376
1377         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1378         return busy;
1379 }
1380 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1381
1382 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1383 {
1384         req->rq_flags |= RQF_TIMED_OUT;
1385         if (req->q->mq_ops->timeout) {
1386                 enum blk_eh_timer_return ret;
1387
1388                 ret = req->q->mq_ops->timeout(req, reserved);
1389                 if (ret == BLK_EH_DONE)
1390                         return;
1391                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1392         }
1393
1394         blk_add_timer(req);
1395 }
1396
1397 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1398 {
1399         unsigned long deadline;
1400
1401         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1402                 return false;
1403         if (rq->rq_flags & RQF_TIMED_OUT)
1404                 return false;
1405
1406         deadline = READ_ONCE(rq->deadline);
1407         if (time_after_eq(jiffies, deadline))
1408                 return true;
1409
1410         if (*next == 0)
1411                 *next = deadline;
1412         else if (time_after(*next, deadline))
1413                 *next = deadline;
1414         return false;
1415 }
1416
1417 void blk_mq_put_rq_ref(struct request *rq)
1418 {
1419         if (is_flush_rq(rq))
1420                 rq->end_io(rq, 0);
1421         else if (req_ref_put_and_test(rq))
1422                 __blk_mq_free_request(rq);
1423 }
1424
1425 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1426 {
1427         unsigned long *next = priv;
1428
1429         /*
1430          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1431          * be reallocated underneath the timeout handler's processing, then
1432          * the expire check is reliable. If the request is not expired, then
1433          * it was completed and reallocated as a new request after returning
1434          * from blk_mq_check_expired().
1435          */
1436         if (blk_mq_req_expired(rq, next))
1437                 blk_mq_rq_timed_out(rq, reserved);
1438         return true;
1439 }
1440
1441 static void blk_mq_timeout_work(struct work_struct *work)
1442 {
1443         struct request_queue *q =
1444                 container_of(work, struct request_queue, timeout_work);
1445         unsigned long next = 0;
1446         struct blk_mq_hw_ctx *hctx;
1447         int i;
1448
1449         /* A deadlock might occur if a request is stuck requiring a
1450          * timeout at the same time a queue freeze is waiting
1451          * completion, since the timeout code would not be able to
1452          * acquire the queue reference here.
1453          *
1454          * That's why we don't use blk_queue_enter here; instead, we use
1455          * percpu_ref_tryget directly, because we need to be able to
1456          * obtain a reference even in the short window between the queue
1457          * starting to freeze, by dropping the first reference in
1458          * blk_freeze_queue_start, and the moment the last request is
1459          * consumed, marked by the instant q_usage_counter reaches
1460          * zero.
1461          */
1462         if (!percpu_ref_tryget(&q->q_usage_counter))
1463                 return;
1464
1465         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1466
1467         if (next != 0) {
1468                 mod_timer(&q->timeout, next);
1469         } else {
1470                 /*
1471                  * Request timeouts are handled as a forward rolling timer. If
1472                  * we end up here it means that no requests are pending and
1473                  * also that no request has been pending for a while. Mark
1474                  * each hctx as idle.
1475                  */
1476                 queue_for_each_hw_ctx(q, hctx, i) {
1477                         /* the hctx may be unmapped, so check it here */
1478                         if (blk_mq_hw_queue_mapped(hctx))
1479                                 blk_mq_tag_idle(hctx);
1480                 }
1481         }
1482         blk_queue_exit(q);
1483 }
1484
1485 struct flush_busy_ctx_data {
1486         struct blk_mq_hw_ctx *hctx;
1487         struct list_head *list;
1488 };
1489
1490 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1491 {
1492         struct flush_busy_ctx_data *flush_data = data;
1493         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1494         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1495         enum hctx_type type = hctx->type;
1496
1497         spin_lock(&ctx->lock);
1498         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1499         sbitmap_clear_bit(sb, bitnr);
1500         spin_unlock(&ctx->lock);
1501         return true;
1502 }
1503
1504 /*
1505  * Process software queues that have been marked busy, splicing them
1506  * to the for-dispatch
1507  */
1508 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1509 {
1510         struct flush_busy_ctx_data data = {
1511                 .hctx = hctx,
1512                 .list = list,
1513         };
1514
1515         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1516 }
1517 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1518
1519 struct dispatch_rq_data {
1520         struct blk_mq_hw_ctx *hctx;
1521         struct request *rq;
1522 };
1523
1524 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1525                 void *data)
1526 {
1527         struct dispatch_rq_data *dispatch_data = data;
1528         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1529         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1530         enum hctx_type type = hctx->type;
1531
1532         spin_lock(&ctx->lock);
1533         if (!list_empty(&ctx->rq_lists[type])) {
1534                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1535                 list_del_init(&dispatch_data->rq->queuelist);
1536                 if (list_empty(&ctx->rq_lists[type]))
1537                         sbitmap_clear_bit(sb, bitnr);
1538         }
1539         spin_unlock(&ctx->lock);
1540
1541         return !dispatch_data->rq;
1542 }
1543
1544 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1545                                         struct blk_mq_ctx *start)
1546 {
1547         unsigned off = start ? start->index_hw[hctx->type] : 0;
1548         struct dispatch_rq_data data = {
1549                 .hctx = hctx,
1550                 .rq   = NULL,
1551         };
1552
1553         __sbitmap_for_each_set(&hctx->ctx_map, off,
1554                                dispatch_rq_from_ctx, &data);
1555
1556         return data.rq;
1557 }
1558
1559 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1560 {
1561         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1562         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1563         int tag;
1564
1565         blk_mq_tag_busy(rq->mq_hctx);
1566
1567         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1568                 bt = &rq->mq_hctx->tags->breserved_tags;
1569                 tag_offset = 0;
1570         } else {
1571                 if (!hctx_may_queue(rq->mq_hctx, bt))
1572                         return false;
1573         }
1574
1575         tag = __sbitmap_queue_get(bt);
1576         if (tag == BLK_MQ_NO_TAG)
1577                 return false;
1578
1579         rq->tag = tag + tag_offset;
1580         return true;
1581 }
1582
1583 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1584 {
1585         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1586                 return false;
1587
1588         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1589                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1590                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1591                 __blk_mq_inc_active_requests(hctx);
1592         }
1593         hctx->tags->rqs[rq->tag] = rq;
1594         return true;
1595 }
1596
1597 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1598                                 int flags, void *key)
1599 {
1600         struct blk_mq_hw_ctx *hctx;
1601
1602         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1603
1604         spin_lock(&hctx->dispatch_wait_lock);
1605         if (!list_empty(&wait->entry)) {
1606                 struct sbitmap_queue *sbq;
1607
1608                 list_del_init(&wait->entry);
1609                 sbq = &hctx->tags->bitmap_tags;
1610                 atomic_dec(&sbq->ws_active);
1611         }
1612         spin_unlock(&hctx->dispatch_wait_lock);
1613
1614         blk_mq_run_hw_queue(hctx, true);
1615         return 1;
1616 }
1617
1618 /*
1619  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1620  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1621  * restart. For both cases, take care to check the condition again after
1622  * marking us as waiting.
1623  */
1624 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1625                                  struct request *rq)
1626 {
1627         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1628         struct wait_queue_head *wq;
1629         wait_queue_entry_t *wait;
1630         bool ret;
1631
1632         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1633                 blk_mq_sched_mark_restart_hctx(hctx);
1634
1635                 /*
1636                  * It's possible that a tag was freed in the window between the
1637                  * allocation failure and adding the hardware queue to the wait
1638                  * queue.
1639                  *
1640                  * Don't clear RESTART here, someone else could have set it.
1641                  * At most this will cost an extra queue run.
1642                  */
1643                 return blk_mq_get_driver_tag(rq);
1644         }
1645
1646         wait = &hctx->dispatch_wait;
1647         if (!list_empty_careful(&wait->entry))
1648                 return false;
1649
1650         wq = &bt_wait_ptr(sbq, hctx)->wait;
1651
1652         spin_lock_irq(&wq->lock);
1653         spin_lock(&hctx->dispatch_wait_lock);
1654         if (!list_empty(&wait->entry)) {
1655                 spin_unlock(&hctx->dispatch_wait_lock);
1656                 spin_unlock_irq(&wq->lock);
1657                 return false;
1658         }
1659
1660         atomic_inc(&sbq->ws_active);
1661         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1662         __add_wait_queue(wq, wait);
1663
1664         /*
1665          * It's possible that a tag was freed in the window between the
1666          * allocation failure and adding the hardware queue to the wait
1667          * queue.
1668          */
1669         ret = blk_mq_get_driver_tag(rq);
1670         if (!ret) {
1671                 spin_unlock(&hctx->dispatch_wait_lock);
1672                 spin_unlock_irq(&wq->lock);
1673                 return false;
1674         }
1675
1676         /*
1677          * We got a tag, remove ourselves from the wait queue to ensure
1678          * someone else gets the wakeup.
1679          */
1680         list_del_init(&wait->entry);
1681         atomic_dec(&sbq->ws_active);
1682         spin_unlock(&hctx->dispatch_wait_lock);
1683         spin_unlock_irq(&wq->lock);
1684
1685         return true;
1686 }
1687
1688 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1689 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1690 /*
1691  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1692  * - EWMA is one simple way to compute running average value
1693  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1694  * - take 4 as factor for avoiding to get too small(0) result, and this
1695  *   factor doesn't matter because EWMA decreases exponentially
1696  */
1697 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1698 {
1699         unsigned int ewma;
1700
1701         ewma = hctx->dispatch_busy;
1702
1703         if (!ewma && !busy)
1704                 return;
1705
1706         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1707         if (busy)
1708                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1709         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1710
1711         hctx->dispatch_busy = ewma;
1712 }
1713
1714 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1715
1716 static void blk_mq_handle_dev_resource(struct request *rq,
1717                                        struct list_head *list)
1718 {
1719         struct request *next =
1720                 list_first_entry_or_null(list, struct request, queuelist);
1721
1722         /*
1723          * If an I/O scheduler has been configured and we got a driver tag for
1724          * the next request already, free it.
1725          */
1726         if (next)
1727                 blk_mq_put_driver_tag(next);
1728
1729         list_add(&rq->queuelist, list);
1730         __blk_mq_requeue_request(rq);
1731 }
1732
1733 static void blk_mq_handle_zone_resource(struct request *rq,
1734                                         struct list_head *zone_list)
1735 {
1736         /*
1737          * If we end up here it is because we cannot dispatch a request to a
1738          * specific zone due to LLD level zone-write locking or other zone
1739          * related resource not being available. In this case, set the request
1740          * aside in zone_list for retrying it later.
1741          */
1742         list_add(&rq->queuelist, zone_list);
1743         __blk_mq_requeue_request(rq);
1744 }
1745
1746 enum prep_dispatch {
1747         PREP_DISPATCH_OK,
1748         PREP_DISPATCH_NO_TAG,
1749         PREP_DISPATCH_NO_BUDGET,
1750 };
1751
1752 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1753                                                   bool need_budget)
1754 {
1755         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1756         int budget_token = -1;
1757
1758         if (need_budget) {
1759                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1760                 if (budget_token < 0) {
1761                         blk_mq_put_driver_tag(rq);
1762                         return PREP_DISPATCH_NO_BUDGET;
1763                 }
1764                 blk_mq_set_rq_budget_token(rq, budget_token);
1765         }
1766
1767         if (!blk_mq_get_driver_tag(rq)) {
1768                 /*
1769                  * The initial allocation attempt failed, so we need to
1770                  * rerun the hardware queue when a tag is freed. The
1771                  * waitqueue takes care of that. If the queue is run
1772                  * before we add this entry back on the dispatch list,
1773                  * we'll re-run it below.
1774                  */
1775                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1776                         /*
1777                          * All budgets not got from this function will be put
1778                          * together during handling partial dispatch
1779                          */
1780                         if (need_budget)
1781                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1782                         return PREP_DISPATCH_NO_TAG;
1783                 }
1784         }
1785
1786         return PREP_DISPATCH_OK;
1787 }
1788
1789 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1790 static void blk_mq_release_budgets(struct request_queue *q,
1791                 struct list_head *list)
1792 {
1793         struct request *rq;
1794
1795         list_for_each_entry(rq, list, queuelist) {
1796                 int budget_token = blk_mq_get_rq_budget_token(rq);
1797
1798                 if (budget_token >= 0)
1799                         blk_mq_put_dispatch_budget(q, budget_token);
1800         }
1801 }
1802
1803 /*
1804  * Returns true if we did some work AND can potentially do more.
1805  */
1806 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1807                              unsigned int nr_budgets)
1808 {
1809         enum prep_dispatch prep;
1810         struct request_queue *q = hctx->queue;
1811         struct request *rq, *nxt;
1812         int errors, queued;
1813         blk_status_t ret = BLK_STS_OK;
1814         LIST_HEAD(zone_list);
1815         bool needs_resource = false;
1816
1817         if (list_empty(list))
1818                 return false;
1819
1820         /*
1821          * Now process all the entries, sending them to the driver.
1822          */
1823         errors = queued = 0;
1824         do {
1825                 struct blk_mq_queue_data bd;
1826
1827                 rq = list_first_entry(list, struct request, queuelist);
1828
1829                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1830                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1831                 if (prep != PREP_DISPATCH_OK)
1832                         break;
1833
1834                 list_del_init(&rq->queuelist);
1835
1836                 bd.rq = rq;
1837
1838                 /*
1839                  * Flag last if we have no more requests, or if we have more
1840                  * but can't assign a driver tag to it.
1841                  */
1842                 if (list_empty(list))
1843                         bd.last = true;
1844                 else {
1845                         nxt = list_first_entry(list, struct request, queuelist);
1846                         bd.last = !blk_mq_get_driver_tag(nxt);
1847                 }
1848
1849                 /*
1850                  * once the request is queued to lld, no need to cover the
1851                  * budget any more
1852                  */
1853                 if (nr_budgets)
1854                         nr_budgets--;
1855                 ret = q->mq_ops->queue_rq(hctx, &bd);
1856                 switch (ret) {
1857                 case BLK_STS_OK:
1858                         queued++;
1859                         break;
1860                 case BLK_STS_RESOURCE:
1861                         needs_resource = true;
1862                         fallthrough;
1863                 case BLK_STS_DEV_RESOURCE:
1864                         blk_mq_handle_dev_resource(rq, list);
1865                         goto out;
1866                 case BLK_STS_ZONE_RESOURCE:
1867                         /*
1868                          * Move the request to zone_list and keep going through
1869                          * the dispatch list to find more requests the drive can
1870                          * accept.
1871                          */
1872                         blk_mq_handle_zone_resource(rq, &zone_list);
1873                         needs_resource = true;
1874                         break;
1875                 default:
1876                         errors++;
1877                         blk_mq_end_request(rq, ret);
1878                 }
1879         } while (!list_empty(list));
1880 out:
1881         if (!list_empty(&zone_list))
1882                 list_splice_tail_init(&zone_list, list);
1883
1884         /* If we didn't flush the entire list, we could have told the driver
1885          * there was more coming, but that turned out to be a lie.
1886          */
1887         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1888                 q->mq_ops->commit_rqs(hctx);
1889         /*
1890          * Any items that need requeuing? Stuff them into hctx->dispatch,
1891          * that is where we will continue on next queue run.
1892          */
1893         if (!list_empty(list)) {
1894                 bool needs_restart;
1895                 /* For non-shared tags, the RESTART check will suffice */
1896                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1897                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1898
1899                 if (nr_budgets)
1900                         blk_mq_release_budgets(q, list);
1901
1902                 spin_lock(&hctx->lock);
1903                 list_splice_tail_init(list, &hctx->dispatch);
1904                 spin_unlock(&hctx->lock);
1905
1906                 /*
1907                  * Order adding requests to hctx->dispatch and checking
1908                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1909                  * in blk_mq_sched_restart(). Avoid restart code path to
1910                  * miss the new added requests to hctx->dispatch, meantime
1911                  * SCHED_RESTART is observed here.
1912                  */
1913                 smp_mb();
1914
1915                 /*
1916                  * If SCHED_RESTART was set by the caller of this function and
1917                  * it is no longer set that means that it was cleared by another
1918                  * thread and hence that a queue rerun is needed.
1919                  *
1920                  * If 'no_tag' is set, that means that we failed getting
1921                  * a driver tag with an I/O scheduler attached. If our dispatch
1922                  * waitqueue is no longer active, ensure that we run the queue
1923                  * AFTER adding our entries back to the list.
1924                  *
1925                  * If no I/O scheduler has been configured it is possible that
1926                  * the hardware queue got stopped and restarted before requests
1927                  * were pushed back onto the dispatch list. Rerun the queue to
1928                  * avoid starvation. Notes:
1929                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1930                  *   been stopped before rerunning a queue.
1931                  * - Some but not all block drivers stop a queue before
1932                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1933                  *   and dm-rq.
1934                  *
1935                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1936                  * bit is set, run queue after a delay to avoid IO stalls
1937                  * that could otherwise occur if the queue is idle.  We'll do
1938                  * similar if we couldn't get budget or couldn't lock a zone
1939                  * and SCHED_RESTART is set.
1940                  */
1941                 needs_restart = blk_mq_sched_needs_restart(hctx);
1942                 if (prep == PREP_DISPATCH_NO_BUDGET)
1943                         needs_resource = true;
1944                 if (!needs_restart ||
1945                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1946                         blk_mq_run_hw_queue(hctx, true);
1947                 else if (needs_restart && needs_resource)
1948                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1949
1950                 blk_mq_update_dispatch_busy(hctx, true);
1951                 return false;
1952         } else
1953                 blk_mq_update_dispatch_busy(hctx, false);
1954
1955         return (queued + errors) != 0;
1956 }
1957
1958 /**
1959  * __blk_mq_run_hw_queue - Run a hardware queue.
1960  * @hctx: Pointer to the hardware queue to run.
1961  *
1962  * Send pending requests to the hardware.
1963  */
1964 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1965 {
1966         /*
1967          * We can't run the queue inline with ints disabled. Ensure that
1968          * we catch bad users of this early.
1969          */
1970         WARN_ON_ONCE(in_interrupt());
1971
1972         blk_mq_run_dispatch_ops(hctx->queue,
1973                         blk_mq_sched_dispatch_requests(hctx));
1974 }
1975
1976 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1977 {
1978         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1979
1980         if (cpu >= nr_cpu_ids)
1981                 cpu = cpumask_first(hctx->cpumask);
1982         return cpu;
1983 }
1984
1985 /*
1986  * It'd be great if the workqueue API had a way to pass
1987  * in a mask and had some smarts for more clever placement.
1988  * For now we just round-robin here, switching for every
1989  * BLK_MQ_CPU_WORK_BATCH queued items.
1990  */
1991 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1992 {
1993         bool tried = false;
1994         int next_cpu = hctx->next_cpu;
1995
1996         if (hctx->queue->nr_hw_queues == 1)
1997                 return WORK_CPU_UNBOUND;
1998
1999         if (--hctx->next_cpu_batch <= 0) {
2000 select_cpu:
2001                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2002                                 cpu_online_mask);
2003                 if (next_cpu >= nr_cpu_ids)
2004                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2005                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2006         }
2007
2008         /*
2009          * Do unbound schedule if we can't find a online CPU for this hctx,
2010          * and it should only happen in the path of handling CPU DEAD.
2011          */
2012         if (!cpu_online(next_cpu)) {
2013                 if (!tried) {
2014                         tried = true;
2015                         goto select_cpu;
2016                 }
2017
2018                 /*
2019                  * Make sure to re-select CPU next time once after CPUs
2020                  * in hctx->cpumask become online again.
2021                  */
2022                 hctx->next_cpu = next_cpu;
2023                 hctx->next_cpu_batch = 1;
2024                 return WORK_CPU_UNBOUND;
2025         }
2026
2027         hctx->next_cpu = next_cpu;
2028         return next_cpu;
2029 }
2030
2031 /**
2032  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2033  * @hctx: Pointer to the hardware queue to run.
2034  * @async: If we want to run the queue asynchronously.
2035  * @msecs: Milliseconds of delay to wait before running the queue.
2036  *
2037  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2038  * with a delay of @msecs.
2039  */
2040 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2041                                         unsigned long msecs)
2042 {
2043         if (unlikely(blk_mq_hctx_stopped(hctx)))
2044                 return;
2045
2046         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2047                 int cpu = get_cpu();
2048                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2049                         __blk_mq_run_hw_queue(hctx);
2050                         put_cpu();
2051                         return;
2052                 }
2053
2054                 put_cpu();
2055         }
2056
2057         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2058                                     msecs_to_jiffies(msecs));
2059 }
2060
2061 /**
2062  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2063  * @hctx: Pointer to the hardware queue to run.
2064  * @msecs: Milliseconds of delay to wait before running the queue.
2065  *
2066  * Run a hardware queue asynchronously with a delay of @msecs.
2067  */
2068 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2069 {
2070         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2071 }
2072 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2073
2074 /**
2075  * blk_mq_run_hw_queue - Start to run a hardware queue.
2076  * @hctx: Pointer to the hardware queue to run.
2077  * @async: If we want to run the queue asynchronously.
2078  *
2079  * Check if the request queue is not in a quiesced state and if there are
2080  * pending requests to be sent. If this is true, run the queue to send requests
2081  * to hardware.
2082  */
2083 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2084 {
2085         bool need_run;
2086
2087         /*
2088          * When queue is quiesced, we may be switching io scheduler, or
2089          * updating nr_hw_queues, or other things, and we can't run queue
2090          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2091          *
2092          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2093          * quiesced.
2094          */
2095         __blk_mq_run_dispatch_ops(hctx->queue, false,
2096                 need_run = !blk_queue_quiesced(hctx->queue) &&
2097                 blk_mq_hctx_has_pending(hctx));
2098
2099         if (need_run)
2100                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2101 }
2102 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2103
2104 /*
2105  * Is the request queue handled by an IO scheduler that does not respect
2106  * hardware queues when dispatching?
2107  */
2108 static bool blk_mq_has_sqsched(struct request_queue *q)
2109 {
2110         struct elevator_queue *e = q->elevator;
2111
2112         if (e && e->type->ops.dispatch_request &&
2113             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2114                 return true;
2115         return false;
2116 }
2117
2118 /*
2119  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2120  * scheduler.
2121  */
2122 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2123 {
2124         struct blk_mq_hw_ctx *hctx;
2125
2126         /*
2127          * If the IO scheduler does not respect hardware queues when
2128          * dispatching, we just don't bother with multiple HW queues and
2129          * dispatch from hctx for the current CPU since running multiple queues
2130          * just causes lock contention inside the scheduler and pointless cache
2131          * bouncing.
2132          */
2133         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2134                                      raw_smp_processor_id());
2135         if (!blk_mq_hctx_stopped(hctx))
2136                 return hctx;
2137         return NULL;
2138 }
2139
2140 /**
2141  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2142  * @q: Pointer to the request queue to run.
2143  * @async: If we want to run the queue asynchronously.
2144  */
2145 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2146 {
2147         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2148         int i;
2149
2150         sq_hctx = NULL;
2151         if (blk_mq_has_sqsched(q))
2152                 sq_hctx = blk_mq_get_sq_hctx(q);
2153         queue_for_each_hw_ctx(q, hctx, i) {
2154                 if (blk_mq_hctx_stopped(hctx))
2155                         continue;
2156                 /*
2157                  * Dispatch from this hctx either if there's no hctx preferred
2158                  * by IO scheduler or if it has requests that bypass the
2159                  * scheduler.
2160                  */
2161                 if (!sq_hctx || sq_hctx == hctx ||
2162                     !list_empty_careful(&hctx->dispatch))
2163                         blk_mq_run_hw_queue(hctx, async);
2164         }
2165 }
2166 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2167
2168 /**
2169  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2170  * @q: Pointer to the request queue to run.
2171  * @msecs: Milliseconds of delay to wait before running the queues.
2172  */
2173 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2174 {
2175         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2176         int i;
2177
2178         sq_hctx = NULL;
2179         if (blk_mq_has_sqsched(q))
2180                 sq_hctx = blk_mq_get_sq_hctx(q);
2181         queue_for_each_hw_ctx(q, hctx, i) {
2182                 if (blk_mq_hctx_stopped(hctx))
2183                         continue;
2184                 /*
2185                  * Dispatch from this hctx either if there's no hctx preferred
2186                  * by IO scheduler or if it has requests that bypass the
2187                  * scheduler.
2188                  */
2189                 if (!sq_hctx || sq_hctx == hctx ||
2190                     !list_empty_careful(&hctx->dispatch))
2191                         blk_mq_delay_run_hw_queue(hctx, msecs);
2192         }
2193 }
2194 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2195
2196 /**
2197  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2198  * @q: request queue.
2199  *
2200  * The caller is responsible for serializing this function against
2201  * blk_mq_{start,stop}_hw_queue().
2202  */
2203 bool blk_mq_queue_stopped(struct request_queue *q)
2204 {
2205         struct blk_mq_hw_ctx *hctx;
2206         int i;
2207
2208         queue_for_each_hw_ctx(q, hctx, i)
2209                 if (blk_mq_hctx_stopped(hctx))
2210                         return true;
2211
2212         return false;
2213 }
2214 EXPORT_SYMBOL(blk_mq_queue_stopped);
2215
2216 /*
2217  * This function is often used for pausing .queue_rq() by driver when
2218  * there isn't enough resource or some conditions aren't satisfied, and
2219  * BLK_STS_RESOURCE is usually returned.
2220  *
2221  * We do not guarantee that dispatch can be drained or blocked
2222  * after blk_mq_stop_hw_queue() returns. Please use
2223  * blk_mq_quiesce_queue() for that requirement.
2224  */
2225 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2226 {
2227         cancel_delayed_work(&hctx->run_work);
2228
2229         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2230 }
2231 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2232
2233 /*
2234  * This function is often used for pausing .queue_rq() by driver when
2235  * there isn't enough resource or some conditions aren't satisfied, and
2236  * BLK_STS_RESOURCE is usually returned.
2237  *
2238  * We do not guarantee that dispatch can be drained or blocked
2239  * after blk_mq_stop_hw_queues() returns. Please use
2240  * blk_mq_quiesce_queue() for that requirement.
2241  */
2242 void blk_mq_stop_hw_queues(struct request_queue *q)
2243 {
2244         struct blk_mq_hw_ctx *hctx;
2245         int i;
2246
2247         queue_for_each_hw_ctx(q, hctx, i)
2248                 blk_mq_stop_hw_queue(hctx);
2249 }
2250 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2251
2252 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2253 {
2254         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2255
2256         blk_mq_run_hw_queue(hctx, false);
2257 }
2258 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2259
2260 void blk_mq_start_hw_queues(struct request_queue *q)
2261 {
2262         struct blk_mq_hw_ctx *hctx;
2263         int i;
2264
2265         queue_for_each_hw_ctx(q, hctx, i)
2266                 blk_mq_start_hw_queue(hctx);
2267 }
2268 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2269
2270 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2271 {
2272         if (!blk_mq_hctx_stopped(hctx))
2273                 return;
2274
2275         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2276         blk_mq_run_hw_queue(hctx, async);
2277 }
2278 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2279
2280 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2281 {
2282         struct blk_mq_hw_ctx *hctx;
2283         int i;
2284
2285         queue_for_each_hw_ctx(q, hctx, i)
2286                 blk_mq_start_stopped_hw_queue(hctx, async);
2287 }
2288 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2289
2290 static void blk_mq_run_work_fn(struct work_struct *work)
2291 {
2292         struct blk_mq_hw_ctx *hctx;
2293
2294         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2295
2296         /*
2297          * If we are stopped, don't run the queue.
2298          */
2299         if (blk_mq_hctx_stopped(hctx))
2300                 return;
2301
2302         __blk_mq_run_hw_queue(hctx);
2303 }
2304
2305 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2306                                             struct request *rq,
2307                                             bool at_head)
2308 {
2309         struct blk_mq_ctx *ctx = rq->mq_ctx;
2310         enum hctx_type type = hctx->type;
2311
2312         lockdep_assert_held(&ctx->lock);
2313
2314         trace_block_rq_insert(rq);
2315
2316         if (at_head)
2317                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2318         else
2319                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2320 }
2321
2322 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2323                              bool at_head)
2324 {
2325         struct blk_mq_ctx *ctx = rq->mq_ctx;
2326
2327         lockdep_assert_held(&ctx->lock);
2328
2329         __blk_mq_insert_req_list(hctx, rq, at_head);
2330         blk_mq_hctx_mark_pending(hctx, ctx);
2331 }
2332
2333 /**
2334  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2335  * @rq: Pointer to request to be inserted.
2336  * @at_head: true if the request should be inserted at the head of the list.
2337  * @run_queue: If we should run the hardware queue after inserting the request.
2338  *
2339  * Should only be used carefully, when the caller knows we want to
2340  * bypass a potential IO scheduler on the target device.
2341  */
2342 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2343                                   bool run_queue)
2344 {
2345         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2346
2347         spin_lock(&hctx->lock);
2348         if (at_head)
2349                 list_add(&rq->queuelist, &hctx->dispatch);
2350         else
2351                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2352         spin_unlock(&hctx->lock);
2353
2354         if (run_queue)
2355                 blk_mq_run_hw_queue(hctx, false);
2356 }
2357
2358 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2359                             struct list_head *list)
2360
2361 {
2362         struct request *rq;
2363         enum hctx_type type = hctx->type;
2364
2365         /*
2366          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2367          * offline now
2368          */
2369         list_for_each_entry(rq, list, queuelist) {
2370                 BUG_ON(rq->mq_ctx != ctx);
2371                 trace_block_rq_insert(rq);
2372         }
2373
2374         spin_lock(&ctx->lock);
2375         list_splice_tail_init(list, &ctx->rq_lists[type]);
2376         blk_mq_hctx_mark_pending(hctx, ctx);
2377         spin_unlock(&ctx->lock);
2378 }
2379
2380 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2381                               bool from_schedule)
2382 {
2383         if (hctx->queue->mq_ops->commit_rqs) {
2384                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2385                 hctx->queue->mq_ops->commit_rqs(hctx);
2386         }
2387         *queued = 0;
2388 }
2389
2390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2391                 unsigned int nr_segs)
2392 {
2393         int err;
2394
2395         if (bio->bi_opf & REQ_RAHEAD)
2396                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2397
2398         rq->__sector = bio->bi_iter.bi_sector;
2399         rq->write_hint = bio->bi_write_hint;
2400         blk_rq_bio_prep(rq, bio, nr_segs);
2401
2402         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2403         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2404         WARN_ON_ONCE(err);
2405
2406         blk_account_io_start(rq);
2407 }
2408
2409 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2410                                             struct request *rq, bool last)
2411 {
2412         struct request_queue *q = rq->q;
2413         struct blk_mq_queue_data bd = {
2414                 .rq = rq,
2415                 .last = last,
2416         };
2417         blk_status_t ret;
2418
2419         /*
2420          * For OK queue, we are done. For error, caller may kill it.
2421          * Any other error (busy), just add it to our list as we
2422          * previously would have done.
2423          */
2424         ret = q->mq_ops->queue_rq(hctx, &bd);
2425         switch (ret) {
2426         case BLK_STS_OK:
2427                 blk_mq_update_dispatch_busy(hctx, false);
2428                 break;
2429         case BLK_STS_RESOURCE:
2430         case BLK_STS_DEV_RESOURCE:
2431                 blk_mq_update_dispatch_busy(hctx, true);
2432                 __blk_mq_requeue_request(rq);
2433                 break;
2434         default:
2435                 blk_mq_update_dispatch_busy(hctx, false);
2436                 break;
2437         }
2438
2439         return ret;
2440 }
2441
2442 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2443                                                 struct request *rq,
2444                                                 bool bypass_insert, bool last)
2445 {
2446         struct request_queue *q = rq->q;
2447         bool run_queue = true;
2448         int budget_token;
2449
2450         /*
2451          * RCU or SRCU read lock is needed before checking quiesced flag.
2452          *
2453          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2454          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2455          * and avoid driver to try to dispatch again.
2456          */
2457         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2458                 run_queue = false;
2459                 bypass_insert = false;
2460                 goto insert;
2461         }
2462
2463         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2464                 goto insert;
2465
2466         budget_token = blk_mq_get_dispatch_budget(q);
2467         if (budget_token < 0)
2468                 goto insert;
2469
2470         blk_mq_set_rq_budget_token(rq, budget_token);
2471
2472         if (!blk_mq_get_driver_tag(rq)) {
2473                 blk_mq_put_dispatch_budget(q, budget_token);
2474                 goto insert;
2475         }
2476
2477         return __blk_mq_issue_directly(hctx, rq, last);
2478 insert:
2479         if (bypass_insert)
2480                 return BLK_STS_RESOURCE;
2481
2482         blk_mq_sched_insert_request(rq, false, run_queue, false);
2483
2484         return BLK_STS_OK;
2485 }
2486
2487 /**
2488  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2489  * @hctx: Pointer of the associated hardware queue.
2490  * @rq: Pointer to request to be sent.
2491  *
2492  * If the device has enough resources to accept a new request now, send the
2493  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2494  * we can try send it another time in the future. Requests inserted at this
2495  * queue have higher priority.
2496  */
2497 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2498                 struct request *rq)
2499 {
2500         blk_status_t ret =
2501                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2502
2503         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2504                 blk_mq_request_bypass_insert(rq, false, true);
2505         else if (ret != BLK_STS_OK)
2506                 blk_mq_end_request(rq, ret);
2507 }
2508
2509 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2510 {
2511         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2512 }
2513
2514 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2515 {
2516         struct blk_mq_hw_ctx *hctx = NULL;
2517         struct request *rq;
2518         int queued = 0;
2519         int errors = 0;
2520
2521         while ((rq = rq_list_pop(&plug->mq_list))) {
2522                 bool last = rq_list_empty(plug->mq_list);
2523                 blk_status_t ret;
2524
2525                 if (hctx != rq->mq_hctx) {
2526                         if (hctx)
2527                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2528                         hctx = rq->mq_hctx;
2529                 }
2530
2531                 ret = blk_mq_request_issue_directly(rq, last);
2532                 switch (ret) {
2533                 case BLK_STS_OK:
2534                         queued++;
2535                         break;
2536                 case BLK_STS_RESOURCE:
2537                 case BLK_STS_DEV_RESOURCE:
2538                         blk_mq_request_bypass_insert(rq, false, last);
2539                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2540                         return;
2541                 default:
2542                         blk_mq_end_request(rq, ret);
2543                         errors++;
2544                         break;
2545                 }
2546         }
2547
2548         /*
2549          * If we didn't flush the entire list, we could have told the driver
2550          * there was more coming, but that turned out to be a lie.
2551          */
2552         if (errors)
2553                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2554 }
2555
2556 static void __blk_mq_flush_plug_list(struct request_queue *q,
2557                                      struct blk_plug *plug)
2558 {
2559         if (blk_queue_quiesced(q))
2560                 return;
2561         q->mq_ops->queue_rqs(&plug->mq_list);
2562 }
2563
2564 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2565 {
2566         struct blk_mq_hw_ctx *this_hctx;
2567         struct blk_mq_ctx *this_ctx;
2568         struct request *rq;
2569         unsigned int depth;
2570         LIST_HEAD(list);
2571
2572         if (rq_list_empty(plug->mq_list))
2573                 return;
2574         plug->rq_count = 0;
2575
2576         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2577                 struct request_queue *q;
2578
2579                 rq = rq_list_peek(&plug->mq_list);
2580                 q = rq->q;
2581
2582                 /*
2583                  * Peek first request and see if we have a ->queue_rqs() hook.
2584                  * If we do, we can dispatch the whole plug list in one go. We
2585                  * already know at this point that all requests belong to the
2586                  * same queue, caller must ensure that's the case.
2587                  *
2588                  * Since we pass off the full list to the driver at this point,
2589                  * we do not increment the active request count for the queue.
2590                  * Bypass shared tags for now because of that.
2591                  */
2592                 if (q->mq_ops->queue_rqs &&
2593                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2594                         blk_mq_run_dispatch_ops(q,
2595                                 __blk_mq_flush_plug_list(q, plug));
2596                         if (rq_list_empty(plug->mq_list))
2597                                 return;
2598                 }
2599
2600                 blk_mq_run_dispatch_ops(q,
2601                                 blk_mq_plug_issue_direct(plug, false));
2602                 if (rq_list_empty(plug->mq_list))
2603                         return;
2604         }
2605
2606         this_hctx = NULL;
2607         this_ctx = NULL;
2608         depth = 0;
2609         do {
2610                 rq = rq_list_pop(&plug->mq_list);
2611
2612                 if (!this_hctx) {
2613                         this_hctx = rq->mq_hctx;
2614                         this_ctx = rq->mq_ctx;
2615                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2616                         trace_block_unplug(this_hctx->queue, depth,
2617                                                 !from_schedule);
2618                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2619                                                 &list, from_schedule);
2620                         depth = 0;
2621                         this_hctx = rq->mq_hctx;
2622                         this_ctx = rq->mq_ctx;
2623
2624                 }
2625
2626                 list_add(&rq->queuelist, &list);
2627                 depth++;
2628         } while (!rq_list_empty(plug->mq_list));
2629
2630         if (!list_empty(&list)) {
2631                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2632                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2633                                                 from_schedule);
2634         }
2635 }
2636
2637 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2638                 struct list_head *list)
2639 {
2640         int queued = 0;
2641         int errors = 0;
2642
2643         while (!list_empty(list)) {
2644                 blk_status_t ret;
2645                 struct request *rq = list_first_entry(list, struct request,
2646                                 queuelist);
2647
2648                 list_del_init(&rq->queuelist);
2649                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2650                 if (ret != BLK_STS_OK) {
2651                         if (ret == BLK_STS_RESOURCE ||
2652                                         ret == BLK_STS_DEV_RESOURCE) {
2653                                 blk_mq_request_bypass_insert(rq, false,
2654                                                         list_empty(list));
2655                                 break;
2656                         }
2657                         blk_mq_end_request(rq, ret);
2658                         errors++;
2659                 } else
2660                         queued++;
2661         }
2662
2663         /*
2664          * If we didn't flush the entire list, we could have told
2665          * the driver there was more coming, but that turned out to
2666          * be a lie.
2667          */
2668         if ((!list_empty(list) || errors) &&
2669              hctx->queue->mq_ops->commit_rqs && queued)
2670                 hctx->queue->mq_ops->commit_rqs(hctx);
2671 }
2672
2673 /*
2674  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2675  * queues. This is important for md arrays to benefit from merging
2676  * requests.
2677  */
2678 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2679 {
2680         if (plug->multiple_queues)
2681                 return BLK_MAX_REQUEST_COUNT * 2;
2682         return BLK_MAX_REQUEST_COUNT;
2683 }
2684
2685 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2686 {
2687         struct request *last = rq_list_peek(&plug->mq_list);
2688
2689         if (!plug->rq_count) {
2690                 trace_block_plug(rq->q);
2691         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2692                    (!blk_queue_nomerges(rq->q) &&
2693                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2694                 blk_mq_flush_plug_list(plug, false);
2695                 trace_block_plug(rq->q);
2696         }
2697
2698         if (!plug->multiple_queues && last && last->q != rq->q)
2699                 plug->multiple_queues = true;
2700         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2701                 plug->has_elevator = true;
2702         rq->rq_next = NULL;
2703         rq_list_add(&plug->mq_list, rq);
2704         plug->rq_count++;
2705 }
2706
2707 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2708                                      struct bio *bio, unsigned int nr_segs)
2709 {
2710         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2711                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2712                         return true;
2713                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2714                         return true;
2715         }
2716         return false;
2717 }
2718
2719 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2720                                                struct blk_plug *plug,
2721                                                struct bio *bio)
2722 {
2723         struct blk_mq_alloc_data data = {
2724                 .q              = q,
2725                 .nr_tags        = 1,
2726                 .cmd_flags      = bio->bi_opf,
2727         };
2728         struct request *rq;
2729
2730         if (unlikely(bio_queue_enter(bio)))
2731                 return NULL;
2732
2733         if (plug) {
2734                 data.nr_tags = plug->nr_ios;
2735                 plug->nr_ios = 1;
2736                 data.cached_rq = &plug->cached_rq;
2737         }
2738
2739         rq = __blk_mq_alloc_requests(&data);
2740         if (rq)
2741                 return rq;
2742         rq_qos_cleanup(q, bio);
2743         if (bio->bi_opf & REQ_NOWAIT)
2744                 bio_wouldblock_error(bio);
2745         blk_queue_exit(q);
2746         return NULL;
2747 }
2748
2749 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2750                 struct blk_plug *plug, struct bio *bio)
2751 {
2752         struct request *rq;
2753
2754         if (!plug)
2755                 return NULL;
2756         rq = rq_list_peek(&plug->cached_rq);
2757         if (!rq || rq->q != q)
2758                 return NULL;
2759
2760         if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2761                 return NULL;
2762         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2763                 return NULL;
2764
2765         rq->cmd_flags = bio->bi_opf;
2766         plug->cached_rq = rq_list_next(rq);
2767         INIT_LIST_HEAD(&rq->queuelist);
2768         return rq;
2769 }
2770
2771 /**
2772  * blk_mq_submit_bio - Create and send a request to block device.
2773  * @bio: Bio pointer.
2774  *
2775  * Builds up a request structure from @q and @bio and send to the device. The
2776  * request may not be queued directly to hardware if:
2777  * * This request can be merged with another one
2778  * * We want to place request at plug queue for possible future merging
2779  * * There is an IO scheduler active at this queue
2780  *
2781  * It will not queue the request if there is an error with the bio, or at the
2782  * request creation.
2783  */
2784 void blk_mq_submit_bio(struct bio *bio)
2785 {
2786         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2787         struct blk_plug *plug = blk_mq_plug(q, bio);
2788         const int is_sync = op_is_sync(bio->bi_opf);
2789         struct request *rq;
2790         unsigned int nr_segs = 1;
2791         blk_status_t ret;
2792
2793         if (unlikely(!blk_crypto_bio_prep(&bio)))
2794                 return;
2795
2796         blk_queue_bounce(q, &bio);
2797         if (blk_may_split(q, bio))
2798                 __blk_queue_split(q, &bio, &nr_segs);
2799
2800         if (!bio_integrity_prep(bio))
2801                 return;
2802
2803         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2804                 return;
2805
2806         rq_qos_throttle(q, bio);
2807
2808         rq = blk_mq_get_cached_request(q, plug, bio);
2809         if (!rq) {
2810                 rq = blk_mq_get_new_requests(q, plug, bio);
2811                 if (unlikely(!rq))
2812                         return;
2813         }
2814
2815         trace_block_getrq(bio);
2816
2817         rq_qos_track(q, rq, bio);
2818
2819         blk_mq_bio_to_request(rq, bio, nr_segs);
2820
2821         ret = blk_crypto_init_request(rq);
2822         if (ret != BLK_STS_OK) {
2823                 bio->bi_status = ret;
2824                 bio_endio(bio);
2825                 blk_mq_free_request(rq);
2826                 return;
2827         }
2828
2829         if (op_is_flush(bio->bi_opf)) {
2830                 blk_insert_flush(rq);
2831                 return;
2832         }
2833
2834         if (plug)
2835                 blk_add_rq_to_plug(plug, rq);
2836         else if ((rq->rq_flags & RQF_ELV) ||
2837                  (rq->mq_hctx->dispatch_busy &&
2838                   (q->nr_hw_queues == 1 || !is_sync)))
2839                 blk_mq_sched_insert_request(rq, false, true, true);
2840         else
2841                 blk_mq_run_dispatch_ops(rq->q,
2842                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2843 }
2844
2845 /**
2846  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2847  *                              for the new queue limits
2848  * @q:  the queue
2849  * @rq: the request being checked
2850  *
2851  * Description:
2852  *    @rq may have been made based on weaker limitations of upper-level queues
2853  *    in request stacking drivers, and it may violate the limitation of @q.
2854  *    Since the block layer and the underlying device driver trust @rq
2855  *    after it is inserted to @q, it should be checked against @q before
2856  *    the insertion using this generic function.
2857  *
2858  *    Request stacking drivers like request-based dm may change the queue
2859  *    limits when retrying requests on other queues. Those requests need
2860  *    to be checked against the new queue limits again during dispatch.
2861  */
2862 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2863                                       struct request *rq)
2864 {
2865         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2866
2867         if (blk_rq_sectors(rq) > max_sectors) {
2868                 /*
2869                  * SCSI device does not have a good way to return if
2870                  * Write Same/Zero is actually supported. If a device rejects
2871                  * a non-read/write command (discard, write same,etc.) the
2872                  * low-level device driver will set the relevant queue limit to
2873                  * 0 to prevent blk-lib from issuing more of the offending
2874                  * operations. Commands queued prior to the queue limit being
2875                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2876                  * errors being propagated to upper layers.
2877                  */
2878                 if (max_sectors == 0)
2879                         return BLK_STS_NOTSUPP;
2880
2881                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2882                         __func__, blk_rq_sectors(rq), max_sectors);
2883                 return BLK_STS_IOERR;
2884         }
2885
2886         /*
2887          * The queue settings related to segment counting may differ from the
2888          * original queue.
2889          */
2890         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2891         if (rq->nr_phys_segments > queue_max_segments(q)) {
2892                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2893                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2894                 return BLK_STS_IOERR;
2895         }
2896
2897         return BLK_STS_OK;
2898 }
2899
2900 /**
2901  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2902  * @q:  the queue to submit the request
2903  * @rq: the request being queued
2904  */
2905 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2906 {
2907         blk_status_t ret;
2908
2909         ret = blk_cloned_rq_check_limits(q, rq);
2910         if (ret != BLK_STS_OK)
2911                 return ret;
2912
2913         if (rq->q->disk &&
2914             should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2915                 return BLK_STS_IOERR;
2916
2917         if (blk_crypto_insert_cloned_request(rq))
2918                 return BLK_STS_IOERR;
2919
2920         blk_account_io_start(rq);
2921
2922         /*
2923          * Since we have a scheduler attached on the top device,
2924          * bypass a potential scheduler on the bottom device for
2925          * insert.
2926          */
2927         blk_mq_run_dispatch_ops(rq->q,
2928                         ret = blk_mq_request_issue_directly(rq, true));
2929         if (ret)
2930                 blk_account_io_done(rq, ktime_get_ns());
2931         return ret;
2932 }
2933 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2934
2935 /**
2936  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2937  * @rq: the clone request to be cleaned up
2938  *
2939  * Description:
2940  *     Free all bios in @rq for a cloned request.
2941  */
2942 void blk_rq_unprep_clone(struct request *rq)
2943 {
2944         struct bio *bio;
2945
2946         while ((bio = rq->bio) != NULL) {
2947                 rq->bio = bio->bi_next;
2948
2949                 bio_put(bio);
2950         }
2951 }
2952 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2953
2954 /**
2955  * blk_rq_prep_clone - Helper function to setup clone request
2956  * @rq: the request to be setup
2957  * @rq_src: original request to be cloned
2958  * @bs: bio_set that bios for clone are allocated from
2959  * @gfp_mask: memory allocation mask for bio
2960  * @bio_ctr: setup function to be called for each clone bio.
2961  *           Returns %0 for success, non %0 for failure.
2962  * @data: private data to be passed to @bio_ctr
2963  *
2964  * Description:
2965  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2966  *     Also, pages which the original bios are pointing to are not copied
2967  *     and the cloned bios just point same pages.
2968  *     So cloned bios must be completed before original bios, which means
2969  *     the caller must complete @rq before @rq_src.
2970  */
2971 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2972                       struct bio_set *bs, gfp_t gfp_mask,
2973                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2974                       void *data)
2975 {
2976         struct bio *bio, *bio_src;
2977
2978         if (!bs)
2979                 bs = &fs_bio_set;
2980
2981         __rq_for_each_bio(bio_src, rq_src) {
2982                 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2983                 if (!bio)
2984                         goto free_and_out;
2985                 bio->bi_bdev = rq->q->disk->part0;
2986
2987                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2988                         goto free_and_out;
2989
2990                 if (rq->bio) {
2991                         rq->biotail->bi_next = bio;
2992                         rq->biotail = bio;
2993                 } else {
2994                         rq->bio = rq->biotail = bio;
2995                 }
2996                 bio = NULL;
2997         }
2998
2999         /* Copy attributes of the original request to the clone request. */
3000         rq->__sector = blk_rq_pos(rq_src);
3001         rq->__data_len = blk_rq_bytes(rq_src);
3002         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3003                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3004                 rq->special_vec = rq_src->special_vec;
3005         }
3006         rq->nr_phys_segments = rq_src->nr_phys_segments;
3007         rq->ioprio = rq_src->ioprio;
3008
3009         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3010                 goto free_and_out;
3011
3012         return 0;
3013
3014 free_and_out:
3015         if (bio)
3016                 bio_put(bio);
3017         blk_rq_unprep_clone(rq);
3018
3019         return -ENOMEM;
3020 }
3021 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3022
3023 /*
3024  * Steal bios from a request and add them to a bio list.
3025  * The request must not have been partially completed before.
3026  */
3027 void blk_steal_bios(struct bio_list *list, struct request *rq)
3028 {
3029         if (rq->bio) {
3030                 if (list->tail)
3031                         list->tail->bi_next = rq->bio;
3032                 else
3033                         list->head = rq->bio;
3034                 list->tail = rq->biotail;
3035
3036                 rq->bio = NULL;
3037                 rq->biotail = NULL;
3038         }
3039
3040         rq->__data_len = 0;
3041 }
3042 EXPORT_SYMBOL_GPL(blk_steal_bios);
3043
3044 static size_t order_to_size(unsigned int order)
3045 {
3046         return (size_t)PAGE_SIZE << order;
3047 }
3048
3049 /* called before freeing request pool in @tags */
3050 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3051                                     struct blk_mq_tags *tags)
3052 {
3053         struct page *page;
3054         unsigned long flags;
3055
3056         /* There is no need to clear a driver tags own mapping */
3057         if (drv_tags == tags)
3058                 return;
3059
3060         list_for_each_entry(page, &tags->page_list, lru) {
3061                 unsigned long start = (unsigned long)page_address(page);
3062                 unsigned long end = start + order_to_size(page->private);
3063                 int i;
3064
3065                 for (i = 0; i < drv_tags->nr_tags; i++) {
3066                         struct request *rq = drv_tags->rqs[i];
3067                         unsigned long rq_addr = (unsigned long)rq;
3068
3069                         if (rq_addr >= start && rq_addr < end) {
3070                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3071                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3072                         }
3073                 }
3074         }
3075
3076         /*
3077          * Wait until all pending iteration is done.
3078          *
3079          * Request reference is cleared and it is guaranteed to be observed
3080          * after the ->lock is released.
3081          */
3082         spin_lock_irqsave(&drv_tags->lock, flags);
3083         spin_unlock_irqrestore(&drv_tags->lock, flags);
3084 }
3085
3086 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3087                      unsigned int hctx_idx)
3088 {
3089         struct blk_mq_tags *drv_tags;
3090         struct page *page;
3091
3092         if (blk_mq_is_shared_tags(set->flags))
3093                 drv_tags = set->shared_tags;
3094         else
3095                 drv_tags = set->tags[hctx_idx];
3096
3097         if (tags->static_rqs && set->ops->exit_request) {
3098                 int i;
3099
3100                 for (i = 0; i < tags->nr_tags; i++) {
3101                         struct request *rq = tags->static_rqs[i];
3102
3103                         if (!rq)
3104                                 continue;
3105                         set->ops->exit_request(set, rq, hctx_idx);
3106                         tags->static_rqs[i] = NULL;
3107                 }
3108         }
3109
3110         blk_mq_clear_rq_mapping(drv_tags, tags);
3111
3112         while (!list_empty(&tags->page_list)) {
3113                 page = list_first_entry(&tags->page_list, struct page, lru);
3114                 list_del_init(&page->lru);
3115                 /*
3116                  * Remove kmemleak object previously allocated in
3117                  * blk_mq_alloc_rqs().
3118                  */
3119                 kmemleak_free(page_address(page));
3120                 __free_pages(page, page->private);
3121         }
3122 }
3123
3124 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3125 {
3126         kfree(tags->rqs);
3127         tags->rqs = NULL;
3128         kfree(tags->static_rqs);
3129         tags->static_rqs = NULL;
3130
3131         blk_mq_free_tags(tags);
3132 }
3133
3134 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3135                                                unsigned int hctx_idx,
3136                                                unsigned int nr_tags,
3137                                                unsigned int reserved_tags)
3138 {
3139         struct blk_mq_tags *tags;
3140         int node;
3141
3142         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3143         if (node == NUMA_NO_NODE)
3144                 node = set->numa_node;
3145
3146         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3147                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3148         if (!tags)
3149                 return NULL;
3150
3151         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3152                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3153                                  node);
3154         if (!tags->rqs) {
3155                 blk_mq_free_tags(tags);
3156                 return NULL;
3157         }
3158
3159         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3160                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3161                                         node);
3162         if (!tags->static_rqs) {
3163                 kfree(tags->rqs);
3164                 blk_mq_free_tags(tags);
3165                 return NULL;
3166         }
3167
3168         return tags;
3169 }
3170
3171 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3172                                unsigned int hctx_idx, int node)
3173 {
3174         int ret;
3175
3176         if (set->ops->init_request) {
3177                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3178                 if (ret)
3179                         return ret;
3180         }
3181
3182         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3183         return 0;
3184 }
3185
3186 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3187                             struct blk_mq_tags *tags,
3188                             unsigned int hctx_idx, unsigned int depth)
3189 {
3190         unsigned int i, j, entries_per_page, max_order = 4;
3191         size_t rq_size, left;
3192         int node;
3193
3194         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3195         if (node == NUMA_NO_NODE)
3196                 node = set->numa_node;
3197
3198         INIT_LIST_HEAD(&tags->page_list);
3199
3200         /*
3201          * rq_size is the size of the request plus driver payload, rounded
3202          * to the cacheline size
3203          */
3204         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3205                                 cache_line_size());
3206         left = rq_size * depth;
3207
3208         for (i = 0; i < depth; ) {
3209                 int this_order = max_order;
3210                 struct page *page;
3211                 int to_do;
3212                 void *p;
3213
3214                 while (this_order && left < order_to_size(this_order - 1))
3215                         this_order--;
3216
3217                 do {
3218                         page = alloc_pages_node(node,
3219                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3220                                 this_order);
3221                         if (page)
3222                                 break;
3223                         if (!this_order--)
3224                                 break;
3225                         if (order_to_size(this_order) < rq_size)
3226                                 break;
3227                 } while (1);
3228
3229                 if (!page)
3230                         goto fail;
3231
3232                 page->private = this_order;
3233                 list_add_tail(&page->lru, &tags->page_list);
3234
3235                 p = page_address(page);
3236                 /*
3237                  * Allow kmemleak to scan these pages as they contain pointers
3238                  * to additional allocations like via ops->init_request().
3239                  */
3240                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3241                 entries_per_page = order_to_size(this_order) / rq_size;
3242                 to_do = min(entries_per_page, depth - i);
3243                 left -= to_do * rq_size;
3244                 for (j = 0; j < to_do; j++) {
3245                         struct request *rq = p;
3246
3247                         tags->static_rqs[i] = rq;
3248                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3249                                 tags->static_rqs[i] = NULL;
3250                                 goto fail;
3251                         }
3252
3253                         p += rq_size;
3254                         i++;
3255                 }
3256         }
3257         return 0;
3258
3259 fail:
3260         blk_mq_free_rqs(set, tags, hctx_idx);
3261         return -ENOMEM;
3262 }
3263
3264 struct rq_iter_data {
3265         struct blk_mq_hw_ctx *hctx;
3266         bool has_rq;
3267 };
3268
3269 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3270 {
3271         struct rq_iter_data *iter_data = data;
3272
3273         if (rq->mq_hctx != iter_data->hctx)
3274                 return true;
3275         iter_data->has_rq = true;
3276         return false;
3277 }
3278
3279 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3280 {
3281         struct blk_mq_tags *tags = hctx->sched_tags ?
3282                         hctx->sched_tags : hctx->tags;
3283         struct rq_iter_data data = {
3284                 .hctx   = hctx,
3285         };
3286
3287         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3288         return data.has_rq;
3289 }
3290
3291 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3292                 struct blk_mq_hw_ctx *hctx)
3293 {
3294         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3295                 return false;
3296         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3297                 return false;
3298         return true;
3299 }
3300
3301 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3302 {
3303         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3304                         struct blk_mq_hw_ctx, cpuhp_online);
3305
3306         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3307             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3308                 return 0;
3309
3310         /*
3311          * Prevent new request from being allocated on the current hctx.
3312          *
3313          * The smp_mb__after_atomic() Pairs with the implied barrier in
3314          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3315          * seen once we return from the tag allocator.
3316          */
3317         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3318         smp_mb__after_atomic();
3319
3320         /*
3321          * Try to grab a reference to the queue and wait for any outstanding
3322          * requests.  If we could not grab a reference the queue has been
3323          * frozen and there are no requests.
3324          */
3325         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3326                 while (blk_mq_hctx_has_requests(hctx))
3327                         msleep(5);
3328                 percpu_ref_put(&hctx->queue->q_usage_counter);
3329         }
3330
3331         return 0;
3332 }
3333
3334 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3335 {
3336         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3337                         struct blk_mq_hw_ctx, cpuhp_online);
3338
3339         if (cpumask_test_cpu(cpu, hctx->cpumask))
3340                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3341         return 0;
3342 }
3343
3344 /*
3345  * 'cpu' is going away. splice any existing rq_list entries from this
3346  * software queue to the hw queue dispatch list, and ensure that it
3347  * gets run.
3348  */
3349 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3350 {
3351         struct blk_mq_hw_ctx *hctx;
3352         struct blk_mq_ctx *ctx;
3353         LIST_HEAD(tmp);
3354         enum hctx_type type;
3355
3356         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3357         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3358                 return 0;
3359
3360         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3361         type = hctx->type;
3362
3363         spin_lock(&ctx->lock);
3364         if (!list_empty(&ctx->rq_lists[type])) {
3365                 list_splice_init(&ctx->rq_lists[type], &tmp);
3366                 blk_mq_hctx_clear_pending(hctx, ctx);
3367         }
3368         spin_unlock(&ctx->lock);
3369
3370         if (list_empty(&tmp))
3371                 return 0;
3372
3373         spin_lock(&hctx->lock);
3374         list_splice_tail_init(&tmp, &hctx->dispatch);
3375         spin_unlock(&hctx->lock);
3376
3377         blk_mq_run_hw_queue(hctx, true);
3378         return 0;
3379 }
3380
3381 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3382 {
3383         if (!(hctx->flags & BLK_MQ_F_STACKING))
3384                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3385                                                     &hctx->cpuhp_online);
3386         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3387                                             &hctx->cpuhp_dead);
3388 }
3389
3390 /*
3391  * Before freeing hw queue, clearing the flush request reference in
3392  * tags->rqs[] for avoiding potential UAF.
3393  */
3394 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3395                 unsigned int queue_depth, struct request *flush_rq)
3396 {
3397         int i;
3398         unsigned long flags;
3399
3400         /* The hw queue may not be mapped yet */
3401         if (!tags)
3402                 return;
3403
3404         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3405
3406         for (i = 0; i < queue_depth; i++)
3407                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3408
3409         /*
3410          * Wait until all pending iteration is done.
3411          *
3412          * Request reference is cleared and it is guaranteed to be observed
3413          * after the ->lock is released.
3414          */
3415         spin_lock_irqsave(&tags->lock, flags);
3416         spin_unlock_irqrestore(&tags->lock, flags);
3417 }
3418
3419 /* hctx->ctxs will be freed in queue's release handler */
3420 static void blk_mq_exit_hctx(struct request_queue *q,
3421                 struct blk_mq_tag_set *set,
3422                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3423 {
3424         struct request *flush_rq = hctx->fq->flush_rq;
3425
3426         if (blk_mq_hw_queue_mapped(hctx))
3427                 blk_mq_tag_idle(hctx);
3428
3429         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3430                         set->queue_depth, flush_rq);
3431         if (set->ops->exit_request)
3432                 set->ops->exit_request(set, flush_rq, hctx_idx);
3433
3434         if (set->ops->exit_hctx)
3435                 set->ops->exit_hctx(hctx, hctx_idx);
3436
3437         blk_mq_remove_cpuhp(hctx);
3438
3439         spin_lock(&q->unused_hctx_lock);
3440         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3441         spin_unlock(&q->unused_hctx_lock);
3442 }
3443
3444 static void blk_mq_exit_hw_queues(struct request_queue *q,
3445                 struct blk_mq_tag_set *set, int nr_queue)
3446 {
3447         struct blk_mq_hw_ctx *hctx;
3448         unsigned int i;
3449
3450         queue_for_each_hw_ctx(q, hctx, i) {
3451                 if (i == nr_queue)
3452                         break;
3453                 blk_mq_debugfs_unregister_hctx(hctx);
3454                 blk_mq_exit_hctx(q, set, hctx, i);
3455         }
3456 }
3457
3458 static int blk_mq_init_hctx(struct request_queue *q,
3459                 struct blk_mq_tag_set *set,
3460                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3461 {
3462         hctx->queue_num = hctx_idx;
3463
3464         if (!(hctx->flags & BLK_MQ_F_STACKING))
3465                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3466                                 &hctx->cpuhp_online);
3467         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3468
3469         hctx->tags = set->tags[hctx_idx];
3470
3471         if (set->ops->init_hctx &&
3472             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3473                 goto unregister_cpu_notifier;
3474
3475         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3476                                 hctx->numa_node))
3477                 goto exit_hctx;
3478         return 0;
3479
3480  exit_hctx:
3481         if (set->ops->exit_hctx)
3482                 set->ops->exit_hctx(hctx, hctx_idx);
3483  unregister_cpu_notifier:
3484         blk_mq_remove_cpuhp(hctx);
3485         return -1;
3486 }
3487
3488 static struct blk_mq_hw_ctx *
3489 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3490                 int node)
3491 {
3492         struct blk_mq_hw_ctx *hctx;
3493         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3494
3495         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3496         if (!hctx)
3497                 goto fail_alloc_hctx;
3498
3499         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3500                 goto free_hctx;
3501
3502         atomic_set(&hctx->nr_active, 0);
3503         if (node == NUMA_NO_NODE)
3504                 node = set->numa_node;
3505         hctx->numa_node = node;
3506
3507         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3508         spin_lock_init(&hctx->lock);
3509         INIT_LIST_HEAD(&hctx->dispatch);
3510         hctx->queue = q;
3511         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3512
3513         INIT_LIST_HEAD(&hctx->hctx_list);
3514
3515         /*
3516          * Allocate space for all possible cpus to avoid allocation at
3517          * runtime
3518          */
3519         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3520                         gfp, node);
3521         if (!hctx->ctxs)
3522                 goto free_cpumask;
3523
3524         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3525                                 gfp, node, false, false))
3526                 goto free_ctxs;
3527         hctx->nr_ctx = 0;
3528
3529         spin_lock_init(&hctx->dispatch_wait_lock);
3530         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3531         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3532
3533         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3534         if (!hctx->fq)
3535                 goto free_bitmap;
3536
3537         blk_mq_hctx_kobj_init(hctx);
3538
3539         return hctx;
3540
3541  free_bitmap:
3542         sbitmap_free(&hctx->ctx_map);
3543  free_ctxs:
3544         kfree(hctx->ctxs);
3545  free_cpumask:
3546         free_cpumask_var(hctx->cpumask);
3547  free_hctx:
3548         kfree(hctx);
3549  fail_alloc_hctx:
3550         return NULL;
3551 }
3552
3553 static void blk_mq_init_cpu_queues(struct request_queue *q,
3554                                    unsigned int nr_hw_queues)
3555 {
3556         struct blk_mq_tag_set *set = q->tag_set;
3557         unsigned int i, j;
3558
3559         for_each_possible_cpu(i) {
3560                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3561                 struct blk_mq_hw_ctx *hctx;
3562                 int k;
3563
3564                 __ctx->cpu = i;
3565                 spin_lock_init(&__ctx->lock);
3566                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3567                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3568
3569                 __ctx->queue = q;
3570
3571                 /*
3572                  * Set local node, IFF we have more than one hw queue. If
3573                  * not, we remain on the home node of the device
3574                  */
3575                 for (j = 0; j < set->nr_maps; j++) {
3576                         hctx = blk_mq_map_queue_type(q, j, i);
3577                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3578                                 hctx->numa_node = cpu_to_node(i);
3579                 }
3580         }
3581 }
3582
3583 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3584                                              unsigned int hctx_idx,
3585                                              unsigned int depth)
3586 {
3587         struct blk_mq_tags *tags;
3588         int ret;
3589
3590         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3591         if (!tags)
3592                 return NULL;
3593
3594         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3595         if (ret) {
3596                 blk_mq_free_rq_map(tags);
3597                 return NULL;
3598         }
3599
3600         return tags;
3601 }
3602
3603 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3604                                        int hctx_idx)
3605 {
3606         if (blk_mq_is_shared_tags(set->flags)) {
3607                 set->tags[hctx_idx] = set->shared_tags;
3608
3609                 return true;
3610         }
3611
3612         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3613                                                        set->queue_depth);
3614
3615         return set->tags[hctx_idx];
3616 }
3617
3618 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3619                              struct blk_mq_tags *tags,
3620                              unsigned int hctx_idx)
3621 {
3622         if (tags) {
3623                 blk_mq_free_rqs(set, tags, hctx_idx);
3624                 blk_mq_free_rq_map(tags);
3625         }
3626 }
3627
3628 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3629                                       unsigned int hctx_idx)
3630 {
3631         if (!blk_mq_is_shared_tags(set->flags))
3632                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3633
3634         set->tags[hctx_idx] = NULL;
3635 }
3636
3637 static void blk_mq_map_swqueue(struct request_queue *q)
3638 {
3639         unsigned int i, j, hctx_idx;
3640         struct blk_mq_hw_ctx *hctx;
3641         struct blk_mq_ctx *ctx;
3642         struct blk_mq_tag_set *set = q->tag_set;
3643
3644         queue_for_each_hw_ctx(q, hctx, i) {
3645                 cpumask_clear(hctx->cpumask);
3646                 hctx->nr_ctx = 0;
3647                 hctx->dispatch_from = NULL;
3648         }
3649
3650         /*
3651          * Map software to hardware queues.
3652          *
3653          * If the cpu isn't present, the cpu is mapped to first hctx.
3654          */
3655         for_each_possible_cpu(i) {
3656
3657                 ctx = per_cpu_ptr(q->queue_ctx, i);
3658                 for (j = 0; j < set->nr_maps; j++) {
3659                         if (!set->map[j].nr_queues) {
3660                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3661                                                 HCTX_TYPE_DEFAULT, i);
3662                                 continue;
3663                         }
3664                         hctx_idx = set->map[j].mq_map[i];
3665                         /* unmapped hw queue can be remapped after CPU topo changed */
3666                         if (!set->tags[hctx_idx] &&
3667                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3668                                 /*
3669                                  * If tags initialization fail for some hctx,
3670                                  * that hctx won't be brought online.  In this
3671                                  * case, remap the current ctx to hctx[0] which
3672                                  * is guaranteed to always have tags allocated
3673                                  */
3674                                 set->map[j].mq_map[i] = 0;
3675                         }
3676
3677                         hctx = blk_mq_map_queue_type(q, j, i);
3678                         ctx->hctxs[j] = hctx;
3679                         /*
3680                          * If the CPU is already set in the mask, then we've
3681                          * mapped this one already. This can happen if
3682                          * devices share queues across queue maps.
3683                          */
3684                         if (cpumask_test_cpu(i, hctx->cpumask))
3685                                 continue;
3686
3687                         cpumask_set_cpu(i, hctx->cpumask);
3688                         hctx->type = j;
3689                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3690                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3691
3692                         /*
3693                          * If the nr_ctx type overflows, we have exceeded the
3694                          * amount of sw queues we can support.
3695                          */
3696                         BUG_ON(!hctx->nr_ctx);
3697                 }
3698
3699                 for (; j < HCTX_MAX_TYPES; j++)
3700                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3701                                         HCTX_TYPE_DEFAULT, i);
3702         }
3703
3704         queue_for_each_hw_ctx(q, hctx, i) {
3705                 /*
3706                  * If no software queues are mapped to this hardware queue,
3707                  * disable it and free the request entries.
3708                  */
3709                 if (!hctx->nr_ctx) {
3710                         /* Never unmap queue 0.  We need it as a
3711                          * fallback in case of a new remap fails
3712                          * allocation
3713                          */
3714                         if (i)
3715                                 __blk_mq_free_map_and_rqs(set, i);
3716
3717                         hctx->tags = NULL;
3718                         continue;
3719                 }
3720
3721                 hctx->tags = set->tags[i];
3722                 WARN_ON(!hctx->tags);
3723
3724                 /*
3725                  * Set the map size to the number of mapped software queues.
3726                  * This is more accurate and more efficient than looping
3727                  * over all possibly mapped software queues.
3728                  */
3729                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3730
3731                 /*
3732                  * Initialize batch roundrobin counts
3733                  */
3734                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3735                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3736         }
3737 }
3738
3739 /*
3740  * Caller needs to ensure that we're either frozen/quiesced, or that
3741  * the queue isn't live yet.
3742  */
3743 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3744 {
3745         struct blk_mq_hw_ctx *hctx;
3746         int i;
3747
3748         queue_for_each_hw_ctx(q, hctx, i) {
3749                 if (shared) {
3750                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3751                 } else {
3752                         blk_mq_tag_idle(hctx);
3753                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3754                 }
3755         }
3756 }
3757
3758 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3759                                          bool shared)
3760 {
3761         struct request_queue *q;
3762
3763         lockdep_assert_held(&set->tag_list_lock);
3764
3765         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3766                 blk_mq_freeze_queue(q);
3767                 queue_set_hctx_shared(q, shared);
3768                 blk_mq_unfreeze_queue(q);
3769         }
3770 }
3771
3772 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3773 {
3774         struct blk_mq_tag_set *set = q->tag_set;
3775
3776         mutex_lock(&set->tag_list_lock);
3777         list_del(&q->tag_set_list);
3778         if (list_is_singular(&set->tag_list)) {
3779                 /* just transitioned to unshared */
3780                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3781                 /* update existing queue */
3782                 blk_mq_update_tag_set_shared(set, false);
3783         }
3784         mutex_unlock(&set->tag_list_lock);
3785         INIT_LIST_HEAD(&q->tag_set_list);
3786 }
3787
3788 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3789                                      struct request_queue *q)
3790 {
3791         mutex_lock(&set->tag_list_lock);
3792
3793         /*
3794          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3795          */
3796         if (!list_empty(&set->tag_list) &&
3797             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3798                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3799                 /* update existing queue */
3800                 blk_mq_update_tag_set_shared(set, true);
3801         }
3802         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3803                 queue_set_hctx_shared(q, true);
3804         list_add_tail(&q->tag_set_list, &set->tag_list);
3805
3806         mutex_unlock(&set->tag_list_lock);
3807 }
3808
3809 /* All allocations will be freed in release handler of q->mq_kobj */
3810 static int blk_mq_alloc_ctxs(struct request_queue *q)
3811 {
3812         struct blk_mq_ctxs *ctxs;
3813         int cpu;
3814
3815         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3816         if (!ctxs)
3817                 return -ENOMEM;
3818
3819         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3820         if (!ctxs->queue_ctx)
3821                 goto fail;
3822
3823         for_each_possible_cpu(cpu) {
3824                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3825                 ctx->ctxs = ctxs;
3826         }
3827
3828         q->mq_kobj = &ctxs->kobj;
3829         q->queue_ctx = ctxs->queue_ctx;
3830
3831         return 0;
3832  fail:
3833         kfree(ctxs);
3834         return -ENOMEM;
3835 }
3836
3837 /*
3838  * It is the actual release handler for mq, but we do it from
3839  * request queue's release handler for avoiding use-after-free
3840  * and headache because q->mq_kobj shouldn't have been introduced,
3841  * but we can't group ctx/kctx kobj without it.
3842  */
3843 void blk_mq_release(struct request_queue *q)
3844 {
3845         struct blk_mq_hw_ctx *hctx, *next;
3846         int i;
3847
3848         queue_for_each_hw_ctx(q, hctx, i)
3849                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3850
3851         /* all hctx are in .unused_hctx_list now */
3852         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3853                 list_del_init(&hctx->hctx_list);
3854                 kobject_put(&hctx->kobj);
3855         }
3856
3857         kfree(q->queue_hw_ctx);
3858
3859         /*
3860          * release .mq_kobj and sw queue's kobject now because
3861          * both share lifetime with request queue.
3862          */
3863         blk_mq_sysfs_deinit(q);
3864 }
3865
3866 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3867                 void *queuedata)
3868 {
3869         struct request_queue *q;
3870         int ret;
3871
3872         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3873         if (!q)
3874                 return ERR_PTR(-ENOMEM);
3875         q->queuedata = queuedata;
3876         ret = blk_mq_init_allocated_queue(set, q);
3877         if (ret) {
3878                 blk_cleanup_queue(q);
3879                 return ERR_PTR(ret);
3880         }
3881         return q;
3882 }
3883
3884 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3885 {
3886         return blk_mq_init_queue_data(set, NULL);
3887 }
3888 EXPORT_SYMBOL(blk_mq_init_queue);
3889
3890 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3891                 struct lock_class_key *lkclass)
3892 {
3893         struct request_queue *q;
3894         struct gendisk *disk;
3895
3896         q = blk_mq_init_queue_data(set, queuedata);
3897         if (IS_ERR(q))
3898                 return ERR_CAST(q);
3899
3900         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3901         if (!disk) {
3902                 blk_cleanup_queue(q);
3903                 return ERR_PTR(-ENOMEM);
3904         }
3905         return disk;
3906 }
3907 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3908
3909 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3910                 struct blk_mq_tag_set *set, struct request_queue *q,
3911                 int hctx_idx, int node)
3912 {
3913         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3914
3915         /* reuse dead hctx first */
3916         spin_lock(&q->unused_hctx_lock);
3917         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3918                 if (tmp->numa_node == node) {
3919                         hctx = tmp;
3920                         break;
3921                 }
3922         }
3923         if (hctx)
3924                 list_del_init(&hctx->hctx_list);
3925         spin_unlock(&q->unused_hctx_lock);
3926
3927         if (!hctx)
3928                 hctx = blk_mq_alloc_hctx(q, set, node);
3929         if (!hctx)
3930                 goto fail;
3931
3932         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3933                 goto free_hctx;
3934
3935         return hctx;
3936
3937  free_hctx:
3938         kobject_put(&hctx->kobj);
3939  fail:
3940         return NULL;
3941 }
3942
3943 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3944                                                 struct request_queue *q)
3945 {
3946         int i, j, end;
3947         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3948
3949         if (q->nr_hw_queues < set->nr_hw_queues) {
3950                 struct blk_mq_hw_ctx **new_hctxs;
3951
3952                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3953                                        sizeof(*new_hctxs), GFP_KERNEL,
3954                                        set->numa_node);
3955                 if (!new_hctxs)
3956                         return;
3957                 if (hctxs)
3958                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3959                                sizeof(*hctxs));
3960                 q->queue_hw_ctx = new_hctxs;
3961                 kfree(hctxs);
3962                 hctxs = new_hctxs;
3963         }
3964
3965         /* protect against switching io scheduler  */
3966         mutex_lock(&q->sysfs_lock);
3967         for (i = 0; i < set->nr_hw_queues; i++) {
3968                 int node;
3969                 struct blk_mq_hw_ctx *hctx;
3970
3971                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3972                 /*
3973                  * If the hw queue has been mapped to another numa node,
3974                  * we need to realloc the hctx. If allocation fails, fallback
3975                  * to use the previous one.
3976                  */
3977                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3978                         continue;
3979
3980                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3981                 if (hctx) {
3982                         if (hctxs[i])
3983                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3984                         hctxs[i] = hctx;
3985                 } else {
3986                         if (hctxs[i])
3987                                 pr_warn("Allocate new hctx on node %d fails,\
3988                                                 fallback to previous one on node %d\n",
3989                                                 node, hctxs[i]->numa_node);
3990                         else
3991                                 break;
3992                 }
3993         }
3994         /*
3995          * Increasing nr_hw_queues fails. Free the newly allocated
3996          * hctxs and keep the previous q->nr_hw_queues.
3997          */
3998         if (i != set->nr_hw_queues) {
3999                 j = q->nr_hw_queues;
4000                 end = i;
4001         } else {
4002                 j = i;
4003                 end = q->nr_hw_queues;
4004                 q->nr_hw_queues = set->nr_hw_queues;
4005         }
4006
4007         for (; j < end; j++) {
4008                 struct blk_mq_hw_ctx *hctx = hctxs[j];
4009
4010                 if (hctx) {
4011                         blk_mq_exit_hctx(q, set, hctx, j);
4012                         hctxs[j] = NULL;
4013                 }
4014         }
4015         mutex_unlock(&q->sysfs_lock);
4016 }
4017
4018 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4019                 struct request_queue *q)
4020 {
4021         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4022                         !!(set->flags & BLK_MQ_F_BLOCKING));
4023
4024         /* mark the queue as mq asap */
4025         q->mq_ops = set->ops;
4026
4027         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4028                                              blk_mq_poll_stats_bkt,
4029                                              BLK_MQ_POLL_STATS_BKTS, q);
4030         if (!q->poll_cb)
4031                 goto err_exit;
4032
4033         if (blk_mq_alloc_ctxs(q))
4034                 goto err_poll;
4035
4036         /* init q->mq_kobj and sw queues' kobjects */
4037         blk_mq_sysfs_init(q);
4038
4039         INIT_LIST_HEAD(&q->unused_hctx_list);
4040         spin_lock_init(&q->unused_hctx_lock);
4041
4042         blk_mq_realloc_hw_ctxs(set, q);
4043         if (!q->nr_hw_queues)
4044                 goto err_hctxs;
4045
4046         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4047         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4048
4049         q->tag_set = set;
4050
4051         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4052         if (set->nr_maps > HCTX_TYPE_POLL &&
4053             set->map[HCTX_TYPE_POLL].nr_queues)
4054                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4055
4056         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4057         INIT_LIST_HEAD(&q->requeue_list);
4058         spin_lock_init(&q->requeue_lock);
4059
4060         q->nr_requests = set->queue_depth;
4061
4062         /*
4063          * Default to classic polling
4064          */
4065         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4066
4067         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4068         blk_mq_add_queue_tag_set(set, q);
4069         blk_mq_map_swqueue(q);
4070         return 0;
4071
4072 err_hctxs:
4073         kfree(q->queue_hw_ctx);
4074         q->nr_hw_queues = 0;
4075         blk_mq_sysfs_deinit(q);
4076 err_poll:
4077         blk_stat_free_callback(q->poll_cb);
4078         q->poll_cb = NULL;
4079 err_exit:
4080         q->mq_ops = NULL;
4081         return -ENOMEM;
4082 }
4083 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4084
4085 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4086 void blk_mq_exit_queue(struct request_queue *q)
4087 {
4088         struct blk_mq_tag_set *set = q->tag_set;
4089
4090         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4091         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4092         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4093         blk_mq_del_queue_tag_set(q);
4094 }
4095
4096 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4097 {
4098         int i;
4099
4100         if (blk_mq_is_shared_tags(set->flags)) {
4101                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4102                                                 BLK_MQ_NO_HCTX_IDX,
4103                                                 set->queue_depth);
4104                 if (!set->shared_tags)
4105                         return -ENOMEM;
4106         }
4107
4108         for (i = 0; i < set->nr_hw_queues; i++) {
4109                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4110                         goto out_unwind;
4111                 cond_resched();
4112         }
4113
4114         return 0;
4115
4116 out_unwind:
4117         while (--i >= 0)
4118                 __blk_mq_free_map_and_rqs(set, i);
4119
4120         if (blk_mq_is_shared_tags(set->flags)) {
4121                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4122                                         BLK_MQ_NO_HCTX_IDX);
4123         }
4124
4125         return -ENOMEM;
4126 }
4127
4128 /*
4129  * Allocate the request maps associated with this tag_set. Note that this
4130  * may reduce the depth asked for, if memory is tight. set->queue_depth
4131  * will be updated to reflect the allocated depth.
4132  */
4133 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4134 {
4135         unsigned int depth;
4136         int err;
4137
4138         depth = set->queue_depth;
4139         do {
4140                 err = __blk_mq_alloc_rq_maps(set);
4141                 if (!err)
4142                         break;
4143
4144                 set->queue_depth >>= 1;
4145                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4146                         err = -ENOMEM;
4147                         break;
4148                 }
4149         } while (set->queue_depth);
4150
4151         if (!set->queue_depth || err) {
4152                 pr_err("blk-mq: failed to allocate request map\n");
4153                 return -ENOMEM;
4154         }
4155
4156         if (depth != set->queue_depth)
4157                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4158                                                 depth, set->queue_depth);
4159
4160         return 0;
4161 }
4162
4163 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4164 {
4165         /*
4166          * blk_mq_map_queues() and multiple .map_queues() implementations
4167          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4168          * number of hardware queues.
4169          */
4170         if (set->nr_maps == 1)
4171                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4172
4173         if (set->ops->map_queues && !is_kdump_kernel()) {
4174                 int i;
4175
4176                 /*
4177                  * transport .map_queues is usually done in the following
4178                  * way:
4179                  *
4180                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4181                  *      mask = get_cpu_mask(queue)
4182                  *      for_each_cpu(cpu, mask)
4183                  *              set->map[x].mq_map[cpu] = queue;
4184                  * }
4185                  *
4186                  * When we need to remap, the table has to be cleared for
4187                  * killing stale mapping since one CPU may not be mapped
4188                  * to any hw queue.
4189                  */
4190                 for (i = 0; i < set->nr_maps; i++)
4191                         blk_mq_clear_mq_map(&set->map[i]);
4192
4193                 return set->ops->map_queues(set);
4194         } else {
4195                 BUG_ON(set->nr_maps > 1);
4196                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4197         }
4198 }
4199
4200 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4201                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4202 {
4203         struct blk_mq_tags **new_tags;
4204
4205         if (cur_nr_hw_queues >= new_nr_hw_queues)
4206                 return 0;
4207
4208         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4209                                 GFP_KERNEL, set->numa_node);
4210         if (!new_tags)
4211                 return -ENOMEM;
4212
4213         if (set->tags)
4214                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4215                        sizeof(*set->tags));
4216         kfree(set->tags);
4217         set->tags = new_tags;
4218         set->nr_hw_queues = new_nr_hw_queues;
4219
4220         return 0;
4221 }
4222
4223 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4224                                 int new_nr_hw_queues)
4225 {
4226         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4227 }
4228
4229 /*
4230  * Alloc a tag set to be associated with one or more request queues.
4231  * May fail with EINVAL for various error conditions. May adjust the
4232  * requested depth down, if it's too large. In that case, the set
4233  * value will be stored in set->queue_depth.
4234  */
4235 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4236 {
4237         int i, ret;
4238
4239         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4240
4241         if (!set->nr_hw_queues)
4242                 return -EINVAL;
4243         if (!set->queue_depth)
4244                 return -EINVAL;
4245         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4246                 return -EINVAL;
4247
4248         if (!set->ops->queue_rq)
4249                 return -EINVAL;
4250
4251         if (!set->ops->get_budget ^ !set->ops->put_budget)
4252                 return -EINVAL;
4253
4254         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4255                 pr_info("blk-mq: reduced tag depth to %u\n",
4256                         BLK_MQ_MAX_DEPTH);
4257                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4258         }
4259
4260         if (!set->nr_maps)
4261                 set->nr_maps = 1;
4262         else if (set->nr_maps > HCTX_MAX_TYPES)
4263                 return -EINVAL;
4264
4265         /*
4266          * If a crashdump is active, then we are potentially in a very
4267          * memory constrained environment. Limit us to 1 queue and
4268          * 64 tags to prevent using too much memory.
4269          */
4270         if (is_kdump_kernel()) {
4271                 set->nr_hw_queues = 1;
4272                 set->nr_maps = 1;
4273                 set->queue_depth = min(64U, set->queue_depth);
4274         }
4275         /*
4276          * There is no use for more h/w queues than cpus if we just have
4277          * a single map
4278          */
4279         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4280                 set->nr_hw_queues = nr_cpu_ids;
4281
4282         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4283                 return -ENOMEM;
4284
4285         ret = -ENOMEM;
4286         for (i = 0; i < set->nr_maps; i++) {
4287                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4288                                                   sizeof(set->map[i].mq_map[0]),
4289                                                   GFP_KERNEL, set->numa_node);
4290                 if (!set->map[i].mq_map)
4291                         goto out_free_mq_map;
4292                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4293         }
4294
4295         ret = blk_mq_update_queue_map(set);
4296         if (ret)
4297                 goto out_free_mq_map;
4298
4299         ret = blk_mq_alloc_set_map_and_rqs(set);
4300         if (ret)
4301                 goto out_free_mq_map;
4302
4303         mutex_init(&set->tag_list_lock);
4304         INIT_LIST_HEAD(&set->tag_list);
4305
4306         return 0;
4307
4308 out_free_mq_map:
4309         for (i = 0; i < set->nr_maps; i++) {
4310                 kfree(set->map[i].mq_map);
4311                 set->map[i].mq_map = NULL;
4312         }
4313         kfree(set->tags);
4314         set->tags = NULL;
4315         return ret;
4316 }
4317 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4318
4319 /* allocate and initialize a tagset for a simple single-queue device */
4320 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4321                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4322                 unsigned int set_flags)
4323 {
4324         memset(set, 0, sizeof(*set));
4325         set->ops = ops;
4326         set->nr_hw_queues = 1;
4327         set->nr_maps = 1;
4328         set->queue_depth = queue_depth;
4329         set->numa_node = NUMA_NO_NODE;
4330         set->flags = set_flags;
4331         return blk_mq_alloc_tag_set(set);
4332 }
4333 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4334
4335 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4336 {
4337         int i, j;
4338
4339         for (i = 0; i < set->nr_hw_queues; i++)
4340                 __blk_mq_free_map_and_rqs(set, i);
4341
4342         if (blk_mq_is_shared_tags(set->flags)) {
4343                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4344                                         BLK_MQ_NO_HCTX_IDX);
4345         }
4346
4347         for (j = 0; j < set->nr_maps; j++) {
4348                 kfree(set->map[j].mq_map);
4349                 set->map[j].mq_map = NULL;
4350         }
4351
4352         kfree(set->tags);
4353         set->tags = NULL;
4354 }
4355 EXPORT_SYMBOL(blk_mq_free_tag_set);
4356
4357 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4358 {
4359         struct blk_mq_tag_set *set = q->tag_set;
4360         struct blk_mq_hw_ctx *hctx;
4361         int i, ret;
4362
4363         if (!set)
4364                 return -EINVAL;
4365
4366         if (q->nr_requests == nr)
4367                 return 0;
4368
4369         blk_mq_freeze_queue(q);
4370         blk_mq_quiesce_queue(q);
4371
4372         ret = 0;
4373         queue_for_each_hw_ctx(q, hctx, i) {
4374                 if (!hctx->tags)
4375                         continue;
4376                 /*
4377                  * If we're using an MQ scheduler, just update the scheduler
4378                  * queue depth. This is similar to what the old code would do.
4379                  */
4380                 if (hctx->sched_tags) {
4381                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4382                                                       nr, true);
4383                 } else {
4384                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4385                                                       false);
4386                 }
4387                 if (ret)
4388                         break;
4389                 if (q->elevator && q->elevator->type->ops.depth_updated)
4390                         q->elevator->type->ops.depth_updated(hctx);
4391         }
4392         if (!ret) {
4393                 q->nr_requests = nr;
4394                 if (blk_mq_is_shared_tags(set->flags)) {
4395                         if (q->elevator)
4396                                 blk_mq_tag_update_sched_shared_tags(q);
4397                         else
4398                                 blk_mq_tag_resize_shared_tags(set, nr);
4399                 }
4400         }
4401
4402         blk_mq_unquiesce_queue(q);
4403         blk_mq_unfreeze_queue(q);
4404
4405         return ret;
4406 }
4407
4408 /*
4409  * request_queue and elevator_type pair.
4410  * It is just used by __blk_mq_update_nr_hw_queues to cache
4411  * the elevator_type associated with a request_queue.
4412  */
4413 struct blk_mq_qe_pair {
4414         struct list_head node;
4415         struct request_queue *q;
4416         struct elevator_type *type;
4417 };
4418
4419 /*
4420  * Cache the elevator_type in qe pair list and switch the
4421  * io scheduler to 'none'
4422  */
4423 static bool blk_mq_elv_switch_none(struct list_head *head,
4424                 struct request_queue *q)
4425 {
4426         struct blk_mq_qe_pair *qe;
4427
4428         if (!q->elevator)
4429                 return true;
4430
4431         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4432         if (!qe)
4433                 return false;
4434
4435         INIT_LIST_HEAD(&qe->node);
4436         qe->q = q;
4437         qe->type = q->elevator->type;
4438         list_add(&qe->node, head);
4439
4440         mutex_lock(&q->sysfs_lock);
4441         /*
4442          * After elevator_switch_mq, the previous elevator_queue will be
4443          * released by elevator_release. The reference of the io scheduler
4444          * module get by elevator_get will also be put. So we need to get
4445          * a reference of the io scheduler module here to prevent it to be
4446          * removed.
4447          */
4448         __module_get(qe->type->elevator_owner);
4449         elevator_switch_mq(q, NULL);
4450         mutex_unlock(&q->sysfs_lock);
4451
4452         return true;
4453 }
4454
4455 static void blk_mq_elv_switch_back(struct list_head *head,
4456                 struct request_queue *q)
4457 {
4458         struct blk_mq_qe_pair *qe;
4459         struct elevator_type *t = NULL;
4460
4461         list_for_each_entry(qe, head, node)
4462                 if (qe->q == q) {
4463                         t = qe->type;
4464                         break;
4465                 }
4466
4467         if (!t)
4468                 return;
4469
4470         list_del(&qe->node);
4471         kfree(qe);
4472
4473         mutex_lock(&q->sysfs_lock);
4474         elevator_switch_mq(q, t);
4475         mutex_unlock(&q->sysfs_lock);
4476 }
4477
4478 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4479                                                         int nr_hw_queues)
4480 {
4481         struct request_queue *q;
4482         LIST_HEAD(head);
4483         int prev_nr_hw_queues;
4484
4485         lockdep_assert_held(&set->tag_list_lock);
4486
4487         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4488                 nr_hw_queues = nr_cpu_ids;
4489         if (nr_hw_queues < 1)
4490                 return;
4491         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4492                 return;
4493
4494         list_for_each_entry(q, &set->tag_list, tag_set_list)
4495                 blk_mq_freeze_queue(q);
4496         /*
4497          * Switch IO scheduler to 'none', cleaning up the data associated
4498          * with the previous scheduler. We will switch back once we are done
4499          * updating the new sw to hw queue mappings.
4500          */
4501         list_for_each_entry(q, &set->tag_list, tag_set_list)
4502                 if (!blk_mq_elv_switch_none(&head, q))
4503                         goto switch_back;
4504
4505         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4506                 blk_mq_debugfs_unregister_hctxs(q);
4507                 blk_mq_sysfs_unregister(q);
4508         }
4509
4510         prev_nr_hw_queues = set->nr_hw_queues;
4511         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4512             0)
4513                 goto reregister;
4514
4515         set->nr_hw_queues = nr_hw_queues;
4516 fallback:
4517         blk_mq_update_queue_map(set);
4518         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4519                 blk_mq_realloc_hw_ctxs(set, q);
4520                 if (q->nr_hw_queues != set->nr_hw_queues) {
4521                         int i = prev_nr_hw_queues;
4522
4523                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4524                                         nr_hw_queues, prev_nr_hw_queues);
4525                         for (; i < set->nr_hw_queues; i++)
4526                                 __blk_mq_free_map_and_rqs(set, i);
4527
4528                         set->nr_hw_queues = prev_nr_hw_queues;
4529                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4530                         goto fallback;
4531                 }
4532                 blk_mq_map_swqueue(q);
4533         }
4534
4535 reregister:
4536         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4537                 blk_mq_sysfs_register(q);
4538                 blk_mq_debugfs_register_hctxs(q);
4539         }
4540
4541 switch_back:
4542         list_for_each_entry(q, &set->tag_list, tag_set_list)
4543                 blk_mq_elv_switch_back(&head, q);
4544
4545         list_for_each_entry(q, &set->tag_list, tag_set_list)
4546                 blk_mq_unfreeze_queue(q);
4547 }
4548
4549 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4550 {
4551         mutex_lock(&set->tag_list_lock);
4552         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4553         mutex_unlock(&set->tag_list_lock);
4554 }
4555 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4556
4557 /* Enable polling stats and return whether they were already enabled. */
4558 static bool blk_poll_stats_enable(struct request_queue *q)
4559 {
4560         if (q->poll_stat)
4561                 return true;
4562
4563         return blk_stats_alloc_enable(q);
4564 }
4565
4566 static void blk_mq_poll_stats_start(struct request_queue *q)
4567 {
4568         /*
4569          * We don't arm the callback if polling stats are not enabled or the
4570          * callback is already active.
4571          */
4572         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4573                 return;
4574
4575         blk_stat_activate_msecs(q->poll_cb, 100);
4576 }
4577
4578 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4579 {
4580         struct request_queue *q = cb->data;
4581         int bucket;
4582
4583         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4584                 if (cb->stat[bucket].nr_samples)
4585                         q->poll_stat[bucket] = cb->stat[bucket];
4586         }
4587 }
4588
4589 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4590                                        struct request *rq)
4591 {
4592         unsigned long ret = 0;
4593         int bucket;
4594
4595         /*
4596          * If stats collection isn't on, don't sleep but turn it on for
4597          * future users
4598          */
4599         if (!blk_poll_stats_enable(q))
4600                 return 0;
4601
4602         /*
4603          * As an optimistic guess, use half of the mean service time
4604          * for this type of request. We can (and should) make this smarter.
4605          * For instance, if the completion latencies are tight, we can
4606          * get closer than just half the mean. This is especially
4607          * important on devices where the completion latencies are longer
4608          * than ~10 usec. We do use the stats for the relevant IO size
4609          * if available which does lead to better estimates.
4610          */
4611         bucket = blk_mq_poll_stats_bkt(rq);
4612         if (bucket < 0)
4613                 return ret;
4614
4615         if (q->poll_stat[bucket].nr_samples)
4616                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4617
4618         return ret;
4619 }
4620
4621 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4622 {
4623         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4624         struct request *rq = blk_qc_to_rq(hctx, qc);
4625         struct hrtimer_sleeper hs;
4626         enum hrtimer_mode mode;
4627         unsigned int nsecs;
4628         ktime_t kt;
4629
4630         /*
4631          * If a request has completed on queue that uses an I/O scheduler, we
4632          * won't get back a request from blk_qc_to_rq.
4633          */
4634         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4635                 return false;
4636
4637         /*
4638          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4639          *
4640          *  0:  use half of prev avg
4641          * >0:  use this specific value
4642          */
4643         if (q->poll_nsec > 0)
4644                 nsecs = q->poll_nsec;
4645         else
4646                 nsecs = blk_mq_poll_nsecs(q, rq);
4647
4648         if (!nsecs)
4649                 return false;
4650
4651         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4652
4653         /*
4654          * This will be replaced with the stats tracking code, using
4655          * 'avg_completion_time / 2' as the pre-sleep target.
4656          */
4657         kt = nsecs;
4658
4659         mode = HRTIMER_MODE_REL;
4660         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4661         hrtimer_set_expires(&hs.timer, kt);
4662
4663         do {
4664                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4665                         break;
4666                 set_current_state(TASK_UNINTERRUPTIBLE);
4667                 hrtimer_sleeper_start_expires(&hs, mode);
4668                 if (hs.task)
4669                         io_schedule();
4670                 hrtimer_cancel(&hs.timer);
4671                 mode = HRTIMER_MODE_ABS;
4672         } while (hs.task && !signal_pending(current));
4673
4674         __set_current_state(TASK_RUNNING);
4675         destroy_hrtimer_on_stack(&hs.timer);
4676
4677         /*
4678          * If we sleep, have the caller restart the poll loop to reset the
4679          * state.  Like for the other success return cases, the caller is
4680          * responsible for checking if the IO completed.  If the IO isn't
4681          * complete, we'll get called again and will go straight to the busy
4682          * poll loop.
4683          */
4684         return true;
4685 }
4686
4687 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4688                                struct io_comp_batch *iob, unsigned int flags)
4689 {
4690         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4691         long state = get_current_state();
4692         int ret;
4693
4694         do {
4695                 ret = q->mq_ops->poll(hctx, iob);
4696                 if (ret > 0) {
4697                         __set_current_state(TASK_RUNNING);
4698                         return ret;
4699                 }
4700
4701                 if (signal_pending_state(state, current))
4702                         __set_current_state(TASK_RUNNING);
4703                 if (task_is_running(current))
4704                         return 1;
4705
4706                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4707                         break;
4708                 cpu_relax();
4709         } while (!need_resched());
4710
4711         __set_current_state(TASK_RUNNING);
4712         return 0;
4713 }
4714
4715 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4716                 unsigned int flags)
4717 {
4718         if (!(flags & BLK_POLL_NOSLEEP) &&
4719             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4720                 if (blk_mq_poll_hybrid(q, cookie))
4721                         return 1;
4722         }
4723         return blk_mq_poll_classic(q, cookie, iob, flags);
4724 }
4725
4726 unsigned int blk_mq_rq_cpu(struct request *rq)
4727 {
4728         return rq->mq_ctx->cpu;
4729 }
4730 EXPORT_SYMBOL(blk_mq_rq_cpu);
4731
4732 void blk_mq_cancel_work_sync(struct request_queue *q)
4733 {
4734         if (queue_is_mq(q)) {
4735                 struct blk_mq_hw_ctx *hctx;
4736                 int i;
4737
4738                 cancel_delayed_work_sync(&q->requeue_work);
4739
4740                 queue_for_each_hw_ctx(q, hctx, i)
4741                         cancel_delayed_work_sync(&hctx->run_work);
4742         }
4743 }
4744
4745 static int __init blk_mq_init(void)
4746 {
4747         int i;
4748
4749         for_each_possible_cpu(i)
4750                 init_llist_head(&per_cpu(blk_cpu_done, i));
4751         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4752
4753         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4754                                   "block/softirq:dead", NULL,
4755                                   blk_softirq_cpu_dead);
4756         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4757                                 blk_mq_hctx_notify_dead);
4758         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4759                                 blk_mq_hctx_notify_online,
4760                                 blk_mq_hctx_notify_offline);
4761         return 0;
4762 }
4763 subsys_initcall(blk_mq_init);