aa87fcfda1ecfc875c86a0258fe16e707ce3f167
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  * For such case, force the completed nbytes to be equal to
776                  * the BIO size so that bio_advance() sets the BIO remaining
777                  * size to 0 and we end up calling bio_endio() before returning.
778                  */
779                 if (bio->bi_iter.bi_size != nbytes) {
780                         bio->bi_status = BLK_STS_IOERR;
781                         nbytes = bio->bi_iter.bi_size;
782                 } else {
783                         bio->bi_iter.bi_sector = rq->__sector;
784                 }
785         }
786
787         bio_advance(bio, nbytes);
788
789         if (unlikely(rq->rq_flags & RQF_QUIET))
790                 bio_set_flag(bio, BIO_QUIET);
791         /* don't actually finish bio if it's part of flush sequence */
792         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
793                 bio_endio(bio);
794 }
795
796 static void blk_account_io_completion(struct request *req, unsigned int bytes)
797 {
798         if (req->part && blk_do_io_stat(req)) {
799                 const int sgrp = op_stat_group(req_op(req));
800
801                 part_stat_lock();
802                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
803                 part_stat_unlock();
804         }
805 }
806
807 static void blk_print_req_error(struct request *req, blk_status_t status)
808 {
809         printk_ratelimited(KERN_ERR
810                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
811                 "phys_seg %u prio class %u\n",
812                 blk_status_to_str(status),
813                 req->q->disk ? req->q->disk->disk_name : "?",
814                 blk_rq_pos(req), (__force u32)req_op(req),
815                 blk_op_str(req_op(req)),
816                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
817                 req->nr_phys_segments,
818                 IOPRIO_PRIO_CLASS(req->ioprio));
819 }
820
821 /*
822  * Fully end IO on a request. Does not support partial completions, or
823  * errors.
824  */
825 static void blk_complete_request(struct request *req)
826 {
827         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
828         int total_bytes = blk_rq_bytes(req);
829         struct bio *bio = req->bio;
830
831         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
832
833         if (!bio)
834                 return;
835
836 #ifdef CONFIG_BLK_DEV_INTEGRITY
837         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
838                 req->q->integrity.profile->complete_fn(req, total_bytes);
839 #endif
840
841         /*
842          * Upper layers may call blk_crypto_evict_key() anytime after the last
843          * bio_endio().  Therefore, the keyslot must be released before that.
844          */
845         blk_crypto_rq_put_keyslot(req);
846
847         blk_account_io_completion(req, total_bytes);
848
849         do {
850                 struct bio *next = bio->bi_next;
851
852                 /* Completion has already been traced */
853                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
854
855                 if (req_op(req) == REQ_OP_ZONE_APPEND)
856                         bio->bi_iter.bi_sector = req->__sector;
857
858                 if (!is_flush)
859                         bio_endio(bio);
860                 bio = next;
861         } while (bio);
862
863         /*
864          * Reset counters so that the request stacking driver
865          * can find how many bytes remain in the request
866          * later.
867          */
868         if (!req->end_io) {
869                 req->bio = NULL;
870                 req->__data_len = 0;
871         }
872 }
873
874 /**
875  * blk_update_request - Complete multiple bytes without completing the request
876  * @req:      the request being processed
877  * @error:    block status code
878  * @nr_bytes: number of bytes to complete for @req
879  *
880  * Description:
881  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
882  *     the request structure even if @req doesn't have leftover.
883  *     If @req has leftover, sets it up for the next range of segments.
884  *
885  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
886  *     %false return from this function.
887  *
888  * Note:
889  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
890  *      except in the consistency check at the end of this function.
891  *
892  * Return:
893  *     %false - this request doesn't have any more data
894  *     %true  - this request has more data
895  **/
896 bool blk_update_request(struct request *req, blk_status_t error,
897                 unsigned int nr_bytes)
898 {
899         int total_bytes;
900
901         trace_block_rq_complete(req, error, nr_bytes);
902
903         if (!req->bio)
904                 return false;
905
906 #ifdef CONFIG_BLK_DEV_INTEGRITY
907         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
908             error == BLK_STS_OK)
909                 req->q->integrity.profile->complete_fn(req, nr_bytes);
910 #endif
911
912         /*
913          * Upper layers may call blk_crypto_evict_key() anytime after the last
914          * bio_endio().  Therefore, the keyslot must be released before that.
915          */
916         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
917                 __blk_crypto_rq_put_keyslot(req);
918
919         if (unlikely(error && !blk_rq_is_passthrough(req) &&
920                      !(req->rq_flags & RQF_QUIET)) &&
921                      !test_bit(GD_DEAD, &req->q->disk->state)) {
922                 blk_print_req_error(req, error);
923                 trace_block_rq_error(req, error, nr_bytes);
924         }
925
926         blk_account_io_completion(req, nr_bytes);
927
928         total_bytes = 0;
929         while (req->bio) {
930                 struct bio *bio = req->bio;
931                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
932
933                 if (bio_bytes == bio->bi_iter.bi_size)
934                         req->bio = bio->bi_next;
935
936                 /* Completion has already been traced */
937                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
938                 req_bio_endio(req, bio, bio_bytes, error);
939
940                 total_bytes += bio_bytes;
941                 nr_bytes -= bio_bytes;
942
943                 if (!nr_bytes)
944                         break;
945         }
946
947         /*
948          * completely done
949          */
950         if (!req->bio) {
951                 /*
952                  * Reset counters so that the request stacking driver
953                  * can find how many bytes remain in the request
954                  * later.
955                  */
956                 req->__data_len = 0;
957                 return false;
958         }
959
960         req->__data_len -= total_bytes;
961
962         /* update sector only for requests with clear definition of sector */
963         if (!blk_rq_is_passthrough(req))
964                 req->__sector += total_bytes >> 9;
965
966         /* mixed attributes always follow the first bio */
967         if (req->rq_flags & RQF_MIXED_MERGE) {
968                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
969                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
970         }
971
972         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
973                 /*
974                  * If total number of sectors is less than the first segment
975                  * size, something has gone terribly wrong.
976                  */
977                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
978                         blk_dump_rq_flags(req, "request botched");
979                         req->__data_len = blk_rq_cur_bytes(req);
980                 }
981
982                 /* recalculate the number of segments */
983                 req->nr_phys_segments = blk_recalc_rq_segments(req);
984         }
985
986         return true;
987 }
988 EXPORT_SYMBOL_GPL(blk_update_request);
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992         trace_block_io_done(req);
993
994         /*
995          * Account IO completion.  flush_rq isn't accounted as a
996          * normal IO on queueing nor completion.  Accounting the
997          * containing request is enough.
998          */
999         if (blk_do_io_stat(req) && req->part &&
1000             !(req->rq_flags & RQF_FLUSH_SEQ)) {
1001                 const int sgrp = op_stat_group(req_op(req));
1002
1003                 part_stat_lock();
1004                 update_io_ticks(req->part, jiffies, true);
1005                 part_stat_inc(req->part, ios[sgrp]);
1006                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1007                 part_stat_unlock();
1008         }
1009 }
1010
1011 static inline void blk_account_io_start(struct request *req)
1012 {
1013         trace_block_io_start(req);
1014
1015         if (blk_do_io_stat(req)) {
1016                 /*
1017                  * All non-passthrough requests are created from a bio with one
1018                  * exception: when a flush command that is part of a flush sequence
1019                  * generated by the state machine in blk-flush.c is cloned onto the
1020                  * lower device by dm-multipath we can get here without a bio.
1021                  */
1022                 if (req->bio)
1023                         req->part = req->bio->bi_bdev;
1024                 else
1025                         req->part = req->q->disk->part0;
1026
1027                 part_stat_lock();
1028                 update_io_ticks(req->part, jiffies, false);
1029                 part_stat_unlock();
1030         }
1031 }
1032
1033 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1034 {
1035         if (rq->rq_flags & RQF_STATS)
1036                 blk_stat_add(rq, now);
1037
1038         blk_mq_sched_completed_request(rq, now);
1039         blk_account_io_done(rq, now);
1040 }
1041
1042 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1043 {
1044         if (blk_mq_need_time_stamp(rq))
1045                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1046
1047         blk_mq_finish_request(rq);
1048
1049         if (rq->end_io) {
1050                 rq_qos_done(rq->q, rq);
1051                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1052                         blk_mq_free_request(rq);
1053         } else {
1054                 blk_mq_free_request(rq);
1055         }
1056 }
1057 EXPORT_SYMBOL(__blk_mq_end_request);
1058
1059 void blk_mq_end_request(struct request *rq, blk_status_t error)
1060 {
1061         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1062                 BUG();
1063         __blk_mq_end_request(rq, error);
1064 }
1065 EXPORT_SYMBOL(blk_mq_end_request);
1066
1067 #define TAG_COMP_BATCH          32
1068
1069 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1070                                           int *tag_array, int nr_tags)
1071 {
1072         struct request_queue *q = hctx->queue;
1073
1074         blk_mq_sub_active_requests(hctx, nr_tags);
1075
1076         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079
1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082         int tags[TAG_COMP_BATCH], nr_tags = 0;
1083         struct blk_mq_hw_ctx *cur_hctx = NULL;
1084         struct request *rq;
1085         u64 now = 0;
1086
1087         if (iob->need_ts)
1088                 now = ktime_get_ns();
1089
1090         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091                 prefetch(rq->bio);
1092                 prefetch(rq->rq_next);
1093
1094                 blk_complete_request(rq);
1095                 if (iob->need_ts)
1096                         __blk_mq_end_request_acct(rq, now);
1097
1098                 blk_mq_finish_request(rq);
1099
1100                 rq_qos_done(rq->q, rq);
1101
1102                 /*
1103                  * If end_io handler returns NONE, then it still has
1104                  * ownership of the request.
1105                  */
1106                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107                         continue;
1108
1109                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110                 if (!req_ref_put_and_test(rq))
1111                         continue;
1112
1113                 blk_crypto_free_request(rq);
1114                 blk_pm_mark_last_busy(rq);
1115
1116                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117                         if (cur_hctx)
1118                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119                         nr_tags = 0;
1120                         cur_hctx = rq->mq_hctx;
1121                 }
1122                 tags[nr_tags++] = rq->tag;
1123         }
1124
1125         if (nr_tags)
1126                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129
1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133         struct request *rq, *next;
1134
1135         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136                 rq->q->mq_ops->complete(rq);
1137 }
1138
1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143
1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147         return 0;
1148 }
1149
1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154
1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157         int cpu = raw_smp_processor_id();
1158
1159         if (!IS_ENABLED(CONFIG_SMP) ||
1160             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161                 return false;
1162         /*
1163          * With force threaded interrupts enabled, raising softirq from an SMP
1164          * function call will always result in waking the ksoftirqd thread.
1165          * This is probably worse than completing the request on a different
1166          * cache domain.
1167          */
1168         if (force_irqthreads())
1169                 return false;
1170
1171         /* same CPU or cache domain?  Complete locally */
1172         if (cpu == rq->mq_ctx->cpu ||
1173             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175                 return false;
1176
1177         /* don't try to IPI to an offline CPU */
1178         return cpu_online(rq->mq_ctx->cpu);
1179 }
1180
1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183         unsigned int cpu;
1184
1185         cpu = rq->mq_ctx->cpu;
1186         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192         struct llist_head *list;
1193
1194         preempt_disable();
1195         list = this_cpu_ptr(&blk_cpu_done);
1196         if (llist_add(&rq->ipi_list, list))
1197                 raise_softirq(BLOCK_SOFTIRQ);
1198         preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205         /*
1206          * For request which hctx has only one ctx mapping,
1207          * or a polled request, always complete locally,
1208          * it's pointless to redirect the completion.
1209          */
1210         if ((rq->mq_hctx->nr_ctx == 1 &&
1211              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212              rq->cmd_flags & REQ_POLLED)
1213                 return false;
1214
1215         if (blk_mq_complete_need_ipi(rq)) {
1216                 blk_mq_complete_send_ipi(rq);
1217                 return true;
1218         }
1219
1220         if (rq->q->nr_hw_queues == 1) {
1221                 blk_mq_raise_softirq(rq);
1222                 return true;
1223         }
1224         return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227
1228 /**
1229  * blk_mq_complete_request - end I/O on a request
1230  * @rq:         the request being processed
1231  *
1232  * Description:
1233  *      Complete a request by scheduling the ->complete_rq operation.
1234  **/
1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237         if (!blk_mq_complete_request_remote(rq))
1238                 rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241
1242 /**
1243  * blk_mq_start_request - Start processing a request
1244  * @rq: Pointer to request to be started
1245  *
1246  * Function used by device drivers to notify the block layer that a request
1247  * is going to be processed now, so blk layer can do proper initializations
1248  * such as starting the timeout timer.
1249  */
1250 void blk_mq_start_request(struct request *rq)
1251 {
1252         struct request_queue *q = rq->q;
1253
1254         trace_block_rq_issue(rq);
1255
1256         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1257             !blk_rq_is_passthrough(rq)) {
1258                 rq->io_start_time_ns = ktime_get_ns();
1259                 rq->stats_sectors = blk_rq_sectors(rq);
1260                 rq->rq_flags |= RQF_STATS;
1261                 rq_qos_issue(q, rq);
1262         }
1263
1264         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1265
1266         blk_add_timer(rq);
1267         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1268         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1269
1270 #ifdef CONFIG_BLK_DEV_INTEGRITY
1271         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1272                 q->integrity.profile->prepare_fn(rq);
1273 #endif
1274         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1275                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_request);
1278
1279 /*
1280  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1281  * queues. This is important for md arrays to benefit from merging
1282  * requests.
1283  */
1284 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1285 {
1286         if (plug->multiple_queues)
1287                 return BLK_MAX_REQUEST_COUNT * 2;
1288         return BLK_MAX_REQUEST_COUNT;
1289 }
1290
1291 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1292 {
1293         struct request *last = rq_list_peek(&plug->mq_list);
1294
1295         if (!plug->rq_count) {
1296                 trace_block_plug(rq->q);
1297         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1298                    (!blk_queue_nomerges(rq->q) &&
1299                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1300                 blk_mq_flush_plug_list(plug, false);
1301                 last = NULL;
1302                 trace_block_plug(rq->q);
1303         }
1304
1305         if (!plug->multiple_queues && last && last->q != rq->q)
1306                 plug->multiple_queues = true;
1307         /*
1308          * Any request allocated from sched tags can't be issued to
1309          * ->queue_rqs() directly
1310          */
1311         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1312                 plug->has_elevator = true;
1313         rq->rq_next = NULL;
1314         rq_list_add(&plug->mq_list, rq);
1315         plug->rq_count++;
1316 }
1317
1318 /**
1319  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1320  * @rq:         request to insert
1321  * @at_head:    insert request at head or tail of queue
1322  *
1323  * Description:
1324  *    Insert a fully prepared request at the back of the I/O scheduler queue
1325  *    for execution.  Don't wait for completion.
1326  *
1327  * Note:
1328  *    This function will invoke @done directly if the queue is dead.
1329  */
1330 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1331 {
1332         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1333
1334         WARN_ON(irqs_disabled());
1335         WARN_ON(!blk_rq_is_passthrough(rq));
1336
1337         blk_account_io_start(rq);
1338
1339         /*
1340          * As plugging can be enabled for passthrough requests on a zoned
1341          * device, directly accessing the plug instead of using blk_mq_plug()
1342          * should not have any consequences.
1343          */
1344         if (current->plug && !at_head) {
1345                 blk_add_rq_to_plug(current->plug, rq);
1346                 return;
1347         }
1348
1349         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1350         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1351 }
1352 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1353
1354 struct blk_rq_wait {
1355         struct completion done;
1356         blk_status_t ret;
1357 };
1358
1359 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1360 {
1361         struct blk_rq_wait *wait = rq->end_io_data;
1362
1363         wait->ret = ret;
1364         complete(&wait->done);
1365         return RQ_END_IO_NONE;
1366 }
1367
1368 bool blk_rq_is_poll(struct request *rq)
1369 {
1370         if (!rq->mq_hctx)
1371                 return false;
1372         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1373                 return false;
1374         return true;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1377
1378 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1379 {
1380         do {
1381                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1382                 cond_resched();
1383         } while (!completion_done(wait));
1384 }
1385
1386 /**
1387  * blk_execute_rq - insert a request into queue for execution
1388  * @rq:         request to insert
1389  * @at_head:    insert request at head or tail of queue
1390  *
1391  * Description:
1392  *    Insert a fully prepared request at the back of the I/O scheduler queue
1393  *    for execution and wait for completion.
1394  * Return: The blk_status_t result provided to blk_mq_end_request().
1395  */
1396 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1397 {
1398         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1399         struct blk_rq_wait wait = {
1400                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1401         };
1402
1403         WARN_ON(irqs_disabled());
1404         WARN_ON(!blk_rq_is_passthrough(rq));
1405
1406         rq->end_io_data = &wait;
1407         rq->end_io = blk_end_sync_rq;
1408
1409         blk_account_io_start(rq);
1410         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1411         blk_mq_run_hw_queue(hctx, false);
1412
1413         if (blk_rq_is_poll(rq)) {
1414                 blk_rq_poll_completion(rq, &wait.done);
1415         } else {
1416                 /*
1417                  * Prevent hang_check timer from firing at us during very long
1418                  * I/O
1419                  */
1420                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1421
1422                 if (hang_check)
1423                         while (!wait_for_completion_io_timeout(&wait.done,
1424                                         hang_check * (HZ/2)))
1425                                 ;
1426                 else
1427                         wait_for_completion_io(&wait.done);
1428         }
1429
1430         return wait.ret;
1431 }
1432 EXPORT_SYMBOL(blk_execute_rq);
1433
1434 static void __blk_mq_requeue_request(struct request *rq)
1435 {
1436         struct request_queue *q = rq->q;
1437
1438         blk_mq_put_driver_tag(rq);
1439
1440         trace_block_rq_requeue(rq);
1441         rq_qos_requeue(q, rq);
1442
1443         if (blk_mq_request_started(rq)) {
1444                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1445                 rq->rq_flags &= ~RQF_TIMED_OUT;
1446         }
1447 }
1448
1449 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1450 {
1451         struct request_queue *q = rq->q;
1452         unsigned long flags;
1453
1454         __blk_mq_requeue_request(rq);
1455
1456         /* this request will be re-inserted to io scheduler queue */
1457         blk_mq_sched_requeue_request(rq);
1458
1459         spin_lock_irqsave(&q->requeue_lock, flags);
1460         list_add_tail(&rq->queuelist, &q->requeue_list);
1461         spin_unlock_irqrestore(&q->requeue_lock, flags);
1462
1463         if (kick_requeue_list)
1464                 blk_mq_kick_requeue_list(q);
1465 }
1466 EXPORT_SYMBOL(blk_mq_requeue_request);
1467
1468 static void blk_mq_requeue_work(struct work_struct *work)
1469 {
1470         struct request_queue *q =
1471                 container_of(work, struct request_queue, requeue_work.work);
1472         LIST_HEAD(rq_list);
1473         LIST_HEAD(flush_list);
1474         struct request *rq;
1475
1476         spin_lock_irq(&q->requeue_lock);
1477         list_splice_init(&q->requeue_list, &rq_list);
1478         list_splice_init(&q->flush_list, &flush_list);
1479         spin_unlock_irq(&q->requeue_lock);
1480
1481         while (!list_empty(&rq_list)) {
1482                 rq = list_entry(rq_list.next, struct request, queuelist);
1483                 /*
1484                  * If RQF_DONTPREP ist set, the request has been started by the
1485                  * driver already and might have driver-specific data allocated
1486                  * already.  Insert it into the hctx dispatch list to avoid
1487                  * block layer merges for the request.
1488                  */
1489                 if (rq->rq_flags & RQF_DONTPREP) {
1490                         list_del_init(&rq->queuelist);
1491                         blk_mq_request_bypass_insert(rq, 0);
1492                 } else {
1493                         list_del_init(&rq->queuelist);
1494                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1495                 }
1496         }
1497
1498         while (!list_empty(&flush_list)) {
1499                 rq = list_entry(flush_list.next, struct request, queuelist);
1500                 list_del_init(&rq->queuelist);
1501                 blk_mq_insert_request(rq, 0);
1502         }
1503
1504         blk_mq_run_hw_queues(q, false);
1505 }
1506
1507 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 }
1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512
1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1514                                     unsigned long msecs)
1515 {
1516         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1517                                     msecs_to_jiffies(msecs));
1518 }
1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520
1521 static bool blk_is_flush_data_rq(struct request *rq)
1522 {
1523         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1524 }
1525
1526 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1527 {
1528         /*
1529          * If we find a request that isn't idle we know the queue is busy
1530          * as it's checked in the iter.
1531          * Return false to stop the iteration.
1532          *
1533          * In case of queue quiesce, if one flush data request is completed,
1534          * don't count it as inflight given the flush sequence is suspended,
1535          * and the original flush data request is invisible to driver, just
1536          * like other pending requests because of quiesce
1537          */
1538         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1539                                 blk_is_flush_data_rq(rq) &&
1540                                 blk_mq_request_completed(rq))) {
1541                 bool *busy = priv;
1542
1543                 *busy = true;
1544                 return false;
1545         }
1546
1547         return true;
1548 }
1549
1550 bool blk_mq_queue_inflight(struct request_queue *q)
1551 {
1552         bool busy = false;
1553
1554         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1555         return busy;
1556 }
1557 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1558
1559 static void blk_mq_rq_timed_out(struct request *req)
1560 {
1561         req->rq_flags |= RQF_TIMED_OUT;
1562         if (req->q->mq_ops->timeout) {
1563                 enum blk_eh_timer_return ret;
1564
1565                 ret = req->q->mq_ops->timeout(req);
1566                 if (ret == BLK_EH_DONE)
1567                         return;
1568                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1569         }
1570
1571         blk_add_timer(req);
1572 }
1573
1574 struct blk_expired_data {
1575         bool has_timedout_rq;
1576         unsigned long next;
1577         unsigned long timeout_start;
1578 };
1579
1580 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1581 {
1582         unsigned long deadline;
1583
1584         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1585                 return false;
1586         if (rq->rq_flags & RQF_TIMED_OUT)
1587                 return false;
1588
1589         deadline = READ_ONCE(rq->deadline);
1590         if (time_after_eq(expired->timeout_start, deadline))
1591                 return true;
1592
1593         if (expired->next == 0)
1594                 expired->next = deadline;
1595         else if (time_after(expired->next, deadline))
1596                 expired->next = deadline;
1597         return false;
1598 }
1599
1600 void blk_mq_put_rq_ref(struct request *rq)
1601 {
1602         if (is_flush_rq(rq)) {
1603                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1604                         blk_mq_free_request(rq);
1605         } else if (req_ref_put_and_test(rq)) {
1606                 __blk_mq_free_request(rq);
1607         }
1608 }
1609
1610 static bool blk_mq_check_expired(struct request *rq, void *priv)
1611 {
1612         struct blk_expired_data *expired = priv;
1613
1614         /*
1615          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1616          * be reallocated underneath the timeout handler's processing, then
1617          * the expire check is reliable. If the request is not expired, then
1618          * it was completed and reallocated as a new request after returning
1619          * from blk_mq_check_expired().
1620          */
1621         if (blk_mq_req_expired(rq, expired)) {
1622                 expired->has_timedout_rq = true;
1623                 return false;
1624         }
1625         return true;
1626 }
1627
1628 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1629 {
1630         struct blk_expired_data *expired = priv;
1631
1632         if (blk_mq_req_expired(rq, expired))
1633                 blk_mq_rq_timed_out(rq);
1634         return true;
1635 }
1636
1637 static void blk_mq_timeout_work(struct work_struct *work)
1638 {
1639         struct request_queue *q =
1640                 container_of(work, struct request_queue, timeout_work);
1641         struct blk_expired_data expired = {
1642                 .timeout_start = jiffies,
1643         };
1644         struct blk_mq_hw_ctx *hctx;
1645         unsigned long i;
1646
1647         /* A deadlock might occur if a request is stuck requiring a
1648          * timeout at the same time a queue freeze is waiting
1649          * completion, since the timeout code would not be able to
1650          * acquire the queue reference here.
1651          *
1652          * That's why we don't use blk_queue_enter here; instead, we use
1653          * percpu_ref_tryget directly, because we need to be able to
1654          * obtain a reference even in the short window between the queue
1655          * starting to freeze, by dropping the first reference in
1656          * blk_freeze_queue_start, and the moment the last request is
1657          * consumed, marked by the instant q_usage_counter reaches
1658          * zero.
1659          */
1660         if (!percpu_ref_tryget(&q->q_usage_counter))
1661                 return;
1662
1663         /* check if there is any timed-out request */
1664         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1665         if (expired.has_timedout_rq) {
1666                 /*
1667                  * Before walking tags, we must ensure any submit started
1668                  * before the current time has finished. Since the submit
1669                  * uses srcu or rcu, wait for a synchronization point to
1670                  * ensure all running submits have finished
1671                  */
1672                 blk_mq_wait_quiesce_done(q->tag_set);
1673
1674                 expired.next = 0;
1675                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1676         }
1677
1678         if (expired.next != 0) {
1679                 mod_timer(&q->timeout, expired.next);
1680         } else {
1681                 /*
1682                  * Request timeouts are handled as a forward rolling timer. If
1683                  * we end up here it means that no requests are pending and
1684                  * also that no request has been pending for a while. Mark
1685                  * each hctx as idle.
1686                  */
1687                 queue_for_each_hw_ctx(q, hctx, i) {
1688                         /* the hctx may be unmapped, so check it here */
1689                         if (blk_mq_hw_queue_mapped(hctx))
1690                                 blk_mq_tag_idle(hctx);
1691                 }
1692         }
1693         blk_queue_exit(q);
1694 }
1695
1696 struct flush_busy_ctx_data {
1697         struct blk_mq_hw_ctx *hctx;
1698         struct list_head *list;
1699 };
1700
1701 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1702 {
1703         struct flush_busy_ctx_data *flush_data = data;
1704         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1705         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1706         enum hctx_type type = hctx->type;
1707
1708         spin_lock(&ctx->lock);
1709         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1710         sbitmap_clear_bit(sb, bitnr);
1711         spin_unlock(&ctx->lock);
1712         return true;
1713 }
1714
1715 /*
1716  * Process software queues that have been marked busy, splicing them
1717  * to the for-dispatch
1718  */
1719 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1720 {
1721         struct flush_busy_ctx_data data = {
1722                 .hctx = hctx,
1723                 .list = list,
1724         };
1725
1726         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1727 }
1728 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1729
1730 struct dispatch_rq_data {
1731         struct blk_mq_hw_ctx *hctx;
1732         struct request *rq;
1733 };
1734
1735 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1736                 void *data)
1737 {
1738         struct dispatch_rq_data *dispatch_data = data;
1739         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1740         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1741         enum hctx_type type = hctx->type;
1742
1743         spin_lock(&ctx->lock);
1744         if (!list_empty(&ctx->rq_lists[type])) {
1745                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1746                 list_del_init(&dispatch_data->rq->queuelist);
1747                 if (list_empty(&ctx->rq_lists[type]))
1748                         sbitmap_clear_bit(sb, bitnr);
1749         }
1750         spin_unlock(&ctx->lock);
1751
1752         return !dispatch_data->rq;
1753 }
1754
1755 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1756                                         struct blk_mq_ctx *start)
1757 {
1758         unsigned off = start ? start->index_hw[hctx->type] : 0;
1759         struct dispatch_rq_data data = {
1760                 .hctx = hctx,
1761                 .rq   = NULL,
1762         };
1763
1764         __sbitmap_for_each_set(&hctx->ctx_map, off,
1765                                dispatch_rq_from_ctx, &data);
1766
1767         return data.rq;
1768 }
1769
1770 bool __blk_mq_alloc_driver_tag(struct request *rq)
1771 {
1772         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1773         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1774         int tag;
1775
1776         blk_mq_tag_busy(rq->mq_hctx);
1777
1778         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1779                 bt = &rq->mq_hctx->tags->breserved_tags;
1780                 tag_offset = 0;
1781         } else {
1782                 if (!hctx_may_queue(rq->mq_hctx, bt))
1783                         return false;
1784         }
1785
1786         tag = __sbitmap_queue_get(bt);
1787         if (tag == BLK_MQ_NO_TAG)
1788                 return false;
1789
1790         rq->tag = tag + tag_offset;
1791         blk_mq_inc_active_requests(rq->mq_hctx);
1792         return true;
1793 }
1794
1795 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1796                                 int flags, void *key)
1797 {
1798         struct blk_mq_hw_ctx *hctx;
1799
1800         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1801
1802         spin_lock(&hctx->dispatch_wait_lock);
1803         if (!list_empty(&wait->entry)) {
1804                 struct sbitmap_queue *sbq;
1805
1806                 list_del_init(&wait->entry);
1807                 sbq = &hctx->tags->bitmap_tags;
1808                 atomic_dec(&sbq->ws_active);
1809         }
1810         spin_unlock(&hctx->dispatch_wait_lock);
1811
1812         blk_mq_run_hw_queue(hctx, true);
1813         return 1;
1814 }
1815
1816 /*
1817  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1818  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1819  * restart. For both cases, take care to check the condition again after
1820  * marking us as waiting.
1821  */
1822 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1823                                  struct request *rq)
1824 {
1825         struct sbitmap_queue *sbq;
1826         struct wait_queue_head *wq;
1827         wait_queue_entry_t *wait;
1828         bool ret;
1829
1830         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1831             !(blk_mq_is_shared_tags(hctx->flags))) {
1832                 blk_mq_sched_mark_restart_hctx(hctx);
1833
1834                 /*
1835                  * It's possible that a tag was freed in the window between the
1836                  * allocation failure and adding the hardware queue to the wait
1837                  * queue.
1838                  *
1839                  * Don't clear RESTART here, someone else could have set it.
1840                  * At most this will cost an extra queue run.
1841                  */
1842                 return blk_mq_get_driver_tag(rq);
1843         }
1844
1845         wait = &hctx->dispatch_wait;
1846         if (!list_empty_careful(&wait->entry))
1847                 return false;
1848
1849         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1850                 sbq = &hctx->tags->breserved_tags;
1851         else
1852                 sbq = &hctx->tags->bitmap_tags;
1853         wq = &bt_wait_ptr(sbq, hctx)->wait;
1854
1855         spin_lock_irq(&wq->lock);
1856         spin_lock(&hctx->dispatch_wait_lock);
1857         if (!list_empty(&wait->entry)) {
1858                 spin_unlock(&hctx->dispatch_wait_lock);
1859                 spin_unlock_irq(&wq->lock);
1860                 return false;
1861         }
1862
1863         atomic_inc(&sbq->ws_active);
1864         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1865         __add_wait_queue(wq, wait);
1866
1867         /*
1868          * Add one explicit barrier since blk_mq_get_driver_tag() may
1869          * not imply barrier in case of failure.
1870          *
1871          * Order adding us to wait queue and allocating driver tag.
1872          *
1873          * The pair is the one implied in sbitmap_queue_wake_up() which
1874          * orders clearing sbitmap tag bits and waitqueue_active() in
1875          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1876          *
1877          * Otherwise, re-order of adding wait queue and getting driver tag
1878          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1879          * the waitqueue_active() may not observe us in wait queue.
1880          */
1881         smp_mb();
1882
1883         /*
1884          * It's possible that a tag was freed in the window between the
1885          * allocation failure and adding the hardware queue to the wait
1886          * queue.
1887          */
1888         ret = blk_mq_get_driver_tag(rq);
1889         if (!ret) {
1890                 spin_unlock(&hctx->dispatch_wait_lock);
1891                 spin_unlock_irq(&wq->lock);
1892                 return false;
1893         }
1894
1895         /*
1896          * We got a tag, remove ourselves from the wait queue to ensure
1897          * someone else gets the wakeup.
1898          */
1899         list_del_init(&wait->entry);
1900         atomic_dec(&sbq->ws_active);
1901         spin_unlock(&hctx->dispatch_wait_lock);
1902         spin_unlock_irq(&wq->lock);
1903
1904         return true;
1905 }
1906
1907 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1908 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1909 /*
1910  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1911  * - EWMA is one simple way to compute running average value
1912  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1913  * - take 4 as factor for avoiding to get too small(0) result, and this
1914  *   factor doesn't matter because EWMA decreases exponentially
1915  */
1916 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1917 {
1918         unsigned int ewma;
1919
1920         ewma = hctx->dispatch_busy;
1921
1922         if (!ewma && !busy)
1923                 return;
1924
1925         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1926         if (busy)
1927                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1928         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1929
1930         hctx->dispatch_busy = ewma;
1931 }
1932
1933 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1934
1935 static void blk_mq_handle_dev_resource(struct request *rq,
1936                                        struct list_head *list)
1937 {
1938         list_add(&rq->queuelist, list);
1939         __blk_mq_requeue_request(rq);
1940 }
1941
1942 static void blk_mq_handle_zone_resource(struct request *rq,
1943                                         struct list_head *zone_list)
1944 {
1945         /*
1946          * If we end up here it is because we cannot dispatch a request to a
1947          * specific zone due to LLD level zone-write locking or other zone
1948          * related resource not being available. In this case, set the request
1949          * aside in zone_list for retrying it later.
1950          */
1951         list_add(&rq->queuelist, zone_list);
1952         __blk_mq_requeue_request(rq);
1953 }
1954
1955 enum prep_dispatch {
1956         PREP_DISPATCH_OK,
1957         PREP_DISPATCH_NO_TAG,
1958         PREP_DISPATCH_NO_BUDGET,
1959 };
1960
1961 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1962                                                   bool need_budget)
1963 {
1964         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1965         int budget_token = -1;
1966
1967         if (need_budget) {
1968                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1969                 if (budget_token < 0) {
1970                         blk_mq_put_driver_tag(rq);
1971                         return PREP_DISPATCH_NO_BUDGET;
1972                 }
1973                 blk_mq_set_rq_budget_token(rq, budget_token);
1974         }
1975
1976         if (!blk_mq_get_driver_tag(rq)) {
1977                 /*
1978                  * The initial allocation attempt failed, so we need to
1979                  * rerun the hardware queue when a tag is freed. The
1980                  * waitqueue takes care of that. If the queue is run
1981                  * before we add this entry back on the dispatch list,
1982                  * we'll re-run it below.
1983                  */
1984                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1985                         /*
1986                          * All budgets not got from this function will be put
1987                          * together during handling partial dispatch
1988                          */
1989                         if (need_budget)
1990                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1991                         return PREP_DISPATCH_NO_TAG;
1992                 }
1993         }
1994
1995         return PREP_DISPATCH_OK;
1996 }
1997
1998 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1999 static void blk_mq_release_budgets(struct request_queue *q,
2000                 struct list_head *list)
2001 {
2002         struct request *rq;
2003
2004         list_for_each_entry(rq, list, queuelist) {
2005                 int budget_token = blk_mq_get_rq_budget_token(rq);
2006
2007                 if (budget_token >= 0)
2008                         blk_mq_put_dispatch_budget(q, budget_token);
2009         }
2010 }
2011
2012 /*
2013  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2014  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2015  * details)
2016  * Attention, we should explicitly call this in unusual cases:
2017  *  1) did not queue everything initially scheduled to queue
2018  *  2) the last attempt to queue a request failed
2019  */
2020 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2021                               bool from_schedule)
2022 {
2023         if (hctx->queue->mq_ops->commit_rqs && queued) {
2024                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2025                 hctx->queue->mq_ops->commit_rqs(hctx);
2026         }
2027 }
2028
2029 /*
2030  * Returns true if we did some work AND can potentially do more.
2031  */
2032 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2033                              unsigned int nr_budgets)
2034 {
2035         enum prep_dispatch prep;
2036         struct request_queue *q = hctx->queue;
2037         struct request *rq;
2038         int queued;
2039         blk_status_t ret = BLK_STS_OK;
2040         LIST_HEAD(zone_list);
2041         bool needs_resource = false;
2042
2043         if (list_empty(list))
2044                 return false;
2045
2046         /*
2047          * Now process all the entries, sending them to the driver.
2048          */
2049         queued = 0;
2050         do {
2051                 struct blk_mq_queue_data bd;
2052
2053                 rq = list_first_entry(list, struct request, queuelist);
2054
2055                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2056                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2057                 if (prep != PREP_DISPATCH_OK)
2058                         break;
2059
2060                 list_del_init(&rq->queuelist);
2061
2062                 bd.rq = rq;
2063                 bd.last = list_empty(list);
2064
2065                 /*
2066                  * once the request is queued to lld, no need to cover the
2067                  * budget any more
2068                  */
2069                 if (nr_budgets)
2070                         nr_budgets--;
2071                 ret = q->mq_ops->queue_rq(hctx, &bd);
2072                 switch (ret) {
2073                 case BLK_STS_OK:
2074                         queued++;
2075                         break;
2076                 case BLK_STS_RESOURCE:
2077                         needs_resource = true;
2078                         fallthrough;
2079                 case BLK_STS_DEV_RESOURCE:
2080                         blk_mq_handle_dev_resource(rq, list);
2081                         goto out;
2082                 case BLK_STS_ZONE_RESOURCE:
2083                         /*
2084                          * Move the request to zone_list and keep going through
2085                          * the dispatch list to find more requests the drive can
2086                          * accept.
2087                          */
2088                         blk_mq_handle_zone_resource(rq, &zone_list);
2089                         needs_resource = true;
2090                         break;
2091                 default:
2092                         blk_mq_end_request(rq, ret);
2093                 }
2094         } while (!list_empty(list));
2095 out:
2096         if (!list_empty(&zone_list))
2097                 list_splice_tail_init(&zone_list, list);
2098
2099         /* If we didn't flush the entire list, we could have told the driver
2100          * there was more coming, but that turned out to be a lie.
2101          */
2102         if (!list_empty(list) || ret != BLK_STS_OK)
2103                 blk_mq_commit_rqs(hctx, queued, false);
2104
2105         /*
2106          * Any items that need requeuing? Stuff them into hctx->dispatch,
2107          * that is where we will continue on next queue run.
2108          */
2109         if (!list_empty(list)) {
2110                 bool needs_restart;
2111                 /* For non-shared tags, the RESTART check will suffice */
2112                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2113                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2114                         blk_mq_is_shared_tags(hctx->flags));
2115
2116                 if (nr_budgets)
2117                         blk_mq_release_budgets(q, list);
2118
2119                 spin_lock(&hctx->lock);
2120                 list_splice_tail_init(list, &hctx->dispatch);
2121                 spin_unlock(&hctx->lock);
2122
2123                 /*
2124                  * Order adding requests to hctx->dispatch and checking
2125                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2126                  * in blk_mq_sched_restart(). Avoid restart code path to
2127                  * miss the new added requests to hctx->dispatch, meantime
2128                  * SCHED_RESTART is observed here.
2129                  */
2130                 smp_mb();
2131
2132                 /*
2133                  * If SCHED_RESTART was set by the caller of this function and
2134                  * it is no longer set that means that it was cleared by another
2135                  * thread and hence that a queue rerun is needed.
2136                  *
2137                  * If 'no_tag' is set, that means that we failed getting
2138                  * a driver tag with an I/O scheduler attached. If our dispatch
2139                  * waitqueue is no longer active, ensure that we run the queue
2140                  * AFTER adding our entries back to the list.
2141                  *
2142                  * If no I/O scheduler has been configured it is possible that
2143                  * the hardware queue got stopped and restarted before requests
2144                  * were pushed back onto the dispatch list. Rerun the queue to
2145                  * avoid starvation. Notes:
2146                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2147                  *   been stopped before rerunning a queue.
2148                  * - Some but not all block drivers stop a queue before
2149                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2150                  *   and dm-rq.
2151                  *
2152                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2153                  * bit is set, run queue after a delay to avoid IO stalls
2154                  * that could otherwise occur if the queue is idle.  We'll do
2155                  * similar if we couldn't get budget or couldn't lock a zone
2156                  * and SCHED_RESTART is set.
2157                  */
2158                 needs_restart = blk_mq_sched_needs_restart(hctx);
2159                 if (prep == PREP_DISPATCH_NO_BUDGET)
2160                         needs_resource = true;
2161                 if (!needs_restart ||
2162                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2163                         blk_mq_run_hw_queue(hctx, true);
2164                 else if (needs_resource)
2165                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2166
2167                 blk_mq_update_dispatch_busy(hctx, true);
2168                 return false;
2169         }
2170
2171         blk_mq_update_dispatch_busy(hctx, false);
2172         return true;
2173 }
2174
2175 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2176 {
2177         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2178
2179         if (cpu >= nr_cpu_ids)
2180                 cpu = cpumask_first(hctx->cpumask);
2181         return cpu;
2182 }
2183
2184 /*
2185  * It'd be great if the workqueue API had a way to pass
2186  * in a mask and had some smarts for more clever placement.
2187  * For now we just round-robin here, switching for every
2188  * BLK_MQ_CPU_WORK_BATCH queued items.
2189  */
2190 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2191 {
2192         bool tried = false;
2193         int next_cpu = hctx->next_cpu;
2194
2195         if (hctx->queue->nr_hw_queues == 1)
2196                 return WORK_CPU_UNBOUND;
2197
2198         if (--hctx->next_cpu_batch <= 0) {
2199 select_cpu:
2200                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2201                                 cpu_online_mask);
2202                 if (next_cpu >= nr_cpu_ids)
2203                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2204                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2205         }
2206
2207         /*
2208          * Do unbound schedule if we can't find a online CPU for this hctx,
2209          * and it should only happen in the path of handling CPU DEAD.
2210          */
2211         if (!cpu_online(next_cpu)) {
2212                 if (!tried) {
2213                         tried = true;
2214                         goto select_cpu;
2215                 }
2216
2217                 /*
2218                  * Make sure to re-select CPU next time once after CPUs
2219                  * in hctx->cpumask become online again.
2220                  */
2221                 hctx->next_cpu = next_cpu;
2222                 hctx->next_cpu_batch = 1;
2223                 return WORK_CPU_UNBOUND;
2224         }
2225
2226         hctx->next_cpu = next_cpu;
2227         return next_cpu;
2228 }
2229
2230 /**
2231  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2232  * @hctx: Pointer to the hardware queue to run.
2233  * @msecs: Milliseconds of delay to wait before running the queue.
2234  *
2235  * Run a hardware queue asynchronously with a delay of @msecs.
2236  */
2237 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2238 {
2239         if (unlikely(blk_mq_hctx_stopped(hctx)))
2240                 return;
2241         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2242                                     msecs_to_jiffies(msecs));
2243 }
2244 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2245
2246 /**
2247  * blk_mq_run_hw_queue - Start to run a hardware queue.
2248  * @hctx: Pointer to the hardware queue to run.
2249  * @async: If we want to run the queue asynchronously.
2250  *
2251  * Check if the request queue is not in a quiesced state and if there are
2252  * pending requests to be sent. If this is true, run the queue to send requests
2253  * to hardware.
2254  */
2255 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2256 {
2257         bool need_run;
2258
2259         /*
2260          * We can't run the queue inline with interrupts disabled.
2261          */
2262         WARN_ON_ONCE(!async && in_interrupt());
2263
2264         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2265
2266         /*
2267          * When queue is quiesced, we may be switching io scheduler, or
2268          * updating nr_hw_queues, or other things, and we can't run queue
2269          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2270          *
2271          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2272          * quiesced.
2273          */
2274         __blk_mq_run_dispatch_ops(hctx->queue, false,
2275                 need_run = !blk_queue_quiesced(hctx->queue) &&
2276                 blk_mq_hctx_has_pending(hctx));
2277
2278         if (!need_run)
2279                 return;
2280
2281         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2282                 blk_mq_delay_run_hw_queue(hctx, 0);
2283                 return;
2284         }
2285
2286         blk_mq_run_dispatch_ops(hctx->queue,
2287                                 blk_mq_sched_dispatch_requests(hctx));
2288 }
2289 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2290
2291 /*
2292  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2293  * scheduler.
2294  */
2295 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2296 {
2297         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2298         /*
2299          * If the IO scheduler does not respect hardware queues when
2300          * dispatching, we just don't bother with multiple HW queues and
2301          * dispatch from hctx for the current CPU since running multiple queues
2302          * just causes lock contention inside the scheduler and pointless cache
2303          * bouncing.
2304          */
2305         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2306
2307         if (!blk_mq_hctx_stopped(hctx))
2308                 return hctx;
2309         return NULL;
2310 }
2311
2312 /**
2313  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2314  * @q: Pointer to the request queue to run.
2315  * @async: If we want to run the queue asynchronously.
2316  */
2317 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2318 {
2319         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2320         unsigned long i;
2321
2322         sq_hctx = NULL;
2323         if (blk_queue_sq_sched(q))
2324                 sq_hctx = blk_mq_get_sq_hctx(q);
2325         queue_for_each_hw_ctx(q, hctx, i) {
2326                 if (blk_mq_hctx_stopped(hctx))
2327                         continue;
2328                 /*
2329                  * Dispatch from this hctx either if there's no hctx preferred
2330                  * by IO scheduler or if it has requests that bypass the
2331                  * scheduler.
2332                  */
2333                 if (!sq_hctx || sq_hctx == hctx ||
2334                     !list_empty_careful(&hctx->dispatch))
2335                         blk_mq_run_hw_queue(hctx, async);
2336         }
2337 }
2338 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2339
2340 /**
2341  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2342  * @q: Pointer to the request queue to run.
2343  * @msecs: Milliseconds of delay to wait before running the queues.
2344  */
2345 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2346 {
2347         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2348         unsigned long i;
2349
2350         sq_hctx = NULL;
2351         if (blk_queue_sq_sched(q))
2352                 sq_hctx = blk_mq_get_sq_hctx(q);
2353         queue_for_each_hw_ctx(q, hctx, i) {
2354                 if (blk_mq_hctx_stopped(hctx))
2355                         continue;
2356                 /*
2357                  * If there is already a run_work pending, leave the
2358                  * pending delay untouched. Otherwise, a hctx can stall
2359                  * if another hctx is re-delaying the other's work
2360                  * before the work executes.
2361                  */
2362                 if (delayed_work_pending(&hctx->run_work))
2363                         continue;
2364                 /*
2365                  * Dispatch from this hctx either if there's no hctx preferred
2366                  * by IO scheduler or if it has requests that bypass the
2367                  * scheduler.
2368                  */
2369                 if (!sq_hctx || sq_hctx == hctx ||
2370                     !list_empty_careful(&hctx->dispatch))
2371                         blk_mq_delay_run_hw_queue(hctx, msecs);
2372         }
2373 }
2374 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2375
2376 /*
2377  * This function is often used for pausing .queue_rq() by driver when
2378  * there isn't enough resource or some conditions aren't satisfied, and
2379  * BLK_STS_RESOURCE is usually returned.
2380  *
2381  * We do not guarantee that dispatch can be drained or blocked
2382  * after blk_mq_stop_hw_queue() returns. Please use
2383  * blk_mq_quiesce_queue() for that requirement.
2384  */
2385 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2386 {
2387         cancel_delayed_work(&hctx->run_work);
2388
2389         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2390 }
2391 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2392
2393 /*
2394  * This function is often used for pausing .queue_rq() by driver when
2395  * there isn't enough resource or some conditions aren't satisfied, and
2396  * BLK_STS_RESOURCE is usually returned.
2397  *
2398  * We do not guarantee that dispatch can be drained or blocked
2399  * after blk_mq_stop_hw_queues() returns. Please use
2400  * blk_mq_quiesce_queue() for that requirement.
2401  */
2402 void blk_mq_stop_hw_queues(struct request_queue *q)
2403 {
2404         struct blk_mq_hw_ctx *hctx;
2405         unsigned long i;
2406
2407         queue_for_each_hw_ctx(q, hctx, i)
2408                 blk_mq_stop_hw_queue(hctx);
2409 }
2410 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2411
2412 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2413 {
2414         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415
2416         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2417 }
2418 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2419
2420 void blk_mq_start_hw_queues(struct request_queue *q)
2421 {
2422         struct blk_mq_hw_ctx *hctx;
2423         unsigned long i;
2424
2425         queue_for_each_hw_ctx(q, hctx, i)
2426                 blk_mq_start_hw_queue(hctx);
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2429
2430 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2431 {
2432         if (!blk_mq_hctx_stopped(hctx))
2433                 return;
2434
2435         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2436         blk_mq_run_hw_queue(hctx, async);
2437 }
2438 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2439
2440 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2441 {
2442         struct blk_mq_hw_ctx *hctx;
2443         unsigned long i;
2444
2445         queue_for_each_hw_ctx(q, hctx, i)
2446                 blk_mq_start_stopped_hw_queue(hctx, async ||
2447                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2448 }
2449 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2450
2451 static void blk_mq_run_work_fn(struct work_struct *work)
2452 {
2453         struct blk_mq_hw_ctx *hctx =
2454                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2455
2456         blk_mq_run_dispatch_ops(hctx->queue,
2457                                 blk_mq_sched_dispatch_requests(hctx));
2458 }
2459
2460 /**
2461  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2462  * @rq: Pointer to request to be inserted.
2463  * @flags: BLK_MQ_INSERT_*
2464  *
2465  * Should only be used carefully, when the caller knows we want to
2466  * bypass a potential IO scheduler on the target device.
2467  */
2468 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2469 {
2470         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2471
2472         spin_lock(&hctx->lock);
2473         if (flags & BLK_MQ_INSERT_AT_HEAD)
2474                 list_add(&rq->queuelist, &hctx->dispatch);
2475         else
2476                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2477         spin_unlock(&hctx->lock);
2478 }
2479
2480 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2481                 struct blk_mq_ctx *ctx, struct list_head *list,
2482                 bool run_queue_async)
2483 {
2484         struct request *rq;
2485         enum hctx_type type = hctx->type;
2486
2487         /*
2488          * Try to issue requests directly if the hw queue isn't busy to save an
2489          * extra enqueue & dequeue to the sw queue.
2490          */
2491         if (!hctx->dispatch_busy && !run_queue_async) {
2492                 blk_mq_run_dispatch_ops(hctx->queue,
2493                         blk_mq_try_issue_list_directly(hctx, list));
2494                 if (list_empty(list))
2495                         goto out;
2496         }
2497
2498         /*
2499          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2500          * offline now
2501          */
2502         list_for_each_entry(rq, list, queuelist) {
2503                 BUG_ON(rq->mq_ctx != ctx);
2504                 trace_block_rq_insert(rq);
2505                 if (rq->cmd_flags & REQ_NOWAIT)
2506                         run_queue_async = true;
2507         }
2508
2509         spin_lock(&ctx->lock);
2510         list_splice_tail_init(list, &ctx->rq_lists[type]);
2511         blk_mq_hctx_mark_pending(hctx, ctx);
2512         spin_unlock(&ctx->lock);
2513 out:
2514         blk_mq_run_hw_queue(hctx, run_queue_async);
2515 }
2516
2517 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2518 {
2519         struct request_queue *q = rq->q;
2520         struct blk_mq_ctx *ctx = rq->mq_ctx;
2521         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2522
2523         if (blk_rq_is_passthrough(rq)) {
2524                 /*
2525                  * Passthrough request have to be added to hctx->dispatch
2526                  * directly.  The device may be in a situation where it can't
2527                  * handle FS request, and always returns BLK_STS_RESOURCE for
2528                  * them, which gets them added to hctx->dispatch.
2529                  *
2530                  * If a passthrough request is required to unblock the queues,
2531                  * and it is added to the scheduler queue, there is no chance to
2532                  * dispatch it given we prioritize requests in hctx->dispatch.
2533                  */
2534                 blk_mq_request_bypass_insert(rq, flags);
2535         } else if (req_op(rq) == REQ_OP_FLUSH) {
2536                 /*
2537                  * Firstly normal IO request is inserted to scheduler queue or
2538                  * sw queue, meantime we add flush request to dispatch queue(
2539                  * hctx->dispatch) directly and there is at most one in-flight
2540                  * flush request for each hw queue, so it doesn't matter to add
2541                  * flush request to tail or front of the dispatch queue.
2542                  *
2543                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2544                  * command, and queueing it will fail when there is any
2545                  * in-flight normal IO request(NCQ command). When adding flush
2546                  * rq to the front of hctx->dispatch, it is easier to introduce
2547                  * extra time to flush rq's latency because of S_SCHED_RESTART
2548                  * compared with adding to the tail of dispatch queue, then
2549                  * chance of flush merge is increased, and less flush requests
2550                  * will be issued to controller. It is observed that ~10% time
2551                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2552                  * drive when adding flush rq to the front of hctx->dispatch.
2553                  *
2554                  * Simply queue flush rq to the front of hctx->dispatch so that
2555                  * intensive flush workloads can benefit in case of NCQ HW.
2556                  */
2557                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2558         } else if (q->elevator) {
2559                 LIST_HEAD(list);
2560
2561                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2562
2563                 list_add(&rq->queuelist, &list);
2564                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2565         } else {
2566                 trace_block_rq_insert(rq);
2567
2568                 spin_lock(&ctx->lock);
2569                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2570                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2571                 else
2572                         list_add_tail(&rq->queuelist,
2573                                       &ctx->rq_lists[hctx->type]);
2574                 blk_mq_hctx_mark_pending(hctx, ctx);
2575                 spin_unlock(&ctx->lock);
2576         }
2577 }
2578
2579 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2580                 unsigned int nr_segs)
2581 {
2582         int err;
2583
2584         if (bio->bi_opf & REQ_RAHEAD)
2585                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2586
2587         rq->__sector = bio->bi_iter.bi_sector;
2588         blk_rq_bio_prep(rq, bio, nr_segs);
2589
2590         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2591         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2592         WARN_ON_ONCE(err);
2593
2594         blk_account_io_start(rq);
2595 }
2596
2597 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2598                                             struct request *rq, bool last)
2599 {
2600         struct request_queue *q = rq->q;
2601         struct blk_mq_queue_data bd = {
2602                 .rq = rq,
2603                 .last = last,
2604         };
2605         blk_status_t ret;
2606
2607         /*
2608          * For OK queue, we are done. For error, caller may kill it.
2609          * Any other error (busy), just add it to our list as we
2610          * previously would have done.
2611          */
2612         ret = q->mq_ops->queue_rq(hctx, &bd);
2613         switch (ret) {
2614         case BLK_STS_OK:
2615                 blk_mq_update_dispatch_busy(hctx, false);
2616                 break;
2617         case BLK_STS_RESOURCE:
2618         case BLK_STS_DEV_RESOURCE:
2619                 blk_mq_update_dispatch_busy(hctx, true);
2620                 __blk_mq_requeue_request(rq);
2621                 break;
2622         default:
2623                 blk_mq_update_dispatch_busy(hctx, false);
2624                 break;
2625         }
2626
2627         return ret;
2628 }
2629
2630 static bool blk_mq_get_budget_and_tag(struct request *rq)
2631 {
2632         int budget_token;
2633
2634         budget_token = blk_mq_get_dispatch_budget(rq->q);
2635         if (budget_token < 0)
2636                 return false;
2637         blk_mq_set_rq_budget_token(rq, budget_token);
2638         if (!blk_mq_get_driver_tag(rq)) {
2639                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2640                 return false;
2641         }
2642         return true;
2643 }
2644
2645 /**
2646  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2647  * @hctx: Pointer of the associated hardware queue.
2648  * @rq: Pointer to request to be sent.
2649  *
2650  * If the device has enough resources to accept a new request now, send the
2651  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2652  * we can try send it another time in the future. Requests inserted at this
2653  * queue have higher priority.
2654  */
2655 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2656                 struct request *rq)
2657 {
2658         blk_status_t ret;
2659
2660         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2661                 blk_mq_insert_request(rq, 0);
2662                 return;
2663         }
2664
2665         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2666                 blk_mq_insert_request(rq, 0);
2667                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2668                 return;
2669         }
2670
2671         ret = __blk_mq_issue_directly(hctx, rq, true);
2672         switch (ret) {
2673         case BLK_STS_OK:
2674                 break;
2675         case BLK_STS_RESOURCE:
2676         case BLK_STS_DEV_RESOURCE:
2677                 blk_mq_request_bypass_insert(rq, 0);
2678                 blk_mq_run_hw_queue(hctx, false);
2679                 break;
2680         default:
2681                 blk_mq_end_request(rq, ret);
2682                 break;
2683         }
2684 }
2685
2686 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2687 {
2688         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2689
2690         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2691                 blk_mq_insert_request(rq, 0);
2692                 return BLK_STS_OK;
2693         }
2694
2695         if (!blk_mq_get_budget_and_tag(rq))
2696                 return BLK_STS_RESOURCE;
2697         return __blk_mq_issue_directly(hctx, rq, last);
2698 }
2699
2700 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2701 {
2702         struct blk_mq_hw_ctx *hctx = NULL;
2703         struct request *rq;
2704         int queued = 0;
2705         blk_status_t ret = BLK_STS_OK;
2706
2707         while ((rq = rq_list_pop(&plug->mq_list))) {
2708                 bool last = rq_list_empty(plug->mq_list);
2709
2710                 if (hctx != rq->mq_hctx) {
2711                         if (hctx) {
2712                                 blk_mq_commit_rqs(hctx, queued, false);
2713                                 queued = 0;
2714                         }
2715                         hctx = rq->mq_hctx;
2716                 }
2717
2718                 ret = blk_mq_request_issue_directly(rq, last);
2719                 switch (ret) {
2720                 case BLK_STS_OK:
2721                         queued++;
2722                         break;
2723                 case BLK_STS_RESOURCE:
2724                 case BLK_STS_DEV_RESOURCE:
2725                         blk_mq_request_bypass_insert(rq, 0);
2726                         blk_mq_run_hw_queue(hctx, false);
2727                         goto out;
2728                 default:
2729                         blk_mq_end_request(rq, ret);
2730                         break;
2731                 }
2732         }
2733
2734 out:
2735         if (ret != BLK_STS_OK)
2736                 blk_mq_commit_rqs(hctx, queued, false);
2737 }
2738
2739 static void __blk_mq_flush_plug_list(struct request_queue *q,
2740                                      struct blk_plug *plug)
2741 {
2742         if (blk_queue_quiesced(q))
2743                 return;
2744         q->mq_ops->queue_rqs(&plug->mq_list);
2745 }
2746
2747 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2748 {
2749         struct blk_mq_hw_ctx *this_hctx = NULL;
2750         struct blk_mq_ctx *this_ctx = NULL;
2751         struct request *requeue_list = NULL;
2752         struct request **requeue_lastp = &requeue_list;
2753         unsigned int depth = 0;
2754         bool is_passthrough = false;
2755         LIST_HEAD(list);
2756
2757         do {
2758                 struct request *rq = rq_list_pop(&plug->mq_list);
2759
2760                 if (!this_hctx) {
2761                         this_hctx = rq->mq_hctx;
2762                         this_ctx = rq->mq_ctx;
2763                         is_passthrough = blk_rq_is_passthrough(rq);
2764                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2765                            is_passthrough != blk_rq_is_passthrough(rq)) {
2766                         rq_list_add_tail(&requeue_lastp, rq);
2767                         continue;
2768                 }
2769                 list_add(&rq->queuelist, &list);
2770                 depth++;
2771         } while (!rq_list_empty(plug->mq_list));
2772
2773         plug->mq_list = requeue_list;
2774         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2775
2776         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2777         /* passthrough requests should never be issued to the I/O scheduler */
2778         if (is_passthrough) {
2779                 spin_lock(&this_hctx->lock);
2780                 list_splice_tail_init(&list, &this_hctx->dispatch);
2781                 spin_unlock(&this_hctx->lock);
2782                 blk_mq_run_hw_queue(this_hctx, from_sched);
2783         } else if (this_hctx->queue->elevator) {
2784                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2785                                 &list, 0);
2786                 blk_mq_run_hw_queue(this_hctx, from_sched);
2787         } else {
2788                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2789         }
2790         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2791 }
2792
2793 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2794 {
2795         struct request *rq;
2796
2797         /*
2798          * We may have been called recursively midway through handling
2799          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2800          * To avoid mq_list changing under our feet, clear rq_count early and
2801          * bail out specifically if rq_count is 0 rather than checking
2802          * whether the mq_list is empty.
2803          */
2804         if (plug->rq_count == 0)
2805                 return;
2806         plug->rq_count = 0;
2807
2808         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2809                 struct request_queue *q;
2810
2811                 rq = rq_list_peek(&plug->mq_list);
2812                 q = rq->q;
2813
2814                 /*
2815                  * Peek first request and see if we have a ->queue_rqs() hook.
2816                  * If we do, we can dispatch the whole plug list in one go. We
2817                  * already know at this point that all requests belong to the
2818                  * same queue, caller must ensure that's the case.
2819                  */
2820                 if (q->mq_ops->queue_rqs) {
2821                         blk_mq_run_dispatch_ops(q,
2822                                 __blk_mq_flush_plug_list(q, plug));
2823                         if (rq_list_empty(plug->mq_list))
2824                                 return;
2825                 }
2826
2827                 blk_mq_run_dispatch_ops(q,
2828                                 blk_mq_plug_issue_direct(plug));
2829                 if (rq_list_empty(plug->mq_list))
2830                         return;
2831         }
2832
2833         do {
2834                 blk_mq_dispatch_plug_list(plug, from_schedule);
2835         } while (!rq_list_empty(plug->mq_list));
2836 }
2837
2838 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2839                 struct list_head *list)
2840 {
2841         int queued = 0;
2842         blk_status_t ret = BLK_STS_OK;
2843
2844         while (!list_empty(list)) {
2845                 struct request *rq = list_first_entry(list, struct request,
2846                                 queuelist);
2847
2848                 list_del_init(&rq->queuelist);
2849                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2850                 switch (ret) {
2851                 case BLK_STS_OK:
2852                         queued++;
2853                         break;
2854                 case BLK_STS_RESOURCE:
2855                 case BLK_STS_DEV_RESOURCE:
2856                         blk_mq_request_bypass_insert(rq, 0);
2857                         if (list_empty(list))
2858                                 blk_mq_run_hw_queue(hctx, false);
2859                         goto out;
2860                 default:
2861                         blk_mq_end_request(rq, ret);
2862                         break;
2863                 }
2864         }
2865
2866 out:
2867         if (ret != BLK_STS_OK)
2868                 blk_mq_commit_rqs(hctx, queued, false);
2869 }
2870
2871 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2872                                      struct bio *bio, unsigned int nr_segs)
2873 {
2874         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2875                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2876                         return true;
2877                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2878                         return true;
2879         }
2880         return false;
2881 }
2882
2883 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2884                                                struct blk_plug *plug,
2885                                                struct bio *bio,
2886                                                unsigned int nsegs)
2887 {
2888         struct blk_mq_alloc_data data = {
2889                 .q              = q,
2890                 .nr_tags        = 1,
2891                 .cmd_flags      = bio->bi_opf,
2892         };
2893         struct request *rq;
2894
2895         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2896                 return NULL;
2897
2898         rq_qos_throttle(q, bio);
2899
2900         if (plug) {
2901                 data.nr_tags = plug->nr_ios;
2902                 plug->nr_ios = 1;
2903                 data.cached_rq = &plug->cached_rq;
2904         }
2905
2906         rq = __blk_mq_alloc_requests(&data);
2907         if (rq)
2908                 return rq;
2909         rq_qos_cleanup(q, bio);
2910         if (bio->bi_opf & REQ_NOWAIT)
2911                 bio_wouldblock_error(bio);
2912         return NULL;
2913 }
2914
2915 /*
2916  * Check if we can use the passed on request for submitting the passed in bio,
2917  * and remove it from the request list if it can be used.
2918  */
2919 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2920                 struct bio *bio)
2921 {
2922         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2923         enum hctx_type hctx_type = rq->mq_hctx->type;
2924
2925         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2926
2927         if (type != hctx_type &&
2928             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2929                 return false;
2930         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2931                 return false;
2932
2933         /*
2934          * If any qos ->throttle() end up blocking, we will have flushed the
2935          * plug and hence killed the cached_rq list as well. Pop this entry
2936          * before we throttle.
2937          */
2938         plug->cached_rq = rq_list_next(rq);
2939         rq_qos_throttle(rq->q, bio);
2940
2941         blk_mq_rq_time_init(rq, 0);
2942         rq->cmd_flags = bio->bi_opf;
2943         INIT_LIST_HEAD(&rq->queuelist);
2944         return true;
2945 }
2946
2947 static void bio_set_ioprio(struct bio *bio)
2948 {
2949         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2950         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2951                 bio->bi_ioprio = get_current_ioprio();
2952         blkcg_set_ioprio(bio);
2953 }
2954
2955 /**
2956  * blk_mq_submit_bio - Create and send a request to block device.
2957  * @bio: Bio pointer.
2958  *
2959  * Builds up a request structure from @q and @bio and send to the device. The
2960  * request may not be queued directly to hardware if:
2961  * * This request can be merged with another one
2962  * * We want to place request at plug queue for possible future merging
2963  * * There is an IO scheduler active at this queue
2964  *
2965  * It will not queue the request if there is an error with the bio, or at the
2966  * request creation.
2967  */
2968 void blk_mq_submit_bio(struct bio *bio)
2969 {
2970         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2971         struct blk_plug *plug = blk_mq_plug(bio);
2972         const int is_sync = op_is_sync(bio->bi_opf);
2973         struct blk_mq_hw_ctx *hctx;
2974         struct request *rq = NULL;
2975         unsigned int nr_segs = 1;
2976         blk_status_t ret;
2977
2978         bio = blk_queue_bounce(bio, q);
2979         bio_set_ioprio(bio);
2980
2981         if (plug) {
2982                 rq = rq_list_peek(&plug->cached_rq);
2983                 if (rq && rq->q != q)
2984                         rq = NULL;
2985         }
2986         if (rq) {
2987                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2988                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2989                         if (!bio)
2990                                 return;
2991                 }
2992                 if (!bio_integrity_prep(bio))
2993                         return;
2994                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2995                         return;
2996                 if (blk_mq_use_cached_rq(rq, plug, bio))
2997                         goto done;
2998                 percpu_ref_get(&q->q_usage_counter);
2999         } else {
3000                 if (unlikely(bio_queue_enter(bio)))
3001                         return;
3002                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3003                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3004                         if (!bio)
3005                                 goto fail;
3006                 }
3007                 if (!bio_integrity_prep(bio))
3008                         goto fail;
3009         }
3010
3011         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3012         if (unlikely(!rq)) {
3013 fail:
3014                 blk_queue_exit(q);
3015                 return;
3016         }
3017
3018 done:
3019         trace_block_getrq(bio);
3020
3021         rq_qos_track(q, rq, bio);
3022
3023         blk_mq_bio_to_request(rq, bio, nr_segs);
3024
3025         ret = blk_crypto_rq_get_keyslot(rq);
3026         if (ret != BLK_STS_OK) {
3027                 bio->bi_status = ret;
3028                 bio_endio(bio);
3029                 blk_mq_free_request(rq);
3030                 return;
3031         }
3032
3033         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3034                 return;
3035
3036         if (plug) {
3037                 blk_add_rq_to_plug(plug, rq);
3038                 return;
3039         }
3040
3041         hctx = rq->mq_hctx;
3042         if ((rq->rq_flags & RQF_USE_SCHED) ||
3043             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3044                 blk_mq_insert_request(rq, 0);
3045                 blk_mq_run_hw_queue(hctx, true);
3046         } else {
3047                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3048         }
3049 }
3050
3051 #ifdef CONFIG_BLK_MQ_STACKING
3052 /**
3053  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3054  * @rq: the request being queued
3055  */
3056 blk_status_t blk_insert_cloned_request(struct request *rq)
3057 {
3058         struct request_queue *q = rq->q;
3059         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3060         unsigned int max_segments = blk_rq_get_max_segments(rq);
3061         blk_status_t ret;
3062
3063         if (blk_rq_sectors(rq) > max_sectors) {
3064                 /*
3065                  * SCSI device does not have a good way to return if
3066                  * Write Same/Zero is actually supported. If a device rejects
3067                  * a non-read/write command (discard, write same,etc.) the
3068                  * low-level device driver will set the relevant queue limit to
3069                  * 0 to prevent blk-lib from issuing more of the offending
3070                  * operations. Commands queued prior to the queue limit being
3071                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3072                  * errors being propagated to upper layers.
3073                  */
3074                 if (max_sectors == 0)
3075                         return BLK_STS_NOTSUPP;
3076
3077                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3078                         __func__, blk_rq_sectors(rq), max_sectors);
3079                 return BLK_STS_IOERR;
3080         }
3081
3082         /*
3083          * The queue settings related to segment counting may differ from the
3084          * original queue.
3085          */
3086         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3087         if (rq->nr_phys_segments > max_segments) {
3088                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3089                         __func__, rq->nr_phys_segments, max_segments);
3090                 return BLK_STS_IOERR;
3091         }
3092
3093         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3094                 return BLK_STS_IOERR;
3095
3096         ret = blk_crypto_rq_get_keyslot(rq);
3097         if (ret != BLK_STS_OK)
3098                 return ret;
3099
3100         blk_account_io_start(rq);
3101
3102         /*
3103          * Since we have a scheduler attached on the top device,
3104          * bypass a potential scheduler on the bottom device for
3105          * insert.
3106          */
3107         blk_mq_run_dispatch_ops(q,
3108                         ret = blk_mq_request_issue_directly(rq, true));
3109         if (ret)
3110                 blk_account_io_done(rq, ktime_get_ns());
3111         return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3114
3115 /**
3116  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3117  * @rq: the clone request to be cleaned up
3118  *
3119  * Description:
3120  *     Free all bios in @rq for a cloned request.
3121  */
3122 void blk_rq_unprep_clone(struct request *rq)
3123 {
3124         struct bio *bio;
3125
3126         while ((bio = rq->bio) != NULL) {
3127                 rq->bio = bio->bi_next;
3128
3129                 bio_put(bio);
3130         }
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3133
3134 /**
3135  * blk_rq_prep_clone - Helper function to setup clone request
3136  * @rq: the request to be setup
3137  * @rq_src: original request to be cloned
3138  * @bs: bio_set that bios for clone are allocated from
3139  * @gfp_mask: memory allocation mask for bio
3140  * @bio_ctr: setup function to be called for each clone bio.
3141  *           Returns %0 for success, non %0 for failure.
3142  * @data: private data to be passed to @bio_ctr
3143  *
3144  * Description:
3145  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3146  *     Also, pages which the original bios are pointing to are not copied
3147  *     and the cloned bios just point same pages.
3148  *     So cloned bios must be completed before original bios, which means
3149  *     the caller must complete @rq before @rq_src.
3150  */
3151 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3152                       struct bio_set *bs, gfp_t gfp_mask,
3153                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3154                       void *data)
3155 {
3156         struct bio *bio, *bio_src;
3157
3158         if (!bs)
3159                 bs = &fs_bio_set;
3160
3161         __rq_for_each_bio(bio_src, rq_src) {
3162                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3163                                       bs);
3164                 if (!bio)
3165                         goto free_and_out;
3166
3167                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3168                         goto free_and_out;
3169
3170                 if (rq->bio) {
3171                         rq->biotail->bi_next = bio;
3172                         rq->biotail = bio;
3173                 } else {
3174                         rq->bio = rq->biotail = bio;
3175                 }
3176                 bio = NULL;
3177         }
3178
3179         /* Copy attributes of the original request to the clone request. */
3180         rq->__sector = blk_rq_pos(rq_src);
3181         rq->__data_len = blk_rq_bytes(rq_src);
3182         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3183                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3184                 rq->special_vec = rq_src->special_vec;
3185         }
3186         rq->nr_phys_segments = rq_src->nr_phys_segments;
3187         rq->ioprio = rq_src->ioprio;
3188
3189         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3190                 goto free_and_out;
3191
3192         return 0;
3193
3194 free_and_out:
3195         if (bio)
3196                 bio_put(bio);
3197         blk_rq_unprep_clone(rq);
3198
3199         return -ENOMEM;
3200 }
3201 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3202 #endif /* CONFIG_BLK_MQ_STACKING */
3203
3204 /*
3205  * Steal bios from a request and add them to a bio list.
3206  * The request must not have been partially completed before.
3207  */
3208 void blk_steal_bios(struct bio_list *list, struct request *rq)
3209 {
3210         if (rq->bio) {
3211                 if (list->tail)
3212                         list->tail->bi_next = rq->bio;
3213                 else
3214                         list->head = rq->bio;
3215                 list->tail = rq->biotail;
3216
3217                 rq->bio = NULL;
3218                 rq->biotail = NULL;
3219         }
3220
3221         rq->__data_len = 0;
3222 }
3223 EXPORT_SYMBOL_GPL(blk_steal_bios);
3224
3225 static size_t order_to_size(unsigned int order)
3226 {
3227         return (size_t)PAGE_SIZE << order;
3228 }
3229
3230 /* called before freeing request pool in @tags */
3231 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3232                                     struct blk_mq_tags *tags)
3233 {
3234         struct page *page;
3235         unsigned long flags;
3236
3237         /*
3238          * There is no need to clear mapping if driver tags is not initialized
3239          * or the mapping belongs to the driver tags.
3240          */
3241         if (!drv_tags || drv_tags == tags)
3242                 return;
3243
3244         list_for_each_entry(page, &tags->page_list, lru) {
3245                 unsigned long start = (unsigned long)page_address(page);
3246                 unsigned long end = start + order_to_size(page->private);
3247                 int i;
3248
3249                 for (i = 0; i < drv_tags->nr_tags; i++) {
3250                         struct request *rq = drv_tags->rqs[i];
3251                         unsigned long rq_addr = (unsigned long)rq;
3252
3253                         if (rq_addr >= start && rq_addr < end) {
3254                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3255                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3256                         }
3257                 }
3258         }
3259
3260         /*
3261          * Wait until all pending iteration is done.
3262          *
3263          * Request reference is cleared and it is guaranteed to be observed
3264          * after the ->lock is released.
3265          */
3266         spin_lock_irqsave(&drv_tags->lock, flags);
3267         spin_unlock_irqrestore(&drv_tags->lock, flags);
3268 }
3269
3270 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3271                      unsigned int hctx_idx)
3272 {
3273         struct blk_mq_tags *drv_tags;
3274         struct page *page;
3275
3276         if (list_empty(&tags->page_list))
3277                 return;
3278
3279         if (blk_mq_is_shared_tags(set->flags))
3280                 drv_tags = set->shared_tags;
3281         else
3282                 drv_tags = set->tags[hctx_idx];
3283
3284         if (tags->static_rqs && set->ops->exit_request) {
3285                 int i;
3286
3287                 for (i = 0; i < tags->nr_tags; i++) {
3288                         struct request *rq = tags->static_rqs[i];
3289
3290                         if (!rq)
3291                                 continue;
3292                         set->ops->exit_request(set, rq, hctx_idx);
3293                         tags->static_rqs[i] = NULL;
3294                 }
3295         }
3296
3297         blk_mq_clear_rq_mapping(drv_tags, tags);
3298
3299         while (!list_empty(&tags->page_list)) {
3300                 page = list_first_entry(&tags->page_list, struct page, lru);
3301                 list_del_init(&page->lru);
3302                 /*
3303                  * Remove kmemleak object previously allocated in
3304                  * blk_mq_alloc_rqs().
3305                  */
3306                 kmemleak_free(page_address(page));
3307                 __free_pages(page, page->private);
3308         }
3309 }
3310
3311 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3312 {
3313         kfree(tags->rqs);
3314         tags->rqs = NULL;
3315         kfree(tags->static_rqs);
3316         tags->static_rqs = NULL;
3317
3318         blk_mq_free_tags(tags);
3319 }
3320
3321 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3322                 unsigned int hctx_idx)
3323 {
3324         int i;
3325
3326         for (i = 0; i < set->nr_maps; i++) {
3327                 unsigned int start = set->map[i].queue_offset;
3328                 unsigned int end = start + set->map[i].nr_queues;
3329
3330                 if (hctx_idx >= start && hctx_idx < end)
3331                         break;
3332         }
3333
3334         if (i >= set->nr_maps)
3335                 i = HCTX_TYPE_DEFAULT;
3336
3337         return i;
3338 }
3339
3340 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3341                 unsigned int hctx_idx)
3342 {
3343         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3344
3345         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3346 }
3347
3348 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3349                                                unsigned int hctx_idx,
3350                                                unsigned int nr_tags,
3351                                                unsigned int reserved_tags)
3352 {
3353         int node = blk_mq_get_hctx_node(set, hctx_idx);
3354         struct blk_mq_tags *tags;
3355
3356         if (node == NUMA_NO_NODE)
3357                 node = set->numa_node;
3358
3359         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3360                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3361         if (!tags)
3362                 return NULL;
3363
3364         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3365                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3366                                  node);
3367         if (!tags->rqs)
3368                 goto err_free_tags;
3369
3370         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3371                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3372                                         node);
3373         if (!tags->static_rqs)
3374                 goto err_free_rqs;
3375
3376         return tags;
3377
3378 err_free_rqs:
3379         kfree(tags->rqs);
3380 err_free_tags:
3381         blk_mq_free_tags(tags);
3382         return NULL;
3383 }
3384
3385 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3386                                unsigned int hctx_idx, int node)
3387 {
3388         int ret;
3389
3390         if (set->ops->init_request) {
3391                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3392                 if (ret)
3393                         return ret;
3394         }
3395
3396         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3397         return 0;
3398 }
3399
3400 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3401                             struct blk_mq_tags *tags,
3402                             unsigned int hctx_idx, unsigned int depth)
3403 {
3404         unsigned int i, j, entries_per_page, max_order = 4;
3405         int node = blk_mq_get_hctx_node(set, hctx_idx);
3406         size_t rq_size, left;
3407
3408         if (node == NUMA_NO_NODE)
3409                 node = set->numa_node;
3410
3411         INIT_LIST_HEAD(&tags->page_list);
3412
3413         /*
3414          * rq_size is the size of the request plus driver payload, rounded
3415          * to the cacheline size
3416          */
3417         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3418                                 cache_line_size());
3419         left = rq_size * depth;
3420
3421         for (i = 0; i < depth; ) {
3422                 int this_order = max_order;
3423                 struct page *page;
3424                 int to_do;
3425                 void *p;
3426
3427                 while (this_order && left < order_to_size(this_order - 1))
3428                         this_order--;
3429
3430                 do {
3431                         page = alloc_pages_node(node,
3432                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3433                                 this_order);
3434                         if (page)
3435                                 break;
3436                         if (!this_order--)
3437                                 break;
3438                         if (order_to_size(this_order) < rq_size)
3439                                 break;
3440                 } while (1);
3441
3442                 if (!page)
3443                         goto fail;
3444
3445                 page->private = this_order;
3446                 list_add_tail(&page->lru, &tags->page_list);
3447
3448                 p = page_address(page);
3449                 /*
3450                  * Allow kmemleak to scan these pages as they contain pointers
3451                  * to additional allocations like via ops->init_request().
3452                  */
3453                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3454                 entries_per_page = order_to_size(this_order) / rq_size;
3455                 to_do = min(entries_per_page, depth - i);
3456                 left -= to_do * rq_size;
3457                 for (j = 0; j < to_do; j++) {
3458                         struct request *rq = p;
3459
3460                         tags->static_rqs[i] = rq;
3461                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3462                                 tags->static_rqs[i] = NULL;
3463                                 goto fail;
3464                         }
3465
3466                         p += rq_size;
3467                         i++;
3468                 }
3469         }
3470         return 0;
3471
3472 fail:
3473         blk_mq_free_rqs(set, tags, hctx_idx);
3474         return -ENOMEM;
3475 }
3476
3477 struct rq_iter_data {
3478         struct blk_mq_hw_ctx *hctx;
3479         bool has_rq;
3480 };
3481
3482 static bool blk_mq_has_request(struct request *rq, void *data)
3483 {
3484         struct rq_iter_data *iter_data = data;
3485
3486         if (rq->mq_hctx != iter_data->hctx)
3487                 return true;
3488         iter_data->has_rq = true;
3489         return false;
3490 }
3491
3492 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3493 {
3494         struct blk_mq_tags *tags = hctx->sched_tags ?
3495                         hctx->sched_tags : hctx->tags;
3496         struct rq_iter_data data = {
3497                 .hctx   = hctx,
3498         };
3499
3500         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3501         return data.has_rq;
3502 }
3503
3504 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3505                 struct blk_mq_hw_ctx *hctx)
3506 {
3507         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3508                 return false;
3509         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3510                 return false;
3511         return true;
3512 }
3513
3514 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3515 {
3516         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3517                         struct blk_mq_hw_ctx, cpuhp_online);
3518
3519         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3520             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3521                 return 0;
3522
3523         /*
3524          * Prevent new request from being allocated on the current hctx.
3525          *
3526          * The smp_mb__after_atomic() Pairs with the implied barrier in
3527          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3528          * seen once we return from the tag allocator.
3529          */
3530         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3531         smp_mb__after_atomic();
3532
3533         /*
3534          * Try to grab a reference to the queue and wait for any outstanding
3535          * requests.  If we could not grab a reference the queue has been
3536          * frozen and there are no requests.
3537          */
3538         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3539                 while (blk_mq_hctx_has_requests(hctx))
3540                         msleep(5);
3541                 percpu_ref_put(&hctx->queue->q_usage_counter);
3542         }
3543
3544         return 0;
3545 }
3546
3547 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3548 {
3549         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3550                         struct blk_mq_hw_ctx, cpuhp_online);
3551
3552         if (cpumask_test_cpu(cpu, hctx->cpumask))
3553                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3554         return 0;
3555 }
3556
3557 /*
3558  * 'cpu' is going away. splice any existing rq_list entries from this
3559  * software queue to the hw queue dispatch list, and ensure that it
3560  * gets run.
3561  */
3562 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3563 {
3564         struct blk_mq_hw_ctx *hctx;
3565         struct blk_mq_ctx *ctx;
3566         LIST_HEAD(tmp);
3567         enum hctx_type type;
3568
3569         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3570         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3571                 return 0;
3572
3573         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3574         type = hctx->type;
3575
3576         spin_lock(&ctx->lock);
3577         if (!list_empty(&ctx->rq_lists[type])) {
3578                 list_splice_init(&ctx->rq_lists[type], &tmp);
3579                 blk_mq_hctx_clear_pending(hctx, ctx);
3580         }
3581         spin_unlock(&ctx->lock);
3582
3583         if (list_empty(&tmp))
3584                 return 0;
3585
3586         spin_lock(&hctx->lock);
3587         list_splice_tail_init(&tmp, &hctx->dispatch);
3588         spin_unlock(&hctx->lock);
3589
3590         blk_mq_run_hw_queue(hctx, true);
3591         return 0;
3592 }
3593
3594 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3595 {
3596         if (!(hctx->flags & BLK_MQ_F_STACKING))
3597                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3598                                                     &hctx->cpuhp_online);
3599         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3600                                             &hctx->cpuhp_dead);
3601 }
3602
3603 /*
3604  * Before freeing hw queue, clearing the flush request reference in
3605  * tags->rqs[] for avoiding potential UAF.
3606  */
3607 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3608                 unsigned int queue_depth, struct request *flush_rq)
3609 {
3610         int i;
3611         unsigned long flags;
3612
3613         /* The hw queue may not be mapped yet */
3614         if (!tags)
3615                 return;
3616
3617         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3618
3619         for (i = 0; i < queue_depth; i++)
3620                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3621
3622         /*
3623          * Wait until all pending iteration is done.
3624          *
3625          * Request reference is cleared and it is guaranteed to be observed
3626          * after the ->lock is released.
3627          */
3628         spin_lock_irqsave(&tags->lock, flags);
3629         spin_unlock_irqrestore(&tags->lock, flags);
3630 }
3631
3632 /* hctx->ctxs will be freed in queue's release handler */
3633 static void blk_mq_exit_hctx(struct request_queue *q,
3634                 struct blk_mq_tag_set *set,
3635                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3636 {
3637         struct request *flush_rq = hctx->fq->flush_rq;
3638
3639         if (blk_mq_hw_queue_mapped(hctx))
3640                 blk_mq_tag_idle(hctx);
3641
3642         if (blk_queue_init_done(q))
3643                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3644                                 set->queue_depth, flush_rq);
3645         if (set->ops->exit_request)
3646                 set->ops->exit_request(set, flush_rq, hctx_idx);
3647
3648         if (set->ops->exit_hctx)
3649                 set->ops->exit_hctx(hctx, hctx_idx);
3650
3651         blk_mq_remove_cpuhp(hctx);
3652
3653         xa_erase(&q->hctx_table, hctx_idx);
3654
3655         spin_lock(&q->unused_hctx_lock);
3656         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3657         spin_unlock(&q->unused_hctx_lock);
3658 }
3659
3660 static void blk_mq_exit_hw_queues(struct request_queue *q,
3661                 struct blk_mq_tag_set *set, int nr_queue)
3662 {
3663         struct blk_mq_hw_ctx *hctx;
3664         unsigned long i;
3665
3666         queue_for_each_hw_ctx(q, hctx, i) {
3667                 if (i == nr_queue)
3668                         break;
3669                 blk_mq_exit_hctx(q, set, hctx, i);
3670         }
3671 }
3672
3673 static int blk_mq_init_hctx(struct request_queue *q,
3674                 struct blk_mq_tag_set *set,
3675                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3676 {
3677         hctx->queue_num = hctx_idx;
3678
3679         if (!(hctx->flags & BLK_MQ_F_STACKING))
3680                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3681                                 &hctx->cpuhp_online);
3682         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3683
3684         hctx->tags = set->tags[hctx_idx];
3685
3686         if (set->ops->init_hctx &&
3687             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3688                 goto unregister_cpu_notifier;
3689
3690         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3691                                 hctx->numa_node))
3692                 goto exit_hctx;
3693
3694         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3695                 goto exit_flush_rq;
3696
3697         return 0;
3698
3699  exit_flush_rq:
3700         if (set->ops->exit_request)
3701                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3702  exit_hctx:
3703         if (set->ops->exit_hctx)
3704                 set->ops->exit_hctx(hctx, hctx_idx);
3705  unregister_cpu_notifier:
3706         blk_mq_remove_cpuhp(hctx);
3707         return -1;
3708 }
3709
3710 static struct blk_mq_hw_ctx *
3711 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3712                 int node)
3713 {
3714         struct blk_mq_hw_ctx *hctx;
3715         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3716
3717         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3718         if (!hctx)
3719                 goto fail_alloc_hctx;
3720
3721         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3722                 goto free_hctx;
3723
3724         atomic_set(&hctx->nr_active, 0);
3725         if (node == NUMA_NO_NODE)
3726                 node = set->numa_node;
3727         hctx->numa_node = node;
3728
3729         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3730         spin_lock_init(&hctx->lock);
3731         INIT_LIST_HEAD(&hctx->dispatch);
3732         hctx->queue = q;
3733         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3734
3735         INIT_LIST_HEAD(&hctx->hctx_list);
3736
3737         /*
3738          * Allocate space for all possible cpus to avoid allocation at
3739          * runtime
3740          */
3741         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3742                         gfp, node);
3743         if (!hctx->ctxs)
3744                 goto free_cpumask;
3745
3746         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3747                                 gfp, node, false, false))
3748                 goto free_ctxs;
3749         hctx->nr_ctx = 0;
3750
3751         spin_lock_init(&hctx->dispatch_wait_lock);
3752         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3753         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3754
3755         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3756         if (!hctx->fq)
3757                 goto free_bitmap;
3758
3759         blk_mq_hctx_kobj_init(hctx);
3760
3761         return hctx;
3762
3763  free_bitmap:
3764         sbitmap_free(&hctx->ctx_map);
3765  free_ctxs:
3766         kfree(hctx->ctxs);
3767  free_cpumask:
3768         free_cpumask_var(hctx->cpumask);
3769  free_hctx:
3770         kfree(hctx);
3771  fail_alloc_hctx:
3772         return NULL;
3773 }
3774
3775 static void blk_mq_init_cpu_queues(struct request_queue *q,
3776                                    unsigned int nr_hw_queues)
3777 {
3778         struct blk_mq_tag_set *set = q->tag_set;
3779         unsigned int i, j;
3780
3781         for_each_possible_cpu(i) {
3782                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3783                 struct blk_mq_hw_ctx *hctx;
3784                 int k;
3785
3786                 __ctx->cpu = i;
3787                 spin_lock_init(&__ctx->lock);
3788                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3789                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3790
3791                 __ctx->queue = q;
3792
3793                 /*
3794                  * Set local node, IFF we have more than one hw queue. If
3795                  * not, we remain on the home node of the device
3796                  */
3797                 for (j = 0; j < set->nr_maps; j++) {
3798                         hctx = blk_mq_map_queue_type(q, j, i);
3799                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3800                                 hctx->numa_node = cpu_to_node(i);
3801                 }
3802         }
3803 }
3804
3805 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3806                                              unsigned int hctx_idx,
3807                                              unsigned int depth)
3808 {
3809         struct blk_mq_tags *tags;
3810         int ret;
3811
3812         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3813         if (!tags)
3814                 return NULL;
3815
3816         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3817         if (ret) {
3818                 blk_mq_free_rq_map(tags);
3819                 return NULL;
3820         }
3821
3822         return tags;
3823 }
3824
3825 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3826                                        int hctx_idx)
3827 {
3828         if (blk_mq_is_shared_tags(set->flags)) {
3829                 set->tags[hctx_idx] = set->shared_tags;
3830
3831                 return true;
3832         }
3833
3834         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3835                                                        set->queue_depth);
3836
3837         return set->tags[hctx_idx];
3838 }
3839
3840 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3841                              struct blk_mq_tags *tags,
3842                              unsigned int hctx_idx)
3843 {
3844         if (tags) {
3845                 blk_mq_free_rqs(set, tags, hctx_idx);
3846                 blk_mq_free_rq_map(tags);
3847         }
3848 }
3849
3850 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3851                                       unsigned int hctx_idx)
3852 {
3853         if (!blk_mq_is_shared_tags(set->flags))
3854                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3855
3856         set->tags[hctx_idx] = NULL;
3857 }
3858
3859 static void blk_mq_map_swqueue(struct request_queue *q)
3860 {
3861         unsigned int j, hctx_idx;
3862         unsigned long i;
3863         struct blk_mq_hw_ctx *hctx;
3864         struct blk_mq_ctx *ctx;
3865         struct blk_mq_tag_set *set = q->tag_set;
3866
3867         queue_for_each_hw_ctx(q, hctx, i) {
3868                 cpumask_clear(hctx->cpumask);
3869                 hctx->nr_ctx = 0;
3870                 hctx->dispatch_from = NULL;
3871         }
3872
3873         /*
3874          * Map software to hardware queues.
3875          *
3876          * If the cpu isn't present, the cpu is mapped to first hctx.
3877          */
3878         for_each_possible_cpu(i) {
3879
3880                 ctx = per_cpu_ptr(q->queue_ctx, i);
3881                 for (j = 0; j < set->nr_maps; j++) {
3882                         if (!set->map[j].nr_queues) {
3883                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3884                                                 HCTX_TYPE_DEFAULT, i);
3885                                 continue;
3886                         }
3887                         hctx_idx = set->map[j].mq_map[i];
3888                         /* unmapped hw queue can be remapped after CPU topo changed */
3889                         if (!set->tags[hctx_idx] &&
3890                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3891                                 /*
3892                                  * If tags initialization fail for some hctx,
3893                                  * that hctx won't be brought online.  In this
3894                                  * case, remap the current ctx to hctx[0] which
3895                                  * is guaranteed to always have tags allocated
3896                                  */
3897                                 set->map[j].mq_map[i] = 0;
3898                         }
3899
3900                         hctx = blk_mq_map_queue_type(q, j, i);
3901                         ctx->hctxs[j] = hctx;
3902                         /*
3903                          * If the CPU is already set in the mask, then we've
3904                          * mapped this one already. This can happen if
3905                          * devices share queues across queue maps.
3906                          */
3907                         if (cpumask_test_cpu(i, hctx->cpumask))
3908                                 continue;
3909
3910                         cpumask_set_cpu(i, hctx->cpumask);
3911                         hctx->type = j;
3912                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3913                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3914
3915                         /*
3916                          * If the nr_ctx type overflows, we have exceeded the
3917                          * amount of sw queues we can support.
3918                          */
3919                         BUG_ON(!hctx->nr_ctx);
3920                 }
3921
3922                 for (; j < HCTX_MAX_TYPES; j++)
3923                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3924                                         HCTX_TYPE_DEFAULT, i);
3925         }
3926
3927         queue_for_each_hw_ctx(q, hctx, i) {
3928                 /*
3929                  * If no software queues are mapped to this hardware queue,
3930                  * disable it and free the request entries.
3931                  */
3932                 if (!hctx->nr_ctx) {
3933                         /* Never unmap queue 0.  We need it as a
3934                          * fallback in case of a new remap fails
3935                          * allocation
3936                          */
3937                         if (i)
3938                                 __blk_mq_free_map_and_rqs(set, i);
3939
3940                         hctx->tags = NULL;
3941                         continue;
3942                 }
3943
3944                 hctx->tags = set->tags[i];
3945                 WARN_ON(!hctx->tags);
3946
3947                 /*
3948                  * Set the map size to the number of mapped software queues.
3949                  * This is more accurate and more efficient than looping
3950                  * over all possibly mapped software queues.
3951                  */
3952                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3953
3954                 /*
3955                  * Initialize batch roundrobin counts
3956                  */
3957                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3958                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3959         }
3960 }
3961
3962 /*
3963  * Caller needs to ensure that we're either frozen/quiesced, or that
3964  * the queue isn't live yet.
3965  */
3966 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3967 {
3968         struct blk_mq_hw_ctx *hctx;
3969         unsigned long i;
3970
3971         queue_for_each_hw_ctx(q, hctx, i) {
3972                 if (shared) {
3973                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3974                 } else {
3975                         blk_mq_tag_idle(hctx);
3976                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3977                 }
3978         }
3979 }
3980
3981 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3982                                          bool shared)
3983 {
3984         struct request_queue *q;
3985
3986         lockdep_assert_held(&set->tag_list_lock);
3987
3988         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3989                 blk_mq_freeze_queue(q);
3990                 queue_set_hctx_shared(q, shared);
3991                 blk_mq_unfreeze_queue(q);
3992         }
3993 }
3994
3995 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3996 {
3997         struct blk_mq_tag_set *set = q->tag_set;
3998
3999         mutex_lock(&set->tag_list_lock);
4000         list_del(&q->tag_set_list);
4001         if (list_is_singular(&set->tag_list)) {
4002                 /* just transitioned to unshared */
4003                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4004                 /* update existing queue */
4005                 blk_mq_update_tag_set_shared(set, false);
4006         }
4007         mutex_unlock(&set->tag_list_lock);
4008         INIT_LIST_HEAD(&q->tag_set_list);
4009 }
4010
4011 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4012                                      struct request_queue *q)
4013 {
4014         mutex_lock(&set->tag_list_lock);
4015
4016         /*
4017          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4018          */
4019         if (!list_empty(&set->tag_list) &&
4020             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4021                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4022                 /* update existing queue */
4023                 blk_mq_update_tag_set_shared(set, true);
4024         }
4025         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4026                 queue_set_hctx_shared(q, true);
4027         list_add_tail(&q->tag_set_list, &set->tag_list);
4028
4029         mutex_unlock(&set->tag_list_lock);
4030 }
4031
4032 /* All allocations will be freed in release handler of q->mq_kobj */
4033 static int blk_mq_alloc_ctxs(struct request_queue *q)
4034 {
4035         struct blk_mq_ctxs *ctxs;
4036         int cpu;
4037
4038         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4039         if (!ctxs)
4040                 return -ENOMEM;
4041
4042         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4043         if (!ctxs->queue_ctx)
4044                 goto fail;
4045
4046         for_each_possible_cpu(cpu) {
4047                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4048                 ctx->ctxs = ctxs;
4049         }
4050
4051         q->mq_kobj = &ctxs->kobj;
4052         q->queue_ctx = ctxs->queue_ctx;
4053
4054         return 0;
4055  fail:
4056         kfree(ctxs);
4057         return -ENOMEM;
4058 }
4059
4060 /*
4061  * It is the actual release handler for mq, but we do it from
4062  * request queue's release handler for avoiding use-after-free
4063  * and headache because q->mq_kobj shouldn't have been introduced,
4064  * but we can't group ctx/kctx kobj without it.
4065  */
4066 void blk_mq_release(struct request_queue *q)
4067 {
4068         struct blk_mq_hw_ctx *hctx, *next;
4069         unsigned long i;
4070
4071         queue_for_each_hw_ctx(q, hctx, i)
4072                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4073
4074         /* all hctx are in .unused_hctx_list now */
4075         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4076                 list_del_init(&hctx->hctx_list);
4077                 kobject_put(&hctx->kobj);
4078         }
4079
4080         xa_destroy(&q->hctx_table);
4081
4082         /*
4083          * release .mq_kobj and sw queue's kobject now because
4084          * both share lifetime with request queue.
4085          */
4086         blk_mq_sysfs_deinit(q);
4087 }
4088
4089 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4090                 void *queuedata)
4091 {
4092         struct request_queue *q;
4093         int ret;
4094
4095         q = blk_alloc_queue(set->numa_node);
4096         if (!q)
4097                 return ERR_PTR(-ENOMEM);
4098         q->queuedata = queuedata;
4099         ret = blk_mq_init_allocated_queue(set, q);
4100         if (ret) {
4101                 blk_put_queue(q);
4102                 return ERR_PTR(ret);
4103         }
4104         return q;
4105 }
4106
4107 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4108 {
4109         return blk_mq_init_queue_data(set, NULL);
4110 }
4111 EXPORT_SYMBOL(blk_mq_init_queue);
4112
4113 /**
4114  * blk_mq_destroy_queue - shutdown a request queue
4115  * @q: request queue to shutdown
4116  *
4117  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4118  * requests will be failed with -ENODEV. The caller is responsible for dropping
4119  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4120  *
4121  * Context: can sleep
4122  */
4123 void blk_mq_destroy_queue(struct request_queue *q)
4124 {
4125         WARN_ON_ONCE(!queue_is_mq(q));
4126         WARN_ON_ONCE(blk_queue_registered(q));
4127
4128         might_sleep();
4129
4130         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4131         blk_queue_start_drain(q);
4132         blk_mq_freeze_queue_wait(q);
4133
4134         blk_sync_queue(q);
4135         blk_mq_cancel_work_sync(q);
4136         blk_mq_exit_queue(q);
4137 }
4138 EXPORT_SYMBOL(blk_mq_destroy_queue);
4139
4140 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4141                 struct lock_class_key *lkclass)
4142 {
4143         struct request_queue *q;
4144         struct gendisk *disk;
4145
4146         q = blk_mq_init_queue_data(set, queuedata);
4147         if (IS_ERR(q))
4148                 return ERR_CAST(q);
4149
4150         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4151         if (!disk) {
4152                 blk_mq_destroy_queue(q);
4153                 blk_put_queue(q);
4154                 return ERR_PTR(-ENOMEM);
4155         }
4156         set_bit(GD_OWNS_QUEUE, &disk->state);
4157         return disk;
4158 }
4159 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4160
4161 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4162                 struct lock_class_key *lkclass)
4163 {
4164         struct gendisk *disk;
4165
4166         if (!blk_get_queue(q))
4167                 return NULL;
4168         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4169         if (!disk)
4170                 blk_put_queue(q);
4171         return disk;
4172 }
4173 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4174
4175 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4176                 struct blk_mq_tag_set *set, struct request_queue *q,
4177                 int hctx_idx, int node)
4178 {
4179         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4180
4181         /* reuse dead hctx first */
4182         spin_lock(&q->unused_hctx_lock);
4183         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4184                 if (tmp->numa_node == node) {
4185                         hctx = tmp;
4186                         break;
4187                 }
4188         }
4189         if (hctx)
4190                 list_del_init(&hctx->hctx_list);
4191         spin_unlock(&q->unused_hctx_lock);
4192
4193         if (!hctx)
4194                 hctx = blk_mq_alloc_hctx(q, set, node);
4195         if (!hctx)
4196                 goto fail;
4197
4198         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4199                 goto free_hctx;
4200
4201         return hctx;
4202
4203  free_hctx:
4204         kobject_put(&hctx->kobj);
4205  fail:
4206         return NULL;
4207 }
4208
4209 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4210                                                 struct request_queue *q)
4211 {
4212         struct blk_mq_hw_ctx *hctx;
4213         unsigned long i, j;
4214
4215         /* protect against switching io scheduler  */
4216         mutex_lock(&q->sysfs_lock);
4217         for (i = 0; i < set->nr_hw_queues; i++) {
4218                 int old_node;
4219                 int node = blk_mq_get_hctx_node(set, i);
4220                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4221
4222                 if (old_hctx) {
4223                         old_node = old_hctx->numa_node;
4224                         blk_mq_exit_hctx(q, set, old_hctx, i);
4225                 }
4226
4227                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4228                         if (!old_hctx)
4229                                 break;
4230                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4231                                         node, old_node);
4232                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4233                         WARN_ON_ONCE(!hctx);
4234                 }
4235         }
4236         /*
4237          * Increasing nr_hw_queues fails. Free the newly allocated
4238          * hctxs and keep the previous q->nr_hw_queues.
4239          */
4240         if (i != set->nr_hw_queues) {
4241                 j = q->nr_hw_queues;
4242         } else {
4243                 j = i;
4244                 q->nr_hw_queues = set->nr_hw_queues;
4245         }
4246
4247         xa_for_each_start(&q->hctx_table, j, hctx, j)
4248                 blk_mq_exit_hctx(q, set, hctx, j);
4249         mutex_unlock(&q->sysfs_lock);
4250 }
4251
4252 static void blk_mq_update_poll_flag(struct request_queue *q)
4253 {
4254         struct blk_mq_tag_set *set = q->tag_set;
4255
4256         if (set->nr_maps > HCTX_TYPE_POLL &&
4257             set->map[HCTX_TYPE_POLL].nr_queues)
4258                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4259         else
4260                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4261 }
4262
4263 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4264                 struct request_queue *q)
4265 {
4266         /* mark the queue as mq asap */
4267         q->mq_ops = set->ops;
4268
4269         if (blk_mq_alloc_ctxs(q))
4270                 goto err_exit;
4271
4272         /* init q->mq_kobj and sw queues' kobjects */
4273         blk_mq_sysfs_init(q);
4274
4275         INIT_LIST_HEAD(&q->unused_hctx_list);
4276         spin_lock_init(&q->unused_hctx_lock);
4277
4278         xa_init(&q->hctx_table);
4279
4280         blk_mq_realloc_hw_ctxs(set, q);
4281         if (!q->nr_hw_queues)
4282                 goto err_hctxs;
4283
4284         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4285         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4286
4287         q->tag_set = set;
4288
4289         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4290         blk_mq_update_poll_flag(q);
4291
4292         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4293         INIT_LIST_HEAD(&q->flush_list);
4294         INIT_LIST_HEAD(&q->requeue_list);
4295         spin_lock_init(&q->requeue_lock);
4296
4297         q->nr_requests = set->queue_depth;
4298
4299         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4300         blk_mq_add_queue_tag_set(set, q);
4301         blk_mq_map_swqueue(q);
4302         return 0;
4303
4304 err_hctxs:
4305         blk_mq_release(q);
4306 err_exit:
4307         q->mq_ops = NULL;
4308         return -ENOMEM;
4309 }
4310 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4311
4312 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4313 void blk_mq_exit_queue(struct request_queue *q)
4314 {
4315         struct blk_mq_tag_set *set = q->tag_set;
4316
4317         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4318         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4319         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4320         blk_mq_del_queue_tag_set(q);
4321 }
4322
4323 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4324 {
4325         int i;
4326
4327         if (blk_mq_is_shared_tags(set->flags)) {
4328                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4329                                                 BLK_MQ_NO_HCTX_IDX,
4330                                                 set->queue_depth);
4331                 if (!set->shared_tags)
4332                         return -ENOMEM;
4333         }
4334
4335         for (i = 0; i < set->nr_hw_queues; i++) {
4336                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4337                         goto out_unwind;
4338                 cond_resched();
4339         }
4340
4341         return 0;
4342
4343 out_unwind:
4344         while (--i >= 0)
4345                 __blk_mq_free_map_and_rqs(set, i);
4346
4347         if (blk_mq_is_shared_tags(set->flags)) {
4348                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4349                                         BLK_MQ_NO_HCTX_IDX);
4350         }
4351
4352         return -ENOMEM;
4353 }
4354
4355 /*
4356  * Allocate the request maps associated with this tag_set. Note that this
4357  * may reduce the depth asked for, if memory is tight. set->queue_depth
4358  * will be updated to reflect the allocated depth.
4359  */
4360 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4361 {
4362         unsigned int depth;
4363         int err;
4364
4365         depth = set->queue_depth;
4366         do {
4367                 err = __blk_mq_alloc_rq_maps(set);
4368                 if (!err)
4369                         break;
4370
4371                 set->queue_depth >>= 1;
4372                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4373                         err = -ENOMEM;
4374                         break;
4375                 }
4376         } while (set->queue_depth);
4377
4378         if (!set->queue_depth || err) {
4379                 pr_err("blk-mq: failed to allocate request map\n");
4380                 return -ENOMEM;
4381         }
4382
4383         if (depth != set->queue_depth)
4384                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4385                                                 depth, set->queue_depth);
4386
4387         return 0;
4388 }
4389
4390 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4391 {
4392         /*
4393          * blk_mq_map_queues() and multiple .map_queues() implementations
4394          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4395          * number of hardware queues.
4396          */
4397         if (set->nr_maps == 1)
4398                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4399
4400         if (set->ops->map_queues && !is_kdump_kernel()) {
4401                 int i;
4402
4403                 /*
4404                  * transport .map_queues is usually done in the following
4405                  * way:
4406                  *
4407                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4408                  *      mask = get_cpu_mask(queue)
4409                  *      for_each_cpu(cpu, mask)
4410                  *              set->map[x].mq_map[cpu] = queue;
4411                  * }
4412                  *
4413                  * When we need to remap, the table has to be cleared for
4414                  * killing stale mapping since one CPU may not be mapped
4415                  * to any hw queue.
4416                  */
4417                 for (i = 0; i < set->nr_maps; i++)
4418                         blk_mq_clear_mq_map(&set->map[i]);
4419
4420                 set->ops->map_queues(set);
4421         } else {
4422                 BUG_ON(set->nr_maps > 1);
4423                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4424         }
4425 }
4426
4427 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4428                                        int new_nr_hw_queues)
4429 {
4430         struct blk_mq_tags **new_tags;
4431         int i;
4432
4433         if (set->nr_hw_queues >= new_nr_hw_queues)
4434                 goto done;
4435
4436         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4437                                 GFP_KERNEL, set->numa_node);
4438         if (!new_tags)
4439                 return -ENOMEM;
4440
4441         if (set->tags)
4442                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4443                        sizeof(*set->tags));
4444         kfree(set->tags);
4445         set->tags = new_tags;
4446
4447         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4448                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4449                         while (--i >= set->nr_hw_queues)
4450                                 __blk_mq_free_map_and_rqs(set, i);
4451                         return -ENOMEM;
4452                 }
4453                 cond_resched();
4454         }
4455
4456 done:
4457         set->nr_hw_queues = new_nr_hw_queues;
4458         return 0;
4459 }
4460
4461 /*
4462  * Alloc a tag set to be associated with one or more request queues.
4463  * May fail with EINVAL for various error conditions. May adjust the
4464  * requested depth down, if it's too large. In that case, the set
4465  * value will be stored in set->queue_depth.
4466  */
4467 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4468 {
4469         int i, ret;
4470
4471         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4472
4473         if (!set->nr_hw_queues)
4474                 return -EINVAL;
4475         if (!set->queue_depth)
4476                 return -EINVAL;
4477         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4478                 return -EINVAL;
4479
4480         if (!set->ops->queue_rq)
4481                 return -EINVAL;
4482
4483         if (!set->ops->get_budget ^ !set->ops->put_budget)
4484                 return -EINVAL;
4485
4486         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4487                 pr_info("blk-mq: reduced tag depth to %u\n",
4488                         BLK_MQ_MAX_DEPTH);
4489                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4490         }
4491
4492         if (!set->nr_maps)
4493                 set->nr_maps = 1;
4494         else if (set->nr_maps > HCTX_MAX_TYPES)
4495                 return -EINVAL;
4496
4497         /*
4498          * If a crashdump is active, then we are potentially in a very
4499          * memory constrained environment. Limit us to 1 queue and
4500          * 64 tags to prevent using too much memory.
4501          */
4502         if (is_kdump_kernel()) {
4503                 set->nr_hw_queues = 1;
4504                 set->nr_maps = 1;
4505                 set->queue_depth = min(64U, set->queue_depth);
4506         }
4507         /*
4508          * There is no use for more h/w queues than cpus if we just have
4509          * a single map
4510          */
4511         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4512                 set->nr_hw_queues = nr_cpu_ids;
4513
4514         if (set->flags & BLK_MQ_F_BLOCKING) {
4515                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4516                 if (!set->srcu)
4517                         return -ENOMEM;
4518                 ret = init_srcu_struct(set->srcu);
4519                 if (ret)
4520                         goto out_free_srcu;
4521         }
4522
4523         ret = -ENOMEM;
4524         set->tags = kcalloc_node(set->nr_hw_queues,
4525                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4526                                  set->numa_node);
4527         if (!set->tags)
4528                 goto out_cleanup_srcu;
4529
4530         for (i = 0; i < set->nr_maps; i++) {
4531                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4532                                                   sizeof(set->map[i].mq_map[0]),
4533                                                   GFP_KERNEL, set->numa_node);
4534                 if (!set->map[i].mq_map)
4535                         goto out_free_mq_map;
4536                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4537         }
4538
4539         blk_mq_update_queue_map(set);
4540
4541         ret = blk_mq_alloc_set_map_and_rqs(set);
4542         if (ret)
4543                 goto out_free_mq_map;
4544
4545         mutex_init(&set->tag_list_lock);
4546         INIT_LIST_HEAD(&set->tag_list);
4547
4548         return 0;
4549
4550 out_free_mq_map:
4551         for (i = 0; i < set->nr_maps; i++) {
4552                 kfree(set->map[i].mq_map);
4553                 set->map[i].mq_map = NULL;
4554         }
4555         kfree(set->tags);
4556         set->tags = NULL;
4557 out_cleanup_srcu:
4558         if (set->flags & BLK_MQ_F_BLOCKING)
4559                 cleanup_srcu_struct(set->srcu);
4560 out_free_srcu:
4561         if (set->flags & BLK_MQ_F_BLOCKING)
4562                 kfree(set->srcu);
4563         return ret;
4564 }
4565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4566
4567 /* allocate and initialize a tagset for a simple single-queue device */
4568 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4569                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4570                 unsigned int set_flags)
4571 {
4572         memset(set, 0, sizeof(*set));
4573         set->ops = ops;
4574         set->nr_hw_queues = 1;
4575         set->nr_maps = 1;
4576         set->queue_depth = queue_depth;
4577         set->numa_node = NUMA_NO_NODE;
4578         set->flags = set_flags;
4579         return blk_mq_alloc_tag_set(set);
4580 }
4581 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4582
4583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4584 {
4585         int i, j;
4586
4587         for (i = 0; i < set->nr_hw_queues; i++)
4588                 __blk_mq_free_map_and_rqs(set, i);
4589
4590         if (blk_mq_is_shared_tags(set->flags)) {
4591                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4592                                         BLK_MQ_NO_HCTX_IDX);
4593         }
4594
4595         for (j = 0; j < set->nr_maps; j++) {
4596                 kfree(set->map[j].mq_map);
4597                 set->map[j].mq_map = NULL;
4598         }
4599
4600         kfree(set->tags);
4601         set->tags = NULL;
4602         if (set->flags & BLK_MQ_F_BLOCKING) {
4603                 cleanup_srcu_struct(set->srcu);
4604                 kfree(set->srcu);
4605         }
4606 }
4607 EXPORT_SYMBOL(blk_mq_free_tag_set);
4608
4609 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4610 {
4611         struct blk_mq_tag_set *set = q->tag_set;
4612         struct blk_mq_hw_ctx *hctx;
4613         int ret;
4614         unsigned long i;
4615
4616         if (!set)
4617                 return -EINVAL;
4618
4619         if (q->nr_requests == nr)
4620                 return 0;
4621
4622         blk_mq_freeze_queue(q);
4623         blk_mq_quiesce_queue(q);
4624
4625         ret = 0;
4626         queue_for_each_hw_ctx(q, hctx, i) {
4627                 if (!hctx->tags)
4628                         continue;
4629                 /*
4630                  * If we're using an MQ scheduler, just update the scheduler
4631                  * queue depth. This is similar to what the old code would do.
4632                  */
4633                 if (hctx->sched_tags) {
4634                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4635                                                       nr, true);
4636                 } else {
4637                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4638                                                       false);
4639                 }
4640                 if (ret)
4641                         break;
4642                 if (q->elevator && q->elevator->type->ops.depth_updated)
4643                         q->elevator->type->ops.depth_updated(hctx);
4644         }
4645         if (!ret) {
4646                 q->nr_requests = nr;
4647                 if (blk_mq_is_shared_tags(set->flags)) {
4648                         if (q->elevator)
4649                                 blk_mq_tag_update_sched_shared_tags(q);
4650                         else
4651                                 blk_mq_tag_resize_shared_tags(set, nr);
4652                 }
4653         }
4654
4655         blk_mq_unquiesce_queue(q);
4656         blk_mq_unfreeze_queue(q);
4657
4658         return ret;
4659 }
4660
4661 /*
4662  * request_queue and elevator_type pair.
4663  * It is just used by __blk_mq_update_nr_hw_queues to cache
4664  * the elevator_type associated with a request_queue.
4665  */
4666 struct blk_mq_qe_pair {
4667         struct list_head node;
4668         struct request_queue *q;
4669         struct elevator_type *type;
4670 };
4671
4672 /*
4673  * Cache the elevator_type in qe pair list and switch the
4674  * io scheduler to 'none'
4675  */
4676 static bool blk_mq_elv_switch_none(struct list_head *head,
4677                 struct request_queue *q)
4678 {
4679         struct blk_mq_qe_pair *qe;
4680
4681         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4682         if (!qe)
4683                 return false;
4684
4685         /* q->elevator needs protection from ->sysfs_lock */
4686         mutex_lock(&q->sysfs_lock);
4687
4688         /* the check has to be done with holding sysfs_lock */
4689         if (!q->elevator) {
4690                 kfree(qe);
4691                 goto unlock;
4692         }
4693
4694         INIT_LIST_HEAD(&qe->node);
4695         qe->q = q;
4696         qe->type = q->elevator->type;
4697         /* keep a reference to the elevator module as we'll switch back */
4698         __elevator_get(qe->type);
4699         list_add(&qe->node, head);
4700         elevator_disable(q);
4701 unlock:
4702         mutex_unlock(&q->sysfs_lock);
4703
4704         return true;
4705 }
4706
4707 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4708                                                 struct request_queue *q)
4709 {
4710         struct blk_mq_qe_pair *qe;
4711
4712         list_for_each_entry(qe, head, node)
4713                 if (qe->q == q)
4714                         return qe;
4715
4716         return NULL;
4717 }
4718
4719 static void blk_mq_elv_switch_back(struct list_head *head,
4720                                   struct request_queue *q)
4721 {
4722         struct blk_mq_qe_pair *qe;
4723         struct elevator_type *t;
4724
4725         qe = blk_lookup_qe_pair(head, q);
4726         if (!qe)
4727                 return;
4728         t = qe->type;
4729         list_del(&qe->node);
4730         kfree(qe);
4731
4732         mutex_lock(&q->sysfs_lock);
4733         elevator_switch(q, t);
4734         /* drop the reference acquired in blk_mq_elv_switch_none */
4735         elevator_put(t);
4736         mutex_unlock(&q->sysfs_lock);
4737 }
4738
4739 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4740                                                         int nr_hw_queues)
4741 {
4742         struct request_queue *q;
4743         LIST_HEAD(head);
4744         int prev_nr_hw_queues = set->nr_hw_queues;
4745         int i;
4746
4747         lockdep_assert_held(&set->tag_list_lock);
4748
4749         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4750                 nr_hw_queues = nr_cpu_ids;
4751         if (nr_hw_queues < 1)
4752                 return;
4753         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4754                 return;
4755
4756         list_for_each_entry(q, &set->tag_list, tag_set_list)
4757                 blk_mq_freeze_queue(q);
4758         /*
4759          * Switch IO scheduler to 'none', cleaning up the data associated
4760          * with the previous scheduler. We will switch back once we are done
4761          * updating the new sw to hw queue mappings.
4762          */
4763         list_for_each_entry(q, &set->tag_list, tag_set_list)
4764                 if (!blk_mq_elv_switch_none(&head, q))
4765                         goto switch_back;
4766
4767         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768                 blk_mq_debugfs_unregister_hctxs(q);
4769                 blk_mq_sysfs_unregister_hctxs(q);
4770         }
4771
4772         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4773                 goto reregister;
4774
4775 fallback:
4776         blk_mq_update_queue_map(set);
4777         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4778                 blk_mq_realloc_hw_ctxs(set, q);
4779                 blk_mq_update_poll_flag(q);
4780                 if (q->nr_hw_queues != set->nr_hw_queues) {
4781                         int i = prev_nr_hw_queues;
4782
4783                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4784                                         nr_hw_queues, prev_nr_hw_queues);
4785                         for (; i < set->nr_hw_queues; i++)
4786                                 __blk_mq_free_map_and_rqs(set, i);
4787
4788                         set->nr_hw_queues = prev_nr_hw_queues;
4789                         goto fallback;
4790                 }
4791                 blk_mq_map_swqueue(q);
4792         }
4793
4794 reregister:
4795         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4796                 blk_mq_sysfs_register_hctxs(q);
4797                 blk_mq_debugfs_register_hctxs(q);
4798         }
4799
4800 switch_back:
4801         list_for_each_entry(q, &set->tag_list, tag_set_list)
4802                 blk_mq_elv_switch_back(&head, q);
4803
4804         list_for_each_entry(q, &set->tag_list, tag_set_list)
4805                 blk_mq_unfreeze_queue(q);
4806
4807         /* Free the excess tags when nr_hw_queues shrink. */
4808         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4809                 __blk_mq_free_map_and_rqs(set, i);
4810 }
4811
4812 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4813 {
4814         mutex_lock(&set->tag_list_lock);
4815         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4816         mutex_unlock(&set->tag_list_lock);
4817 }
4818 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4819
4820 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4821                          struct io_comp_batch *iob, unsigned int flags)
4822 {
4823         long state = get_current_state();
4824         int ret;
4825
4826         do {
4827                 ret = q->mq_ops->poll(hctx, iob);
4828                 if (ret > 0) {
4829                         __set_current_state(TASK_RUNNING);
4830                         return ret;
4831                 }
4832
4833                 if (signal_pending_state(state, current))
4834                         __set_current_state(TASK_RUNNING);
4835                 if (task_is_running(current))
4836                         return 1;
4837
4838                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4839                         break;
4840                 cpu_relax();
4841         } while (!need_resched());
4842
4843         __set_current_state(TASK_RUNNING);
4844         return 0;
4845 }
4846
4847 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4848                 struct io_comp_batch *iob, unsigned int flags)
4849 {
4850         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4851
4852         return blk_hctx_poll(q, hctx, iob, flags);
4853 }
4854
4855 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4856                 unsigned int poll_flags)
4857 {
4858         struct request_queue *q = rq->q;
4859         int ret;
4860
4861         if (!blk_rq_is_poll(rq))
4862                 return 0;
4863         if (!percpu_ref_tryget(&q->q_usage_counter))
4864                 return 0;
4865
4866         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4867         blk_queue_exit(q);
4868
4869         return ret;
4870 }
4871 EXPORT_SYMBOL_GPL(blk_rq_poll);
4872
4873 unsigned int blk_mq_rq_cpu(struct request *rq)
4874 {
4875         return rq->mq_ctx->cpu;
4876 }
4877 EXPORT_SYMBOL(blk_mq_rq_cpu);
4878
4879 void blk_mq_cancel_work_sync(struct request_queue *q)
4880 {
4881         struct blk_mq_hw_ctx *hctx;
4882         unsigned long i;
4883
4884         cancel_delayed_work_sync(&q->requeue_work);
4885
4886         queue_for_each_hw_ctx(q, hctx, i)
4887                 cancel_delayed_work_sync(&hctx->run_work);
4888 }
4889
4890 static int __init blk_mq_init(void)
4891 {
4892         int i;
4893
4894         for_each_possible_cpu(i)
4895                 init_llist_head(&per_cpu(blk_cpu_done, i));
4896         for_each_possible_cpu(i)
4897                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4898                          __blk_mq_complete_request_remote, NULL);
4899         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4900
4901         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4902                                   "block/softirq:dead", NULL,
4903                                   blk_softirq_cpu_dead);
4904         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4905                                 blk_mq_hctx_notify_dead);
4906         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4907                                 blk_mq_hctx_notify_online,
4908                                 blk_mq_hctx_notify_offline);
4909         return 0;
4910 }
4911 subsys_initcall(blk_mq_init);