aa9a05fdd023776d30f98485063b2c291100853d
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  * For such case, force the completed nbytes to be equal to
776                  * the BIO size so that bio_advance() sets the BIO remaining
777                  * size to 0 and we end up calling bio_endio() before returning.
778                  */
779                 if (bio->bi_iter.bi_size != nbytes) {
780                         bio->bi_status = BLK_STS_IOERR;
781                         nbytes = bio->bi_iter.bi_size;
782                 } else {
783                         bio->bi_iter.bi_sector = rq->__sector;
784                 }
785         }
786
787         bio_advance(bio, nbytes);
788
789         if (unlikely(rq->rq_flags & RQF_QUIET))
790                 bio_set_flag(bio, BIO_QUIET);
791         /* don't actually finish bio if it's part of flush sequence */
792         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
793                 bio_endio(bio);
794 }
795
796 static void blk_account_io_completion(struct request *req, unsigned int bytes)
797 {
798         if (req->part && blk_do_io_stat(req)) {
799                 const int sgrp = op_stat_group(req_op(req));
800
801                 part_stat_lock();
802                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
803                 part_stat_unlock();
804         }
805 }
806
807 static void blk_print_req_error(struct request *req, blk_status_t status)
808 {
809         printk_ratelimited(KERN_ERR
810                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
811                 "phys_seg %u prio class %u\n",
812                 blk_status_to_str(status),
813                 req->q->disk ? req->q->disk->disk_name : "?",
814                 blk_rq_pos(req), (__force u32)req_op(req),
815                 blk_op_str(req_op(req)),
816                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
817                 req->nr_phys_segments,
818                 IOPRIO_PRIO_CLASS(req->ioprio));
819 }
820
821 /*
822  * Fully end IO on a request. Does not support partial completions, or
823  * errors.
824  */
825 static void blk_complete_request(struct request *req)
826 {
827         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
828         int total_bytes = blk_rq_bytes(req);
829         struct bio *bio = req->bio;
830
831         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
832
833         if (!bio)
834                 return;
835
836 #ifdef CONFIG_BLK_DEV_INTEGRITY
837         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
838                 req->q->integrity.profile->complete_fn(req, total_bytes);
839 #endif
840
841         /*
842          * Upper layers may call blk_crypto_evict_key() anytime after the last
843          * bio_endio().  Therefore, the keyslot must be released before that.
844          */
845         blk_crypto_rq_put_keyslot(req);
846
847         blk_account_io_completion(req, total_bytes);
848
849         do {
850                 struct bio *next = bio->bi_next;
851
852                 /* Completion has already been traced */
853                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
854
855                 if (req_op(req) == REQ_OP_ZONE_APPEND)
856                         bio->bi_iter.bi_sector = req->__sector;
857
858                 if (!is_flush)
859                         bio_endio(bio);
860                 bio = next;
861         } while (bio);
862
863         /*
864          * Reset counters so that the request stacking driver
865          * can find how many bytes remain in the request
866          * later.
867          */
868         if (!req->end_io) {
869                 req->bio = NULL;
870                 req->__data_len = 0;
871         }
872 }
873
874 /**
875  * blk_update_request - Complete multiple bytes without completing the request
876  * @req:      the request being processed
877  * @error:    block status code
878  * @nr_bytes: number of bytes to complete for @req
879  *
880  * Description:
881  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
882  *     the request structure even if @req doesn't have leftover.
883  *     If @req has leftover, sets it up for the next range of segments.
884  *
885  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
886  *     %false return from this function.
887  *
888  * Note:
889  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
890  *      except in the consistency check at the end of this function.
891  *
892  * Return:
893  *     %false - this request doesn't have any more data
894  *     %true  - this request has more data
895  **/
896 bool blk_update_request(struct request *req, blk_status_t error,
897                 unsigned int nr_bytes)
898 {
899         int total_bytes;
900
901         trace_block_rq_complete(req, error, nr_bytes);
902
903         if (!req->bio)
904                 return false;
905
906 #ifdef CONFIG_BLK_DEV_INTEGRITY
907         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
908             error == BLK_STS_OK)
909                 req->q->integrity.profile->complete_fn(req, nr_bytes);
910 #endif
911
912         /*
913          * Upper layers may call blk_crypto_evict_key() anytime after the last
914          * bio_endio().  Therefore, the keyslot must be released before that.
915          */
916         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
917                 __blk_crypto_rq_put_keyslot(req);
918
919         if (unlikely(error && !blk_rq_is_passthrough(req) &&
920                      !(req->rq_flags & RQF_QUIET)) &&
921                      !test_bit(GD_DEAD, &req->q->disk->state)) {
922                 blk_print_req_error(req, error);
923                 trace_block_rq_error(req, error, nr_bytes);
924         }
925
926         blk_account_io_completion(req, nr_bytes);
927
928         total_bytes = 0;
929         while (req->bio) {
930                 struct bio *bio = req->bio;
931                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
932
933                 if (bio_bytes == bio->bi_iter.bi_size)
934                         req->bio = bio->bi_next;
935
936                 /* Completion has already been traced */
937                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
938                 req_bio_endio(req, bio, bio_bytes, error);
939
940                 total_bytes += bio_bytes;
941                 nr_bytes -= bio_bytes;
942
943                 if (!nr_bytes)
944                         break;
945         }
946
947         /*
948          * completely done
949          */
950         if (!req->bio) {
951                 /*
952                  * Reset counters so that the request stacking driver
953                  * can find how many bytes remain in the request
954                  * later.
955                  */
956                 req->__data_len = 0;
957                 return false;
958         }
959
960         req->__data_len -= total_bytes;
961
962         /* update sector only for requests with clear definition of sector */
963         if (!blk_rq_is_passthrough(req))
964                 req->__sector += total_bytes >> 9;
965
966         /* mixed attributes always follow the first bio */
967         if (req->rq_flags & RQF_MIXED_MERGE) {
968                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
969                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
970         }
971
972         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
973                 /*
974                  * If total number of sectors is less than the first segment
975                  * size, something has gone terribly wrong.
976                  */
977                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
978                         blk_dump_rq_flags(req, "request botched");
979                         req->__data_len = blk_rq_cur_bytes(req);
980                 }
981
982                 /* recalculate the number of segments */
983                 req->nr_phys_segments = blk_recalc_rq_segments(req);
984         }
985
986         return true;
987 }
988 EXPORT_SYMBOL_GPL(blk_update_request);
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992         trace_block_io_done(req);
993
994         /*
995          * Account IO completion.  flush_rq isn't accounted as a
996          * normal IO on queueing nor completion.  Accounting the
997          * containing request is enough.
998          */
999         if (blk_do_io_stat(req) && req->part &&
1000             !(req->rq_flags & RQF_FLUSH_SEQ)) {
1001                 const int sgrp = op_stat_group(req_op(req));
1002
1003                 part_stat_lock();
1004                 update_io_ticks(req->part, jiffies, true);
1005                 part_stat_inc(req->part, ios[sgrp]);
1006                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1007                 part_stat_unlock();
1008         }
1009 }
1010
1011 static inline void blk_account_io_start(struct request *req)
1012 {
1013         trace_block_io_start(req);
1014
1015         if (blk_do_io_stat(req)) {
1016                 /*
1017                  * All non-passthrough requests are created from a bio with one
1018                  * exception: when a flush command that is part of a flush sequence
1019                  * generated by the state machine in blk-flush.c is cloned onto the
1020                  * lower device by dm-multipath we can get here without a bio.
1021                  */
1022                 if (req->bio)
1023                         req->part = req->bio->bi_bdev;
1024                 else
1025                         req->part = req->q->disk->part0;
1026
1027                 part_stat_lock();
1028                 update_io_ticks(req->part, jiffies, false);
1029                 part_stat_unlock();
1030         }
1031 }
1032
1033 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1034 {
1035         if (rq->rq_flags & RQF_STATS)
1036                 blk_stat_add(rq, now);
1037
1038         blk_mq_sched_completed_request(rq, now);
1039         blk_account_io_done(rq, now);
1040 }
1041
1042 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1043 {
1044         if (blk_mq_need_time_stamp(rq))
1045                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1046
1047         blk_mq_finish_request(rq);
1048
1049         if (rq->end_io) {
1050                 rq_qos_done(rq->q, rq);
1051                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1052                         blk_mq_free_request(rq);
1053         } else {
1054                 blk_mq_free_request(rq);
1055         }
1056 }
1057 EXPORT_SYMBOL(__blk_mq_end_request);
1058
1059 void blk_mq_end_request(struct request *rq, blk_status_t error)
1060 {
1061         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1062                 BUG();
1063         __blk_mq_end_request(rq, error);
1064 }
1065 EXPORT_SYMBOL(blk_mq_end_request);
1066
1067 #define TAG_COMP_BATCH          32
1068
1069 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1070                                           int *tag_array, int nr_tags)
1071 {
1072         struct request_queue *q = hctx->queue;
1073
1074         blk_mq_sub_active_requests(hctx, nr_tags);
1075
1076         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079
1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082         int tags[TAG_COMP_BATCH], nr_tags = 0;
1083         struct blk_mq_hw_ctx *cur_hctx = NULL;
1084         struct request *rq;
1085         u64 now = 0;
1086
1087         if (iob->need_ts)
1088                 now = ktime_get_ns();
1089
1090         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091                 prefetch(rq->bio);
1092                 prefetch(rq->rq_next);
1093
1094                 blk_complete_request(rq);
1095                 if (iob->need_ts)
1096                         __blk_mq_end_request_acct(rq, now);
1097
1098                 blk_mq_finish_request(rq);
1099
1100                 rq_qos_done(rq->q, rq);
1101
1102                 /*
1103                  * If end_io handler returns NONE, then it still has
1104                  * ownership of the request.
1105                  */
1106                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107                         continue;
1108
1109                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110                 if (!req_ref_put_and_test(rq))
1111                         continue;
1112
1113                 blk_crypto_free_request(rq);
1114                 blk_pm_mark_last_busy(rq);
1115
1116                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117                         if (cur_hctx)
1118                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119                         nr_tags = 0;
1120                         cur_hctx = rq->mq_hctx;
1121                 }
1122                 tags[nr_tags++] = rq->tag;
1123         }
1124
1125         if (nr_tags)
1126                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129
1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133         struct request *rq, *next;
1134
1135         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136                 rq->q->mq_ops->complete(rq);
1137 }
1138
1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143
1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147         return 0;
1148 }
1149
1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154
1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157         int cpu = raw_smp_processor_id();
1158
1159         if (!IS_ENABLED(CONFIG_SMP) ||
1160             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161                 return false;
1162         /*
1163          * With force threaded interrupts enabled, raising softirq from an SMP
1164          * function call will always result in waking the ksoftirqd thread.
1165          * This is probably worse than completing the request on a different
1166          * cache domain.
1167          */
1168         if (force_irqthreads())
1169                 return false;
1170
1171         /* same CPU or cache domain?  Complete locally */
1172         if (cpu == rq->mq_ctx->cpu ||
1173             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175                 return false;
1176
1177         /* don't try to IPI to an offline CPU */
1178         return cpu_online(rq->mq_ctx->cpu);
1179 }
1180
1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183         unsigned int cpu;
1184
1185         cpu = rq->mq_ctx->cpu;
1186         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192         struct llist_head *list;
1193
1194         preempt_disable();
1195         list = this_cpu_ptr(&blk_cpu_done);
1196         if (llist_add(&rq->ipi_list, list))
1197                 raise_softirq(BLOCK_SOFTIRQ);
1198         preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205         /*
1206          * For request which hctx has only one ctx mapping,
1207          * or a polled request, always complete locally,
1208          * it's pointless to redirect the completion.
1209          */
1210         if ((rq->mq_hctx->nr_ctx == 1 &&
1211              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212              rq->cmd_flags & REQ_POLLED)
1213                 return false;
1214
1215         if (blk_mq_complete_need_ipi(rq)) {
1216                 blk_mq_complete_send_ipi(rq);
1217                 return true;
1218         }
1219
1220         if (rq->q->nr_hw_queues == 1) {
1221                 blk_mq_raise_softirq(rq);
1222                 return true;
1223         }
1224         return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227
1228 /**
1229  * blk_mq_complete_request - end I/O on a request
1230  * @rq:         the request being processed
1231  *
1232  * Description:
1233  *      Complete a request by scheduling the ->complete_rq operation.
1234  **/
1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237         if (!blk_mq_complete_request_remote(rq))
1238                 rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241
1242 /**
1243  * blk_mq_start_request - Start processing a request
1244  * @rq: Pointer to request to be started
1245  *
1246  * Function used by device drivers to notify the block layer that a request
1247  * is going to be processed now, so blk layer can do proper initializations
1248  * such as starting the timeout timer.
1249  */
1250 void blk_mq_start_request(struct request *rq)
1251 {
1252         struct request_queue *q = rq->q;
1253
1254         trace_block_rq_issue(rq);
1255
1256         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1257             !blk_rq_is_passthrough(rq)) {
1258                 rq->io_start_time_ns = ktime_get_ns();
1259                 rq->stats_sectors = blk_rq_sectors(rq);
1260                 rq->rq_flags |= RQF_STATS;
1261                 rq_qos_issue(q, rq);
1262         }
1263
1264         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1265
1266         blk_add_timer(rq);
1267         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1268         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1269
1270 #ifdef CONFIG_BLK_DEV_INTEGRITY
1271         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1272                 q->integrity.profile->prepare_fn(rq);
1273 #endif
1274         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1275                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_request);
1278
1279 /*
1280  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1281  * queues. This is important for md arrays to benefit from merging
1282  * requests.
1283  */
1284 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1285 {
1286         if (plug->multiple_queues)
1287                 return BLK_MAX_REQUEST_COUNT * 2;
1288         return BLK_MAX_REQUEST_COUNT;
1289 }
1290
1291 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1292 {
1293         struct request *last = rq_list_peek(&plug->mq_list);
1294
1295         if (!plug->rq_count) {
1296                 trace_block_plug(rq->q);
1297         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1298                    (!blk_queue_nomerges(rq->q) &&
1299                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1300                 blk_mq_flush_plug_list(plug, false);
1301                 last = NULL;
1302                 trace_block_plug(rq->q);
1303         }
1304
1305         if (!plug->multiple_queues && last && last->q != rq->q)
1306                 plug->multiple_queues = true;
1307         /*
1308          * Any request allocated from sched tags can't be issued to
1309          * ->queue_rqs() directly
1310          */
1311         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1312                 plug->has_elevator = true;
1313         rq->rq_next = NULL;
1314         rq_list_add(&plug->mq_list, rq);
1315         plug->rq_count++;
1316 }
1317
1318 /**
1319  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1320  * @rq:         request to insert
1321  * @at_head:    insert request at head or tail of queue
1322  *
1323  * Description:
1324  *    Insert a fully prepared request at the back of the I/O scheduler queue
1325  *    for execution.  Don't wait for completion.
1326  *
1327  * Note:
1328  *    This function will invoke @done directly if the queue is dead.
1329  */
1330 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1331 {
1332         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1333
1334         WARN_ON(irqs_disabled());
1335         WARN_ON(!blk_rq_is_passthrough(rq));
1336
1337         blk_account_io_start(rq);
1338
1339         /*
1340          * As plugging can be enabled for passthrough requests on a zoned
1341          * device, directly accessing the plug instead of using blk_mq_plug()
1342          * should not have any consequences.
1343          */
1344         if (current->plug && !at_head) {
1345                 blk_add_rq_to_plug(current->plug, rq);
1346                 return;
1347         }
1348
1349         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1350         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1351 }
1352 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1353
1354 struct blk_rq_wait {
1355         struct completion done;
1356         blk_status_t ret;
1357 };
1358
1359 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1360 {
1361         struct blk_rq_wait *wait = rq->end_io_data;
1362
1363         wait->ret = ret;
1364         complete(&wait->done);
1365         return RQ_END_IO_NONE;
1366 }
1367
1368 bool blk_rq_is_poll(struct request *rq)
1369 {
1370         if (!rq->mq_hctx)
1371                 return false;
1372         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1373                 return false;
1374         return true;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1377
1378 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1379 {
1380         do {
1381                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1382                 cond_resched();
1383         } while (!completion_done(wait));
1384 }
1385
1386 /**
1387  * blk_execute_rq - insert a request into queue for execution
1388  * @rq:         request to insert
1389  * @at_head:    insert request at head or tail of queue
1390  *
1391  * Description:
1392  *    Insert a fully prepared request at the back of the I/O scheduler queue
1393  *    for execution and wait for completion.
1394  * Return: The blk_status_t result provided to blk_mq_end_request().
1395  */
1396 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1397 {
1398         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1399         struct blk_rq_wait wait = {
1400                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1401         };
1402
1403         WARN_ON(irqs_disabled());
1404         WARN_ON(!blk_rq_is_passthrough(rq));
1405
1406         rq->end_io_data = &wait;
1407         rq->end_io = blk_end_sync_rq;
1408
1409         blk_account_io_start(rq);
1410         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1411         blk_mq_run_hw_queue(hctx, false);
1412
1413         if (blk_rq_is_poll(rq)) {
1414                 blk_rq_poll_completion(rq, &wait.done);
1415         } else {
1416                 /*
1417                  * Prevent hang_check timer from firing at us during very long
1418                  * I/O
1419                  */
1420                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1421
1422                 if (hang_check)
1423                         while (!wait_for_completion_io_timeout(&wait.done,
1424                                         hang_check * (HZ/2)))
1425                                 ;
1426                 else
1427                         wait_for_completion_io(&wait.done);
1428         }
1429
1430         return wait.ret;
1431 }
1432 EXPORT_SYMBOL(blk_execute_rq);
1433
1434 static void __blk_mq_requeue_request(struct request *rq)
1435 {
1436         struct request_queue *q = rq->q;
1437
1438         blk_mq_put_driver_tag(rq);
1439
1440         trace_block_rq_requeue(rq);
1441         rq_qos_requeue(q, rq);
1442
1443         if (blk_mq_request_started(rq)) {
1444                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1445                 rq->rq_flags &= ~RQF_TIMED_OUT;
1446         }
1447 }
1448
1449 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1450 {
1451         struct request_queue *q = rq->q;
1452         unsigned long flags;
1453
1454         __blk_mq_requeue_request(rq);
1455
1456         /* this request will be re-inserted to io scheduler queue */
1457         blk_mq_sched_requeue_request(rq);
1458
1459         spin_lock_irqsave(&q->requeue_lock, flags);
1460         list_add_tail(&rq->queuelist, &q->requeue_list);
1461         spin_unlock_irqrestore(&q->requeue_lock, flags);
1462
1463         if (kick_requeue_list)
1464                 blk_mq_kick_requeue_list(q);
1465 }
1466 EXPORT_SYMBOL(blk_mq_requeue_request);
1467
1468 static void blk_mq_requeue_work(struct work_struct *work)
1469 {
1470         struct request_queue *q =
1471                 container_of(work, struct request_queue, requeue_work.work);
1472         LIST_HEAD(rq_list);
1473         LIST_HEAD(flush_list);
1474         struct request *rq;
1475
1476         spin_lock_irq(&q->requeue_lock);
1477         list_splice_init(&q->requeue_list, &rq_list);
1478         list_splice_init(&q->flush_list, &flush_list);
1479         spin_unlock_irq(&q->requeue_lock);
1480
1481         while (!list_empty(&rq_list)) {
1482                 rq = list_entry(rq_list.next, struct request, queuelist);
1483                 /*
1484                  * If RQF_DONTPREP ist set, the request has been started by the
1485                  * driver already and might have driver-specific data allocated
1486                  * already.  Insert it into the hctx dispatch list to avoid
1487                  * block layer merges for the request.
1488                  */
1489                 if (rq->rq_flags & RQF_DONTPREP) {
1490                         list_del_init(&rq->queuelist);
1491                         blk_mq_request_bypass_insert(rq, 0);
1492                 } else {
1493                         list_del_init(&rq->queuelist);
1494                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1495                 }
1496         }
1497
1498         while (!list_empty(&flush_list)) {
1499                 rq = list_entry(flush_list.next, struct request, queuelist);
1500                 list_del_init(&rq->queuelist);
1501                 blk_mq_insert_request(rq, 0);
1502         }
1503
1504         blk_mq_run_hw_queues(q, false);
1505 }
1506
1507 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 }
1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512
1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1514                                     unsigned long msecs)
1515 {
1516         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1517                                     msecs_to_jiffies(msecs));
1518 }
1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520
1521 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1522 {
1523         /*
1524          * If we find a request that isn't idle we know the queue is busy
1525          * as it's checked in the iter.
1526          * Return false to stop the iteration.
1527          */
1528         if (blk_mq_request_started(rq)) {
1529                 bool *busy = priv;
1530
1531                 *busy = true;
1532                 return false;
1533         }
1534
1535         return true;
1536 }
1537
1538 bool blk_mq_queue_inflight(struct request_queue *q)
1539 {
1540         bool busy = false;
1541
1542         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1543         return busy;
1544 }
1545 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1546
1547 static void blk_mq_rq_timed_out(struct request *req)
1548 {
1549         req->rq_flags |= RQF_TIMED_OUT;
1550         if (req->q->mq_ops->timeout) {
1551                 enum blk_eh_timer_return ret;
1552
1553                 ret = req->q->mq_ops->timeout(req);
1554                 if (ret == BLK_EH_DONE)
1555                         return;
1556                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1557         }
1558
1559         blk_add_timer(req);
1560 }
1561
1562 struct blk_expired_data {
1563         bool has_timedout_rq;
1564         unsigned long next;
1565         unsigned long timeout_start;
1566 };
1567
1568 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1569 {
1570         unsigned long deadline;
1571
1572         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1573                 return false;
1574         if (rq->rq_flags & RQF_TIMED_OUT)
1575                 return false;
1576
1577         deadline = READ_ONCE(rq->deadline);
1578         if (time_after_eq(expired->timeout_start, deadline))
1579                 return true;
1580
1581         if (expired->next == 0)
1582                 expired->next = deadline;
1583         else if (time_after(expired->next, deadline))
1584                 expired->next = deadline;
1585         return false;
1586 }
1587
1588 void blk_mq_put_rq_ref(struct request *rq)
1589 {
1590         if (is_flush_rq(rq)) {
1591                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1592                         blk_mq_free_request(rq);
1593         } else if (req_ref_put_and_test(rq)) {
1594                 __blk_mq_free_request(rq);
1595         }
1596 }
1597
1598 static bool blk_mq_check_expired(struct request *rq, void *priv)
1599 {
1600         struct blk_expired_data *expired = priv;
1601
1602         /*
1603          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1604          * be reallocated underneath the timeout handler's processing, then
1605          * the expire check is reliable. If the request is not expired, then
1606          * it was completed and reallocated as a new request after returning
1607          * from blk_mq_check_expired().
1608          */
1609         if (blk_mq_req_expired(rq, expired)) {
1610                 expired->has_timedout_rq = true;
1611                 return false;
1612         }
1613         return true;
1614 }
1615
1616 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1617 {
1618         struct blk_expired_data *expired = priv;
1619
1620         if (blk_mq_req_expired(rq, expired))
1621                 blk_mq_rq_timed_out(rq);
1622         return true;
1623 }
1624
1625 static void blk_mq_timeout_work(struct work_struct *work)
1626 {
1627         struct request_queue *q =
1628                 container_of(work, struct request_queue, timeout_work);
1629         struct blk_expired_data expired = {
1630                 .timeout_start = jiffies,
1631         };
1632         struct blk_mq_hw_ctx *hctx;
1633         unsigned long i;
1634
1635         /* A deadlock might occur if a request is stuck requiring a
1636          * timeout at the same time a queue freeze is waiting
1637          * completion, since the timeout code would not be able to
1638          * acquire the queue reference here.
1639          *
1640          * That's why we don't use blk_queue_enter here; instead, we use
1641          * percpu_ref_tryget directly, because we need to be able to
1642          * obtain a reference even in the short window between the queue
1643          * starting to freeze, by dropping the first reference in
1644          * blk_freeze_queue_start, and the moment the last request is
1645          * consumed, marked by the instant q_usage_counter reaches
1646          * zero.
1647          */
1648         if (!percpu_ref_tryget(&q->q_usage_counter))
1649                 return;
1650
1651         /* check if there is any timed-out request */
1652         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1653         if (expired.has_timedout_rq) {
1654                 /*
1655                  * Before walking tags, we must ensure any submit started
1656                  * before the current time has finished. Since the submit
1657                  * uses srcu or rcu, wait for a synchronization point to
1658                  * ensure all running submits have finished
1659                  */
1660                 blk_mq_wait_quiesce_done(q->tag_set);
1661
1662                 expired.next = 0;
1663                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1664         }
1665
1666         if (expired.next != 0) {
1667                 mod_timer(&q->timeout, expired.next);
1668         } else {
1669                 /*
1670                  * Request timeouts are handled as a forward rolling timer. If
1671                  * we end up here it means that no requests are pending and
1672                  * also that no request has been pending for a while. Mark
1673                  * each hctx as idle.
1674                  */
1675                 queue_for_each_hw_ctx(q, hctx, i) {
1676                         /* the hctx may be unmapped, so check it here */
1677                         if (blk_mq_hw_queue_mapped(hctx))
1678                                 blk_mq_tag_idle(hctx);
1679                 }
1680         }
1681         blk_queue_exit(q);
1682 }
1683
1684 struct flush_busy_ctx_data {
1685         struct blk_mq_hw_ctx *hctx;
1686         struct list_head *list;
1687 };
1688
1689 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1690 {
1691         struct flush_busy_ctx_data *flush_data = data;
1692         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1693         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1694         enum hctx_type type = hctx->type;
1695
1696         spin_lock(&ctx->lock);
1697         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1698         sbitmap_clear_bit(sb, bitnr);
1699         spin_unlock(&ctx->lock);
1700         return true;
1701 }
1702
1703 /*
1704  * Process software queues that have been marked busy, splicing them
1705  * to the for-dispatch
1706  */
1707 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1708 {
1709         struct flush_busy_ctx_data data = {
1710                 .hctx = hctx,
1711                 .list = list,
1712         };
1713
1714         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1715 }
1716 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1717
1718 struct dispatch_rq_data {
1719         struct blk_mq_hw_ctx *hctx;
1720         struct request *rq;
1721 };
1722
1723 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1724                 void *data)
1725 {
1726         struct dispatch_rq_data *dispatch_data = data;
1727         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1728         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1729         enum hctx_type type = hctx->type;
1730
1731         spin_lock(&ctx->lock);
1732         if (!list_empty(&ctx->rq_lists[type])) {
1733                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1734                 list_del_init(&dispatch_data->rq->queuelist);
1735                 if (list_empty(&ctx->rq_lists[type]))
1736                         sbitmap_clear_bit(sb, bitnr);
1737         }
1738         spin_unlock(&ctx->lock);
1739
1740         return !dispatch_data->rq;
1741 }
1742
1743 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1744                                         struct blk_mq_ctx *start)
1745 {
1746         unsigned off = start ? start->index_hw[hctx->type] : 0;
1747         struct dispatch_rq_data data = {
1748                 .hctx = hctx,
1749                 .rq   = NULL,
1750         };
1751
1752         __sbitmap_for_each_set(&hctx->ctx_map, off,
1753                                dispatch_rq_from_ctx, &data);
1754
1755         return data.rq;
1756 }
1757
1758 bool __blk_mq_alloc_driver_tag(struct request *rq)
1759 {
1760         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1761         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1762         int tag;
1763
1764         blk_mq_tag_busy(rq->mq_hctx);
1765
1766         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1767                 bt = &rq->mq_hctx->tags->breserved_tags;
1768                 tag_offset = 0;
1769         } else {
1770                 if (!hctx_may_queue(rq->mq_hctx, bt))
1771                         return false;
1772         }
1773
1774         tag = __sbitmap_queue_get(bt);
1775         if (tag == BLK_MQ_NO_TAG)
1776                 return false;
1777
1778         rq->tag = tag + tag_offset;
1779         blk_mq_inc_active_requests(rq->mq_hctx);
1780         return true;
1781 }
1782
1783 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1784                                 int flags, void *key)
1785 {
1786         struct blk_mq_hw_ctx *hctx;
1787
1788         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1789
1790         spin_lock(&hctx->dispatch_wait_lock);
1791         if (!list_empty(&wait->entry)) {
1792                 struct sbitmap_queue *sbq;
1793
1794                 list_del_init(&wait->entry);
1795                 sbq = &hctx->tags->bitmap_tags;
1796                 atomic_dec(&sbq->ws_active);
1797         }
1798         spin_unlock(&hctx->dispatch_wait_lock);
1799
1800         blk_mq_run_hw_queue(hctx, true);
1801         return 1;
1802 }
1803
1804 /*
1805  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1806  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1807  * restart. For both cases, take care to check the condition again after
1808  * marking us as waiting.
1809  */
1810 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1811                                  struct request *rq)
1812 {
1813         struct sbitmap_queue *sbq;
1814         struct wait_queue_head *wq;
1815         wait_queue_entry_t *wait;
1816         bool ret;
1817
1818         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1819             !(blk_mq_is_shared_tags(hctx->flags))) {
1820                 blk_mq_sched_mark_restart_hctx(hctx);
1821
1822                 /*
1823                  * It's possible that a tag was freed in the window between the
1824                  * allocation failure and adding the hardware queue to the wait
1825                  * queue.
1826                  *
1827                  * Don't clear RESTART here, someone else could have set it.
1828                  * At most this will cost an extra queue run.
1829                  */
1830                 return blk_mq_get_driver_tag(rq);
1831         }
1832
1833         wait = &hctx->dispatch_wait;
1834         if (!list_empty_careful(&wait->entry))
1835                 return false;
1836
1837         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1838                 sbq = &hctx->tags->breserved_tags;
1839         else
1840                 sbq = &hctx->tags->bitmap_tags;
1841         wq = &bt_wait_ptr(sbq, hctx)->wait;
1842
1843         spin_lock_irq(&wq->lock);
1844         spin_lock(&hctx->dispatch_wait_lock);
1845         if (!list_empty(&wait->entry)) {
1846                 spin_unlock(&hctx->dispatch_wait_lock);
1847                 spin_unlock_irq(&wq->lock);
1848                 return false;
1849         }
1850
1851         atomic_inc(&sbq->ws_active);
1852         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1853         __add_wait_queue(wq, wait);
1854
1855         /*
1856          * It's possible that a tag was freed in the window between the
1857          * allocation failure and adding the hardware queue to the wait
1858          * queue.
1859          */
1860         ret = blk_mq_get_driver_tag(rq);
1861         if (!ret) {
1862                 spin_unlock(&hctx->dispatch_wait_lock);
1863                 spin_unlock_irq(&wq->lock);
1864                 return false;
1865         }
1866
1867         /*
1868          * We got a tag, remove ourselves from the wait queue to ensure
1869          * someone else gets the wakeup.
1870          */
1871         list_del_init(&wait->entry);
1872         atomic_dec(&sbq->ws_active);
1873         spin_unlock(&hctx->dispatch_wait_lock);
1874         spin_unlock_irq(&wq->lock);
1875
1876         return true;
1877 }
1878
1879 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1881 /*
1882  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1883  * - EWMA is one simple way to compute running average value
1884  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1885  * - take 4 as factor for avoiding to get too small(0) result, and this
1886  *   factor doesn't matter because EWMA decreases exponentially
1887  */
1888 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1889 {
1890         unsigned int ewma;
1891
1892         ewma = hctx->dispatch_busy;
1893
1894         if (!ewma && !busy)
1895                 return;
1896
1897         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1898         if (busy)
1899                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1900         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1901
1902         hctx->dispatch_busy = ewma;
1903 }
1904
1905 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1906
1907 static void blk_mq_handle_dev_resource(struct request *rq,
1908                                        struct list_head *list)
1909 {
1910         list_add(&rq->queuelist, list);
1911         __blk_mq_requeue_request(rq);
1912 }
1913
1914 static void blk_mq_handle_zone_resource(struct request *rq,
1915                                         struct list_head *zone_list)
1916 {
1917         /*
1918          * If we end up here it is because we cannot dispatch a request to a
1919          * specific zone due to LLD level zone-write locking or other zone
1920          * related resource not being available. In this case, set the request
1921          * aside in zone_list for retrying it later.
1922          */
1923         list_add(&rq->queuelist, zone_list);
1924         __blk_mq_requeue_request(rq);
1925 }
1926
1927 enum prep_dispatch {
1928         PREP_DISPATCH_OK,
1929         PREP_DISPATCH_NO_TAG,
1930         PREP_DISPATCH_NO_BUDGET,
1931 };
1932
1933 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1934                                                   bool need_budget)
1935 {
1936         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1937         int budget_token = -1;
1938
1939         if (need_budget) {
1940                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1941                 if (budget_token < 0) {
1942                         blk_mq_put_driver_tag(rq);
1943                         return PREP_DISPATCH_NO_BUDGET;
1944                 }
1945                 blk_mq_set_rq_budget_token(rq, budget_token);
1946         }
1947
1948         if (!blk_mq_get_driver_tag(rq)) {
1949                 /*
1950                  * The initial allocation attempt failed, so we need to
1951                  * rerun the hardware queue when a tag is freed. The
1952                  * waitqueue takes care of that. If the queue is run
1953                  * before we add this entry back on the dispatch list,
1954                  * we'll re-run it below.
1955                  */
1956                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1957                         /*
1958                          * All budgets not got from this function will be put
1959                          * together during handling partial dispatch
1960                          */
1961                         if (need_budget)
1962                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1963                         return PREP_DISPATCH_NO_TAG;
1964                 }
1965         }
1966
1967         return PREP_DISPATCH_OK;
1968 }
1969
1970 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1971 static void blk_mq_release_budgets(struct request_queue *q,
1972                 struct list_head *list)
1973 {
1974         struct request *rq;
1975
1976         list_for_each_entry(rq, list, queuelist) {
1977                 int budget_token = blk_mq_get_rq_budget_token(rq);
1978
1979                 if (budget_token >= 0)
1980                         blk_mq_put_dispatch_budget(q, budget_token);
1981         }
1982 }
1983
1984 /*
1985  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1986  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1987  * details)
1988  * Attention, we should explicitly call this in unusual cases:
1989  *  1) did not queue everything initially scheduled to queue
1990  *  2) the last attempt to queue a request failed
1991  */
1992 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1993                               bool from_schedule)
1994 {
1995         if (hctx->queue->mq_ops->commit_rqs && queued) {
1996                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1997                 hctx->queue->mq_ops->commit_rqs(hctx);
1998         }
1999 }
2000
2001 /*
2002  * Returns true if we did some work AND can potentially do more.
2003  */
2004 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2005                              unsigned int nr_budgets)
2006 {
2007         enum prep_dispatch prep;
2008         struct request_queue *q = hctx->queue;
2009         struct request *rq;
2010         int queued;
2011         blk_status_t ret = BLK_STS_OK;
2012         LIST_HEAD(zone_list);
2013         bool needs_resource = false;
2014
2015         if (list_empty(list))
2016                 return false;
2017
2018         /*
2019          * Now process all the entries, sending them to the driver.
2020          */
2021         queued = 0;
2022         do {
2023                 struct blk_mq_queue_data bd;
2024
2025                 rq = list_first_entry(list, struct request, queuelist);
2026
2027                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2028                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2029                 if (prep != PREP_DISPATCH_OK)
2030                         break;
2031
2032                 list_del_init(&rq->queuelist);
2033
2034                 bd.rq = rq;
2035                 bd.last = list_empty(list);
2036
2037                 /*
2038                  * once the request is queued to lld, no need to cover the
2039                  * budget any more
2040                  */
2041                 if (nr_budgets)
2042                         nr_budgets--;
2043                 ret = q->mq_ops->queue_rq(hctx, &bd);
2044                 switch (ret) {
2045                 case BLK_STS_OK:
2046                         queued++;
2047                         break;
2048                 case BLK_STS_RESOURCE:
2049                         needs_resource = true;
2050                         fallthrough;
2051                 case BLK_STS_DEV_RESOURCE:
2052                         blk_mq_handle_dev_resource(rq, list);
2053                         goto out;
2054                 case BLK_STS_ZONE_RESOURCE:
2055                         /*
2056                          * Move the request to zone_list and keep going through
2057                          * the dispatch list to find more requests the drive can
2058                          * accept.
2059                          */
2060                         blk_mq_handle_zone_resource(rq, &zone_list);
2061                         needs_resource = true;
2062                         break;
2063                 default:
2064                         blk_mq_end_request(rq, ret);
2065                 }
2066         } while (!list_empty(list));
2067 out:
2068         if (!list_empty(&zone_list))
2069                 list_splice_tail_init(&zone_list, list);
2070
2071         /* If we didn't flush the entire list, we could have told the driver
2072          * there was more coming, but that turned out to be a lie.
2073          */
2074         if (!list_empty(list) || ret != BLK_STS_OK)
2075                 blk_mq_commit_rqs(hctx, queued, false);
2076
2077         /*
2078          * Any items that need requeuing? Stuff them into hctx->dispatch,
2079          * that is where we will continue on next queue run.
2080          */
2081         if (!list_empty(list)) {
2082                 bool needs_restart;
2083                 /* For non-shared tags, the RESTART check will suffice */
2084                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2085                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2086                         blk_mq_is_shared_tags(hctx->flags));
2087
2088                 if (nr_budgets)
2089                         blk_mq_release_budgets(q, list);
2090
2091                 spin_lock(&hctx->lock);
2092                 list_splice_tail_init(list, &hctx->dispatch);
2093                 spin_unlock(&hctx->lock);
2094
2095                 /*
2096                  * Order adding requests to hctx->dispatch and checking
2097                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2098                  * in blk_mq_sched_restart(). Avoid restart code path to
2099                  * miss the new added requests to hctx->dispatch, meantime
2100                  * SCHED_RESTART is observed here.
2101                  */
2102                 smp_mb();
2103
2104                 /*
2105                  * If SCHED_RESTART was set by the caller of this function and
2106                  * it is no longer set that means that it was cleared by another
2107                  * thread and hence that a queue rerun is needed.
2108                  *
2109                  * If 'no_tag' is set, that means that we failed getting
2110                  * a driver tag with an I/O scheduler attached. If our dispatch
2111                  * waitqueue is no longer active, ensure that we run the queue
2112                  * AFTER adding our entries back to the list.
2113                  *
2114                  * If no I/O scheduler has been configured it is possible that
2115                  * the hardware queue got stopped and restarted before requests
2116                  * were pushed back onto the dispatch list. Rerun the queue to
2117                  * avoid starvation. Notes:
2118                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2119                  *   been stopped before rerunning a queue.
2120                  * - Some but not all block drivers stop a queue before
2121                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2122                  *   and dm-rq.
2123                  *
2124                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2125                  * bit is set, run queue after a delay to avoid IO stalls
2126                  * that could otherwise occur if the queue is idle.  We'll do
2127                  * similar if we couldn't get budget or couldn't lock a zone
2128                  * and SCHED_RESTART is set.
2129                  */
2130                 needs_restart = blk_mq_sched_needs_restart(hctx);
2131                 if (prep == PREP_DISPATCH_NO_BUDGET)
2132                         needs_resource = true;
2133                 if (!needs_restart ||
2134                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2135                         blk_mq_run_hw_queue(hctx, true);
2136                 else if (needs_resource)
2137                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2138
2139                 blk_mq_update_dispatch_busy(hctx, true);
2140                 return false;
2141         }
2142
2143         blk_mq_update_dispatch_busy(hctx, false);
2144         return true;
2145 }
2146
2147 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2148 {
2149         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2150
2151         if (cpu >= nr_cpu_ids)
2152                 cpu = cpumask_first(hctx->cpumask);
2153         return cpu;
2154 }
2155
2156 /*
2157  * It'd be great if the workqueue API had a way to pass
2158  * in a mask and had some smarts for more clever placement.
2159  * For now we just round-robin here, switching for every
2160  * BLK_MQ_CPU_WORK_BATCH queued items.
2161  */
2162 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2163 {
2164         bool tried = false;
2165         int next_cpu = hctx->next_cpu;
2166
2167         if (hctx->queue->nr_hw_queues == 1)
2168                 return WORK_CPU_UNBOUND;
2169
2170         if (--hctx->next_cpu_batch <= 0) {
2171 select_cpu:
2172                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2173                                 cpu_online_mask);
2174                 if (next_cpu >= nr_cpu_ids)
2175                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2176                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2177         }
2178
2179         /*
2180          * Do unbound schedule if we can't find a online CPU for this hctx,
2181          * and it should only happen in the path of handling CPU DEAD.
2182          */
2183         if (!cpu_online(next_cpu)) {
2184                 if (!tried) {
2185                         tried = true;
2186                         goto select_cpu;
2187                 }
2188
2189                 /*
2190                  * Make sure to re-select CPU next time once after CPUs
2191                  * in hctx->cpumask become online again.
2192                  */
2193                 hctx->next_cpu = next_cpu;
2194                 hctx->next_cpu_batch = 1;
2195                 return WORK_CPU_UNBOUND;
2196         }
2197
2198         hctx->next_cpu = next_cpu;
2199         return next_cpu;
2200 }
2201
2202 /**
2203  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2204  * @hctx: Pointer to the hardware queue to run.
2205  * @msecs: Milliseconds of delay to wait before running the queue.
2206  *
2207  * Run a hardware queue asynchronously with a delay of @msecs.
2208  */
2209 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2210 {
2211         if (unlikely(blk_mq_hctx_stopped(hctx)))
2212                 return;
2213         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2214                                     msecs_to_jiffies(msecs));
2215 }
2216 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2217
2218 /**
2219  * blk_mq_run_hw_queue - Start to run a hardware queue.
2220  * @hctx: Pointer to the hardware queue to run.
2221  * @async: If we want to run the queue asynchronously.
2222  *
2223  * Check if the request queue is not in a quiesced state and if there are
2224  * pending requests to be sent. If this is true, run the queue to send requests
2225  * to hardware.
2226  */
2227 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2228 {
2229         bool need_run;
2230
2231         /*
2232          * We can't run the queue inline with interrupts disabled.
2233          */
2234         WARN_ON_ONCE(!async && in_interrupt());
2235
2236         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2237
2238         /*
2239          * When queue is quiesced, we may be switching io scheduler, or
2240          * updating nr_hw_queues, or other things, and we can't run queue
2241          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2242          *
2243          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2244          * quiesced.
2245          */
2246         __blk_mq_run_dispatch_ops(hctx->queue, false,
2247                 need_run = !blk_queue_quiesced(hctx->queue) &&
2248                 blk_mq_hctx_has_pending(hctx));
2249
2250         if (!need_run)
2251                 return;
2252
2253         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2254                 blk_mq_delay_run_hw_queue(hctx, 0);
2255                 return;
2256         }
2257
2258         blk_mq_run_dispatch_ops(hctx->queue,
2259                                 blk_mq_sched_dispatch_requests(hctx));
2260 }
2261 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2262
2263 /*
2264  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2265  * scheduler.
2266  */
2267 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2268 {
2269         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2270         /*
2271          * If the IO scheduler does not respect hardware queues when
2272          * dispatching, we just don't bother with multiple HW queues and
2273          * dispatch from hctx for the current CPU since running multiple queues
2274          * just causes lock contention inside the scheduler and pointless cache
2275          * bouncing.
2276          */
2277         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2278
2279         if (!blk_mq_hctx_stopped(hctx))
2280                 return hctx;
2281         return NULL;
2282 }
2283
2284 /**
2285  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2286  * @q: Pointer to the request queue to run.
2287  * @async: If we want to run the queue asynchronously.
2288  */
2289 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2290 {
2291         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2292         unsigned long i;
2293
2294         sq_hctx = NULL;
2295         if (blk_queue_sq_sched(q))
2296                 sq_hctx = blk_mq_get_sq_hctx(q);
2297         queue_for_each_hw_ctx(q, hctx, i) {
2298                 if (blk_mq_hctx_stopped(hctx))
2299                         continue;
2300                 /*
2301                  * Dispatch from this hctx either if there's no hctx preferred
2302                  * by IO scheduler or if it has requests that bypass the
2303                  * scheduler.
2304                  */
2305                 if (!sq_hctx || sq_hctx == hctx ||
2306                     !list_empty_careful(&hctx->dispatch))
2307                         blk_mq_run_hw_queue(hctx, async);
2308         }
2309 }
2310 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2311
2312 /**
2313  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2314  * @q: Pointer to the request queue to run.
2315  * @msecs: Milliseconds of delay to wait before running the queues.
2316  */
2317 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2318 {
2319         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2320         unsigned long i;
2321
2322         sq_hctx = NULL;
2323         if (blk_queue_sq_sched(q))
2324                 sq_hctx = blk_mq_get_sq_hctx(q);
2325         queue_for_each_hw_ctx(q, hctx, i) {
2326                 if (blk_mq_hctx_stopped(hctx))
2327                         continue;
2328                 /*
2329                  * If there is already a run_work pending, leave the
2330                  * pending delay untouched. Otherwise, a hctx can stall
2331                  * if another hctx is re-delaying the other's work
2332                  * before the work executes.
2333                  */
2334                 if (delayed_work_pending(&hctx->run_work))
2335                         continue;
2336                 /*
2337                  * Dispatch from this hctx either if there's no hctx preferred
2338                  * by IO scheduler or if it has requests that bypass the
2339                  * scheduler.
2340                  */
2341                 if (!sq_hctx || sq_hctx == hctx ||
2342                     !list_empty_careful(&hctx->dispatch))
2343                         blk_mq_delay_run_hw_queue(hctx, msecs);
2344         }
2345 }
2346 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2347
2348 /*
2349  * This function is often used for pausing .queue_rq() by driver when
2350  * there isn't enough resource or some conditions aren't satisfied, and
2351  * BLK_STS_RESOURCE is usually returned.
2352  *
2353  * We do not guarantee that dispatch can be drained or blocked
2354  * after blk_mq_stop_hw_queue() returns. Please use
2355  * blk_mq_quiesce_queue() for that requirement.
2356  */
2357 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2358 {
2359         cancel_delayed_work(&hctx->run_work);
2360
2361         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2362 }
2363 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2364
2365 /*
2366  * This function is often used for pausing .queue_rq() by driver when
2367  * there isn't enough resource or some conditions aren't satisfied, and
2368  * BLK_STS_RESOURCE is usually returned.
2369  *
2370  * We do not guarantee that dispatch can be drained or blocked
2371  * after blk_mq_stop_hw_queues() returns. Please use
2372  * blk_mq_quiesce_queue() for that requirement.
2373  */
2374 void blk_mq_stop_hw_queues(struct request_queue *q)
2375 {
2376         struct blk_mq_hw_ctx *hctx;
2377         unsigned long i;
2378
2379         queue_for_each_hw_ctx(q, hctx, i)
2380                 blk_mq_stop_hw_queue(hctx);
2381 }
2382 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2383
2384 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2385 {
2386         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387
2388         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2389 }
2390 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2391
2392 void blk_mq_start_hw_queues(struct request_queue *q)
2393 {
2394         struct blk_mq_hw_ctx *hctx;
2395         unsigned long i;
2396
2397         queue_for_each_hw_ctx(q, hctx, i)
2398                 blk_mq_start_hw_queue(hctx);
2399 }
2400 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2401
2402 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2403 {
2404         if (!blk_mq_hctx_stopped(hctx))
2405                 return;
2406
2407         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2408         blk_mq_run_hw_queue(hctx, async);
2409 }
2410 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2411
2412 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2413 {
2414         struct blk_mq_hw_ctx *hctx;
2415         unsigned long i;
2416
2417         queue_for_each_hw_ctx(q, hctx, i)
2418                 blk_mq_start_stopped_hw_queue(hctx, async ||
2419                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2420 }
2421 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2422
2423 static void blk_mq_run_work_fn(struct work_struct *work)
2424 {
2425         struct blk_mq_hw_ctx *hctx =
2426                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2427
2428         blk_mq_run_dispatch_ops(hctx->queue,
2429                                 blk_mq_sched_dispatch_requests(hctx));
2430 }
2431
2432 /**
2433  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2434  * @rq: Pointer to request to be inserted.
2435  * @flags: BLK_MQ_INSERT_*
2436  *
2437  * Should only be used carefully, when the caller knows we want to
2438  * bypass a potential IO scheduler on the target device.
2439  */
2440 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2441 {
2442         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2443
2444         spin_lock(&hctx->lock);
2445         if (flags & BLK_MQ_INSERT_AT_HEAD)
2446                 list_add(&rq->queuelist, &hctx->dispatch);
2447         else
2448                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2449         spin_unlock(&hctx->lock);
2450 }
2451
2452 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2453                 struct blk_mq_ctx *ctx, struct list_head *list,
2454                 bool run_queue_async)
2455 {
2456         struct request *rq;
2457         enum hctx_type type = hctx->type;
2458
2459         /*
2460          * Try to issue requests directly if the hw queue isn't busy to save an
2461          * extra enqueue & dequeue to the sw queue.
2462          */
2463         if (!hctx->dispatch_busy && !run_queue_async) {
2464                 blk_mq_run_dispatch_ops(hctx->queue,
2465                         blk_mq_try_issue_list_directly(hctx, list));
2466                 if (list_empty(list))
2467                         goto out;
2468         }
2469
2470         /*
2471          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2472          * offline now
2473          */
2474         list_for_each_entry(rq, list, queuelist) {
2475                 BUG_ON(rq->mq_ctx != ctx);
2476                 trace_block_rq_insert(rq);
2477                 if (rq->cmd_flags & REQ_NOWAIT)
2478                         run_queue_async = true;
2479         }
2480
2481         spin_lock(&ctx->lock);
2482         list_splice_tail_init(list, &ctx->rq_lists[type]);
2483         blk_mq_hctx_mark_pending(hctx, ctx);
2484         spin_unlock(&ctx->lock);
2485 out:
2486         blk_mq_run_hw_queue(hctx, run_queue_async);
2487 }
2488
2489 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2490 {
2491         struct request_queue *q = rq->q;
2492         struct blk_mq_ctx *ctx = rq->mq_ctx;
2493         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2494
2495         if (blk_rq_is_passthrough(rq)) {
2496                 /*
2497                  * Passthrough request have to be added to hctx->dispatch
2498                  * directly.  The device may be in a situation where it can't
2499                  * handle FS request, and always returns BLK_STS_RESOURCE for
2500                  * them, which gets them added to hctx->dispatch.
2501                  *
2502                  * If a passthrough request is required to unblock the queues,
2503                  * and it is added to the scheduler queue, there is no chance to
2504                  * dispatch it given we prioritize requests in hctx->dispatch.
2505                  */
2506                 blk_mq_request_bypass_insert(rq, flags);
2507         } else if (req_op(rq) == REQ_OP_FLUSH) {
2508                 /*
2509                  * Firstly normal IO request is inserted to scheduler queue or
2510                  * sw queue, meantime we add flush request to dispatch queue(
2511                  * hctx->dispatch) directly and there is at most one in-flight
2512                  * flush request for each hw queue, so it doesn't matter to add
2513                  * flush request to tail or front of the dispatch queue.
2514                  *
2515                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2516                  * command, and queueing it will fail when there is any
2517                  * in-flight normal IO request(NCQ command). When adding flush
2518                  * rq to the front of hctx->dispatch, it is easier to introduce
2519                  * extra time to flush rq's latency because of S_SCHED_RESTART
2520                  * compared with adding to the tail of dispatch queue, then
2521                  * chance of flush merge is increased, and less flush requests
2522                  * will be issued to controller. It is observed that ~10% time
2523                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2524                  * drive when adding flush rq to the front of hctx->dispatch.
2525                  *
2526                  * Simply queue flush rq to the front of hctx->dispatch so that
2527                  * intensive flush workloads can benefit in case of NCQ HW.
2528                  */
2529                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2530         } else if (q->elevator) {
2531                 LIST_HEAD(list);
2532
2533                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2534
2535                 list_add(&rq->queuelist, &list);
2536                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2537         } else {
2538                 trace_block_rq_insert(rq);
2539
2540                 spin_lock(&ctx->lock);
2541                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2542                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2543                 else
2544                         list_add_tail(&rq->queuelist,
2545                                       &ctx->rq_lists[hctx->type]);
2546                 blk_mq_hctx_mark_pending(hctx, ctx);
2547                 spin_unlock(&ctx->lock);
2548         }
2549 }
2550
2551 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2552                 unsigned int nr_segs)
2553 {
2554         int err;
2555
2556         if (bio->bi_opf & REQ_RAHEAD)
2557                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2558
2559         rq->__sector = bio->bi_iter.bi_sector;
2560         blk_rq_bio_prep(rq, bio, nr_segs);
2561
2562         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2563         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2564         WARN_ON_ONCE(err);
2565
2566         blk_account_io_start(rq);
2567 }
2568
2569 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2570                                             struct request *rq, bool last)
2571 {
2572         struct request_queue *q = rq->q;
2573         struct blk_mq_queue_data bd = {
2574                 .rq = rq,
2575                 .last = last,
2576         };
2577         blk_status_t ret;
2578
2579         /*
2580          * For OK queue, we are done. For error, caller may kill it.
2581          * Any other error (busy), just add it to our list as we
2582          * previously would have done.
2583          */
2584         ret = q->mq_ops->queue_rq(hctx, &bd);
2585         switch (ret) {
2586         case BLK_STS_OK:
2587                 blk_mq_update_dispatch_busy(hctx, false);
2588                 break;
2589         case BLK_STS_RESOURCE:
2590         case BLK_STS_DEV_RESOURCE:
2591                 blk_mq_update_dispatch_busy(hctx, true);
2592                 __blk_mq_requeue_request(rq);
2593                 break;
2594         default:
2595                 blk_mq_update_dispatch_busy(hctx, false);
2596                 break;
2597         }
2598
2599         return ret;
2600 }
2601
2602 static bool blk_mq_get_budget_and_tag(struct request *rq)
2603 {
2604         int budget_token;
2605
2606         budget_token = blk_mq_get_dispatch_budget(rq->q);
2607         if (budget_token < 0)
2608                 return false;
2609         blk_mq_set_rq_budget_token(rq, budget_token);
2610         if (!blk_mq_get_driver_tag(rq)) {
2611                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2612                 return false;
2613         }
2614         return true;
2615 }
2616
2617 /**
2618  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2619  * @hctx: Pointer of the associated hardware queue.
2620  * @rq: Pointer to request to be sent.
2621  *
2622  * If the device has enough resources to accept a new request now, send the
2623  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2624  * we can try send it another time in the future. Requests inserted at this
2625  * queue have higher priority.
2626  */
2627 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2628                 struct request *rq)
2629 {
2630         blk_status_t ret;
2631
2632         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2633                 blk_mq_insert_request(rq, 0);
2634                 return;
2635         }
2636
2637         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2638                 blk_mq_insert_request(rq, 0);
2639                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2640                 return;
2641         }
2642
2643         ret = __blk_mq_issue_directly(hctx, rq, true);
2644         switch (ret) {
2645         case BLK_STS_OK:
2646                 break;
2647         case BLK_STS_RESOURCE:
2648         case BLK_STS_DEV_RESOURCE:
2649                 blk_mq_request_bypass_insert(rq, 0);
2650                 blk_mq_run_hw_queue(hctx, false);
2651                 break;
2652         default:
2653                 blk_mq_end_request(rq, ret);
2654                 break;
2655         }
2656 }
2657
2658 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2659 {
2660         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2661
2662         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2663                 blk_mq_insert_request(rq, 0);
2664                 return BLK_STS_OK;
2665         }
2666
2667         if (!blk_mq_get_budget_and_tag(rq))
2668                 return BLK_STS_RESOURCE;
2669         return __blk_mq_issue_directly(hctx, rq, last);
2670 }
2671
2672 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2673 {
2674         struct blk_mq_hw_ctx *hctx = NULL;
2675         struct request *rq;
2676         int queued = 0;
2677         blk_status_t ret = BLK_STS_OK;
2678
2679         while ((rq = rq_list_pop(&plug->mq_list))) {
2680                 bool last = rq_list_empty(plug->mq_list);
2681
2682                 if (hctx != rq->mq_hctx) {
2683                         if (hctx) {
2684                                 blk_mq_commit_rqs(hctx, queued, false);
2685                                 queued = 0;
2686                         }
2687                         hctx = rq->mq_hctx;
2688                 }
2689
2690                 ret = blk_mq_request_issue_directly(rq, last);
2691                 switch (ret) {
2692                 case BLK_STS_OK:
2693                         queued++;
2694                         break;
2695                 case BLK_STS_RESOURCE:
2696                 case BLK_STS_DEV_RESOURCE:
2697                         blk_mq_request_bypass_insert(rq, 0);
2698                         blk_mq_run_hw_queue(hctx, false);
2699                         goto out;
2700                 default:
2701                         blk_mq_end_request(rq, ret);
2702                         break;
2703                 }
2704         }
2705
2706 out:
2707         if (ret != BLK_STS_OK)
2708                 blk_mq_commit_rqs(hctx, queued, false);
2709 }
2710
2711 static void __blk_mq_flush_plug_list(struct request_queue *q,
2712                                      struct blk_plug *plug)
2713 {
2714         if (blk_queue_quiesced(q))
2715                 return;
2716         q->mq_ops->queue_rqs(&plug->mq_list);
2717 }
2718
2719 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2720 {
2721         struct blk_mq_hw_ctx *this_hctx = NULL;
2722         struct blk_mq_ctx *this_ctx = NULL;
2723         struct request *requeue_list = NULL;
2724         struct request **requeue_lastp = &requeue_list;
2725         unsigned int depth = 0;
2726         bool is_passthrough = false;
2727         LIST_HEAD(list);
2728
2729         do {
2730                 struct request *rq = rq_list_pop(&plug->mq_list);
2731
2732                 if (!this_hctx) {
2733                         this_hctx = rq->mq_hctx;
2734                         this_ctx = rq->mq_ctx;
2735                         is_passthrough = blk_rq_is_passthrough(rq);
2736                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2737                            is_passthrough != blk_rq_is_passthrough(rq)) {
2738                         rq_list_add_tail(&requeue_lastp, rq);
2739                         continue;
2740                 }
2741                 list_add(&rq->queuelist, &list);
2742                 depth++;
2743         } while (!rq_list_empty(plug->mq_list));
2744
2745         plug->mq_list = requeue_list;
2746         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2747
2748         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2749         /* passthrough requests should never be issued to the I/O scheduler */
2750         if (is_passthrough) {
2751                 spin_lock(&this_hctx->lock);
2752                 list_splice_tail_init(&list, &this_hctx->dispatch);
2753                 spin_unlock(&this_hctx->lock);
2754                 blk_mq_run_hw_queue(this_hctx, from_sched);
2755         } else if (this_hctx->queue->elevator) {
2756                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2757                                 &list, 0);
2758                 blk_mq_run_hw_queue(this_hctx, from_sched);
2759         } else {
2760                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2761         }
2762         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2763 }
2764
2765 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2766 {
2767         struct request *rq;
2768
2769         /*
2770          * We may have been called recursively midway through handling
2771          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2772          * To avoid mq_list changing under our feet, clear rq_count early and
2773          * bail out specifically if rq_count is 0 rather than checking
2774          * whether the mq_list is empty.
2775          */
2776         if (plug->rq_count == 0)
2777                 return;
2778         plug->rq_count = 0;
2779
2780         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2781                 struct request_queue *q;
2782
2783                 rq = rq_list_peek(&plug->mq_list);
2784                 q = rq->q;
2785
2786                 /*
2787                  * Peek first request and see if we have a ->queue_rqs() hook.
2788                  * If we do, we can dispatch the whole plug list in one go. We
2789                  * already know at this point that all requests belong to the
2790                  * same queue, caller must ensure that's the case.
2791                  */
2792                 if (q->mq_ops->queue_rqs) {
2793                         blk_mq_run_dispatch_ops(q,
2794                                 __blk_mq_flush_plug_list(q, plug));
2795                         if (rq_list_empty(plug->mq_list))
2796                                 return;
2797                 }
2798
2799                 blk_mq_run_dispatch_ops(q,
2800                                 blk_mq_plug_issue_direct(plug));
2801                 if (rq_list_empty(plug->mq_list))
2802                         return;
2803         }
2804
2805         do {
2806                 blk_mq_dispatch_plug_list(plug, from_schedule);
2807         } while (!rq_list_empty(plug->mq_list));
2808 }
2809
2810 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2811                 struct list_head *list)
2812 {
2813         int queued = 0;
2814         blk_status_t ret = BLK_STS_OK;
2815
2816         while (!list_empty(list)) {
2817                 struct request *rq = list_first_entry(list, struct request,
2818                                 queuelist);
2819
2820                 list_del_init(&rq->queuelist);
2821                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2822                 switch (ret) {
2823                 case BLK_STS_OK:
2824                         queued++;
2825                         break;
2826                 case BLK_STS_RESOURCE:
2827                 case BLK_STS_DEV_RESOURCE:
2828                         blk_mq_request_bypass_insert(rq, 0);
2829                         if (list_empty(list))
2830                                 blk_mq_run_hw_queue(hctx, false);
2831                         goto out;
2832                 default:
2833                         blk_mq_end_request(rq, ret);
2834                         break;
2835                 }
2836         }
2837
2838 out:
2839         if (ret != BLK_STS_OK)
2840                 blk_mq_commit_rqs(hctx, queued, false);
2841 }
2842
2843 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2844                                      struct bio *bio, unsigned int nr_segs)
2845 {
2846         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2847                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2848                         return true;
2849                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2850                         return true;
2851         }
2852         return false;
2853 }
2854
2855 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2856                                                struct blk_plug *plug,
2857                                                struct bio *bio,
2858                                                unsigned int nsegs)
2859 {
2860         struct blk_mq_alloc_data data = {
2861                 .q              = q,
2862                 .nr_tags        = 1,
2863                 .cmd_flags      = bio->bi_opf,
2864         };
2865         struct request *rq;
2866
2867         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868                 return NULL;
2869
2870         rq_qos_throttle(q, bio);
2871
2872         if (plug) {
2873                 data.nr_tags = plug->nr_ios;
2874                 plug->nr_ios = 1;
2875                 data.cached_rq = &plug->cached_rq;
2876         }
2877
2878         rq = __blk_mq_alloc_requests(&data);
2879         if (rq)
2880                 return rq;
2881         rq_qos_cleanup(q, bio);
2882         if (bio->bi_opf & REQ_NOWAIT)
2883                 bio_wouldblock_error(bio);
2884         return NULL;
2885 }
2886
2887 /* return true if this @rq can be used for @bio */
2888 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2889                 struct bio *bio)
2890 {
2891         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2892         enum hctx_type hctx_type = rq->mq_hctx->type;
2893
2894         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2895
2896         if (type != hctx_type &&
2897             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2898                 return false;
2899         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2900                 return false;
2901
2902         /*
2903          * If any qos ->throttle() end up blocking, we will have flushed the
2904          * plug and hence killed the cached_rq list as well. Pop this entry
2905          * before we throttle.
2906          */
2907         plug->cached_rq = rq_list_next(rq);
2908         rq_qos_throttle(rq->q, bio);
2909
2910         blk_mq_rq_time_init(rq, 0);
2911         rq->cmd_flags = bio->bi_opf;
2912         INIT_LIST_HEAD(&rq->queuelist);
2913         return true;
2914 }
2915
2916 static void bio_set_ioprio(struct bio *bio)
2917 {
2918         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2919         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2920                 bio->bi_ioprio = get_current_ioprio();
2921         blkcg_set_ioprio(bio);
2922 }
2923
2924 /**
2925  * blk_mq_submit_bio - Create and send a request to block device.
2926  * @bio: Bio pointer.
2927  *
2928  * Builds up a request structure from @q and @bio and send to the device. The
2929  * request may not be queued directly to hardware if:
2930  * * This request can be merged with another one
2931  * * We want to place request at plug queue for possible future merging
2932  * * There is an IO scheduler active at this queue
2933  *
2934  * It will not queue the request if there is an error with the bio, or at the
2935  * request creation.
2936  */
2937 void blk_mq_submit_bio(struct bio *bio)
2938 {
2939         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2940         struct blk_plug *plug = blk_mq_plug(bio);
2941         const int is_sync = op_is_sync(bio->bi_opf);
2942         struct blk_mq_hw_ctx *hctx;
2943         struct request *rq = NULL;
2944         unsigned int nr_segs = 1;
2945         blk_status_t ret;
2946
2947         bio = blk_queue_bounce(bio, q);
2948         if (bio_may_exceed_limits(bio, &q->limits)) {
2949                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2950                 if (!bio)
2951                         return;
2952         }
2953
2954         bio_set_ioprio(bio);
2955
2956         if (plug) {
2957                 rq = rq_list_peek(&plug->cached_rq);
2958                 if (rq && rq->q != q)
2959                         rq = NULL;
2960         }
2961         if (rq) {
2962                 if (!bio_integrity_prep(bio))
2963                         return;
2964                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2965                         return;
2966                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2967                         goto done;
2968                 percpu_ref_get(&q->q_usage_counter);
2969         } else {
2970                 if (unlikely(bio_queue_enter(bio)))
2971                         return;
2972                 if (!bio_integrity_prep(bio))
2973                         goto fail;
2974         }
2975
2976         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2977         if (unlikely(!rq)) {
2978 fail:
2979                 blk_queue_exit(q);
2980                 return;
2981         }
2982
2983 done:
2984         trace_block_getrq(bio);
2985
2986         rq_qos_track(q, rq, bio);
2987
2988         blk_mq_bio_to_request(rq, bio, nr_segs);
2989
2990         ret = blk_crypto_rq_get_keyslot(rq);
2991         if (ret != BLK_STS_OK) {
2992                 bio->bi_status = ret;
2993                 bio_endio(bio);
2994                 blk_mq_free_request(rq);
2995                 return;
2996         }
2997
2998         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2999                 return;
3000
3001         if (plug) {
3002                 blk_add_rq_to_plug(plug, rq);
3003                 return;
3004         }
3005
3006         hctx = rq->mq_hctx;
3007         if ((rq->rq_flags & RQF_USE_SCHED) ||
3008             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3009                 blk_mq_insert_request(rq, 0);
3010                 blk_mq_run_hw_queue(hctx, true);
3011         } else {
3012                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3013         }
3014 }
3015
3016 #ifdef CONFIG_BLK_MQ_STACKING
3017 /**
3018  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3019  * @rq: the request being queued
3020  */
3021 blk_status_t blk_insert_cloned_request(struct request *rq)
3022 {
3023         struct request_queue *q = rq->q;
3024         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3025         unsigned int max_segments = blk_rq_get_max_segments(rq);
3026         blk_status_t ret;
3027
3028         if (blk_rq_sectors(rq) > max_sectors) {
3029                 /*
3030                  * SCSI device does not have a good way to return if
3031                  * Write Same/Zero is actually supported. If a device rejects
3032                  * a non-read/write command (discard, write same,etc.) the
3033                  * low-level device driver will set the relevant queue limit to
3034                  * 0 to prevent blk-lib from issuing more of the offending
3035                  * operations. Commands queued prior to the queue limit being
3036                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3037                  * errors being propagated to upper layers.
3038                  */
3039                 if (max_sectors == 0)
3040                         return BLK_STS_NOTSUPP;
3041
3042                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3043                         __func__, blk_rq_sectors(rq), max_sectors);
3044                 return BLK_STS_IOERR;
3045         }
3046
3047         /*
3048          * The queue settings related to segment counting may differ from the
3049          * original queue.
3050          */
3051         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3052         if (rq->nr_phys_segments > max_segments) {
3053                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3054                         __func__, rq->nr_phys_segments, max_segments);
3055                 return BLK_STS_IOERR;
3056         }
3057
3058         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3059                 return BLK_STS_IOERR;
3060
3061         ret = blk_crypto_rq_get_keyslot(rq);
3062         if (ret != BLK_STS_OK)
3063                 return ret;
3064
3065         blk_account_io_start(rq);
3066
3067         /*
3068          * Since we have a scheduler attached on the top device,
3069          * bypass a potential scheduler on the bottom device for
3070          * insert.
3071          */
3072         blk_mq_run_dispatch_ops(q,
3073                         ret = blk_mq_request_issue_directly(rq, true));
3074         if (ret)
3075                 blk_account_io_done(rq, ktime_get_ns());
3076         return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3079
3080 /**
3081  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3082  * @rq: the clone request to be cleaned up
3083  *
3084  * Description:
3085  *     Free all bios in @rq for a cloned request.
3086  */
3087 void blk_rq_unprep_clone(struct request *rq)
3088 {
3089         struct bio *bio;
3090
3091         while ((bio = rq->bio) != NULL) {
3092                 rq->bio = bio->bi_next;
3093
3094                 bio_put(bio);
3095         }
3096 }
3097 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3098
3099 /**
3100  * blk_rq_prep_clone - Helper function to setup clone request
3101  * @rq: the request to be setup
3102  * @rq_src: original request to be cloned
3103  * @bs: bio_set that bios for clone are allocated from
3104  * @gfp_mask: memory allocation mask for bio
3105  * @bio_ctr: setup function to be called for each clone bio.
3106  *           Returns %0 for success, non %0 for failure.
3107  * @data: private data to be passed to @bio_ctr
3108  *
3109  * Description:
3110  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3111  *     Also, pages which the original bios are pointing to are not copied
3112  *     and the cloned bios just point same pages.
3113  *     So cloned bios must be completed before original bios, which means
3114  *     the caller must complete @rq before @rq_src.
3115  */
3116 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3117                       struct bio_set *bs, gfp_t gfp_mask,
3118                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3119                       void *data)
3120 {
3121         struct bio *bio, *bio_src;
3122
3123         if (!bs)
3124                 bs = &fs_bio_set;
3125
3126         __rq_for_each_bio(bio_src, rq_src) {
3127                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3128                                       bs);
3129                 if (!bio)
3130                         goto free_and_out;
3131
3132                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3133                         goto free_and_out;
3134
3135                 if (rq->bio) {
3136                         rq->biotail->bi_next = bio;
3137                         rq->biotail = bio;
3138                 } else {
3139                         rq->bio = rq->biotail = bio;
3140                 }
3141                 bio = NULL;
3142         }
3143
3144         /* Copy attributes of the original request to the clone request. */
3145         rq->__sector = blk_rq_pos(rq_src);
3146         rq->__data_len = blk_rq_bytes(rq_src);
3147         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3148                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3149                 rq->special_vec = rq_src->special_vec;
3150         }
3151         rq->nr_phys_segments = rq_src->nr_phys_segments;
3152         rq->ioprio = rq_src->ioprio;
3153
3154         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3155                 goto free_and_out;
3156
3157         return 0;
3158
3159 free_and_out:
3160         if (bio)
3161                 bio_put(bio);
3162         blk_rq_unprep_clone(rq);
3163
3164         return -ENOMEM;
3165 }
3166 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3167 #endif /* CONFIG_BLK_MQ_STACKING */
3168
3169 /*
3170  * Steal bios from a request and add them to a bio list.
3171  * The request must not have been partially completed before.
3172  */
3173 void blk_steal_bios(struct bio_list *list, struct request *rq)
3174 {
3175         if (rq->bio) {
3176                 if (list->tail)
3177                         list->tail->bi_next = rq->bio;
3178                 else
3179                         list->head = rq->bio;
3180                 list->tail = rq->biotail;
3181
3182                 rq->bio = NULL;
3183                 rq->biotail = NULL;
3184         }
3185
3186         rq->__data_len = 0;
3187 }
3188 EXPORT_SYMBOL_GPL(blk_steal_bios);
3189
3190 static size_t order_to_size(unsigned int order)
3191 {
3192         return (size_t)PAGE_SIZE << order;
3193 }
3194
3195 /* called before freeing request pool in @tags */
3196 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3197                                     struct blk_mq_tags *tags)
3198 {
3199         struct page *page;
3200         unsigned long flags;
3201
3202         /*
3203          * There is no need to clear mapping if driver tags is not initialized
3204          * or the mapping belongs to the driver tags.
3205          */
3206         if (!drv_tags || drv_tags == tags)
3207                 return;
3208
3209         list_for_each_entry(page, &tags->page_list, lru) {
3210                 unsigned long start = (unsigned long)page_address(page);
3211                 unsigned long end = start + order_to_size(page->private);
3212                 int i;
3213
3214                 for (i = 0; i < drv_tags->nr_tags; i++) {
3215                         struct request *rq = drv_tags->rqs[i];
3216                         unsigned long rq_addr = (unsigned long)rq;
3217
3218                         if (rq_addr >= start && rq_addr < end) {
3219                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3220                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3221                         }
3222                 }
3223         }
3224
3225         /*
3226          * Wait until all pending iteration is done.
3227          *
3228          * Request reference is cleared and it is guaranteed to be observed
3229          * after the ->lock is released.
3230          */
3231         spin_lock_irqsave(&drv_tags->lock, flags);
3232         spin_unlock_irqrestore(&drv_tags->lock, flags);
3233 }
3234
3235 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3236                      unsigned int hctx_idx)
3237 {
3238         struct blk_mq_tags *drv_tags;
3239         struct page *page;
3240
3241         if (list_empty(&tags->page_list))
3242                 return;
3243
3244         if (blk_mq_is_shared_tags(set->flags))
3245                 drv_tags = set->shared_tags;
3246         else
3247                 drv_tags = set->tags[hctx_idx];
3248
3249         if (tags->static_rqs && set->ops->exit_request) {
3250                 int i;
3251
3252                 for (i = 0; i < tags->nr_tags; i++) {
3253                         struct request *rq = tags->static_rqs[i];
3254
3255                         if (!rq)
3256                                 continue;
3257                         set->ops->exit_request(set, rq, hctx_idx);
3258                         tags->static_rqs[i] = NULL;
3259                 }
3260         }
3261
3262         blk_mq_clear_rq_mapping(drv_tags, tags);
3263
3264         while (!list_empty(&tags->page_list)) {
3265                 page = list_first_entry(&tags->page_list, struct page, lru);
3266                 list_del_init(&page->lru);
3267                 /*
3268                  * Remove kmemleak object previously allocated in
3269                  * blk_mq_alloc_rqs().
3270                  */
3271                 kmemleak_free(page_address(page));
3272                 __free_pages(page, page->private);
3273         }
3274 }
3275
3276 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3277 {
3278         kfree(tags->rqs);
3279         tags->rqs = NULL;
3280         kfree(tags->static_rqs);
3281         tags->static_rqs = NULL;
3282
3283         blk_mq_free_tags(tags);
3284 }
3285
3286 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3287                 unsigned int hctx_idx)
3288 {
3289         int i;
3290
3291         for (i = 0; i < set->nr_maps; i++) {
3292                 unsigned int start = set->map[i].queue_offset;
3293                 unsigned int end = start + set->map[i].nr_queues;
3294
3295                 if (hctx_idx >= start && hctx_idx < end)
3296                         break;
3297         }
3298
3299         if (i >= set->nr_maps)
3300                 i = HCTX_TYPE_DEFAULT;
3301
3302         return i;
3303 }
3304
3305 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3306                 unsigned int hctx_idx)
3307 {
3308         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3309
3310         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3311 }
3312
3313 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3314                                                unsigned int hctx_idx,
3315                                                unsigned int nr_tags,
3316                                                unsigned int reserved_tags)
3317 {
3318         int node = blk_mq_get_hctx_node(set, hctx_idx);
3319         struct blk_mq_tags *tags;
3320
3321         if (node == NUMA_NO_NODE)
3322                 node = set->numa_node;
3323
3324         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3325                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3326         if (!tags)
3327                 return NULL;
3328
3329         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3330                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3331                                  node);
3332         if (!tags->rqs)
3333                 goto err_free_tags;
3334
3335         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3336                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3337                                         node);
3338         if (!tags->static_rqs)
3339                 goto err_free_rqs;
3340
3341         return tags;
3342
3343 err_free_rqs:
3344         kfree(tags->rqs);
3345 err_free_tags:
3346         blk_mq_free_tags(tags);
3347         return NULL;
3348 }
3349
3350 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3351                                unsigned int hctx_idx, int node)
3352 {
3353         int ret;
3354
3355         if (set->ops->init_request) {
3356                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3357                 if (ret)
3358                         return ret;
3359         }
3360
3361         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3362         return 0;
3363 }
3364
3365 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3366                             struct blk_mq_tags *tags,
3367                             unsigned int hctx_idx, unsigned int depth)
3368 {
3369         unsigned int i, j, entries_per_page, max_order = 4;
3370         int node = blk_mq_get_hctx_node(set, hctx_idx);
3371         size_t rq_size, left;
3372
3373         if (node == NUMA_NO_NODE)
3374                 node = set->numa_node;
3375
3376         INIT_LIST_HEAD(&tags->page_list);
3377
3378         /*
3379          * rq_size is the size of the request plus driver payload, rounded
3380          * to the cacheline size
3381          */
3382         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3383                                 cache_line_size());
3384         left = rq_size * depth;
3385
3386         for (i = 0; i < depth; ) {
3387                 int this_order = max_order;
3388                 struct page *page;
3389                 int to_do;
3390                 void *p;
3391
3392                 while (this_order && left < order_to_size(this_order - 1))
3393                         this_order--;
3394
3395                 do {
3396                         page = alloc_pages_node(node,
3397                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3398                                 this_order);
3399                         if (page)
3400                                 break;
3401                         if (!this_order--)
3402                                 break;
3403                         if (order_to_size(this_order) < rq_size)
3404                                 break;
3405                 } while (1);
3406
3407                 if (!page)
3408                         goto fail;
3409
3410                 page->private = this_order;
3411                 list_add_tail(&page->lru, &tags->page_list);
3412
3413                 p = page_address(page);
3414                 /*
3415                  * Allow kmemleak to scan these pages as they contain pointers
3416                  * to additional allocations like via ops->init_request().
3417                  */
3418                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3419                 entries_per_page = order_to_size(this_order) / rq_size;
3420                 to_do = min(entries_per_page, depth - i);
3421                 left -= to_do * rq_size;
3422                 for (j = 0; j < to_do; j++) {
3423                         struct request *rq = p;
3424
3425                         tags->static_rqs[i] = rq;
3426                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3427                                 tags->static_rqs[i] = NULL;
3428                                 goto fail;
3429                         }
3430
3431                         p += rq_size;
3432                         i++;
3433                 }
3434         }
3435         return 0;
3436
3437 fail:
3438         blk_mq_free_rqs(set, tags, hctx_idx);
3439         return -ENOMEM;
3440 }
3441
3442 struct rq_iter_data {
3443         struct blk_mq_hw_ctx *hctx;
3444         bool has_rq;
3445 };
3446
3447 static bool blk_mq_has_request(struct request *rq, void *data)
3448 {
3449         struct rq_iter_data *iter_data = data;
3450
3451         if (rq->mq_hctx != iter_data->hctx)
3452                 return true;
3453         iter_data->has_rq = true;
3454         return false;
3455 }
3456
3457 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3458 {
3459         struct blk_mq_tags *tags = hctx->sched_tags ?
3460                         hctx->sched_tags : hctx->tags;
3461         struct rq_iter_data data = {
3462                 .hctx   = hctx,
3463         };
3464
3465         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3466         return data.has_rq;
3467 }
3468
3469 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3470                 struct blk_mq_hw_ctx *hctx)
3471 {
3472         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3473                 return false;
3474         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3475                 return false;
3476         return true;
3477 }
3478
3479 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3480 {
3481         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3482                         struct blk_mq_hw_ctx, cpuhp_online);
3483
3484         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3485             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3486                 return 0;
3487
3488         /*
3489          * Prevent new request from being allocated on the current hctx.
3490          *
3491          * The smp_mb__after_atomic() Pairs with the implied barrier in
3492          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3493          * seen once we return from the tag allocator.
3494          */
3495         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496         smp_mb__after_atomic();
3497
3498         /*
3499          * Try to grab a reference to the queue and wait for any outstanding
3500          * requests.  If we could not grab a reference the queue has been
3501          * frozen and there are no requests.
3502          */
3503         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3504                 while (blk_mq_hctx_has_requests(hctx))
3505                         msleep(5);
3506                 percpu_ref_put(&hctx->queue->q_usage_counter);
3507         }
3508
3509         return 0;
3510 }
3511
3512 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3513 {
3514         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3515                         struct blk_mq_hw_ctx, cpuhp_online);
3516
3517         if (cpumask_test_cpu(cpu, hctx->cpumask))
3518                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3519         return 0;
3520 }
3521
3522 /*
3523  * 'cpu' is going away. splice any existing rq_list entries from this
3524  * software queue to the hw queue dispatch list, and ensure that it
3525  * gets run.
3526  */
3527 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3528 {
3529         struct blk_mq_hw_ctx *hctx;
3530         struct blk_mq_ctx *ctx;
3531         LIST_HEAD(tmp);
3532         enum hctx_type type;
3533
3534         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3535         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3536                 return 0;
3537
3538         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3539         type = hctx->type;
3540
3541         spin_lock(&ctx->lock);
3542         if (!list_empty(&ctx->rq_lists[type])) {
3543                 list_splice_init(&ctx->rq_lists[type], &tmp);
3544                 blk_mq_hctx_clear_pending(hctx, ctx);
3545         }
3546         spin_unlock(&ctx->lock);
3547
3548         if (list_empty(&tmp))
3549                 return 0;
3550
3551         spin_lock(&hctx->lock);
3552         list_splice_tail_init(&tmp, &hctx->dispatch);
3553         spin_unlock(&hctx->lock);
3554
3555         blk_mq_run_hw_queue(hctx, true);
3556         return 0;
3557 }
3558
3559 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3560 {
3561         if (!(hctx->flags & BLK_MQ_F_STACKING))
3562                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3563                                                     &hctx->cpuhp_online);
3564         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3565                                             &hctx->cpuhp_dead);
3566 }
3567
3568 /*
3569  * Before freeing hw queue, clearing the flush request reference in
3570  * tags->rqs[] for avoiding potential UAF.
3571  */
3572 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3573                 unsigned int queue_depth, struct request *flush_rq)
3574 {
3575         int i;
3576         unsigned long flags;
3577
3578         /* The hw queue may not be mapped yet */
3579         if (!tags)
3580                 return;
3581
3582         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3583
3584         for (i = 0; i < queue_depth; i++)
3585                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3586
3587         /*
3588          * Wait until all pending iteration is done.
3589          *
3590          * Request reference is cleared and it is guaranteed to be observed
3591          * after the ->lock is released.
3592          */
3593         spin_lock_irqsave(&tags->lock, flags);
3594         spin_unlock_irqrestore(&tags->lock, flags);
3595 }
3596
3597 /* hctx->ctxs will be freed in queue's release handler */
3598 static void blk_mq_exit_hctx(struct request_queue *q,
3599                 struct blk_mq_tag_set *set,
3600                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3601 {
3602         struct request *flush_rq = hctx->fq->flush_rq;
3603
3604         if (blk_mq_hw_queue_mapped(hctx))
3605                 blk_mq_tag_idle(hctx);
3606
3607         if (blk_queue_init_done(q))
3608                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3609                                 set->queue_depth, flush_rq);
3610         if (set->ops->exit_request)
3611                 set->ops->exit_request(set, flush_rq, hctx_idx);
3612
3613         if (set->ops->exit_hctx)
3614                 set->ops->exit_hctx(hctx, hctx_idx);
3615
3616         blk_mq_remove_cpuhp(hctx);
3617
3618         xa_erase(&q->hctx_table, hctx_idx);
3619
3620         spin_lock(&q->unused_hctx_lock);
3621         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3622         spin_unlock(&q->unused_hctx_lock);
3623 }
3624
3625 static void blk_mq_exit_hw_queues(struct request_queue *q,
3626                 struct blk_mq_tag_set *set, int nr_queue)
3627 {
3628         struct blk_mq_hw_ctx *hctx;
3629         unsigned long i;
3630
3631         queue_for_each_hw_ctx(q, hctx, i) {
3632                 if (i == nr_queue)
3633                         break;
3634                 blk_mq_exit_hctx(q, set, hctx, i);
3635         }
3636 }
3637
3638 static int blk_mq_init_hctx(struct request_queue *q,
3639                 struct blk_mq_tag_set *set,
3640                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3641 {
3642         hctx->queue_num = hctx_idx;
3643
3644         if (!(hctx->flags & BLK_MQ_F_STACKING))
3645                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3646                                 &hctx->cpuhp_online);
3647         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3648
3649         hctx->tags = set->tags[hctx_idx];
3650
3651         if (set->ops->init_hctx &&
3652             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3653                 goto unregister_cpu_notifier;
3654
3655         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3656                                 hctx->numa_node))
3657                 goto exit_hctx;
3658
3659         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3660                 goto exit_flush_rq;
3661
3662         return 0;
3663
3664  exit_flush_rq:
3665         if (set->ops->exit_request)
3666                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3667  exit_hctx:
3668         if (set->ops->exit_hctx)
3669                 set->ops->exit_hctx(hctx, hctx_idx);
3670  unregister_cpu_notifier:
3671         blk_mq_remove_cpuhp(hctx);
3672         return -1;
3673 }
3674
3675 static struct blk_mq_hw_ctx *
3676 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3677                 int node)
3678 {
3679         struct blk_mq_hw_ctx *hctx;
3680         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3681
3682         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3683         if (!hctx)
3684                 goto fail_alloc_hctx;
3685
3686         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3687                 goto free_hctx;
3688
3689         atomic_set(&hctx->nr_active, 0);
3690         if (node == NUMA_NO_NODE)
3691                 node = set->numa_node;
3692         hctx->numa_node = node;
3693
3694         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3695         spin_lock_init(&hctx->lock);
3696         INIT_LIST_HEAD(&hctx->dispatch);
3697         hctx->queue = q;
3698         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3699
3700         INIT_LIST_HEAD(&hctx->hctx_list);
3701
3702         /*
3703          * Allocate space for all possible cpus to avoid allocation at
3704          * runtime
3705          */
3706         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3707                         gfp, node);
3708         if (!hctx->ctxs)
3709                 goto free_cpumask;
3710
3711         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3712                                 gfp, node, false, false))
3713                 goto free_ctxs;
3714         hctx->nr_ctx = 0;
3715
3716         spin_lock_init(&hctx->dispatch_wait_lock);
3717         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3718         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3719
3720         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3721         if (!hctx->fq)
3722                 goto free_bitmap;
3723
3724         blk_mq_hctx_kobj_init(hctx);
3725
3726         return hctx;
3727
3728  free_bitmap:
3729         sbitmap_free(&hctx->ctx_map);
3730  free_ctxs:
3731         kfree(hctx->ctxs);
3732  free_cpumask:
3733         free_cpumask_var(hctx->cpumask);
3734  free_hctx:
3735         kfree(hctx);
3736  fail_alloc_hctx:
3737         return NULL;
3738 }
3739
3740 static void blk_mq_init_cpu_queues(struct request_queue *q,
3741                                    unsigned int nr_hw_queues)
3742 {
3743         struct blk_mq_tag_set *set = q->tag_set;
3744         unsigned int i, j;
3745
3746         for_each_possible_cpu(i) {
3747                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3748                 struct blk_mq_hw_ctx *hctx;
3749                 int k;
3750
3751                 __ctx->cpu = i;
3752                 spin_lock_init(&__ctx->lock);
3753                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3754                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3755
3756                 __ctx->queue = q;
3757
3758                 /*
3759                  * Set local node, IFF we have more than one hw queue. If
3760                  * not, we remain on the home node of the device
3761                  */
3762                 for (j = 0; j < set->nr_maps; j++) {
3763                         hctx = blk_mq_map_queue_type(q, j, i);
3764                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3765                                 hctx->numa_node = cpu_to_node(i);
3766                 }
3767         }
3768 }
3769
3770 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3771                                              unsigned int hctx_idx,
3772                                              unsigned int depth)
3773 {
3774         struct blk_mq_tags *tags;
3775         int ret;
3776
3777         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3778         if (!tags)
3779                 return NULL;
3780
3781         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3782         if (ret) {
3783                 blk_mq_free_rq_map(tags);
3784                 return NULL;
3785         }
3786
3787         return tags;
3788 }
3789
3790 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3791                                        int hctx_idx)
3792 {
3793         if (blk_mq_is_shared_tags(set->flags)) {
3794                 set->tags[hctx_idx] = set->shared_tags;
3795
3796                 return true;
3797         }
3798
3799         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3800                                                        set->queue_depth);
3801
3802         return set->tags[hctx_idx];
3803 }
3804
3805 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806                              struct blk_mq_tags *tags,
3807                              unsigned int hctx_idx)
3808 {
3809         if (tags) {
3810                 blk_mq_free_rqs(set, tags, hctx_idx);
3811                 blk_mq_free_rq_map(tags);
3812         }
3813 }
3814
3815 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3816                                       unsigned int hctx_idx)
3817 {
3818         if (!blk_mq_is_shared_tags(set->flags))
3819                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3820
3821         set->tags[hctx_idx] = NULL;
3822 }
3823
3824 static void blk_mq_map_swqueue(struct request_queue *q)
3825 {
3826         unsigned int j, hctx_idx;
3827         unsigned long i;
3828         struct blk_mq_hw_ctx *hctx;
3829         struct blk_mq_ctx *ctx;
3830         struct blk_mq_tag_set *set = q->tag_set;
3831
3832         queue_for_each_hw_ctx(q, hctx, i) {
3833                 cpumask_clear(hctx->cpumask);
3834                 hctx->nr_ctx = 0;
3835                 hctx->dispatch_from = NULL;
3836         }
3837
3838         /*
3839          * Map software to hardware queues.
3840          *
3841          * If the cpu isn't present, the cpu is mapped to first hctx.
3842          */
3843         for_each_possible_cpu(i) {
3844
3845                 ctx = per_cpu_ptr(q->queue_ctx, i);
3846                 for (j = 0; j < set->nr_maps; j++) {
3847                         if (!set->map[j].nr_queues) {
3848                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3849                                                 HCTX_TYPE_DEFAULT, i);
3850                                 continue;
3851                         }
3852                         hctx_idx = set->map[j].mq_map[i];
3853                         /* unmapped hw queue can be remapped after CPU topo changed */
3854                         if (!set->tags[hctx_idx] &&
3855                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3856                                 /*
3857                                  * If tags initialization fail for some hctx,
3858                                  * that hctx won't be brought online.  In this
3859                                  * case, remap the current ctx to hctx[0] which
3860                                  * is guaranteed to always have tags allocated
3861                                  */
3862                                 set->map[j].mq_map[i] = 0;
3863                         }
3864
3865                         hctx = blk_mq_map_queue_type(q, j, i);
3866                         ctx->hctxs[j] = hctx;
3867                         /*
3868                          * If the CPU is already set in the mask, then we've
3869                          * mapped this one already. This can happen if
3870                          * devices share queues across queue maps.
3871                          */
3872                         if (cpumask_test_cpu(i, hctx->cpumask))
3873                                 continue;
3874
3875                         cpumask_set_cpu(i, hctx->cpumask);
3876                         hctx->type = j;
3877                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3878                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3879
3880                         /*
3881                          * If the nr_ctx type overflows, we have exceeded the
3882                          * amount of sw queues we can support.
3883                          */
3884                         BUG_ON(!hctx->nr_ctx);
3885                 }
3886
3887                 for (; j < HCTX_MAX_TYPES; j++)
3888                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3889                                         HCTX_TYPE_DEFAULT, i);
3890         }
3891
3892         queue_for_each_hw_ctx(q, hctx, i) {
3893                 /*
3894                  * If no software queues are mapped to this hardware queue,
3895                  * disable it and free the request entries.
3896                  */
3897                 if (!hctx->nr_ctx) {
3898                         /* Never unmap queue 0.  We need it as a
3899                          * fallback in case of a new remap fails
3900                          * allocation
3901                          */
3902                         if (i)
3903                                 __blk_mq_free_map_and_rqs(set, i);
3904
3905                         hctx->tags = NULL;
3906                         continue;
3907                 }
3908
3909                 hctx->tags = set->tags[i];
3910                 WARN_ON(!hctx->tags);
3911
3912                 /*
3913                  * Set the map size to the number of mapped software queues.
3914                  * This is more accurate and more efficient than looping
3915                  * over all possibly mapped software queues.
3916                  */
3917                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3918
3919                 /*
3920                  * Initialize batch roundrobin counts
3921                  */
3922                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3923                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3924         }
3925 }
3926
3927 /*
3928  * Caller needs to ensure that we're either frozen/quiesced, or that
3929  * the queue isn't live yet.
3930  */
3931 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3932 {
3933         struct blk_mq_hw_ctx *hctx;
3934         unsigned long i;
3935
3936         queue_for_each_hw_ctx(q, hctx, i) {
3937                 if (shared) {
3938                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3939                 } else {
3940                         blk_mq_tag_idle(hctx);
3941                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3942                 }
3943         }
3944 }
3945
3946 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3947                                          bool shared)
3948 {
3949         struct request_queue *q;
3950
3951         lockdep_assert_held(&set->tag_list_lock);
3952
3953         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3954                 blk_mq_freeze_queue(q);
3955                 queue_set_hctx_shared(q, shared);
3956                 blk_mq_unfreeze_queue(q);
3957         }
3958 }
3959
3960 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3961 {
3962         struct blk_mq_tag_set *set = q->tag_set;
3963
3964         mutex_lock(&set->tag_list_lock);
3965         list_del(&q->tag_set_list);
3966         if (list_is_singular(&set->tag_list)) {
3967                 /* just transitioned to unshared */
3968                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3969                 /* update existing queue */
3970                 blk_mq_update_tag_set_shared(set, false);
3971         }
3972         mutex_unlock(&set->tag_list_lock);
3973         INIT_LIST_HEAD(&q->tag_set_list);
3974 }
3975
3976 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3977                                      struct request_queue *q)
3978 {
3979         mutex_lock(&set->tag_list_lock);
3980
3981         /*
3982          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3983          */
3984         if (!list_empty(&set->tag_list) &&
3985             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3986                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3987                 /* update existing queue */
3988                 blk_mq_update_tag_set_shared(set, true);
3989         }
3990         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3991                 queue_set_hctx_shared(q, true);
3992         list_add_tail(&q->tag_set_list, &set->tag_list);
3993
3994         mutex_unlock(&set->tag_list_lock);
3995 }
3996
3997 /* All allocations will be freed in release handler of q->mq_kobj */
3998 static int blk_mq_alloc_ctxs(struct request_queue *q)
3999 {
4000         struct blk_mq_ctxs *ctxs;
4001         int cpu;
4002
4003         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4004         if (!ctxs)
4005                 return -ENOMEM;
4006
4007         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4008         if (!ctxs->queue_ctx)
4009                 goto fail;
4010
4011         for_each_possible_cpu(cpu) {
4012                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4013                 ctx->ctxs = ctxs;
4014         }
4015
4016         q->mq_kobj = &ctxs->kobj;
4017         q->queue_ctx = ctxs->queue_ctx;
4018
4019         return 0;
4020  fail:
4021         kfree(ctxs);
4022         return -ENOMEM;
4023 }
4024
4025 /*
4026  * It is the actual release handler for mq, but we do it from
4027  * request queue's release handler for avoiding use-after-free
4028  * and headache because q->mq_kobj shouldn't have been introduced,
4029  * but we can't group ctx/kctx kobj without it.
4030  */
4031 void blk_mq_release(struct request_queue *q)
4032 {
4033         struct blk_mq_hw_ctx *hctx, *next;
4034         unsigned long i;
4035
4036         queue_for_each_hw_ctx(q, hctx, i)
4037                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4038
4039         /* all hctx are in .unused_hctx_list now */
4040         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4041                 list_del_init(&hctx->hctx_list);
4042                 kobject_put(&hctx->kobj);
4043         }
4044
4045         xa_destroy(&q->hctx_table);
4046
4047         /*
4048          * release .mq_kobj and sw queue's kobject now because
4049          * both share lifetime with request queue.
4050          */
4051         blk_mq_sysfs_deinit(q);
4052 }
4053
4054 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4055                 void *queuedata)
4056 {
4057         struct request_queue *q;
4058         int ret;
4059
4060         q = blk_alloc_queue(set->numa_node);
4061         if (!q)
4062                 return ERR_PTR(-ENOMEM);
4063         q->queuedata = queuedata;
4064         ret = blk_mq_init_allocated_queue(set, q);
4065         if (ret) {
4066                 blk_put_queue(q);
4067                 return ERR_PTR(ret);
4068         }
4069         return q;
4070 }
4071
4072 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4073 {
4074         return blk_mq_init_queue_data(set, NULL);
4075 }
4076 EXPORT_SYMBOL(blk_mq_init_queue);
4077
4078 /**
4079  * blk_mq_destroy_queue - shutdown a request queue
4080  * @q: request queue to shutdown
4081  *
4082  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4083  * requests will be failed with -ENODEV. The caller is responsible for dropping
4084  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4085  *
4086  * Context: can sleep
4087  */
4088 void blk_mq_destroy_queue(struct request_queue *q)
4089 {
4090         WARN_ON_ONCE(!queue_is_mq(q));
4091         WARN_ON_ONCE(blk_queue_registered(q));
4092
4093         might_sleep();
4094
4095         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4096         blk_queue_start_drain(q);
4097         blk_mq_freeze_queue_wait(q);
4098
4099         blk_sync_queue(q);
4100         blk_mq_cancel_work_sync(q);
4101         blk_mq_exit_queue(q);
4102 }
4103 EXPORT_SYMBOL(blk_mq_destroy_queue);
4104
4105 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4106                 struct lock_class_key *lkclass)
4107 {
4108         struct request_queue *q;
4109         struct gendisk *disk;
4110
4111         q = blk_mq_init_queue_data(set, queuedata);
4112         if (IS_ERR(q))
4113                 return ERR_CAST(q);
4114
4115         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4116         if (!disk) {
4117                 blk_mq_destroy_queue(q);
4118                 blk_put_queue(q);
4119                 return ERR_PTR(-ENOMEM);
4120         }
4121         set_bit(GD_OWNS_QUEUE, &disk->state);
4122         return disk;
4123 }
4124 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4125
4126 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4127                 struct lock_class_key *lkclass)
4128 {
4129         struct gendisk *disk;
4130
4131         if (!blk_get_queue(q))
4132                 return NULL;
4133         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4134         if (!disk)
4135                 blk_put_queue(q);
4136         return disk;
4137 }
4138 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4139
4140 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4141                 struct blk_mq_tag_set *set, struct request_queue *q,
4142                 int hctx_idx, int node)
4143 {
4144         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4145
4146         /* reuse dead hctx first */
4147         spin_lock(&q->unused_hctx_lock);
4148         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4149                 if (tmp->numa_node == node) {
4150                         hctx = tmp;
4151                         break;
4152                 }
4153         }
4154         if (hctx)
4155                 list_del_init(&hctx->hctx_list);
4156         spin_unlock(&q->unused_hctx_lock);
4157
4158         if (!hctx)
4159                 hctx = blk_mq_alloc_hctx(q, set, node);
4160         if (!hctx)
4161                 goto fail;
4162
4163         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4164                 goto free_hctx;
4165
4166         return hctx;
4167
4168  free_hctx:
4169         kobject_put(&hctx->kobj);
4170  fail:
4171         return NULL;
4172 }
4173
4174 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4175                                                 struct request_queue *q)
4176 {
4177         struct blk_mq_hw_ctx *hctx;
4178         unsigned long i, j;
4179
4180         /* protect against switching io scheduler  */
4181         mutex_lock(&q->sysfs_lock);
4182         for (i = 0; i < set->nr_hw_queues; i++) {
4183                 int old_node;
4184                 int node = blk_mq_get_hctx_node(set, i);
4185                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4186
4187                 if (old_hctx) {
4188                         old_node = old_hctx->numa_node;
4189                         blk_mq_exit_hctx(q, set, old_hctx, i);
4190                 }
4191
4192                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4193                         if (!old_hctx)
4194                                 break;
4195                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4196                                         node, old_node);
4197                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4198                         WARN_ON_ONCE(!hctx);
4199                 }
4200         }
4201         /*
4202          * Increasing nr_hw_queues fails. Free the newly allocated
4203          * hctxs and keep the previous q->nr_hw_queues.
4204          */
4205         if (i != set->nr_hw_queues) {
4206                 j = q->nr_hw_queues;
4207         } else {
4208                 j = i;
4209                 q->nr_hw_queues = set->nr_hw_queues;
4210         }
4211
4212         xa_for_each_start(&q->hctx_table, j, hctx, j)
4213                 blk_mq_exit_hctx(q, set, hctx, j);
4214         mutex_unlock(&q->sysfs_lock);
4215 }
4216
4217 static void blk_mq_update_poll_flag(struct request_queue *q)
4218 {
4219         struct blk_mq_tag_set *set = q->tag_set;
4220
4221         if (set->nr_maps > HCTX_TYPE_POLL &&
4222             set->map[HCTX_TYPE_POLL].nr_queues)
4223                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4224         else
4225                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4226 }
4227
4228 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4229                 struct request_queue *q)
4230 {
4231         /* mark the queue as mq asap */
4232         q->mq_ops = set->ops;
4233
4234         if (blk_mq_alloc_ctxs(q))
4235                 goto err_exit;
4236
4237         /* init q->mq_kobj and sw queues' kobjects */
4238         blk_mq_sysfs_init(q);
4239
4240         INIT_LIST_HEAD(&q->unused_hctx_list);
4241         spin_lock_init(&q->unused_hctx_lock);
4242
4243         xa_init(&q->hctx_table);
4244
4245         blk_mq_realloc_hw_ctxs(set, q);
4246         if (!q->nr_hw_queues)
4247                 goto err_hctxs;
4248
4249         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4250         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4251
4252         q->tag_set = set;
4253
4254         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4255         blk_mq_update_poll_flag(q);
4256
4257         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4258         INIT_LIST_HEAD(&q->flush_list);
4259         INIT_LIST_HEAD(&q->requeue_list);
4260         spin_lock_init(&q->requeue_lock);
4261
4262         q->nr_requests = set->queue_depth;
4263
4264         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265         blk_mq_add_queue_tag_set(set, q);
4266         blk_mq_map_swqueue(q);
4267         return 0;
4268
4269 err_hctxs:
4270         blk_mq_release(q);
4271 err_exit:
4272         q->mq_ops = NULL;
4273         return -ENOMEM;
4274 }
4275 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4276
4277 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4278 void blk_mq_exit_queue(struct request_queue *q)
4279 {
4280         struct blk_mq_tag_set *set = q->tag_set;
4281
4282         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4283         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4284         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4285         blk_mq_del_queue_tag_set(q);
4286 }
4287
4288 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4289 {
4290         int i;
4291
4292         if (blk_mq_is_shared_tags(set->flags)) {
4293                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4294                                                 BLK_MQ_NO_HCTX_IDX,
4295                                                 set->queue_depth);
4296                 if (!set->shared_tags)
4297                         return -ENOMEM;
4298         }
4299
4300         for (i = 0; i < set->nr_hw_queues; i++) {
4301                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4302                         goto out_unwind;
4303                 cond_resched();
4304         }
4305
4306         return 0;
4307
4308 out_unwind:
4309         while (--i >= 0)
4310                 __blk_mq_free_map_and_rqs(set, i);
4311
4312         if (blk_mq_is_shared_tags(set->flags)) {
4313                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4314                                         BLK_MQ_NO_HCTX_IDX);
4315         }
4316
4317         return -ENOMEM;
4318 }
4319
4320 /*
4321  * Allocate the request maps associated with this tag_set. Note that this
4322  * may reduce the depth asked for, if memory is tight. set->queue_depth
4323  * will be updated to reflect the allocated depth.
4324  */
4325 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4326 {
4327         unsigned int depth;
4328         int err;
4329
4330         depth = set->queue_depth;
4331         do {
4332                 err = __blk_mq_alloc_rq_maps(set);
4333                 if (!err)
4334                         break;
4335
4336                 set->queue_depth >>= 1;
4337                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4338                         err = -ENOMEM;
4339                         break;
4340                 }
4341         } while (set->queue_depth);
4342
4343         if (!set->queue_depth || err) {
4344                 pr_err("blk-mq: failed to allocate request map\n");
4345                 return -ENOMEM;
4346         }
4347
4348         if (depth != set->queue_depth)
4349                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4350                                                 depth, set->queue_depth);
4351
4352         return 0;
4353 }
4354
4355 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4356 {
4357         /*
4358          * blk_mq_map_queues() and multiple .map_queues() implementations
4359          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4360          * number of hardware queues.
4361          */
4362         if (set->nr_maps == 1)
4363                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4364
4365         if (set->ops->map_queues && !is_kdump_kernel()) {
4366                 int i;
4367
4368                 /*
4369                  * transport .map_queues is usually done in the following
4370                  * way:
4371                  *
4372                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4373                  *      mask = get_cpu_mask(queue)
4374                  *      for_each_cpu(cpu, mask)
4375                  *              set->map[x].mq_map[cpu] = queue;
4376                  * }
4377                  *
4378                  * When we need to remap, the table has to be cleared for
4379                  * killing stale mapping since one CPU may not be mapped
4380                  * to any hw queue.
4381                  */
4382                 for (i = 0; i < set->nr_maps; i++)
4383                         blk_mq_clear_mq_map(&set->map[i]);
4384
4385                 set->ops->map_queues(set);
4386         } else {
4387                 BUG_ON(set->nr_maps > 1);
4388                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4389         }
4390 }
4391
4392 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4393                                        int new_nr_hw_queues)
4394 {
4395         struct blk_mq_tags **new_tags;
4396         int i;
4397
4398         if (set->nr_hw_queues >= new_nr_hw_queues)
4399                 goto done;
4400
4401         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4402                                 GFP_KERNEL, set->numa_node);
4403         if (!new_tags)
4404                 return -ENOMEM;
4405
4406         if (set->tags)
4407                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4408                        sizeof(*set->tags));
4409         kfree(set->tags);
4410         set->tags = new_tags;
4411
4412         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4413                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4414                         while (--i >= set->nr_hw_queues)
4415                                 __blk_mq_free_map_and_rqs(set, i);
4416                         return -ENOMEM;
4417                 }
4418                 cond_resched();
4419         }
4420
4421 done:
4422         set->nr_hw_queues = new_nr_hw_queues;
4423         return 0;
4424 }
4425
4426 /*
4427  * Alloc a tag set to be associated with one or more request queues.
4428  * May fail with EINVAL for various error conditions. May adjust the
4429  * requested depth down, if it's too large. In that case, the set
4430  * value will be stored in set->queue_depth.
4431  */
4432 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4433 {
4434         int i, ret;
4435
4436         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4437
4438         if (!set->nr_hw_queues)
4439                 return -EINVAL;
4440         if (!set->queue_depth)
4441                 return -EINVAL;
4442         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4443                 return -EINVAL;
4444
4445         if (!set->ops->queue_rq)
4446                 return -EINVAL;
4447
4448         if (!set->ops->get_budget ^ !set->ops->put_budget)
4449                 return -EINVAL;
4450
4451         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4452                 pr_info("blk-mq: reduced tag depth to %u\n",
4453                         BLK_MQ_MAX_DEPTH);
4454                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4455         }
4456
4457         if (!set->nr_maps)
4458                 set->nr_maps = 1;
4459         else if (set->nr_maps > HCTX_MAX_TYPES)
4460                 return -EINVAL;
4461
4462         /*
4463          * If a crashdump is active, then we are potentially in a very
4464          * memory constrained environment. Limit us to 1 queue and
4465          * 64 tags to prevent using too much memory.
4466          */
4467         if (is_kdump_kernel()) {
4468                 set->nr_hw_queues = 1;
4469                 set->nr_maps = 1;
4470                 set->queue_depth = min(64U, set->queue_depth);
4471         }
4472         /*
4473          * There is no use for more h/w queues than cpus if we just have
4474          * a single map
4475          */
4476         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4477                 set->nr_hw_queues = nr_cpu_ids;
4478
4479         if (set->flags & BLK_MQ_F_BLOCKING) {
4480                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4481                 if (!set->srcu)
4482                         return -ENOMEM;
4483                 ret = init_srcu_struct(set->srcu);
4484                 if (ret)
4485                         goto out_free_srcu;
4486         }
4487
4488         ret = -ENOMEM;
4489         set->tags = kcalloc_node(set->nr_hw_queues,
4490                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4491                                  set->numa_node);
4492         if (!set->tags)
4493                 goto out_cleanup_srcu;
4494
4495         for (i = 0; i < set->nr_maps; i++) {
4496                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4497                                                   sizeof(set->map[i].mq_map[0]),
4498                                                   GFP_KERNEL, set->numa_node);
4499                 if (!set->map[i].mq_map)
4500                         goto out_free_mq_map;
4501                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4502         }
4503
4504         blk_mq_update_queue_map(set);
4505
4506         ret = blk_mq_alloc_set_map_and_rqs(set);
4507         if (ret)
4508                 goto out_free_mq_map;
4509
4510         mutex_init(&set->tag_list_lock);
4511         INIT_LIST_HEAD(&set->tag_list);
4512
4513         return 0;
4514
4515 out_free_mq_map:
4516         for (i = 0; i < set->nr_maps; i++) {
4517                 kfree(set->map[i].mq_map);
4518                 set->map[i].mq_map = NULL;
4519         }
4520         kfree(set->tags);
4521         set->tags = NULL;
4522 out_cleanup_srcu:
4523         if (set->flags & BLK_MQ_F_BLOCKING)
4524                 cleanup_srcu_struct(set->srcu);
4525 out_free_srcu:
4526         if (set->flags & BLK_MQ_F_BLOCKING)
4527                 kfree(set->srcu);
4528         return ret;
4529 }
4530 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4531
4532 /* allocate and initialize a tagset for a simple single-queue device */
4533 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4534                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4535                 unsigned int set_flags)
4536 {
4537         memset(set, 0, sizeof(*set));
4538         set->ops = ops;
4539         set->nr_hw_queues = 1;
4540         set->nr_maps = 1;
4541         set->queue_depth = queue_depth;
4542         set->numa_node = NUMA_NO_NODE;
4543         set->flags = set_flags;
4544         return blk_mq_alloc_tag_set(set);
4545 }
4546 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4547
4548 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4549 {
4550         int i, j;
4551
4552         for (i = 0; i < set->nr_hw_queues; i++)
4553                 __blk_mq_free_map_and_rqs(set, i);
4554
4555         if (blk_mq_is_shared_tags(set->flags)) {
4556                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4557                                         BLK_MQ_NO_HCTX_IDX);
4558         }
4559
4560         for (j = 0; j < set->nr_maps; j++) {
4561                 kfree(set->map[j].mq_map);
4562                 set->map[j].mq_map = NULL;
4563         }
4564
4565         kfree(set->tags);
4566         set->tags = NULL;
4567         if (set->flags & BLK_MQ_F_BLOCKING) {
4568                 cleanup_srcu_struct(set->srcu);
4569                 kfree(set->srcu);
4570         }
4571 }
4572 EXPORT_SYMBOL(blk_mq_free_tag_set);
4573
4574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4575 {
4576         struct blk_mq_tag_set *set = q->tag_set;
4577         struct blk_mq_hw_ctx *hctx;
4578         int ret;
4579         unsigned long i;
4580
4581         if (!set)
4582                 return -EINVAL;
4583
4584         if (q->nr_requests == nr)
4585                 return 0;
4586
4587         blk_mq_freeze_queue(q);
4588         blk_mq_quiesce_queue(q);
4589
4590         ret = 0;
4591         queue_for_each_hw_ctx(q, hctx, i) {
4592                 if (!hctx->tags)
4593                         continue;
4594                 /*
4595                  * If we're using an MQ scheduler, just update the scheduler
4596                  * queue depth. This is similar to what the old code would do.
4597                  */
4598                 if (hctx->sched_tags) {
4599                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4600                                                       nr, true);
4601                 } else {
4602                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4603                                                       false);
4604                 }
4605                 if (ret)
4606                         break;
4607                 if (q->elevator && q->elevator->type->ops.depth_updated)
4608                         q->elevator->type->ops.depth_updated(hctx);
4609         }
4610         if (!ret) {
4611                 q->nr_requests = nr;
4612                 if (blk_mq_is_shared_tags(set->flags)) {
4613                         if (q->elevator)
4614                                 blk_mq_tag_update_sched_shared_tags(q);
4615                         else
4616                                 blk_mq_tag_resize_shared_tags(set, nr);
4617                 }
4618         }
4619
4620         blk_mq_unquiesce_queue(q);
4621         blk_mq_unfreeze_queue(q);
4622
4623         return ret;
4624 }
4625
4626 /*
4627  * request_queue and elevator_type pair.
4628  * It is just used by __blk_mq_update_nr_hw_queues to cache
4629  * the elevator_type associated with a request_queue.
4630  */
4631 struct blk_mq_qe_pair {
4632         struct list_head node;
4633         struct request_queue *q;
4634         struct elevator_type *type;
4635 };
4636
4637 /*
4638  * Cache the elevator_type in qe pair list and switch the
4639  * io scheduler to 'none'
4640  */
4641 static bool blk_mq_elv_switch_none(struct list_head *head,
4642                 struct request_queue *q)
4643 {
4644         struct blk_mq_qe_pair *qe;
4645
4646         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4647         if (!qe)
4648                 return false;
4649
4650         /* q->elevator needs protection from ->sysfs_lock */
4651         mutex_lock(&q->sysfs_lock);
4652
4653         /* the check has to be done with holding sysfs_lock */
4654         if (!q->elevator) {
4655                 kfree(qe);
4656                 goto unlock;
4657         }
4658
4659         INIT_LIST_HEAD(&qe->node);
4660         qe->q = q;
4661         qe->type = q->elevator->type;
4662         /* keep a reference to the elevator module as we'll switch back */
4663         __elevator_get(qe->type);
4664         list_add(&qe->node, head);
4665         elevator_disable(q);
4666 unlock:
4667         mutex_unlock(&q->sysfs_lock);
4668
4669         return true;
4670 }
4671
4672 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4673                                                 struct request_queue *q)
4674 {
4675         struct blk_mq_qe_pair *qe;
4676
4677         list_for_each_entry(qe, head, node)
4678                 if (qe->q == q)
4679                         return qe;
4680
4681         return NULL;
4682 }
4683
4684 static void blk_mq_elv_switch_back(struct list_head *head,
4685                                   struct request_queue *q)
4686 {
4687         struct blk_mq_qe_pair *qe;
4688         struct elevator_type *t;
4689
4690         qe = blk_lookup_qe_pair(head, q);
4691         if (!qe)
4692                 return;
4693         t = qe->type;
4694         list_del(&qe->node);
4695         kfree(qe);
4696
4697         mutex_lock(&q->sysfs_lock);
4698         elevator_switch(q, t);
4699         /* drop the reference acquired in blk_mq_elv_switch_none */
4700         elevator_put(t);
4701         mutex_unlock(&q->sysfs_lock);
4702 }
4703
4704 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4705                                                         int nr_hw_queues)
4706 {
4707         struct request_queue *q;
4708         LIST_HEAD(head);
4709         int prev_nr_hw_queues = set->nr_hw_queues;
4710         int i;
4711
4712         lockdep_assert_held(&set->tag_list_lock);
4713
4714         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4715                 nr_hw_queues = nr_cpu_ids;
4716         if (nr_hw_queues < 1)
4717                 return;
4718         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4719                 return;
4720
4721         list_for_each_entry(q, &set->tag_list, tag_set_list)
4722                 blk_mq_freeze_queue(q);
4723         /*
4724          * Switch IO scheduler to 'none', cleaning up the data associated
4725          * with the previous scheduler. We will switch back once we are done
4726          * updating the new sw to hw queue mappings.
4727          */
4728         list_for_each_entry(q, &set->tag_list, tag_set_list)
4729                 if (!blk_mq_elv_switch_none(&head, q))
4730                         goto switch_back;
4731
4732         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4733                 blk_mq_debugfs_unregister_hctxs(q);
4734                 blk_mq_sysfs_unregister_hctxs(q);
4735         }
4736
4737         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4738                 goto reregister;
4739
4740 fallback:
4741         blk_mq_update_queue_map(set);
4742         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4743                 blk_mq_realloc_hw_ctxs(set, q);
4744                 blk_mq_update_poll_flag(q);
4745                 if (q->nr_hw_queues != set->nr_hw_queues) {
4746                         int i = prev_nr_hw_queues;
4747
4748                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4749                                         nr_hw_queues, prev_nr_hw_queues);
4750                         for (; i < set->nr_hw_queues; i++)
4751                                 __blk_mq_free_map_and_rqs(set, i);
4752
4753                         set->nr_hw_queues = prev_nr_hw_queues;
4754                         goto fallback;
4755                 }
4756                 blk_mq_map_swqueue(q);
4757         }
4758
4759 reregister:
4760         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4761                 blk_mq_sysfs_register_hctxs(q);
4762                 blk_mq_debugfs_register_hctxs(q);
4763         }
4764
4765 switch_back:
4766         list_for_each_entry(q, &set->tag_list, tag_set_list)
4767                 blk_mq_elv_switch_back(&head, q);
4768
4769         list_for_each_entry(q, &set->tag_list, tag_set_list)
4770                 blk_mq_unfreeze_queue(q);
4771
4772         /* Free the excess tags when nr_hw_queues shrink. */
4773         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4774                 __blk_mq_free_map_and_rqs(set, i);
4775 }
4776
4777 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4778 {
4779         mutex_lock(&set->tag_list_lock);
4780         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4781         mutex_unlock(&set->tag_list_lock);
4782 }
4783 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4784
4785 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4786                          struct io_comp_batch *iob, unsigned int flags)
4787 {
4788         long state = get_current_state();
4789         int ret;
4790
4791         do {
4792                 ret = q->mq_ops->poll(hctx, iob);
4793                 if (ret > 0) {
4794                         __set_current_state(TASK_RUNNING);
4795                         return ret;
4796                 }
4797
4798                 if (signal_pending_state(state, current))
4799                         __set_current_state(TASK_RUNNING);
4800                 if (task_is_running(current))
4801                         return 1;
4802
4803                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4804                         break;
4805                 cpu_relax();
4806         } while (!need_resched());
4807
4808         __set_current_state(TASK_RUNNING);
4809         return 0;
4810 }
4811
4812 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4813                 struct io_comp_batch *iob, unsigned int flags)
4814 {
4815         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4816
4817         return blk_hctx_poll(q, hctx, iob, flags);
4818 }
4819
4820 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4821                 unsigned int poll_flags)
4822 {
4823         struct request_queue *q = rq->q;
4824         int ret;
4825
4826         if (!blk_rq_is_poll(rq))
4827                 return 0;
4828         if (!percpu_ref_tryget(&q->q_usage_counter))
4829                 return 0;
4830
4831         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4832         blk_queue_exit(q);
4833
4834         return ret;
4835 }
4836 EXPORT_SYMBOL_GPL(blk_rq_poll);
4837
4838 unsigned int blk_mq_rq_cpu(struct request *rq)
4839 {
4840         return rq->mq_ctx->cpu;
4841 }
4842 EXPORT_SYMBOL(blk_mq_rq_cpu);
4843
4844 void blk_mq_cancel_work_sync(struct request_queue *q)
4845 {
4846         struct blk_mq_hw_ctx *hctx;
4847         unsigned long i;
4848
4849         cancel_delayed_work_sync(&q->requeue_work);
4850
4851         queue_for_each_hw_ctx(q, hctx, i)
4852                 cancel_delayed_work_sync(&hctx->run_work);
4853 }
4854
4855 static int __init blk_mq_init(void)
4856 {
4857         int i;
4858
4859         for_each_possible_cpu(i)
4860                 init_llist_head(&per_cpu(blk_cpu_done, i));
4861         for_each_possible_cpu(i)
4862                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4863                          __blk_mq_complete_request_remote, NULL);
4864         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4865
4866         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4867                                   "block/softirq:dead", NULL,
4868                                   blk_softirq_cpu_dead);
4869         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4870                                 blk_mq_hctx_notify_dead);
4871         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4872                                 blk_mq_hctx_notify_online,
4873                                 blk_mq_hctx_notify_offline);
4874         return 0;
4875 }
4876 subsys_initcall(blk_mq_init);