Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48         int ddir, bytes, bucket;
49
50         ddir = rq_data_dir(rq);
51         bytes = blk_rq_bytes(rq);
52
53         bucket = ddir + 2*(ilog2(bytes) - 9);
54
55         if (bucket < 0)
56                 return -1;
57         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60         return bucket;
61 }
62
63 /*
64  * Check if any of the ctx's have pending work in this hardware queue
65  */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         !list_empty_careful(&hctx->dispatch) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84                                       struct blk_mq_ctx *ctx)
85 {
86         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91         int freeze_depth;
92
93         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94         if (freeze_depth == 1) {
95                 percpu_ref_kill(&q->q_usage_counter);
96                 blk_mq_run_hw_queues(q, false);
97         }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108                                      unsigned long timeout)
109 {
110         return wait_event_timeout(q->mq_freeze_wq,
111                                         percpu_ref_is_zero(&q->q_usage_counter),
112                                         timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117  * Guarantee no request is in use, so we can change any data structure of
118  * the queue afterward.
119  */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122         /*
123          * In the !blk_mq case we are only calling this to kill the
124          * q_usage_counter, otherwise this increases the freeze depth
125          * and waits for it to return to zero.  For this reason there is
126          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127          * exported to drivers as the only user for unfreeze is blk_mq.
128          */
129         blk_freeze_queue_start(q);
130         blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135         /*
136          * ...just an alias to keep freeze and unfreeze actions balanced
137          * in the blk_mq_* namespace
138          */
139         blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145         int freeze_depth;
146
147         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148         WARN_ON_ONCE(freeze_depth < 0);
149         if (!freeze_depth) {
150                 percpu_ref_reinit(&q->q_usage_counter);
151                 wake_up_all(&q->mq_freeze_wq);
152         }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /*
157  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
158  * mpt3sas driver such that this function can be removed.
159  */
160 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
161 {
162         unsigned long flags;
163
164         spin_lock_irqsave(q->queue_lock, flags);
165         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
166         spin_unlock_irqrestore(q->queue_lock, flags);
167 }
168 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
169
170 /**
171  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
172  * @q: request queue.
173  *
174  * Note: this function does not prevent that the struct request end_io()
175  * callback function is invoked. Once this function is returned, we make
176  * sure no dispatch can happen until the queue is unquiesced via
177  * blk_mq_unquiesce_queue().
178  */
179 void blk_mq_quiesce_queue(struct request_queue *q)
180 {
181         struct blk_mq_hw_ctx *hctx;
182         unsigned int i;
183         bool rcu = false;
184
185         blk_mq_quiesce_queue_nowait(q);
186
187         queue_for_each_hw_ctx(q, hctx, i) {
188                 if (hctx->flags & BLK_MQ_F_BLOCKING)
189                         synchronize_srcu(hctx->queue_rq_srcu);
190                 else
191                         rcu = true;
192         }
193         if (rcu)
194                 synchronize_rcu();
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
197
198 /*
199  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
200  * @q: request queue.
201  *
202  * This function recovers queue into the state before quiescing
203  * which is done by blk_mq_quiesce_queue.
204  */
205 void blk_mq_unquiesce_queue(struct request_queue *q)
206 {
207         unsigned long flags;
208
209         spin_lock_irqsave(q->queue_lock, flags);
210         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(q->queue_lock, flags);
212
213         /* dispatch requests which are inserted during quiescing */
214         blk_mq_run_hw_queues(q, true);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
217
218 void blk_mq_wake_waiters(struct request_queue *q)
219 {
220         struct blk_mq_hw_ctx *hctx;
221         unsigned int i;
222
223         queue_for_each_hw_ctx(q, hctx, i)
224                 if (blk_mq_hw_queue_mapped(hctx))
225                         blk_mq_tag_wakeup_all(hctx->tags, true);
226
227         /*
228          * If we are called because the queue has now been marked as
229          * dying, we need to ensure that processes currently waiting on
230          * the queue are notified as well.
231          */
232         wake_up_all(&q->mq_freeze_wq);
233 }
234
235 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
236 {
237         return blk_mq_has_free_tags(hctx->tags);
238 }
239 EXPORT_SYMBOL(blk_mq_can_queue);
240
241 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
242                 unsigned int tag, unsigned int op)
243 {
244         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
245         struct request *rq = tags->static_rqs[tag];
246
247         rq->rq_flags = 0;
248
249         if (data->flags & BLK_MQ_REQ_INTERNAL) {
250                 rq->tag = -1;
251                 rq->internal_tag = tag;
252         } else {
253                 if (blk_mq_tag_busy(data->hctx)) {
254                         rq->rq_flags = RQF_MQ_INFLIGHT;
255                         atomic_inc(&data->hctx->nr_active);
256                 }
257                 rq->tag = tag;
258                 rq->internal_tag = -1;
259                 data->hctx->tags->rqs[rq->tag] = rq;
260         }
261
262         INIT_LIST_HEAD(&rq->queuelist);
263         /* csd/requeue_work/fifo_time is initialized before use */
264         rq->q = data->q;
265         rq->mq_ctx = data->ctx;
266         rq->cmd_flags = op;
267         if (blk_queue_io_stat(data->q))
268                 rq->rq_flags |= RQF_IO_STAT;
269         /* do not touch atomic flags, it needs atomic ops against the timer */
270         rq->cpu = -1;
271         INIT_HLIST_NODE(&rq->hash);
272         RB_CLEAR_NODE(&rq->rb_node);
273         rq->rq_disk = NULL;
274         rq->part = NULL;
275         rq->start_time = jiffies;
276 #ifdef CONFIG_BLK_CGROUP
277         rq->rl = NULL;
278         set_start_time_ns(rq);
279         rq->io_start_time_ns = 0;
280 #endif
281         rq->nr_phys_segments = 0;
282 #if defined(CONFIG_BLK_DEV_INTEGRITY)
283         rq->nr_integrity_segments = 0;
284 #endif
285         rq->special = NULL;
286         /* tag was already set */
287         rq->extra_len = 0;
288
289         INIT_LIST_HEAD(&rq->timeout_list);
290         rq->timeout = 0;
291
292         rq->end_io = NULL;
293         rq->end_io_data = NULL;
294         rq->next_rq = NULL;
295
296         data->ctx->rq_dispatched[op_is_sync(op)]++;
297         return rq;
298 }
299
300 static struct request *blk_mq_get_request(struct request_queue *q,
301                 struct bio *bio, unsigned int op,
302                 struct blk_mq_alloc_data *data)
303 {
304         struct elevator_queue *e = q->elevator;
305         struct request *rq;
306         unsigned int tag;
307
308         blk_queue_enter_live(q);
309         data->q = q;
310         if (likely(!data->ctx))
311                 data->ctx = blk_mq_get_ctx(q);
312         if (likely(!data->hctx))
313                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
314         if (op & REQ_NOWAIT)
315                 data->flags |= BLK_MQ_REQ_NOWAIT;
316
317         if (e) {
318                 data->flags |= BLK_MQ_REQ_INTERNAL;
319
320                 /*
321                  * Flush requests are special and go directly to the
322                  * dispatch list.
323                  */
324                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
325                         e->type->ops.mq.limit_depth(op, data);
326         }
327
328         tag = blk_mq_get_tag(data);
329         if (tag == BLK_MQ_TAG_FAIL) {
330                 blk_queue_exit(q);
331                 return NULL;
332         }
333
334         rq = blk_mq_rq_ctx_init(data, tag, op);
335         if (!op_is_flush(op)) {
336                 rq->elv.icq = NULL;
337                 if (e && e->type->ops.mq.prepare_request) {
338                         if (e->type->icq_cache && rq_ioc(bio))
339                                 blk_mq_sched_assign_ioc(rq, bio);
340
341                         e->type->ops.mq.prepare_request(rq, bio);
342                         rq->rq_flags |= RQF_ELVPRIV;
343                 }
344         }
345         data->hctx->queued++;
346         return rq;
347 }
348
349 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
350                 unsigned int flags)
351 {
352         struct blk_mq_alloc_data alloc_data = { .flags = flags };
353         struct request *rq;
354         int ret;
355
356         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
357         if (ret)
358                 return ERR_PTR(ret);
359
360         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
361
362         blk_mq_put_ctx(alloc_data.ctx);
363         blk_queue_exit(q);
364
365         if (!rq)
366                 return ERR_PTR(-EWOULDBLOCK);
367
368         rq->__data_len = 0;
369         rq->__sector = (sector_t) -1;
370         rq->bio = rq->biotail = NULL;
371         return rq;
372 }
373 EXPORT_SYMBOL(blk_mq_alloc_request);
374
375 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
376                 unsigned int op, unsigned int flags, unsigned int hctx_idx)
377 {
378         struct blk_mq_alloc_data alloc_data = { .flags = flags };
379         struct request *rq;
380         unsigned int cpu;
381         int ret;
382
383         /*
384          * If the tag allocator sleeps we could get an allocation for a
385          * different hardware context.  No need to complicate the low level
386          * allocator for this for the rare use case of a command tied to
387          * a specific queue.
388          */
389         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
390                 return ERR_PTR(-EINVAL);
391
392         if (hctx_idx >= q->nr_hw_queues)
393                 return ERR_PTR(-EIO);
394
395         ret = blk_queue_enter(q, true);
396         if (ret)
397                 return ERR_PTR(ret);
398
399         /*
400          * Check if the hardware context is actually mapped to anything.
401          * If not tell the caller that it should skip this queue.
402          */
403         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
404         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
405                 blk_queue_exit(q);
406                 return ERR_PTR(-EXDEV);
407         }
408         cpu = cpumask_first(alloc_data.hctx->cpumask);
409         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
410
411         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412
413         blk_queue_exit(q);
414
415         if (!rq)
416                 return ERR_PTR(-EWOULDBLOCK);
417
418         return rq;
419 }
420 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
421
422 void blk_mq_free_request(struct request *rq)
423 {
424         struct request_queue *q = rq->q;
425         struct elevator_queue *e = q->elevator;
426         struct blk_mq_ctx *ctx = rq->mq_ctx;
427         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
428         const int sched_tag = rq->internal_tag;
429
430         if (rq->rq_flags & RQF_ELVPRIV) {
431                 if (e && e->type->ops.mq.finish_request)
432                         e->type->ops.mq.finish_request(rq);
433                 if (rq->elv.icq) {
434                         put_io_context(rq->elv.icq->ioc);
435                         rq->elv.icq = NULL;
436                 }
437         }
438
439         ctx->rq_completed[rq_is_sync(rq)]++;
440         if (rq->rq_flags & RQF_MQ_INFLIGHT)
441                 atomic_dec(&hctx->nr_active);
442
443         wbt_done(q->rq_wb, &rq->issue_stat);
444
445         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
446         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
447         if (rq->tag != -1)
448                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
449         if (sched_tag != -1)
450                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
451         blk_mq_sched_restart(hctx);
452         blk_queue_exit(q);
453 }
454 EXPORT_SYMBOL_GPL(blk_mq_free_request);
455
456 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
457 {
458         blk_account_io_done(rq);
459
460         if (rq->end_io) {
461                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
462                 rq->end_io(rq, error);
463         } else {
464                 if (unlikely(blk_bidi_rq(rq)))
465                         blk_mq_free_request(rq->next_rq);
466                 blk_mq_free_request(rq);
467         }
468 }
469 EXPORT_SYMBOL(__blk_mq_end_request);
470
471 void blk_mq_end_request(struct request *rq, blk_status_t error)
472 {
473         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
474                 BUG();
475         __blk_mq_end_request(rq, error);
476 }
477 EXPORT_SYMBOL(blk_mq_end_request);
478
479 static void __blk_mq_complete_request_remote(void *data)
480 {
481         struct request *rq = data;
482
483         rq->q->softirq_done_fn(rq);
484 }
485
486 static void __blk_mq_complete_request(struct request *rq)
487 {
488         struct blk_mq_ctx *ctx = rq->mq_ctx;
489         bool shared = false;
490         int cpu;
491
492         if (rq->internal_tag != -1)
493                 blk_mq_sched_completed_request(rq);
494         if (rq->rq_flags & RQF_STATS) {
495                 blk_mq_poll_stats_start(rq->q);
496                 blk_stat_add(rq);
497         }
498
499         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
500                 rq->q->softirq_done_fn(rq);
501                 return;
502         }
503
504         cpu = get_cpu();
505         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
506                 shared = cpus_share_cache(cpu, ctx->cpu);
507
508         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
509                 rq->csd.func = __blk_mq_complete_request_remote;
510                 rq->csd.info = rq;
511                 rq->csd.flags = 0;
512                 smp_call_function_single_async(ctx->cpu, &rq->csd);
513         } else {
514                 rq->q->softirq_done_fn(rq);
515         }
516         put_cpu();
517 }
518
519 /**
520  * blk_mq_complete_request - end I/O on a request
521  * @rq:         the request being processed
522  *
523  * Description:
524  *      Ends all I/O on a request. It does not handle partial completions.
525  *      The actual completion happens out-of-order, through a IPI handler.
526  **/
527 void blk_mq_complete_request(struct request *rq)
528 {
529         struct request_queue *q = rq->q;
530
531         if (unlikely(blk_should_fake_timeout(q)))
532                 return;
533         if (!blk_mark_rq_complete(rq))
534                 __blk_mq_complete_request(rq);
535 }
536 EXPORT_SYMBOL(blk_mq_complete_request);
537
538 int blk_mq_request_started(struct request *rq)
539 {
540         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
541 }
542 EXPORT_SYMBOL_GPL(blk_mq_request_started);
543
544 void blk_mq_start_request(struct request *rq)
545 {
546         struct request_queue *q = rq->q;
547
548         blk_mq_sched_started_request(rq);
549
550         trace_block_rq_issue(q, rq);
551
552         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
553                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
554                 rq->rq_flags |= RQF_STATS;
555                 wbt_issue(q->rq_wb, &rq->issue_stat);
556         }
557
558         blk_add_timer(rq);
559
560         /*
561          * Ensure that ->deadline is visible before set the started
562          * flag and clear the completed flag.
563          */
564         smp_mb__before_atomic();
565
566         /*
567          * Mark us as started and clear complete. Complete might have been
568          * set if requeue raced with timeout, which then marked it as
569          * complete. So be sure to clear complete again when we start
570          * the request, otherwise we'll ignore the completion event.
571          */
572         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
573                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
574         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
575                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
576
577         if (q->dma_drain_size && blk_rq_bytes(rq)) {
578                 /*
579                  * Make sure space for the drain appears.  We know we can do
580                  * this because max_hw_segments has been adjusted to be one
581                  * fewer than the device can handle.
582                  */
583                 rq->nr_phys_segments++;
584         }
585 }
586 EXPORT_SYMBOL(blk_mq_start_request);
587
588 /*
589  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
590  * flag isn't set yet, so there may be race with timeout handler,
591  * but given rq->deadline is just set in .queue_rq() under
592  * this situation, the race won't be possible in reality because
593  * rq->timeout should be set as big enough to cover the window
594  * between blk_mq_start_request() called from .queue_rq() and
595  * clearing REQ_ATOM_STARTED here.
596  */
597 static void __blk_mq_requeue_request(struct request *rq)
598 {
599         struct request_queue *q = rq->q;
600
601         trace_block_rq_requeue(q, rq);
602         wbt_requeue(q->rq_wb, &rq->issue_stat);
603         blk_mq_sched_requeue_request(rq);
604
605         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
606                 if (q->dma_drain_size && blk_rq_bytes(rq))
607                         rq->nr_phys_segments--;
608         }
609 }
610
611 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
612 {
613         __blk_mq_requeue_request(rq);
614
615         BUG_ON(blk_queued_rq(rq));
616         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
617 }
618 EXPORT_SYMBOL(blk_mq_requeue_request);
619
620 static void blk_mq_requeue_work(struct work_struct *work)
621 {
622         struct request_queue *q =
623                 container_of(work, struct request_queue, requeue_work.work);
624         LIST_HEAD(rq_list);
625         struct request *rq, *next;
626         unsigned long flags;
627
628         spin_lock_irqsave(&q->requeue_lock, flags);
629         list_splice_init(&q->requeue_list, &rq_list);
630         spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
633                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
634                         continue;
635
636                 rq->rq_flags &= ~RQF_SOFTBARRIER;
637                 list_del_init(&rq->queuelist);
638                 blk_mq_sched_insert_request(rq, true, false, false, true);
639         }
640
641         while (!list_empty(&rq_list)) {
642                 rq = list_entry(rq_list.next, struct request, queuelist);
643                 list_del_init(&rq->queuelist);
644                 blk_mq_sched_insert_request(rq, false, false, false, true);
645         }
646
647         blk_mq_run_hw_queues(q, false);
648 }
649
650 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
651                                 bool kick_requeue_list)
652 {
653         struct request_queue *q = rq->q;
654         unsigned long flags;
655
656         /*
657          * We abuse this flag that is otherwise used by the I/O scheduler to
658          * request head insertation from the workqueue.
659          */
660         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
661
662         spin_lock_irqsave(&q->requeue_lock, flags);
663         if (at_head) {
664                 rq->rq_flags |= RQF_SOFTBARRIER;
665                 list_add(&rq->queuelist, &q->requeue_list);
666         } else {
667                 list_add_tail(&rq->queuelist, &q->requeue_list);
668         }
669         spin_unlock_irqrestore(&q->requeue_lock, flags);
670
671         if (kick_requeue_list)
672                 blk_mq_kick_requeue_list(q);
673 }
674 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
675
676 void blk_mq_kick_requeue_list(struct request_queue *q)
677 {
678         kblockd_schedule_delayed_work(&q->requeue_work, 0);
679 }
680 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
681
682 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
683                                     unsigned long msecs)
684 {
685         kblockd_schedule_delayed_work(&q->requeue_work,
686                                       msecs_to_jiffies(msecs));
687 }
688 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
689
690 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
691 {
692         if (tag < tags->nr_tags) {
693                 prefetch(tags->rqs[tag]);
694                 return tags->rqs[tag];
695         }
696
697         return NULL;
698 }
699 EXPORT_SYMBOL(blk_mq_tag_to_rq);
700
701 struct blk_mq_timeout_data {
702         unsigned long next;
703         unsigned int next_set;
704 };
705
706 void blk_mq_rq_timed_out(struct request *req, bool reserved)
707 {
708         const struct blk_mq_ops *ops = req->q->mq_ops;
709         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
710
711         /*
712          * We know that complete is set at this point. If STARTED isn't set
713          * anymore, then the request isn't active and the "timeout" should
714          * just be ignored. This can happen due to the bitflag ordering.
715          * Timeout first checks if STARTED is set, and if it is, assumes
716          * the request is active. But if we race with completion, then
717          * both flags will get cleared. So check here again, and ignore
718          * a timeout event with a request that isn't active.
719          */
720         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
721                 return;
722
723         if (ops->timeout)
724                 ret = ops->timeout(req, reserved);
725
726         switch (ret) {
727         case BLK_EH_HANDLED:
728                 __blk_mq_complete_request(req);
729                 break;
730         case BLK_EH_RESET_TIMER:
731                 blk_add_timer(req);
732                 blk_clear_rq_complete(req);
733                 break;
734         case BLK_EH_NOT_HANDLED:
735                 break;
736         default:
737                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
738                 break;
739         }
740 }
741
742 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
743                 struct request *rq, void *priv, bool reserved)
744 {
745         struct blk_mq_timeout_data *data = priv;
746
747         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
748                 return;
749
750         /*
751          * The rq being checked may have been freed and reallocated
752          * out already here, we avoid this race by checking rq->deadline
753          * and REQ_ATOM_COMPLETE flag together:
754          *
755          * - if rq->deadline is observed as new value because of
756          *   reusing, the rq won't be timed out because of timing.
757          * - if rq->deadline is observed as previous value,
758          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
759          *   because we put a barrier between setting rq->deadline
760          *   and clearing the flag in blk_mq_start_request(), so
761          *   this rq won't be timed out too.
762          */
763         if (time_after_eq(jiffies, rq->deadline)) {
764                 if (!blk_mark_rq_complete(rq))
765                         blk_mq_rq_timed_out(rq, reserved);
766         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
767                 data->next = rq->deadline;
768                 data->next_set = 1;
769         }
770 }
771
772 static void blk_mq_timeout_work(struct work_struct *work)
773 {
774         struct request_queue *q =
775                 container_of(work, struct request_queue, timeout_work);
776         struct blk_mq_timeout_data data = {
777                 .next           = 0,
778                 .next_set       = 0,
779         };
780         int i;
781
782         /* A deadlock might occur if a request is stuck requiring a
783          * timeout at the same time a queue freeze is waiting
784          * completion, since the timeout code would not be able to
785          * acquire the queue reference here.
786          *
787          * That's why we don't use blk_queue_enter here; instead, we use
788          * percpu_ref_tryget directly, because we need to be able to
789          * obtain a reference even in the short window between the queue
790          * starting to freeze, by dropping the first reference in
791          * blk_freeze_queue_start, and the moment the last request is
792          * consumed, marked by the instant q_usage_counter reaches
793          * zero.
794          */
795         if (!percpu_ref_tryget(&q->q_usage_counter))
796                 return;
797
798         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
799
800         if (data.next_set) {
801                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
802                 mod_timer(&q->timeout, data.next);
803         } else {
804                 struct blk_mq_hw_ctx *hctx;
805
806                 queue_for_each_hw_ctx(q, hctx, i) {
807                         /* the hctx may be unmapped, so check it here */
808                         if (blk_mq_hw_queue_mapped(hctx))
809                                 blk_mq_tag_idle(hctx);
810                 }
811         }
812         blk_queue_exit(q);
813 }
814
815 struct flush_busy_ctx_data {
816         struct blk_mq_hw_ctx *hctx;
817         struct list_head *list;
818 };
819
820 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
821 {
822         struct flush_busy_ctx_data *flush_data = data;
823         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
824         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
825
826         sbitmap_clear_bit(sb, bitnr);
827         spin_lock(&ctx->lock);
828         list_splice_tail_init(&ctx->rq_list, flush_data->list);
829         spin_unlock(&ctx->lock);
830         return true;
831 }
832
833 /*
834  * Process software queues that have been marked busy, splicing them
835  * to the for-dispatch
836  */
837 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
838 {
839         struct flush_busy_ctx_data data = {
840                 .hctx = hctx,
841                 .list = list,
842         };
843
844         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
845 }
846 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
847
848 static inline unsigned int queued_to_index(unsigned int queued)
849 {
850         if (!queued)
851                 return 0;
852
853         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
854 }
855
856 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
857                            bool wait)
858 {
859         struct blk_mq_alloc_data data = {
860                 .q = rq->q,
861                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
862                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
863         };
864
865         might_sleep_if(wait);
866
867         if (rq->tag != -1)
868                 goto done;
869
870         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871                 data.flags |= BLK_MQ_REQ_RESERVED;
872
873         rq->tag = blk_mq_get_tag(&data);
874         if (rq->tag >= 0) {
875                 if (blk_mq_tag_busy(data.hctx)) {
876                         rq->rq_flags |= RQF_MQ_INFLIGHT;
877                         atomic_inc(&data.hctx->nr_active);
878                 }
879                 data.hctx->tags->rqs[rq->tag] = rq;
880         }
881
882 done:
883         if (hctx)
884                 *hctx = data.hctx;
885         return rq->tag != -1;
886 }
887
888 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889                                     struct request *rq)
890 {
891         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892         rq->tag = -1;
893
894         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896                 atomic_dec(&hctx->nr_active);
897         }
898 }
899
900 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901                                        struct request *rq)
902 {
903         if (rq->tag == -1 || rq->internal_tag == -1)
904                 return;
905
906         __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 static void blk_mq_put_driver_tag(struct request *rq)
910 {
911         struct blk_mq_hw_ctx *hctx;
912
913         if (rq->tag == -1 || rq->internal_tag == -1)
914                 return;
915
916         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917         __blk_mq_put_driver_tag(hctx, rq);
918 }
919
920 /*
921  * If we fail getting a driver tag because all the driver tags are already
922  * assigned and on the dispatch list, BUT the first entry does not have a
923  * tag, then we could deadlock. For that case, move entries with assigned
924  * driver tags to the front, leaving the set of tagged requests in the
925  * same order, and the untagged set in the same order.
926  */
927 static bool reorder_tags_to_front(struct list_head *list)
928 {
929         struct request *rq, *tmp, *first = NULL;
930
931         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932                 if (rq == first)
933                         break;
934                 if (rq->tag != -1) {
935                         list_move(&rq->queuelist, list);
936                         if (!first)
937                                 first = rq;
938                 }
939         }
940
941         return first != NULL;
942 }
943
944 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
945                                 void *key)
946 {
947         struct blk_mq_hw_ctx *hctx;
948
949         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951         list_del(&wait->entry);
952         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953         blk_mq_run_hw_queue(hctx, true);
954         return 1;
955 }
956
957 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958 {
959         struct sbq_wait_state *ws;
960
961         /*
962          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963          * The thread which wins the race to grab this bit adds the hardware
964          * queue to the wait queue.
965          */
966         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968                 return false;
969
970         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973         /*
974          * As soon as this returns, it's no longer safe to fiddle with
975          * hctx->dispatch_wait, since a completion can wake up the wait queue
976          * and unlock the bit.
977          */
978         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979         return true;
980 }
981
982 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983 {
984         struct blk_mq_hw_ctx *hctx;
985         struct request *rq;
986         int errors, queued;
987
988         if (list_empty(list))
989                 return false;
990
991         /*
992          * Now process all the entries, sending them to the driver.
993          */
994         errors = queued = 0;
995         do {
996                 struct blk_mq_queue_data bd;
997                 blk_status_t ret;
998
999                 rq = list_first_entry(list, struct request, queuelist);
1000                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1001                         if (!queued && reorder_tags_to_front(list))
1002                                 continue;
1003
1004                         /*
1005                          * The initial allocation attempt failed, so we need to
1006                          * rerun the hardware queue when a tag is freed.
1007                          */
1008                         if (!blk_mq_dispatch_wait_add(hctx))
1009                                 break;
1010
1011                         /*
1012                          * It's possible that a tag was freed in the window
1013                          * between the allocation failure and adding the
1014                          * hardware queue to the wait queue.
1015                          */
1016                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1017                                 break;
1018                 }
1019
1020                 list_del_init(&rq->queuelist);
1021
1022                 bd.rq = rq;
1023
1024                 /*
1025                  * Flag last if we have no more requests, or if we have more
1026                  * but can't assign a driver tag to it.
1027                  */
1028                 if (list_empty(list))
1029                         bd.last = true;
1030                 else {
1031                         struct request *nxt;
1032
1033                         nxt = list_first_entry(list, struct request, queuelist);
1034                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1035                 }
1036
1037                 ret = q->mq_ops->queue_rq(hctx, &bd);
1038                 if (ret == BLK_STS_RESOURCE) {
1039                         blk_mq_put_driver_tag_hctx(hctx, rq);
1040                         list_add(&rq->queuelist, list);
1041                         __blk_mq_requeue_request(rq);
1042                         break;
1043                 }
1044
1045                 if (unlikely(ret != BLK_STS_OK)) {
1046                         errors++;
1047                         blk_mq_end_request(rq, BLK_STS_IOERR);
1048                         continue;
1049                 }
1050
1051                 queued++;
1052         } while (!list_empty(list));
1053
1054         hctx->dispatched[queued_to_index(queued)]++;
1055
1056         /*
1057          * Any items that need requeuing? Stuff them into hctx->dispatch,
1058          * that is where we will continue on next queue run.
1059          */
1060         if (!list_empty(list)) {
1061                 /*
1062                  * If an I/O scheduler has been configured and we got a driver
1063                  * tag for the next request already, free it again.
1064                  */
1065                 rq = list_first_entry(list, struct request, queuelist);
1066                 blk_mq_put_driver_tag(rq);
1067
1068                 spin_lock(&hctx->lock);
1069                 list_splice_init(list, &hctx->dispatch);
1070                 spin_unlock(&hctx->lock);
1071
1072                 /*
1073                  * If SCHED_RESTART was set by the caller of this function and
1074                  * it is no longer set that means that it was cleared by another
1075                  * thread and hence that a queue rerun is needed.
1076                  *
1077                  * If TAG_WAITING is set that means that an I/O scheduler has
1078                  * been configured and another thread is waiting for a driver
1079                  * tag. To guarantee fairness, do not rerun this hardware queue
1080                  * but let the other thread grab the driver tag.
1081                  *
1082                  * If no I/O scheduler has been configured it is possible that
1083                  * the hardware queue got stopped and restarted before requests
1084                  * were pushed back onto the dispatch list. Rerun the queue to
1085                  * avoid starvation. Notes:
1086                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1087                  *   been stopped before rerunning a queue.
1088                  * - Some but not all block drivers stop a queue before
1089                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1090                  *   and dm-rq.
1091                  */
1092                 if (!blk_mq_sched_needs_restart(hctx) &&
1093                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1094                         blk_mq_run_hw_queue(hctx, true);
1095         }
1096
1097         return (queued + errors) != 0;
1098 }
1099
1100 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1101 {
1102         int srcu_idx;
1103
1104         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1105                 cpu_online(hctx->next_cpu));
1106
1107         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1108                 rcu_read_lock();
1109                 blk_mq_sched_dispatch_requests(hctx);
1110                 rcu_read_unlock();
1111         } else {
1112                 might_sleep();
1113
1114                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1115                 blk_mq_sched_dispatch_requests(hctx);
1116                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1117         }
1118 }
1119
1120 /*
1121  * It'd be great if the workqueue API had a way to pass
1122  * in a mask and had some smarts for more clever placement.
1123  * For now we just round-robin here, switching for every
1124  * BLK_MQ_CPU_WORK_BATCH queued items.
1125  */
1126 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1127 {
1128         if (hctx->queue->nr_hw_queues == 1)
1129                 return WORK_CPU_UNBOUND;
1130
1131         if (--hctx->next_cpu_batch <= 0) {
1132                 int next_cpu;
1133
1134                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1135                 if (next_cpu >= nr_cpu_ids)
1136                         next_cpu = cpumask_first(hctx->cpumask);
1137
1138                 hctx->next_cpu = next_cpu;
1139                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1140         }
1141
1142         return hctx->next_cpu;
1143 }
1144
1145 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1146                                         unsigned long msecs)
1147 {
1148         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1149                 return;
1150
1151         if (unlikely(blk_mq_hctx_stopped(hctx)))
1152                 return;
1153
1154         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1155                 int cpu = get_cpu();
1156                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1157                         __blk_mq_run_hw_queue(hctx);
1158                         put_cpu();
1159                         return;
1160                 }
1161
1162                 put_cpu();
1163         }
1164
1165         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1166                                          &hctx->run_work,
1167                                          msecs_to_jiffies(msecs));
1168 }
1169
1170 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1171 {
1172         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1173 }
1174 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1175
1176 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1177 {
1178         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1179 }
1180 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1181
1182 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1183 {
1184         struct blk_mq_hw_ctx *hctx;
1185         int i;
1186
1187         queue_for_each_hw_ctx(q, hctx, i) {
1188                 if (!blk_mq_hctx_has_pending(hctx) ||
1189                     blk_mq_hctx_stopped(hctx))
1190                         continue;
1191
1192                 blk_mq_run_hw_queue(hctx, async);
1193         }
1194 }
1195 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1196
1197 /**
1198  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1199  * @q: request queue.
1200  *
1201  * The caller is responsible for serializing this function against
1202  * blk_mq_{start,stop}_hw_queue().
1203  */
1204 bool blk_mq_queue_stopped(struct request_queue *q)
1205 {
1206         struct blk_mq_hw_ctx *hctx;
1207         int i;
1208
1209         queue_for_each_hw_ctx(q, hctx, i)
1210                 if (blk_mq_hctx_stopped(hctx))
1211                         return true;
1212
1213         return false;
1214 }
1215 EXPORT_SYMBOL(blk_mq_queue_stopped);
1216
1217 /*
1218  * This function is often used for pausing .queue_rq() by driver when
1219  * there isn't enough resource or some conditions aren't satisfied, and
1220  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1221  *
1222  * We do not guarantee that dispatch can be drained or blocked
1223  * after blk_mq_stop_hw_queue() returns. Please use
1224  * blk_mq_quiesce_queue() for that requirement.
1225  */
1226 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1227 {
1228         cancel_delayed_work(&hctx->run_work);
1229
1230         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231 }
1232 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1233
1234 /*
1235  * This function is often used for pausing .queue_rq() by driver when
1236  * there isn't enough resource or some conditions aren't satisfied, and
1237  * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1238  *
1239  * We do not guarantee that dispatch can be drained or blocked
1240  * after blk_mq_stop_hw_queues() returns. Please use
1241  * blk_mq_quiesce_queue() for that requirement.
1242  */
1243 void blk_mq_stop_hw_queues(struct request_queue *q)
1244 {
1245         struct blk_mq_hw_ctx *hctx;
1246         int i;
1247
1248         queue_for_each_hw_ctx(q, hctx, i)
1249                 blk_mq_stop_hw_queue(hctx);
1250 }
1251 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1252
1253 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1254 {
1255         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256
1257         blk_mq_run_hw_queue(hctx, false);
1258 }
1259 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1260
1261 void blk_mq_start_hw_queues(struct request_queue *q)
1262 {
1263         struct blk_mq_hw_ctx *hctx;
1264         int i;
1265
1266         queue_for_each_hw_ctx(q, hctx, i)
1267                 blk_mq_start_hw_queue(hctx);
1268 }
1269 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1270
1271 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1272 {
1273         if (!blk_mq_hctx_stopped(hctx))
1274                 return;
1275
1276         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1277         blk_mq_run_hw_queue(hctx, async);
1278 }
1279 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1280
1281 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1282 {
1283         struct blk_mq_hw_ctx *hctx;
1284         int i;
1285
1286         queue_for_each_hw_ctx(q, hctx, i)
1287                 blk_mq_start_stopped_hw_queue(hctx, async);
1288 }
1289 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1290
1291 static void blk_mq_run_work_fn(struct work_struct *work)
1292 {
1293         struct blk_mq_hw_ctx *hctx;
1294
1295         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1296
1297         /*
1298          * If we are stopped, don't run the queue. The exception is if
1299          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1300          * the STOPPED bit and run it.
1301          */
1302         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1303                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1304                         return;
1305
1306                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1307                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1308         }
1309
1310         __blk_mq_run_hw_queue(hctx);
1311 }
1312
1313
1314 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1315 {
1316         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1317                 return;
1318
1319         /*
1320          * Stop the hw queue, then modify currently delayed work.
1321          * This should prevent us from running the queue prematurely.
1322          * Mark the queue as auto-clearing STOPPED when it runs.
1323          */
1324         blk_mq_stop_hw_queue(hctx);
1325         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1326         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1327                                         &hctx->run_work,
1328                                         msecs_to_jiffies(msecs));
1329 }
1330 EXPORT_SYMBOL(blk_mq_delay_queue);
1331
1332 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1333                                             struct request *rq,
1334                                             bool at_head)
1335 {
1336         struct blk_mq_ctx *ctx = rq->mq_ctx;
1337
1338         lockdep_assert_held(&ctx->lock);
1339
1340         trace_block_rq_insert(hctx->queue, rq);
1341
1342         if (at_head)
1343                 list_add(&rq->queuelist, &ctx->rq_list);
1344         else
1345                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1346 }
1347
1348 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1349                              bool at_head)
1350 {
1351         struct blk_mq_ctx *ctx = rq->mq_ctx;
1352
1353         lockdep_assert_held(&ctx->lock);
1354
1355         __blk_mq_insert_req_list(hctx, rq, at_head);
1356         blk_mq_hctx_mark_pending(hctx, ctx);
1357 }
1358
1359 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1360                             struct list_head *list)
1361
1362 {
1363         /*
1364          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1365          * offline now
1366          */
1367         spin_lock(&ctx->lock);
1368         while (!list_empty(list)) {
1369                 struct request *rq;
1370
1371                 rq = list_first_entry(list, struct request, queuelist);
1372                 BUG_ON(rq->mq_ctx != ctx);
1373                 list_del_init(&rq->queuelist);
1374                 __blk_mq_insert_req_list(hctx, rq, false);
1375         }
1376         blk_mq_hctx_mark_pending(hctx, ctx);
1377         spin_unlock(&ctx->lock);
1378 }
1379
1380 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1381 {
1382         struct request *rqa = container_of(a, struct request, queuelist);
1383         struct request *rqb = container_of(b, struct request, queuelist);
1384
1385         return !(rqa->mq_ctx < rqb->mq_ctx ||
1386                  (rqa->mq_ctx == rqb->mq_ctx &&
1387                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1388 }
1389
1390 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1391 {
1392         struct blk_mq_ctx *this_ctx;
1393         struct request_queue *this_q;
1394         struct request *rq;
1395         LIST_HEAD(list);
1396         LIST_HEAD(ctx_list);
1397         unsigned int depth;
1398
1399         list_splice_init(&plug->mq_list, &list);
1400
1401         list_sort(NULL, &list, plug_ctx_cmp);
1402
1403         this_q = NULL;
1404         this_ctx = NULL;
1405         depth = 0;
1406
1407         while (!list_empty(&list)) {
1408                 rq = list_entry_rq(list.next);
1409                 list_del_init(&rq->queuelist);
1410                 BUG_ON(!rq->q);
1411                 if (rq->mq_ctx != this_ctx) {
1412                         if (this_ctx) {
1413                                 trace_block_unplug(this_q, depth, from_schedule);
1414                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1415                                                                 &ctx_list,
1416                                                                 from_schedule);
1417                         }
1418
1419                         this_ctx = rq->mq_ctx;
1420                         this_q = rq->q;
1421                         depth = 0;
1422                 }
1423
1424                 depth++;
1425                 list_add_tail(&rq->queuelist, &ctx_list);
1426         }
1427
1428         /*
1429          * If 'this_ctx' is set, we know we have entries to complete
1430          * on 'ctx_list'. Do those.
1431          */
1432         if (this_ctx) {
1433                 trace_block_unplug(this_q, depth, from_schedule);
1434                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1435                                                 from_schedule);
1436         }
1437 }
1438
1439 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1440 {
1441         blk_init_request_from_bio(rq, bio);
1442
1443         blk_account_io_start(rq, true);
1444 }
1445
1446 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1447 {
1448         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1449                 !blk_queue_nomerges(hctx->queue);
1450 }
1451
1452 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1453                                    struct blk_mq_ctx *ctx,
1454                                    struct request *rq)
1455 {
1456         spin_lock(&ctx->lock);
1457         __blk_mq_insert_request(hctx, rq, false);
1458         spin_unlock(&ctx->lock);
1459 }
1460
1461 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1462 {
1463         if (rq->tag != -1)
1464                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1465
1466         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467 }
1468
1469 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1470                                         struct request *rq,
1471                                         blk_qc_t *cookie, bool may_sleep)
1472 {
1473         struct request_queue *q = rq->q;
1474         struct blk_mq_queue_data bd = {
1475                 .rq = rq,
1476                 .last = true,
1477         };
1478         blk_qc_t new_cookie;
1479         blk_status_t ret;
1480         bool run_queue = true;
1481
1482         /* RCU or SRCU read lock is needed before checking quiesced flag */
1483         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1484                 run_queue = false;
1485                 goto insert;
1486         }
1487
1488         if (q->elevator)
1489                 goto insert;
1490
1491         if (!blk_mq_get_driver_tag(rq, NULL, false))
1492                 goto insert;
1493
1494         new_cookie = request_to_qc_t(hctx, rq);
1495
1496         /*
1497          * For OK queue, we are done. For error, kill it. Any other
1498          * error (busy), just add it to our list as we previously
1499          * would have done
1500          */
1501         ret = q->mq_ops->queue_rq(hctx, &bd);
1502         switch (ret) {
1503         case BLK_STS_OK:
1504                 *cookie = new_cookie;
1505                 return;
1506         case BLK_STS_RESOURCE:
1507                 __blk_mq_requeue_request(rq);
1508                 goto insert;
1509         default:
1510                 *cookie = BLK_QC_T_NONE;
1511                 blk_mq_end_request(rq, ret);
1512                 return;
1513         }
1514
1515 insert:
1516         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1517 }
1518
1519 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1520                 struct request *rq, blk_qc_t *cookie)
1521 {
1522         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1523                 rcu_read_lock();
1524                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1525                 rcu_read_unlock();
1526         } else {
1527                 unsigned int srcu_idx;
1528
1529                 might_sleep();
1530
1531                 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1532                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1533                 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1534         }
1535 }
1536
1537 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1538 {
1539         const int is_sync = op_is_sync(bio->bi_opf);
1540         const int is_flush_fua = op_is_flush(bio->bi_opf);
1541         struct blk_mq_alloc_data data = { .flags = 0 };
1542         struct request *rq;
1543         unsigned int request_count = 0;
1544         struct blk_plug *plug;
1545         struct request *same_queue_rq = NULL;
1546         blk_qc_t cookie;
1547         unsigned int wb_acct;
1548
1549         blk_queue_bounce(q, &bio);
1550
1551         blk_queue_split(q, &bio);
1552
1553         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1554                 bio_io_error(bio);
1555                 return BLK_QC_T_NONE;
1556         }
1557
1558         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1559             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1560                 return BLK_QC_T_NONE;
1561
1562         if (blk_mq_sched_bio_merge(q, bio))
1563                 return BLK_QC_T_NONE;
1564
1565         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1566
1567         trace_block_getrq(q, bio, bio->bi_opf);
1568
1569         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1570         if (unlikely(!rq)) {
1571                 __wbt_done(q->rq_wb, wb_acct);
1572                 if (bio->bi_opf & REQ_NOWAIT)
1573                         bio_wouldblock_error(bio);
1574                 return BLK_QC_T_NONE;
1575         }
1576
1577         wbt_track(&rq->issue_stat, wb_acct);
1578
1579         cookie = request_to_qc_t(data.hctx, rq);
1580
1581         plug = current->plug;
1582         if (unlikely(is_flush_fua)) {
1583                 blk_mq_put_ctx(data.ctx);
1584                 blk_mq_bio_to_request(rq, bio);
1585                 if (q->elevator) {
1586                         blk_mq_sched_insert_request(rq, false, true, true,
1587                                         true);
1588                 } else {
1589                         blk_insert_flush(rq);
1590                         blk_mq_run_hw_queue(data.hctx, true);
1591                 }
1592         } else if (plug && q->nr_hw_queues == 1) {
1593                 struct request *last = NULL;
1594
1595                 blk_mq_put_ctx(data.ctx);
1596                 blk_mq_bio_to_request(rq, bio);
1597
1598                 /*
1599                  * @request_count may become stale because of schedule
1600                  * out, so check the list again.
1601                  */
1602                 if (list_empty(&plug->mq_list))
1603                         request_count = 0;
1604                 else if (blk_queue_nomerges(q))
1605                         request_count = blk_plug_queued_count(q);
1606
1607                 if (!request_count)
1608                         trace_block_plug(q);
1609                 else
1610                         last = list_entry_rq(plug->mq_list.prev);
1611
1612                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1613                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1614                         blk_flush_plug_list(plug, false);
1615                         trace_block_plug(q);
1616                 }
1617
1618                 list_add_tail(&rq->queuelist, &plug->mq_list);
1619         } else if (plug && !blk_queue_nomerges(q)) {
1620                 blk_mq_bio_to_request(rq, bio);
1621
1622                 /*
1623                  * We do limited plugging. If the bio can be merged, do that.
1624                  * Otherwise the existing request in the plug list will be
1625                  * issued. So the plug list will have one request at most
1626                  * The plug list might get flushed before this. If that happens,
1627                  * the plug list is empty, and same_queue_rq is invalid.
1628                  */
1629                 if (list_empty(&plug->mq_list))
1630                         same_queue_rq = NULL;
1631                 if (same_queue_rq)
1632                         list_del_init(&same_queue_rq->queuelist);
1633                 list_add_tail(&rq->queuelist, &plug->mq_list);
1634
1635                 blk_mq_put_ctx(data.ctx);
1636
1637                 if (same_queue_rq) {
1638                         data.hctx = blk_mq_map_queue(q,
1639                                         same_queue_rq->mq_ctx->cpu);
1640                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1641                                         &cookie);
1642                 }
1643         } else if (q->nr_hw_queues > 1 && is_sync) {
1644                 blk_mq_put_ctx(data.ctx);
1645                 blk_mq_bio_to_request(rq, bio);
1646                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647         } else if (q->elevator) {
1648                 blk_mq_put_ctx(data.ctx);
1649                 blk_mq_bio_to_request(rq, bio);
1650                 blk_mq_sched_insert_request(rq, false, true, true, true);
1651         } else {
1652                 blk_mq_put_ctx(data.ctx);
1653                 blk_mq_bio_to_request(rq, bio);
1654                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1655                 blk_mq_run_hw_queue(data.hctx, true);
1656         }
1657
1658         return cookie;
1659 }
1660
1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1662                      unsigned int hctx_idx)
1663 {
1664         struct page *page;
1665
1666         if (tags->rqs && set->ops->exit_request) {
1667                 int i;
1668
1669                 for (i = 0; i < tags->nr_tags; i++) {
1670                         struct request *rq = tags->static_rqs[i];
1671
1672                         if (!rq)
1673                                 continue;
1674                         set->ops->exit_request(set, rq, hctx_idx);
1675                         tags->static_rqs[i] = NULL;
1676                 }
1677         }
1678
1679         while (!list_empty(&tags->page_list)) {
1680                 page = list_first_entry(&tags->page_list, struct page, lru);
1681                 list_del_init(&page->lru);
1682                 /*
1683                  * Remove kmemleak object previously allocated in
1684                  * blk_mq_init_rq_map().
1685                  */
1686                 kmemleak_free(page_address(page));
1687                 __free_pages(page, page->private);
1688         }
1689 }
1690
1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692 {
1693         kfree(tags->rqs);
1694         tags->rqs = NULL;
1695         kfree(tags->static_rqs);
1696         tags->static_rqs = NULL;
1697
1698         blk_mq_free_tags(tags);
1699 }
1700
1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1702                                         unsigned int hctx_idx,
1703                                         unsigned int nr_tags,
1704                                         unsigned int reserved_tags)
1705 {
1706         struct blk_mq_tags *tags;
1707         int node;
1708
1709         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1710         if (node == NUMA_NO_NODE)
1711                 node = set->numa_node;
1712
1713         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1714                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715         if (!tags)
1716                 return NULL;
1717
1718         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720                                  node);
1721         if (!tags->rqs) {
1722                 blk_mq_free_tags(tags);
1723                 return NULL;
1724         }
1725
1726         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1727                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728                                  node);
1729         if (!tags->static_rqs) {
1730                 kfree(tags->rqs);
1731                 blk_mq_free_tags(tags);
1732                 return NULL;
1733         }
1734
1735         return tags;
1736 }
1737
1738 static size_t order_to_size(unsigned int order)
1739 {
1740         return (size_t)PAGE_SIZE << order;
1741 }
1742
1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1744                      unsigned int hctx_idx, unsigned int depth)
1745 {
1746         unsigned int i, j, entries_per_page, max_order = 4;
1747         size_t rq_size, left;
1748         int node;
1749
1750         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1751         if (node == NUMA_NO_NODE)
1752                 node = set->numa_node;
1753
1754         INIT_LIST_HEAD(&tags->page_list);
1755
1756         /*
1757          * rq_size is the size of the request plus driver payload, rounded
1758          * to the cacheline size
1759          */
1760         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761                                 cache_line_size());
1762         left = rq_size * depth;
1763
1764         for (i = 0; i < depth; ) {
1765                 int this_order = max_order;
1766                 struct page *page;
1767                 int to_do;
1768                 void *p;
1769
1770                 while (this_order && left < order_to_size(this_order - 1))
1771                         this_order--;
1772
1773                 do {
1774                         page = alloc_pages_node(node,
1775                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776                                 this_order);
1777                         if (page)
1778                                 break;
1779                         if (!this_order--)
1780                                 break;
1781                         if (order_to_size(this_order) < rq_size)
1782                                 break;
1783                 } while (1);
1784
1785                 if (!page)
1786                         goto fail;
1787
1788                 page->private = this_order;
1789                 list_add_tail(&page->lru, &tags->page_list);
1790
1791                 p = page_address(page);
1792                 /*
1793                  * Allow kmemleak to scan these pages as they contain pointers
1794                  * to additional allocations like via ops->init_request().
1795                  */
1796                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797                 entries_per_page = order_to_size(this_order) / rq_size;
1798                 to_do = min(entries_per_page, depth - i);
1799                 left -= to_do * rq_size;
1800                 for (j = 0; j < to_do; j++) {
1801                         struct request *rq = p;
1802
1803                         tags->static_rqs[i] = rq;
1804                         if (set->ops->init_request) {
1805                                 if (set->ops->init_request(set, rq, hctx_idx,
1806                                                 node)) {
1807                                         tags->static_rqs[i] = NULL;
1808                                         goto fail;
1809                                 }
1810                         }
1811
1812                         p += rq_size;
1813                         i++;
1814                 }
1815         }
1816         return 0;
1817
1818 fail:
1819         blk_mq_free_rqs(set, tags, hctx_idx);
1820         return -ENOMEM;
1821 }
1822
1823 /*
1824  * 'cpu' is going away. splice any existing rq_list entries from this
1825  * software queue to the hw queue dispatch list, and ensure that it
1826  * gets run.
1827  */
1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829 {
1830         struct blk_mq_hw_ctx *hctx;
1831         struct blk_mq_ctx *ctx;
1832         LIST_HEAD(tmp);
1833
1834         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1835         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836
1837         spin_lock(&ctx->lock);
1838         if (!list_empty(&ctx->rq_list)) {
1839                 list_splice_init(&ctx->rq_list, &tmp);
1840                 blk_mq_hctx_clear_pending(hctx, ctx);
1841         }
1842         spin_unlock(&ctx->lock);
1843
1844         if (list_empty(&tmp))
1845                 return 0;
1846
1847         spin_lock(&hctx->lock);
1848         list_splice_tail_init(&tmp, &hctx->dispatch);
1849         spin_unlock(&hctx->lock);
1850
1851         blk_mq_run_hw_queue(hctx, true);
1852         return 0;
1853 }
1854
1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856 {
1857         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1858                                             &hctx->cpuhp_dead);
1859 }
1860
1861 /* hctx->ctxs will be freed in queue's release handler */
1862 static void blk_mq_exit_hctx(struct request_queue *q,
1863                 struct blk_mq_tag_set *set,
1864                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865 {
1866         blk_mq_debugfs_unregister_hctx(hctx);
1867
1868         blk_mq_tag_idle(hctx);
1869
1870         if (set->ops->exit_request)
1871                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872
1873         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874
1875         if (set->ops->exit_hctx)
1876                 set->ops->exit_hctx(hctx, hctx_idx);
1877
1878         if (hctx->flags & BLK_MQ_F_BLOCKING)
1879                 cleanup_srcu_struct(hctx->queue_rq_srcu);
1880
1881         blk_mq_remove_cpuhp(hctx);
1882         blk_free_flush_queue(hctx->fq);
1883         sbitmap_free(&hctx->ctx_map);
1884 }
1885
1886 static void blk_mq_exit_hw_queues(struct request_queue *q,
1887                 struct blk_mq_tag_set *set, int nr_queue)
1888 {
1889         struct blk_mq_hw_ctx *hctx;
1890         unsigned int i;
1891
1892         queue_for_each_hw_ctx(q, hctx, i) {
1893                 if (i == nr_queue)
1894                         break;
1895                 blk_mq_exit_hctx(q, set, hctx, i);
1896         }
1897 }
1898
1899 static int blk_mq_init_hctx(struct request_queue *q,
1900                 struct blk_mq_tag_set *set,
1901                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902 {
1903         int node;
1904
1905         node = hctx->numa_node;
1906         if (node == NUMA_NO_NODE)
1907                 node = hctx->numa_node = set->numa_node;
1908
1909         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910         spin_lock_init(&hctx->lock);
1911         INIT_LIST_HEAD(&hctx->dispatch);
1912         hctx->queue = q;
1913         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1914
1915         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1916
1917         hctx->tags = set->tags[hctx_idx];
1918
1919         /*
1920          * Allocate space for all possible cpus to avoid allocation at
1921          * runtime
1922          */
1923         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1924                                         GFP_KERNEL, node);
1925         if (!hctx->ctxs)
1926                 goto unregister_cpu_notifier;
1927
1928         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1929                               node))
1930                 goto free_ctxs;
1931
1932         hctx->nr_ctx = 0;
1933
1934         if (set->ops->init_hctx &&
1935             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1936                 goto free_bitmap;
1937
1938         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1939                 goto exit_hctx;
1940
1941         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1942         if (!hctx->fq)
1943                 goto sched_exit_hctx;
1944
1945         if (set->ops->init_request &&
1946             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1947                                    node))
1948                 goto free_fq;
1949
1950         if (hctx->flags & BLK_MQ_F_BLOCKING)
1951                 init_srcu_struct(hctx->queue_rq_srcu);
1952
1953         blk_mq_debugfs_register_hctx(q, hctx);
1954
1955         return 0;
1956
1957  free_fq:
1958         kfree(hctx->fq);
1959  sched_exit_hctx:
1960         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1961  exit_hctx:
1962         if (set->ops->exit_hctx)
1963                 set->ops->exit_hctx(hctx, hctx_idx);
1964  free_bitmap:
1965         sbitmap_free(&hctx->ctx_map);
1966  free_ctxs:
1967         kfree(hctx->ctxs);
1968  unregister_cpu_notifier:
1969         blk_mq_remove_cpuhp(hctx);
1970         return -1;
1971 }
1972
1973 static void blk_mq_init_cpu_queues(struct request_queue *q,
1974                                    unsigned int nr_hw_queues)
1975 {
1976         unsigned int i;
1977
1978         for_each_possible_cpu(i) {
1979                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1980                 struct blk_mq_hw_ctx *hctx;
1981
1982                 __ctx->cpu = i;
1983                 spin_lock_init(&__ctx->lock);
1984                 INIT_LIST_HEAD(&__ctx->rq_list);
1985                 __ctx->queue = q;
1986
1987                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1988                 if (!cpu_online(i))
1989                         continue;
1990
1991                 hctx = blk_mq_map_queue(q, i);
1992
1993                 /*
1994                  * Set local node, IFF we have more than one hw queue. If
1995                  * not, we remain on the home node of the device
1996                  */
1997                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1998                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1999         }
2000 }
2001
2002 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2003 {
2004         int ret = 0;
2005
2006         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2007                                         set->queue_depth, set->reserved_tags);
2008         if (!set->tags[hctx_idx])
2009                 return false;
2010
2011         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2012                                 set->queue_depth);
2013         if (!ret)
2014                 return true;
2015
2016         blk_mq_free_rq_map(set->tags[hctx_idx]);
2017         set->tags[hctx_idx] = NULL;
2018         return false;
2019 }
2020
2021 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2022                                          unsigned int hctx_idx)
2023 {
2024         if (set->tags[hctx_idx]) {
2025                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2026                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2027                 set->tags[hctx_idx] = NULL;
2028         }
2029 }
2030
2031 static void blk_mq_map_swqueue(struct request_queue *q,
2032                                const struct cpumask *online_mask)
2033 {
2034         unsigned int i, hctx_idx;
2035         struct blk_mq_hw_ctx *hctx;
2036         struct blk_mq_ctx *ctx;
2037         struct blk_mq_tag_set *set = q->tag_set;
2038
2039         /*
2040          * Avoid others reading imcomplete hctx->cpumask through sysfs
2041          */
2042         mutex_lock(&q->sysfs_lock);
2043
2044         queue_for_each_hw_ctx(q, hctx, i) {
2045                 cpumask_clear(hctx->cpumask);
2046                 hctx->nr_ctx = 0;
2047         }
2048
2049         /*
2050          * Map software to hardware queues
2051          */
2052         for_each_possible_cpu(i) {
2053                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2054                 if (!cpumask_test_cpu(i, online_mask))
2055                         continue;
2056
2057                 hctx_idx = q->mq_map[i];
2058                 /* unmapped hw queue can be remapped after CPU topo changed */
2059                 if (!set->tags[hctx_idx] &&
2060                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2061                         /*
2062                          * If tags initialization fail for some hctx,
2063                          * that hctx won't be brought online.  In this
2064                          * case, remap the current ctx to hctx[0] which
2065                          * is guaranteed to always have tags allocated
2066                          */
2067                         q->mq_map[i] = 0;
2068                 }
2069
2070                 ctx = per_cpu_ptr(q->queue_ctx, i);
2071                 hctx = blk_mq_map_queue(q, i);
2072
2073                 cpumask_set_cpu(i, hctx->cpumask);
2074                 ctx->index_hw = hctx->nr_ctx;
2075                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2076         }
2077
2078         mutex_unlock(&q->sysfs_lock);
2079
2080         queue_for_each_hw_ctx(q, hctx, i) {
2081                 /*
2082                  * If no software queues are mapped to this hardware queue,
2083                  * disable it and free the request entries.
2084                  */
2085                 if (!hctx->nr_ctx) {
2086                         /* Never unmap queue 0.  We need it as a
2087                          * fallback in case of a new remap fails
2088                          * allocation
2089                          */
2090                         if (i && set->tags[i])
2091                                 blk_mq_free_map_and_requests(set, i);
2092
2093                         hctx->tags = NULL;
2094                         continue;
2095                 }
2096
2097                 hctx->tags = set->tags[i];
2098                 WARN_ON(!hctx->tags);
2099
2100                 /*
2101                  * Set the map size to the number of mapped software queues.
2102                  * This is more accurate and more efficient than looping
2103                  * over all possibly mapped software queues.
2104                  */
2105                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2106
2107                 /*
2108                  * Initialize batch roundrobin counts
2109                  */
2110                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2111                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2112         }
2113 }
2114
2115 /*
2116  * Caller needs to ensure that we're either frozen/quiesced, or that
2117  * the queue isn't live yet.
2118  */
2119 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2120 {
2121         struct blk_mq_hw_ctx *hctx;
2122         int i;
2123
2124         queue_for_each_hw_ctx(q, hctx, i) {
2125                 if (shared) {
2126                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2127                                 atomic_inc(&q->shared_hctx_restart);
2128                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2129                 } else {
2130                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2131                                 atomic_dec(&q->shared_hctx_restart);
2132                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2133                 }
2134         }
2135 }
2136
2137 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2138                                         bool shared)
2139 {
2140         struct request_queue *q;
2141
2142         lockdep_assert_held(&set->tag_list_lock);
2143
2144         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2145                 blk_mq_freeze_queue(q);
2146                 queue_set_hctx_shared(q, shared);
2147                 blk_mq_unfreeze_queue(q);
2148         }
2149 }
2150
2151 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2152 {
2153         struct blk_mq_tag_set *set = q->tag_set;
2154
2155         mutex_lock(&set->tag_list_lock);
2156         list_del_rcu(&q->tag_set_list);
2157         INIT_LIST_HEAD(&q->tag_set_list);
2158         if (list_is_singular(&set->tag_list)) {
2159                 /* just transitioned to unshared */
2160                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2161                 /* update existing queue */
2162                 blk_mq_update_tag_set_depth(set, false);
2163         }
2164         mutex_unlock(&set->tag_list_lock);
2165
2166         synchronize_rcu();
2167 }
2168
2169 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2170                                      struct request_queue *q)
2171 {
2172         q->tag_set = set;
2173
2174         mutex_lock(&set->tag_list_lock);
2175
2176         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2177         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2178                 set->flags |= BLK_MQ_F_TAG_SHARED;
2179                 /* update existing queue */
2180                 blk_mq_update_tag_set_depth(set, true);
2181         }
2182         if (set->flags & BLK_MQ_F_TAG_SHARED)
2183                 queue_set_hctx_shared(q, true);
2184         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2185
2186         mutex_unlock(&set->tag_list_lock);
2187 }
2188
2189 /*
2190  * It is the actual release handler for mq, but we do it from
2191  * request queue's release handler for avoiding use-after-free
2192  * and headache because q->mq_kobj shouldn't have been introduced,
2193  * but we can't group ctx/kctx kobj without it.
2194  */
2195 void blk_mq_release(struct request_queue *q)
2196 {
2197         struct blk_mq_hw_ctx *hctx;
2198         unsigned int i;
2199
2200         /* hctx kobj stays in hctx */
2201         queue_for_each_hw_ctx(q, hctx, i) {
2202                 if (!hctx)
2203                         continue;
2204                 kobject_put(&hctx->kobj);
2205         }
2206
2207         q->mq_map = NULL;
2208
2209         kfree(q->queue_hw_ctx);
2210
2211         /*
2212          * release .mq_kobj and sw queue's kobject now because
2213          * both share lifetime with request queue.
2214          */
2215         blk_mq_sysfs_deinit(q);
2216
2217         free_percpu(q->queue_ctx);
2218 }
2219
2220 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2221 {
2222         struct request_queue *uninit_q, *q;
2223
2224         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2225         if (!uninit_q)
2226                 return ERR_PTR(-ENOMEM);
2227
2228         q = blk_mq_init_allocated_queue(set, uninit_q);
2229         if (IS_ERR(q))
2230                 blk_cleanup_queue(uninit_q);
2231
2232         return q;
2233 }
2234 EXPORT_SYMBOL(blk_mq_init_queue);
2235
2236 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2237 {
2238         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2239
2240         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2241                            __alignof__(struct blk_mq_hw_ctx)) !=
2242                      sizeof(struct blk_mq_hw_ctx));
2243
2244         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2245                 hw_ctx_size += sizeof(struct srcu_struct);
2246
2247         return hw_ctx_size;
2248 }
2249
2250 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2251                                                 struct request_queue *q)
2252 {
2253         int i, j;
2254         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2255
2256         blk_mq_sysfs_unregister(q);
2257         for (i = 0; i < set->nr_hw_queues; i++) {
2258                 int node;
2259
2260                 if (hctxs[i])
2261                         continue;
2262
2263                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2264                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2265                                         GFP_KERNEL, node);
2266                 if (!hctxs[i])
2267                         break;
2268
2269                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2270                                                 node)) {
2271                         kfree(hctxs[i]);
2272                         hctxs[i] = NULL;
2273                         break;
2274                 }
2275
2276                 atomic_set(&hctxs[i]->nr_active, 0);
2277                 hctxs[i]->numa_node = node;
2278                 hctxs[i]->queue_num = i;
2279
2280                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2281                         free_cpumask_var(hctxs[i]->cpumask);
2282                         kfree(hctxs[i]);
2283                         hctxs[i] = NULL;
2284                         break;
2285                 }
2286                 blk_mq_hctx_kobj_init(hctxs[i]);
2287         }
2288         for (j = i; j < q->nr_hw_queues; j++) {
2289                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2290
2291                 if (hctx) {
2292                         if (hctx->tags)
2293                                 blk_mq_free_map_and_requests(set, j);
2294                         blk_mq_exit_hctx(q, set, hctx, j);
2295                         kobject_put(&hctx->kobj);
2296                         hctxs[j] = NULL;
2297
2298                 }
2299         }
2300         q->nr_hw_queues = i;
2301         blk_mq_sysfs_register(q);
2302 }
2303
2304 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2305                                                   struct request_queue *q)
2306 {
2307         /* mark the queue as mq asap */
2308         q->mq_ops = set->ops;
2309
2310         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2311                                              blk_mq_poll_stats_bkt,
2312                                              BLK_MQ_POLL_STATS_BKTS, q);
2313         if (!q->poll_cb)
2314                 goto err_exit;
2315
2316         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2317         if (!q->queue_ctx)
2318                 goto err_exit;
2319
2320         /* init q->mq_kobj and sw queues' kobjects */
2321         blk_mq_sysfs_init(q);
2322
2323         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2324                                                 GFP_KERNEL, set->numa_node);
2325         if (!q->queue_hw_ctx)
2326                 goto err_percpu;
2327
2328         q->mq_map = set->mq_map;
2329
2330         blk_mq_realloc_hw_ctxs(set, q);
2331         if (!q->nr_hw_queues)
2332                 goto err_hctxs;
2333
2334         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2335         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2336
2337         q->nr_queues = nr_cpu_ids;
2338
2339         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2340
2341         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2342                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2343
2344         q->sg_reserved_size = INT_MAX;
2345
2346         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2347         INIT_LIST_HEAD(&q->requeue_list);
2348         spin_lock_init(&q->requeue_lock);
2349
2350         blk_queue_make_request(q, blk_mq_make_request);
2351
2352         /*
2353          * Do this after blk_queue_make_request() overrides it...
2354          */
2355         q->nr_requests = set->queue_depth;
2356
2357         /*
2358          * Default to classic polling
2359          */
2360         q->poll_nsec = -1;
2361
2362         if (set->ops->complete)
2363                 blk_queue_softirq_done(q, set->ops->complete);
2364
2365         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2366
2367         get_online_cpus();
2368         mutex_lock(&all_q_mutex);
2369
2370         list_add_tail(&q->all_q_node, &all_q_list);
2371         blk_mq_add_queue_tag_set(set, q);
2372         blk_mq_map_swqueue(q, cpu_online_mask);
2373
2374         mutex_unlock(&all_q_mutex);
2375         put_online_cpus();
2376
2377         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2378                 int ret;
2379
2380                 ret = blk_mq_sched_init(q);
2381                 if (ret)
2382                         return ERR_PTR(ret);
2383         }
2384
2385         return q;
2386
2387 err_hctxs:
2388         kfree(q->queue_hw_ctx);
2389 err_percpu:
2390         free_percpu(q->queue_ctx);
2391 err_exit:
2392         q->mq_ops = NULL;
2393         return ERR_PTR(-ENOMEM);
2394 }
2395 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2396
2397 void blk_mq_free_queue(struct request_queue *q)
2398 {
2399         struct blk_mq_tag_set   *set = q->tag_set;
2400
2401         mutex_lock(&all_q_mutex);
2402         list_del_init(&q->all_q_node);
2403         mutex_unlock(&all_q_mutex);
2404
2405         blk_mq_del_queue_tag_set(q);
2406
2407         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2408 }
2409
2410 /* Basically redo blk_mq_init_queue with queue frozen */
2411 static void blk_mq_queue_reinit(struct request_queue *q,
2412                                 const struct cpumask *online_mask)
2413 {
2414         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2415
2416         blk_mq_debugfs_unregister_hctxs(q);
2417         blk_mq_sysfs_unregister(q);
2418
2419         /*
2420          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2421          * we should change hctx numa_node according to new topology (this
2422          * involves free and re-allocate memory, worthy doing?)
2423          */
2424
2425         blk_mq_map_swqueue(q, online_mask);
2426
2427         blk_mq_sysfs_register(q);
2428         blk_mq_debugfs_register_hctxs(q);
2429 }
2430
2431 /*
2432  * New online cpumask which is going to be set in this hotplug event.
2433  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2434  * one-by-one and dynamically allocating this could result in a failure.
2435  */
2436 static struct cpumask cpuhp_online_new;
2437
2438 static void blk_mq_queue_reinit_work(void)
2439 {
2440         struct request_queue *q;
2441
2442         mutex_lock(&all_q_mutex);
2443         /*
2444          * We need to freeze and reinit all existing queues.  Freezing
2445          * involves synchronous wait for an RCU grace period and doing it
2446          * one by one may take a long time.  Start freezing all queues in
2447          * one swoop and then wait for the completions so that freezing can
2448          * take place in parallel.
2449          */
2450         list_for_each_entry(q, &all_q_list, all_q_node)
2451                 blk_freeze_queue_start(q);
2452         list_for_each_entry(q, &all_q_list, all_q_node)
2453                 blk_mq_freeze_queue_wait(q);
2454
2455         list_for_each_entry(q, &all_q_list, all_q_node)
2456                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2457
2458         list_for_each_entry(q, &all_q_list, all_q_node)
2459                 blk_mq_unfreeze_queue(q);
2460
2461         mutex_unlock(&all_q_mutex);
2462 }
2463
2464 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2465 {
2466         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2467         blk_mq_queue_reinit_work();
2468         return 0;
2469 }
2470
2471 /*
2472  * Before hotadded cpu starts handling requests, new mappings must be
2473  * established.  Otherwise, these requests in hw queue might never be
2474  * dispatched.
2475  *
2476  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2477  * for CPU0, and ctx1 for CPU1).
2478  *
2479  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2480  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2481  *
2482  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2483  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2484  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2485  * ignored.
2486  */
2487 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2488 {
2489         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2490         cpumask_set_cpu(cpu, &cpuhp_online_new);
2491         blk_mq_queue_reinit_work();
2492         return 0;
2493 }
2494
2495 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2496 {
2497         int i;
2498
2499         for (i = 0; i < set->nr_hw_queues; i++)
2500                 if (!__blk_mq_alloc_rq_map(set, i))
2501                         goto out_unwind;
2502
2503         return 0;
2504
2505 out_unwind:
2506         while (--i >= 0)
2507                 blk_mq_free_rq_map(set->tags[i]);
2508
2509         return -ENOMEM;
2510 }
2511
2512 /*
2513  * Allocate the request maps associated with this tag_set. Note that this
2514  * may reduce the depth asked for, if memory is tight. set->queue_depth
2515  * will be updated to reflect the allocated depth.
2516  */
2517 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2518 {
2519         unsigned int depth;
2520         int err;
2521
2522         depth = set->queue_depth;
2523         do {
2524                 err = __blk_mq_alloc_rq_maps(set);
2525                 if (!err)
2526                         break;
2527
2528                 set->queue_depth >>= 1;
2529                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2530                         err = -ENOMEM;
2531                         break;
2532                 }
2533         } while (set->queue_depth);
2534
2535         if (!set->queue_depth || err) {
2536                 pr_err("blk-mq: failed to allocate request map\n");
2537                 return -ENOMEM;
2538         }
2539
2540         if (depth != set->queue_depth)
2541                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2542                                                 depth, set->queue_depth);
2543
2544         return 0;
2545 }
2546
2547 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2548 {
2549         if (set->ops->map_queues)
2550                 return set->ops->map_queues(set);
2551         else
2552                 return blk_mq_map_queues(set);
2553 }
2554
2555 /*
2556  * Alloc a tag set to be associated with one or more request queues.
2557  * May fail with EINVAL for various error conditions. May adjust the
2558  * requested depth down, if if it too large. In that case, the set
2559  * value will be stored in set->queue_depth.
2560  */
2561 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2562 {
2563         int ret;
2564
2565         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2566
2567         if (!set->nr_hw_queues)
2568                 return -EINVAL;
2569         if (!set->queue_depth)
2570                 return -EINVAL;
2571         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2572                 return -EINVAL;
2573
2574         if (!set->ops->queue_rq)
2575                 return -EINVAL;
2576
2577         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2578                 pr_info("blk-mq: reduced tag depth to %u\n",
2579                         BLK_MQ_MAX_DEPTH);
2580                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2581         }
2582
2583         /*
2584          * If a crashdump is active, then we are potentially in a very
2585          * memory constrained environment. Limit us to 1 queue and
2586          * 64 tags to prevent using too much memory.
2587          */
2588         if (is_kdump_kernel()) {
2589                 set->nr_hw_queues = 1;
2590                 set->queue_depth = min(64U, set->queue_depth);
2591         }
2592         /*
2593          * There is no use for more h/w queues than cpus.
2594          */
2595         if (set->nr_hw_queues > nr_cpu_ids)
2596                 set->nr_hw_queues = nr_cpu_ids;
2597
2598         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2599                                  GFP_KERNEL, set->numa_node);
2600         if (!set->tags)
2601                 return -ENOMEM;
2602
2603         ret = -ENOMEM;
2604         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2605                         GFP_KERNEL, set->numa_node);
2606         if (!set->mq_map)
2607                 goto out_free_tags;
2608
2609         ret = blk_mq_update_queue_map(set);
2610         if (ret)
2611                 goto out_free_mq_map;
2612
2613         ret = blk_mq_alloc_rq_maps(set);
2614         if (ret)
2615                 goto out_free_mq_map;
2616
2617         mutex_init(&set->tag_list_lock);
2618         INIT_LIST_HEAD(&set->tag_list);
2619
2620         return 0;
2621
2622 out_free_mq_map:
2623         kfree(set->mq_map);
2624         set->mq_map = NULL;
2625 out_free_tags:
2626         kfree(set->tags);
2627         set->tags = NULL;
2628         return ret;
2629 }
2630 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2631
2632 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2633 {
2634         int i;
2635
2636         for (i = 0; i < nr_cpu_ids; i++)
2637                 blk_mq_free_map_and_requests(set, i);
2638
2639         kfree(set->mq_map);
2640         set->mq_map = NULL;
2641
2642         kfree(set->tags);
2643         set->tags = NULL;
2644 }
2645 EXPORT_SYMBOL(blk_mq_free_tag_set);
2646
2647 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2648 {
2649         struct blk_mq_tag_set *set = q->tag_set;
2650         struct blk_mq_hw_ctx *hctx;
2651         int i, ret;
2652
2653         if (!set)
2654                 return -EINVAL;
2655
2656         blk_mq_freeze_queue(q);
2657
2658         ret = 0;
2659         queue_for_each_hw_ctx(q, hctx, i) {
2660                 if (!hctx->tags)
2661                         continue;
2662                 /*
2663                  * If we're using an MQ scheduler, just update the scheduler
2664                  * queue depth. This is similar to what the old code would do.
2665                  */
2666                 if (!hctx->sched_tags) {
2667                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2668                                                         min(nr, set->queue_depth),
2669                                                         false);
2670                 } else {
2671                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2672                                                         nr, true);
2673                 }
2674                 if (ret)
2675                         break;
2676         }
2677
2678         if (!ret)
2679                 q->nr_requests = nr;
2680
2681         blk_mq_unfreeze_queue(q);
2682
2683         return ret;
2684 }
2685
2686 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2687                                                         int nr_hw_queues)
2688 {
2689         struct request_queue *q;
2690
2691         lockdep_assert_held(&set->tag_list_lock);
2692
2693         if (nr_hw_queues > nr_cpu_ids)
2694                 nr_hw_queues = nr_cpu_ids;
2695         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2696                 return;
2697
2698         list_for_each_entry(q, &set->tag_list, tag_set_list)
2699                 blk_mq_freeze_queue(q);
2700
2701         set->nr_hw_queues = nr_hw_queues;
2702         blk_mq_update_queue_map(set);
2703         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2704                 blk_mq_realloc_hw_ctxs(set, q);
2705                 blk_mq_queue_reinit(q, cpu_online_mask);
2706         }
2707
2708         list_for_each_entry(q, &set->tag_list, tag_set_list)
2709                 blk_mq_unfreeze_queue(q);
2710 }
2711
2712 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2713 {
2714         mutex_lock(&set->tag_list_lock);
2715         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2716         mutex_unlock(&set->tag_list_lock);
2717 }
2718 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2719
2720 /* Enable polling stats and return whether they were already enabled. */
2721 static bool blk_poll_stats_enable(struct request_queue *q)
2722 {
2723         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2724             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2725                 return true;
2726         blk_stat_add_callback(q, q->poll_cb);
2727         return false;
2728 }
2729
2730 static void blk_mq_poll_stats_start(struct request_queue *q)
2731 {
2732         /*
2733          * We don't arm the callback if polling stats are not enabled or the
2734          * callback is already active.
2735          */
2736         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2737             blk_stat_is_active(q->poll_cb))
2738                 return;
2739
2740         blk_stat_activate_msecs(q->poll_cb, 100);
2741 }
2742
2743 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2744 {
2745         struct request_queue *q = cb->data;
2746         int bucket;
2747
2748         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2749                 if (cb->stat[bucket].nr_samples)
2750                         q->poll_stat[bucket] = cb->stat[bucket];
2751         }
2752 }
2753
2754 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2755                                        struct blk_mq_hw_ctx *hctx,
2756                                        struct request *rq)
2757 {
2758         unsigned long ret = 0;
2759         int bucket;
2760
2761         /*
2762          * If stats collection isn't on, don't sleep but turn it on for
2763          * future users
2764          */
2765         if (!blk_poll_stats_enable(q))
2766                 return 0;
2767
2768         /*
2769          * As an optimistic guess, use half of the mean service time
2770          * for this type of request. We can (and should) make this smarter.
2771          * For instance, if the completion latencies are tight, we can
2772          * get closer than just half the mean. This is especially
2773          * important on devices where the completion latencies are longer
2774          * than ~10 usec. We do use the stats for the relevant IO size
2775          * if available which does lead to better estimates.
2776          */
2777         bucket = blk_mq_poll_stats_bkt(rq);
2778         if (bucket < 0)
2779                 return ret;
2780
2781         if (q->poll_stat[bucket].nr_samples)
2782                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2783
2784         return ret;
2785 }
2786
2787 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2788                                      struct blk_mq_hw_ctx *hctx,
2789                                      struct request *rq)
2790 {
2791         struct hrtimer_sleeper hs;
2792         enum hrtimer_mode mode;
2793         unsigned int nsecs;
2794         ktime_t kt;
2795
2796         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2797                 return false;
2798
2799         /*
2800          * poll_nsec can be:
2801          *
2802          * -1:  don't ever hybrid sleep
2803          *  0:  use half of prev avg
2804          * >0:  use this specific value
2805          */
2806         if (q->poll_nsec == -1)
2807                 return false;
2808         else if (q->poll_nsec > 0)
2809                 nsecs = q->poll_nsec;
2810         else
2811                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2812
2813         if (!nsecs)
2814                 return false;
2815
2816         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2817
2818         /*
2819          * This will be replaced with the stats tracking code, using
2820          * 'avg_completion_time / 2' as the pre-sleep target.
2821          */
2822         kt = nsecs;
2823
2824         mode = HRTIMER_MODE_REL;
2825         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2826         hrtimer_set_expires(&hs.timer, kt);
2827
2828         hrtimer_init_sleeper(&hs, current);
2829         do {
2830                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2831                         break;
2832                 set_current_state(TASK_UNINTERRUPTIBLE);
2833                 hrtimer_start_expires(&hs.timer, mode);
2834                 if (hs.task)
2835                         io_schedule();
2836                 hrtimer_cancel(&hs.timer);
2837                 mode = HRTIMER_MODE_ABS;
2838         } while (hs.task && !signal_pending(current));
2839
2840         __set_current_state(TASK_RUNNING);
2841         destroy_hrtimer_on_stack(&hs.timer);
2842         return true;
2843 }
2844
2845 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2846 {
2847         struct request_queue *q = hctx->queue;
2848         long state;
2849
2850         /*
2851          * If we sleep, have the caller restart the poll loop to reset
2852          * the state. Like for the other success return cases, the
2853          * caller is responsible for checking if the IO completed. If
2854          * the IO isn't complete, we'll get called again and will go
2855          * straight to the busy poll loop.
2856          */
2857         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2858                 return true;
2859
2860         hctx->poll_considered++;
2861
2862         state = current->state;
2863         while (!need_resched()) {
2864                 int ret;
2865
2866                 hctx->poll_invoked++;
2867
2868                 ret = q->mq_ops->poll(hctx, rq->tag);
2869                 if (ret > 0) {
2870                         hctx->poll_success++;
2871                         set_current_state(TASK_RUNNING);
2872                         return true;
2873                 }
2874
2875                 if (signal_pending_state(state, current))
2876                         set_current_state(TASK_RUNNING);
2877
2878                 if (current->state == TASK_RUNNING)
2879                         return true;
2880                 if (ret < 0)
2881                         break;
2882                 cpu_relax();
2883         }
2884
2885         return false;
2886 }
2887
2888 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2889 {
2890         struct blk_mq_hw_ctx *hctx;
2891         struct blk_plug *plug;
2892         struct request *rq;
2893
2894         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2895             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2896                 return false;
2897
2898         plug = current->plug;
2899         if (plug)
2900                 blk_flush_plug_list(plug, false);
2901
2902         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2903         if (!blk_qc_t_is_internal(cookie))
2904                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2905         else {
2906                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2907                 /*
2908                  * With scheduling, if the request has completed, we'll
2909                  * get a NULL return here, as we clear the sched tag when
2910                  * that happens. The request still remains valid, like always,
2911                  * so we should be safe with just the NULL check.
2912                  */
2913                 if (!rq)
2914                         return false;
2915         }
2916
2917         return __blk_mq_poll(hctx, rq);
2918 }
2919 EXPORT_SYMBOL_GPL(blk_mq_poll);
2920
2921 void blk_mq_disable_hotplug(void)
2922 {
2923         mutex_lock(&all_q_mutex);
2924 }
2925
2926 void blk_mq_enable_hotplug(void)
2927 {
2928         mutex_unlock(&all_q_mutex);
2929 }
2930
2931 static int __init blk_mq_init(void)
2932 {
2933         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2934                                 blk_mq_hctx_notify_dead);
2935
2936         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2937                                   blk_mq_queue_reinit_prepare,
2938                                   blk_mq_queue_reinit_dead);
2939         return 0;
2940 }
2941 subsys_initcall(blk_mq_init);