8b7e4daaa5b70d410cb86691787c65748c75f62c
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
49                 struct list_head *list);
50
51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
52                 blk_qc_t qc)
53 {
54         return xa_load(&q->hctx_table, qc);
55 }
56
57 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
58 {
59         return rq->mq_hctx->queue_num;
60 }
61
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return !list_empty_careful(&hctx->dispatch) ||
69                 sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         const int bit = ctx->index_hw[hctx->type];
80
81         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82                 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86                                       struct blk_mq_ctx *ctx)
87 {
88         const int bit = ctx->index_hw[hctx->type];
89
90         sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94         struct block_device *part;
95         unsigned int inflight[2];
96 };
97
98 static bool blk_mq_check_inflight(struct request *rq, void *priv)
99 {
100         struct mq_inflight *mi = priv;
101
102         if (rq->part && blk_do_io_stat(rq) &&
103             (!mi->part->bd_partno || rq->part == mi->part) &&
104             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
105                 mi->inflight[rq_data_dir(rq)]++;
106
107         return true;
108 }
109
110 unsigned int blk_mq_in_flight(struct request_queue *q,
111                 struct block_device *part)
112 {
113         struct mq_inflight mi = { .part = part };
114
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116
117         return mi.inflight[0] + mi.inflight[1];
118 }
119
120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
121                 unsigned int inflight[2])
122 {
123         struct mq_inflight mi = { .part = part };
124
125         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126         inflight[0] = mi.inflight[0];
127         inflight[1] = mi.inflight[1];
128 }
129
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132         mutex_lock(&q->mq_freeze_lock);
133         if (++q->mq_freeze_depth == 1) {
134                 percpu_ref_kill(&q->q_usage_counter);
135                 mutex_unlock(&q->mq_freeze_lock);
136                 if (queue_is_mq(q))
137                         blk_mq_run_hw_queues(q, false);
138         } else {
139                 mutex_unlock(&q->mq_freeze_lock);
140         }
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151                                      unsigned long timeout)
152 {
153         return wait_event_timeout(q->mq_freeze_wq,
154                                         percpu_ref_is_zero(&q->q_usage_counter),
155                                         timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165         /*
166          * In the !blk_mq case we are only calling this to kill the
167          * q_usage_counter, otherwise this increases the freeze depth
168          * and waits for it to return to zero.  For this reason there is
169          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170          * exported to drivers as the only user for unfreeze is blk_mq.
171          */
172         blk_freeze_queue_start(q);
173         blk_mq_freeze_queue_wait(q);
174 }
175
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178         /*
179          * ...just an alias to keep freeze and unfreeze actions balanced
180          * in the blk_mq_* namespace
181          */
182         blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185
186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
187 {
188         mutex_lock(&q->mq_freeze_lock);
189         if (force_atomic)
190                 q->q_usage_counter.data->force_atomic = true;
191         q->mq_freeze_depth--;
192         WARN_ON_ONCE(q->mq_freeze_depth < 0);
193         if (!q->mq_freeze_depth) {
194                 percpu_ref_resurrect(&q->q_usage_counter);
195                 wake_up_all(&q->mq_freeze_wq);
196         }
197         mutex_unlock(&q->mq_freeze_lock);
198 }
199
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202         __blk_mq_unfreeze_queue(q, false);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205
206 /*
207  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208  * mpt3sas driver such that this function can be removed.
209  */
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
211 {
212         unsigned long flags;
213
214         spin_lock_irqsave(&q->queue_lock, flags);
215         if (!q->quiesce_depth++)
216                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217         spin_unlock_irqrestore(&q->queue_lock, flags);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
223  * @set: tag_set to wait on
224  *
225  * Note: it is driver's responsibility for making sure that quiesce has
226  * been started on or more of the request_queues of the tag_set.  This
227  * function only waits for the quiesce on those request_queues that had
228  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
229  */
230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
231 {
232         if (set->flags & BLK_MQ_F_BLOCKING)
233                 synchronize_srcu(set->srcu);
234         else
235                 synchronize_rcu();
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
238
239 /**
240  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
241  * @q: request queue.
242  *
243  * Note: this function does not prevent that the struct request end_io()
244  * callback function is invoked. Once this function is returned, we make
245  * sure no dispatch can happen until the queue is unquiesced via
246  * blk_mq_unquiesce_queue().
247  */
248 void blk_mq_quiesce_queue(struct request_queue *q)
249 {
250         blk_mq_quiesce_queue_nowait(q);
251         /* nothing to wait for non-mq queues */
252         if (queue_is_mq(q))
253                 blk_mq_wait_quiesce_done(q->tag_set);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
256
257 /*
258  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
259  * @q: request queue.
260  *
261  * This function recovers queue into the state before quiescing
262  * which is done by blk_mq_quiesce_queue.
263  */
264 void blk_mq_unquiesce_queue(struct request_queue *q)
265 {
266         unsigned long flags;
267         bool run_queue = false;
268
269         spin_lock_irqsave(&q->queue_lock, flags);
270         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
271                 ;
272         } else if (!--q->quiesce_depth) {
273                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
274                 run_queue = true;
275         }
276         spin_unlock_irqrestore(&q->queue_lock, flags);
277
278         /* dispatch requests which are inserted during quiescing */
279         if (run_queue)
280                 blk_mq_run_hw_queues(q, true);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
283
284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
285 {
286         struct request_queue *q;
287
288         mutex_lock(&set->tag_list_lock);
289         list_for_each_entry(q, &set->tag_list, tag_set_list) {
290                 if (!blk_queue_skip_tagset_quiesce(q))
291                         blk_mq_quiesce_queue_nowait(q);
292         }
293         blk_mq_wait_quiesce_done(set);
294         mutex_unlock(&set->tag_list_lock);
295 }
296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
297
298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
299 {
300         struct request_queue *q;
301
302         mutex_lock(&set->tag_list_lock);
303         list_for_each_entry(q, &set->tag_list, tag_set_list) {
304                 if (!blk_queue_skip_tagset_quiesce(q))
305                         blk_mq_unquiesce_queue(q);
306         }
307         mutex_unlock(&set->tag_list_lock);
308 }
309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
310
311 void blk_mq_wake_waiters(struct request_queue *q)
312 {
313         struct blk_mq_hw_ctx *hctx;
314         unsigned long i;
315
316         queue_for_each_hw_ctx(q, hctx, i)
317                 if (blk_mq_hw_queue_mapped(hctx))
318                         blk_mq_tag_wakeup_all(hctx->tags, true);
319 }
320
321 void blk_rq_init(struct request_queue *q, struct request *rq)
322 {
323         memset(rq, 0, sizeof(*rq));
324
325         INIT_LIST_HEAD(&rq->queuelist);
326         rq->q = q;
327         rq->__sector = (sector_t) -1;
328         INIT_HLIST_NODE(&rq->hash);
329         RB_CLEAR_NODE(&rq->rb_node);
330         rq->tag = BLK_MQ_NO_TAG;
331         rq->internal_tag = BLK_MQ_NO_TAG;
332         rq->start_time_ns = ktime_get_ns();
333         rq->part = NULL;
334         blk_crypto_rq_set_defaults(rq);
335 }
336 EXPORT_SYMBOL(blk_rq_init);
337
338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
339                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
340 {
341         struct blk_mq_ctx *ctx = data->ctx;
342         struct blk_mq_hw_ctx *hctx = data->hctx;
343         struct request_queue *q = data->q;
344         struct request *rq = tags->static_rqs[tag];
345
346         rq->q = q;
347         rq->mq_ctx = ctx;
348         rq->mq_hctx = hctx;
349         rq->cmd_flags = data->cmd_flags;
350
351         if (data->flags & BLK_MQ_REQ_PM)
352                 data->rq_flags |= RQF_PM;
353         if (blk_queue_io_stat(q))
354                 data->rq_flags |= RQF_IO_STAT;
355         rq->rq_flags = data->rq_flags;
356
357         if (!(data->rq_flags & RQF_ELV)) {
358                 rq->tag = tag;
359                 rq->internal_tag = BLK_MQ_NO_TAG;
360         } else {
361                 rq->tag = BLK_MQ_NO_TAG;
362                 rq->internal_tag = tag;
363         }
364         rq->timeout = 0;
365
366         if (blk_mq_need_time_stamp(rq))
367                 rq->start_time_ns = ktime_get_ns();
368         else
369                 rq->start_time_ns = 0;
370         rq->part = NULL;
371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
372         rq->alloc_time_ns = alloc_time_ns;
373 #endif
374         rq->io_start_time_ns = 0;
375         rq->stats_sectors = 0;
376         rq->nr_phys_segments = 0;
377 #if defined(CONFIG_BLK_DEV_INTEGRITY)
378         rq->nr_integrity_segments = 0;
379 #endif
380         rq->end_io = NULL;
381         rq->end_io_data = NULL;
382
383         blk_crypto_rq_set_defaults(rq);
384         INIT_LIST_HEAD(&rq->queuelist);
385         /* tag was already set */
386         WRITE_ONCE(rq->deadline, 0);
387         req_ref_set(rq, 1);
388
389         if (rq->rq_flags & RQF_ELV) {
390                 struct elevator_queue *e = data->q->elevator;
391
392                 INIT_HLIST_NODE(&rq->hash);
393                 RB_CLEAR_NODE(&rq->rb_node);
394
395                 if (!op_is_flush(data->cmd_flags) &&
396                     e->type->ops.prepare_request) {
397                         e->type->ops.prepare_request(rq);
398                         rq->rq_flags |= RQF_ELVPRIV;
399                 }
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
407                 u64 alloc_time_ns)
408 {
409         unsigned int tag, tag_offset;
410         struct blk_mq_tags *tags;
411         struct request *rq;
412         unsigned long tag_mask;
413         int i, nr = 0;
414
415         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416         if (unlikely(!tag_mask))
417                 return NULL;
418
419         tags = blk_mq_tags_from_data(data);
420         for (i = 0; tag_mask; i++) {
421                 if (!(tag_mask & (1UL << i)))
422                         continue;
423                 tag = tag_offset + i;
424                 prefetch(tags->static_rqs[tag]);
425                 tag_mask &= ~(1UL << i);
426                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
427                 rq_list_add(data->cached_rq, rq);
428                 nr++;
429         }
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = ktime_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451         if (q->elevator) {
452                 struct elevator_queue *e = q->elevator;
453
454                 data->rq_flags |= RQF_ELV;
455
456                 /*
457                  * Flush/passthrough requests are special and go directly to the
458                  * dispatch list. Don't include reserved tags in the
459                  * limiting, as it isn't useful.
460                  */
461                 if (!op_is_flush(data->cmd_flags) &&
462                     !blk_op_is_passthrough(data->cmd_flags) &&
463                     e->type->ops.limit_depth &&
464                     !(data->flags & BLK_MQ_REQ_RESERVED))
465                         e->type->ops.limit_depth(data->cmd_flags, data);
466         }
467
468 retry:
469         data->ctx = blk_mq_get_ctx(q);
470         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
471         if (!(data->rq_flags & RQF_ELV))
472                 blk_mq_tag_busy(data->hctx);
473
474         if (data->flags & BLK_MQ_REQ_RESERVED)
475                 data->rq_flags |= RQF_RESV;
476
477         /*
478          * Try batched alloc if we want more than 1 tag.
479          */
480         if (data->nr_tags > 1) {
481                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482                 if (rq)
483                         return rq;
484                 data->nr_tags = 1;
485         }
486
487         /*
488          * Waiting allocations only fail because of an inactive hctx.  In that
489          * case just retry the hctx assignment and tag allocation as CPU hotplug
490          * should have migrated us to an online CPU by now.
491          */
492         tag = blk_mq_get_tag(data);
493         if (tag == BLK_MQ_NO_TAG) {
494                 if (data->flags & BLK_MQ_REQ_NOWAIT)
495                         return NULL;
496                 /*
497                  * Give up the CPU and sleep for a random short time to
498                  * ensure that thread using a realtime scheduling class
499                  * are migrated off the CPU, and thus off the hctx that
500                  * is going away.
501                  */
502                 msleep(3);
503                 goto retry;
504         }
505
506         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507                                         alloc_time_ns);
508 }
509
510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
511                                             struct blk_plug *plug,
512                                             blk_opf_t opf,
513                                             blk_mq_req_flags_t flags)
514 {
515         struct blk_mq_alloc_data data = {
516                 .q              = q,
517                 .flags          = flags,
518                 .cmd_flags      = opf,
519                 .nr_tags        = plug->nr_ios,
520                 .cached_rq      = &plug->cached_rq,
521         };
522         struct request *rq;
523
524         if (blk_queue_enter(q, flags))
525                 return NULL;
526
527         plug->nr_ios = 1;
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (unlikely(!rq))
531                 blk_queue_exit(q);
532         return rq;
533 }
534
535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
536                                                    blk_opf_t opf,
537                                                    blk_mq_req_flags_t flags)
538 {
539         struct blk_plug *plug = current->plug;
540         struct request *rq;
541
542         if (!plug)
543                 return NULL;
544
545         if (rq_list_empty(plug->cached_rq)) {
546                 if (plug->nr_ios == 1)
547                         return NULL;
548                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
549                 if (!rq)
550                         return NULL;
551         } else {
552                 rq = rq_list_peek(&plug->cached_rq);
553                 if (!rq || rq->q != q)
554                         return NULL;
555
556                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
557                         return NULL;
558                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
559                         return NULL;
560
561                 plug->cached_rq = rq_list_next(rq);
562         }
563
564         rq->cmd_flags = opf;
565         INIT_LIST_HEAD(&rq->queuelist);
566         return rq;
567 }
568
569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
570                 blk_mq_req_flags_t flags)
571 {
572         struct request *rq;
573
574         rq = blk_mq_alloc_cached_request(q, opf, flags);
575         if (!rq) {
576                 struct blk_mq_alloc_data data = {
577                         .q              = q,
578                         .flags          = flags,
579                         .cmd_flags      = opf,
580                         .nr_tags        = 1,
581                 };
582                 int ret;
583
584                 ret = blk_queue_enter(q, flags);
585                 if (ret)
586                         return ERR_PTR(ret);
587
588                 rq = __blk_mq_alloc_requests(&data);
589                 if (!rq)
590                         goto out_queue_exit;
591         }
592         rq->__data_len = 0;
593         rq->__sector = (sector_t) -1;
594         rq->bio = rq->biotail = NULL;
595         return rq;
596 out_queue_exit:
597         blk_queue_exit(q);
598         return ERR_PTR(-EWOULDBLOCK);
599 }
600 EXPORT_SYMBOL(blk_mq_alloc_request);
601
602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
603         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
604 {
605         struct blk_mq_alloc_data data = {
606                 .q              = q,
607                 .flags          = flags,
608                 .cmd_flags      = opf,
609                 .nr_tags        = 1,
610         };
611         u64 alloc_time_ns = 0;
612         struct request *rq;
613         unsigned int cpu;
614         unsigned int tag;
615         int ret;
616
617         /* alloc_time includes depth and tag waits */
618         if (blk_queue_rq_alloc_time(q))
619                 alloc_time_ns = ktime_get_ns();
620
621         /*
622          * If the tag allocator sleeps we could get an allocation for a
623          * different hardware context.  No need to complicate the low level
624          * allocator for this for the rare use case of a command tied to
625          * a specific queue.
626          */
627         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
628             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
629                 return ERR_PTR(-EINVAL);
630
631         if (hctx_idx >= q->nr_hw_queues)
632                 return ERR_PTR(-EIO);
633
634         ret = blk_queue_enter(q, flags);
635         if (ret)
636                 return ERR_PTR(ret);
637
638         /*
639          * Check if the hardware context is actually mapped to anything.
640          * If not tell the caller that it should skip this queue.
641          */
642         ret = -EXDEV;
643         data.hctx = xa_load(&q->hctx_table, hctx_idx);
644         if (!blk_mq_hw_queue_mapped(data.hctx))
645                 goto out_queue_exit;
646         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647         if (cpu >= nr_cpu_ids)
648                 goto out_queue_exit;
649         data.ctx = __blk_mq_get_ctx(q, cpu);
650
651         if (!q->elevator)
652                 blk_mq_tag_busy(data.hctx);
653         else
654                 data.rq_flags |= RQF_ELV;
655
656         if (flags & BLK_MQ_REQ_RESERVED)
657                 data.rq_flags |= RQF_RESV;
658
659         ret = -EWOULDBLOCK;
660         tag = blk_mq_get_tag(&data);
661         if (tag == BLK_MQ_NO_TAG)
662                 goto out_queue_exit;
663         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664                                         alloc_time_ns);
665         rq->__data_len = 0;
666         rq->__sector = (sector_t) -1;
667         rq->bio = rq->biotail = NULL;
668         return rq;
669
670 out_queue_exit:
671         blk_queue_exit(q);
672         return ERR_PTR(ret);
673 }
674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
675
676 static void __blk_mq_free_request(struct request *rq)
677 {
678         struct request_queue *q = rq->q;
679         struct blk_mq_ctx *ctx = rq->mq_ctx;
680         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
681         const int sched_tag = rq->internal_tag;
682
683         blk_crypto_free_request(rq);
684         blk_pm_mark_last_busy(rq);
685         rq->mq_hctx = NULL;
686         if (rq->tag != BLK_MQ_NO_TAG)
687                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688         if (sched_tag != BLK_MQ_NO_TAG)
689                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690         blk_mq_sched_restart(hctx);
691         blk_queue_exit(q);
692 }
693
694 void blk_mq_free_request(struct request *rq)
695 {
696         struct request_queue *q = rq->q;
697         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
698
699         if ((rq->rq_flags & RQF_ELVPRIV) &&
700             q->elevator->type->ops.finish_request)
701                 q->elevator->type->ops.finish_request(rq);
702
703         if (rq->rq_flags & RQF_MQ_INFLIGHT)
704                 __blk_mq_dec_active_requests(hctx);
705
706         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
707                 laptop_io_completion(q->disk->bdi);
708
709         rq_qos_done(q, rq);
710
711         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712         if (req_ref_put_and_test(rq))
713                 __blk_mq_free_request(rq);
714 }
715 EXPORT_SYMBOL_GPL(blk_mq_free_request);
716
717 void blk_mq_free_plug_rqs(struct blk_plug *plug)
718 {
719         struct request *rq;
720
721         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
722                 blk_mq_free_request(rq);
723 }
724
725 void blk_dump_rq_flags(struct request *rq, char *msg)
726 {
727         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
728                 rq->q->disk ? rq->q->disk->disk_name : "?",
729                 (__force unsigned long long) rq->cmd_flags);
730
731         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
732                (unsigned long long)blk_rq_pos(rq),
733                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
734         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
735                rq->bio, rq->biotail, blk_rq_bytes(rq));
736 }
737 EXPORT_SYMBOL(blk_dump_rq_flags);
738
739 static void req_bio_endio(struct request *rq, struct bio *bio,
740                           unsigned int nbytes, blk_status_t error)
741 {
742         if (unlikely(error)) {
743                 bio->bi_status = error;
744         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
745                 /*
746                  * Partial zone append completions cannot be supported as the
747                  * BIO fragments may end up not being written sequentially.
748                  */
749                 if (bio->bi_iter.bi_size != nbytes)
750                         bio->bi_status = BLK_STS_IOERR;
751                 else
752                         bio->bi_iter.bi_sector = rq->__sector;
753         }
754
755         bio_advance(bio, nbytes);
756
757         if (unlikely(rq->rq_flags & RQF_QUIET))
758                 bio_set_flag(bio, BIO_QUIET);
759         /* don't actually finish bio if it's part of flush sequence */
760         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
761                 bio_endio(bio);
762 }
763
764 static void blk_account_io_completion(struct request *req, unsigned int bytes)
765 {
766         if (req->part && blk_do_io_stat(req)) {
767                 const int sgrp = op_stat_group(req_op(req));
768
769                 part_stat_lock();
770                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
771                 part_stat_unlock();
772         }
773 }
774
775 static void blk_print_req_error(struct request *req, blk_status_t status)
776 {
777         printk_ratelimited(KERN_ERR
778                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
779                 "phys_seg %u prio class %u\n",
780                 blk_status_to_str(status),
781                 req->q->disk ? req->q->disk->disk_name : "?",
782                 blk_rq_pos(req), (__force u32)req_op(req),
783                 blk_op_str(req_op(req)),
784                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
785                 req->nr_phys_segments,
786                 IOPRIO_PRIO_CLASS(req->ioprio));
787 }
788
789 /*
790  * Fully end IO on a request. Does not support partial completions, or
791  * errors.
792  */
793 static void blk_complete_request(struct request *req)
794 {
795         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
796         int total_bytes = blk_rq_bytes(req);
797         struct bio *bio = req->bio;
798
799         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
800
801         if (!bio)
802                 return;
803
804 #ifdef CONFIG_BLK_DEV_INTEGRITY
805         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806                 req->q->integrity.profile->complete_fn(req, total_bytes);
807 #endif
808
809         /*
810          * Upper layers may call blk_crypto_evict_key() anytime after the last
811          * bio_endio().  Therefore, the keyslot must be released before that.
812          */
813         blk_crypto_rq_put_keyslot(req);
814
815         blk_account_io_completion(req, total_bytes);
816
817         do {
818                 struct bio *next = bio->bi_next;
819
820                 /* Completion has already been traced */
821                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
822
823                 if (req_op(req) == REQ_OP_ZONE_APPEND)
824                         bio->bi_iter.bi_sector = req->__sector;
825
826                 if (!is_flush)
827                         bio_endio(bio);
828                 bio = next;
829         } while (bio);
830
831         /*
832          * Reset counters so that the request stacking driver
833          * can find how many bytes remain in the request
834          * later.
835          */
836         if (!req->end_io) {
837                 req->bio = NULL;
838                 req->__data_len = 0;
839         }
840 }
841
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865                 unsigned int nr_bytes)
866 {
867         int total_bytes;
868
869         trace_block_rq_complete(req, error, nr_bytes);
870
871         if (!req->bio)
872                 return false;
873
874 #ifdef CONFIG_BLK_DEV_INTEGRITY
875         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
876             error == BLK_STS_OK)
877                 req->q->integrity.profile->complete_fn(req, nr_bytes);
878 #endif
879
880         /*
881          * Upper layers may call blk_crypto_evict_key() anytime after the last
882          * bio_endio().  Therefore, the keyslot must be released before that.
883          */
884         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885                 __blk_crypto_rq_put_keyslot(req);
886
887         if (unlikely(error && !blk_rq_is_passthrough(req) &&
888                      !(req->rq_flags & RQF_QUIET)) &&
889                      !test_bit(GD_DEAD, &req->q->disk->state)) {
890                 blk_print_req_error(req, error);
891                 trace_block_rq_error(req, error, nr_bytes);
892         }
893
894         blk_account_io_completion(req, nr_bytes);
895
896         total_bytes = 0;
897         while (req->bio) {
898                 struct bio *bio = req->bio;
899                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
900
901                 if (bio_bytes == bio->bi_iter.bi_size)
902                         req->bio = bio->bi_next;
903
904                 /* Completion has already been traced */
905                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
906                 req_bio_endio(req, bio, bio_bytes, error);
907
908                 total_bytes += bio_bytes;
909                 nr_bytes -= bio_bytes;
910
911                 if (!nr_bytes)
912                         break;
913         }
914
915         /*
916          * completely done
917          */
918         if (!req->bio) {
919                 /*
920                  * Reset counters so that the request stacking driver
921                  * can find how many bytes remain in the request
922                  * later.
923                  */
924                 req->__data_len = 0;
925                 return false;
926         }
927
928         req->__data_len -= total_bytes;
929
930         /* update sector only for requests with clear definition of sector */
931         if (!blk_rq_is_passthrough(req))
932                 req->__sector += total_bytes >> 9;
933
934         /* mixed attributes always follow the first bio */
935         if (req->rq_flags & RQF_MIXED_MERGE) {
936                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
937                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
938         }
939
940         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
941                 /*
942                  * If total number of sectors is less than the first segment
943                  * size, something has gone terribly wrong.
944                  */
945                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
946                         blk_dump_rq_flags(req, "request botched");
947                         req->__data_len = blk_rq_cur_bytes(req);
948                 }
949
950                 /* recalculate the number of segments */
951                 req->nr_phys_segments = blk_recalc_rq_segments(req);
952         }
953
954         return true;
955 }
956 EXPORT_SYMBOL_GPL(blk_update_request);
957
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960         /*
961          * Account IO completion.  flush_rq isn't accounted as a
962          * normal IO on queueing nor completion.  Accounting the
963          * containing request is enough.
964          */
965         if (blk_do_io_stat(req) && req->part &&
966             !(req->rq_flags & RQF_FLUSH_SEQ)) {
967                 const int sgrp = op_stat_group(req_op(req));
968
969                 part_stat_lock();
970                 update_io_ticks(req->part, jiffies, true);
971                 part_stat_inc(req->part, ios[sgrp]);
972                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
973                 part_stat_unlock();
974         }
975 }
976
977 static inline void blk_account_io_start(struct request *req)
978 {
979         if (blk_do_io_stat(req)) {
980                 /*
981                  * All non-passthrough requests are created from a bio with one
982                  * exception: when a flush command that is part of a flush sequence
983                  * generated by the state machine in blk-flush.c is cloned onto the
984                  * lower device by dm-multipath we can get here without a bio.
985                  */
986                 if (req->bio)
987                         req->part = req->bio->bi_bdev;
988                 else
989                         req->part = req->q->disk->part0;
990
991                 part_stat_lock();
992                 update_io_ticks(req->part, jiffies, false);
993                 part_stat_unlock();
994         }
995 }
996
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999         if (rq->rq_flags & RQF_STATS)
1000                 blk_stat_add(rq, now);
1001
1002         blk_mq_sched_completed_request(rq, now);
1003         blk_account_io_done(rq, now);
1004 }
1005
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008         if (blk_mq_need_time_stamp(rq))
1009                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1010
1011         if (rq->end_io) {
1012                 rq_qos_done(rq->q, rq);
1013                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014                         blk_mq_free_request(rq);
1015         } else {
1016                 blk_mq_free_request(rq);
1017         }
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024                 BUG();
1025         __blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028
1029 #define TAG_COMP_BATCH          32
1030
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032                                           int *tag_array, int nr_tags)
1033 {
1034         struct request_queue *q = hctx->queue;
1035
1036         /*
1037          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038          * update hctx->nr_active in batch
1039          */
1040         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041                 __blk_mq_sub_active_requests(hctx, nr_tags);
1042
1043         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049         int tags[TAG_COMP_BATCH], nr_tags = 0;
1050         struct blk_mq_hw_ctx *cur_hctx = NULL;
1051         struct request *rq;
1052         u64 now = 0;
1053
1054         if (iob->need_ts)
1055                 now = ktime_get_ns();
1056
1057         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058                 prefetch(rq->bio);
1059                 prefetch(rq->rq_next);
1060
1061                 blk_complete_request(rq);
1062                 if (iob->need_ts)
1063                         __blk_mq_end_request_acct(rq, now);
1064
1065                 rq_qos_done(rq->q, rq);
1066
1067                 /*
1068                  * If end_io handler returns NONE, then it still has
1069                  * ownership of the request.
1070                  */
1071                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072                         continue;
1073
1074                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075                 if (!req_ref_put_and_test(rq))
1076                         continue;
1077
1078                 blk_crypto_free_request(rq);
1079                 blk_pm_mark_last_busy(rq);
1080
1081                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082                         if (cur_hctx)
1083                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084                         nr_tags = 0;
1085                         cur_hctx = rq->mq_hctx;
1086                 }
1087                 tags[nr_tags++] = rq->tag;
1088         }
1089
1090         if (nr_tags)
1091                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098         struct request *rq, *next;
1099
1100         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101                 rq->q->mq_ops->complete(rq);
1102 }
1103
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112         return 0;
1113 }
1114
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122         int cpu = raw_smp_processor_id();
1123
1124         if (!IS_ENABLED(CONFIG_SMP) ||
1125             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126                 return false;
1127         /*
1128          * With force threaded interrupts enabled, raising softirq from an SMP
1129          * function call will always result in waking the ksoftirqd thread.
1130          * This is probably worse than completing the request on a different
1131          * cache domain.
1132          */
1133         if (force_irqthreads())
1134                 return false;
1135
1136         /* same CPU or cache domain?  Complete locally */
1137         if (cpu == rq->mq_ctx->cpu ||
1138             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140                 return false;
1141
1142         /* don't try to IPI to an offline CPU */
1143         return cpu_online(rq->mq_ctx->cpu);
1144 }
1145
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148         struct llist_head *list;
1149         unsigned int cpu;
1150
1151         cpu = rq->mq_ctx->cpu;
1152         list = &per_cpu(blk_cpu_done, cpu);
1153         if (llist_add(&rq->ipi_list, list)) {
1154                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155                 smp_call_function_single_async(cpu, &rq->csd);
1156         }
1157 }
1158
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161         struct llist_head *list;
1162
1163         preempt_disable();
1164         list = this_cpu_ptr(&blk_cpu_done);
1165         if (llist_add(&rq->ipi_list, list))
1166                 raise_softirq(BLOCK_SOFTIRQ);
1167         preempt_enable();
1168 }
1169
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173
1174         /*
1175          * For request which hctx has only one ctx mapping,
1176          * or a polled request, always complete locally,
1177          * it's pointless to redirect the completion.
1178          */
1179         if (rq->mq_hctx->nr_ctx == 1 ||
1180                 rq->cmd_flags & REQ_POLLED)
1181                 return false;
1182
1183         if (blk_mq_complete_need_ipi(rq)) {
1184                 blk_mq_complete_send_ipi(rq);
1185                 return true;
1186         }
1187
1188         if (rq->q->nr_hw_queues == 1) {
1189                 blk_mq_raise_softirq(rq);
1190                 return true;
1191         }
1192         return false;
1193 }
1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1195
1196 /**
1197  * blk_mq_complete_request - end I/O on a request
1198  * @rq:         the request being processed
1199  *
1200  * Description:
1201  *      Complete a request by scheduling the ->complete_rq operation.
1202  **/
1203 void blk_mq_complete_request(struct request *rq)
1204 {
1205         if (!blk_mq_complete_request_remote(rq))
1206                 rq->q->mq_ops->complete(rq);
1207 }
1208 EXPORT_SYMBOL(blk_mq_complete_request);
1209
1210 /**
1211  * blk_mq_start_request - Start processing a request
1212  * @rq: Pointer to request to be started
1213  *
1214  * Function used by device drivers to notify the block layer that a request
1215  * is going to be processed now, so blk layer can do proper initializations
1216  * such as starting the timeout timer.
1217  */
1218 void blk_mq_start_request(struct request *rq)
1219 {
1220         struct request_queue *q = rq->q;
1221
1222         trace_block_rq_issue(rq);
1223
1224         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1225                 rq->io_start_time_ns = ktime_get_ns();
1226                 rq->stats_sectors = blk_rq_sectors(rq);
1227                 rq->rq_flags |= RQF_STATS;
1228                 rq_qos_issue(q, rq);
1229         }
1230
1231         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1232
1233         blk_add_timer(rq);
1234         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1235
1236 #ifdef CONFIG_BLK_DEV_INTEGRITY
1237         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1238                 q->integrity.profile->prepare_fn(rq);
1239 #endif
1240         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1241                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_request);
1244
1245 /*
1246  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1247  * queues. This is important for md arrays to benefit from merging
1248  * requests.
1249  */
1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1251 {
1252         if (plug->multiple_queues)
1253                 return BLK_MAX_REQUEST_COUNT * 2;
1254         return BLK_MAX_REQUEST_COUNT;
1255 }
1256
1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1258 {
1259         struct request *last = rq_list_peek(&plug->mq_list);
1260
1261         if (!plug->rq_count) {
1262                 trace_block_plug(rq->q);
1263         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1264                    (!blk_queue_nomerges(rq->q) &&
1265                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1266                 blk_mq_flush_plug_list(plug, false);
1267                 last = NULL;
1268                 trace_block_plug(rq->q);
1269         }
1270
1271         if (!plug->multiple_queues && last && last->q != rq->q)
1272                 plug->multiple_queues = true;
1273         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1274                 plug->has_elevator = true;
1275         rq->rq_next = NULL;
1276         rq_list_add(&plug->mq_list, rq);
1277         plug->rq_count++;
1278 }
1279
1280 /**
1281  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1282  * @rq:         request to insert
1283  * @at_head:    insert request at head or tail of queue
1284  *
1285  * Description:
1286  *    Insert a fully prepared request at the back of the I/O scheduler queue
1287  *    for execution.  Don't wait for completion.
1288  *
1289  * Note:
1290  *    This function will invoke @done directly if the queue is dead.
1291  */
1292 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1293 {
1294         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1295
1296         WARN_ON(irqs_disabled());
1297         WARN_ON(!blk_rq_is_passthrough(rq));
1298
1299         blk_account_io_start(rq);
1300
1301         /*
1302          * As plugging can be enabled for passthrough requests on a zoned
1303          * device, directly accessing the plug instead of using blk_mq_plug()
1304          * should not have any consequences.
1305          */
1306         if (current->plug && !at_head) {
1307                 blk_add_rq_to_plug(current->plug, rq);
1308                 return;
1309         }
1310
1311         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1312         blk_mq_run_hw_queue(hctx, false);
1313 }
1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1315
1316 struct blk_rq_wait {
1317         struct completion done;
1318         blk_status_t ret;
1319 };
1320
1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1322 {
1323         struct blk_rq_wait *wait = rq->end_io_data;
1324
1325         wait->ret = ret;
1326         complete(&wait->done);
1327         return RQ_END_IO_NONE;
1328 }
1329
1330 bool blk_rq_is_poll(struct request *rq)
1331 {
1332         if (!rq->mq_hctx)
1333                 return false;
1334         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1335                 return false;
1336         return true;
1337 }
1338 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1339
1340 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1341 {
1342         do {
1343                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1344                 cond_resched();
1345         } while (!completion_done(wait));
1346 }
1347
1348 /**
1349  * blk_execute_rq - insert a request into queue for execution
1350  * @rq:         request to insert
1351  * @at_head:    insert request at head or tail of queue
1352  *
1353  * Description:
1354  *    Insert a fully prepared request at the back of the I/O scheduler queue
1355  *    for execution and wait for completion.
1356  * Return: The blk_status_t result provided to blk_mq_end_request().
1357  */
1358 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1359 {
1360         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1361         struct blk_rq_wait wait = {
1362                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1363         };
1364
1365         WARN_ON(irqs_disabled());
1366         WARN_ON(!blk_rq_is_passthrough(rq));
1367
1368         rq->end_io_data = &wait;
1369         rq->end_io = blk_end_sync_rq;
1370
1371         blk_account_io_start(rq);
1372         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1373         blk_mq_run_hw_queue(hctx, false);
1374
1375         if (blk_rq_is_poll(rq)) {
1376                 blk_rq_poll_completion(rq, &wait.done);
1377         } else {
1378                 /*
1379                  * Prevent hang_check timer from firing at us during very long
1380                  * I/O
1381                  */
1382                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1383
1384                 if (hang_check)
1385                         while (!wait_for_completion_io_timeout(&wait.done,
1386                                         hang_check * (HZ/2)))
1387                                 ;
1388                 else
1389                         wait_for_completion_io(&wait.done);
1390         }
1391
1392         return wait.ret;
1393 }
1394 EXPORT_SYMBOL(blk_execute_rq);
1395
1396 static void __blk_mq_requeue_request(struct request *rq)
1397 {
1398         struct request_queue *q = rq->q;
1399
1400         blk_mq_put_driver_tag(rq);
1401
1402         trace_block_rq_requeue(rq);
1403         rq_qos_requeue(q, rq);
1404
1405         if (blk_mq_request_started(rq)) {
1406                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1407                 rq->rq_flags &= ~RQF_TIMED_OUT;
1408         }
1409 }
1410
1411 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1412 {
1413         struct request_queue *q = rq->q;
1414
1415         __blk_mq_requeue_request(rq);
1416
1417         /* this request will be re-inserted to io scheduler queue */
1418         blk_mq_sched_requeue_request(rq);
1419
1420         blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
1421
1422         if (kick_requeue_list)
1423                 blk_mq_kick_requeue_list(q);
1424 }
1425 EXPORT_SYMBOL(blk_mq_requeue_request);
1426
1427 static void blk_mq_requeue_work(struct work_struct *work)
1428 {
1429         struct request_queue *q =
1430                 container_of(work, struct request_queue, requeue_work.work);
1431         LIST_HEAD(rq_list);
1432         struct request *rq, *next;
1433
1434         spin_lock_irq(&q->requeue_lock);
1435         list_splice_init(&q->requeue_list, &rq_list);
1436         spin_unlock_irq(&q->requeue_lock);
1437
1438         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1439                 /*
1440                  * If RQF_DONTPREP ist set, the request has been started by the
1441                  * driver already and might have driver-specific data allocated
1442                  * already.  Insert it into the hctx dispatch list to avoid
1443                  * block layer merges for the request.
1444                  */
1445                 if (rq->rq_flags & RQF_DONTPREP) {
1446                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1447                         list_del_init(&rq->queuelist);
1448                         blk_mq_request_bypass_insert(rq, 0);
1449                 } else if (rq->rq_flags & RQF_SOFTBARRIER) {
1450                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1451                         list_del_init(&rq->queuelist);
1452                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1453                 }
1454         }
1455
1456         while (!list_empty(&rq_list)) {
1457                 rq = list_entry(rq_list.next, struct request, queuelist);
1458                 list_del_init(&rq->queuelist);
1459                 blk_mq_insert_request(rq, 0);
1460         }
1461
1462         blk_mq_run_hw_queues(q, false);
1463 }
1464
1465 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags)
1466 {
1467         struct request_queue *q = rq->q;
1468         unsigned long flags;
1469
1470         /*
1471          * We abuse this flag that is otherwise used by the I/O scheduler to
1472          * request head insertion from the workqueue.
1473          */
1474         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1475
1476         spin_lock_irqsave(&q->requeue_lock, flags);
1477         if (insert_flags & BLK_MQ_INSERT_AT_HEAD) {
1478                 rq->rq_flags |= RQF_SOFTBARRIER;
1479                 list_add(&rq->queuelist, &q->requeue_list);
1480         } else {
1481                 list_add_tail(&rq->queuelist, &q->requeue_list);
1482         }
1483         spin_unlock_irqrestore(&q->requeue_lock, flags);
1484 }
1485
1486 void blk_mq_kick_requeue_list(struct request_queue *q)
1487 {
1488         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1489 }
1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1491
1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1493                                     unsigned long msecs)
1494 {
1495         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1496                                     msecs_to_jiffies(msecs));
1497 }
1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1499
1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1501 {
1502         /*
1503          * If we find a request that isn't idle we know the queue is busy
1504          * as it's checked in the iter.
1505          * Return false to stop the iteration.
1506          */
1507         if (blk_mq_request_started(rq)) {
1508                 bool *busy = priv;
1509
1510                 *busy = true;
1511                 return false;
1512         }
1513
1514         return true;
1515 }
1516
1517 bool blk_mq_queue_inflight(struct request_queue *q)
1518 {
1519         bool busy = false;
1520
1521         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1522         return busy;
1523 }
1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1525
1526 static void blk_mq_rq_timed_out(struct request *req)
1527 {
1528         req->rq_flags |= RQF_TIMED_OUT;
1529         if (req->q->mq_ops->timeout) {
1530                 enum blk_eh_timer_return ret;
1531
1532                 ret = req->q->mq_ops->timeout(req);
1533                 if (ret == BLK_EH_DONE)
1534                         return;
1535                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1536         }
1537
1538         blk_add_timer(req);
1539 }
1540
1541 struct blk_expired_data {
1542         bool has_timedout_rq;
1543         unsigned long next;
1544         unsigned long timeout_start;
1545 };
1546
1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1548 {
1549         unsigned long deadline;
1550
1551         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1552                 return false;
1553         if (rq->rq_flags & RQF_TIMED_OUT)
1554                 return false;
1555
1556         deadline = READ_ONCE(rq->deadline);
1557         if (time_after_eq(expired->timeout_start, deadline))
1558                 return true;
1559
1560         if (expired->next == 0)
1561                 expired->next = deadline;
1562         else if (time_after(expired->next, deadline))
1563                 expired->next = deadline;
1564         return false;
1565 }
1566
1567 void blk_mq_put_rq_ref(struct request *rq)
1568 {
1569         if (is_flush_rq(rq)) {
1570                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1571                         blk_mq_free_request(rq);
1572         } else if (req_ref_put_and_test(rq)) {
1573                 __blk_mq_free_request(rq);
1574         }
1575 }
1576
1577 static bool blk_mq_check_expired(struct request *rq, void *priv)
1578 {
1579         struct blk_expired_data *expired = priv;
1580
1581         /*
1582          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1583          * be reallocated underneath the timeout handler's processing, then
1584          * the expire check is reliable. If the request is not expired, then
1585          * it was completed and reallocated as a new request after returning
1586          * from blk_mq_check_expired().
1587          */
1588         if (blk_mq_req_expired(rq, expired)) {
1589                 expired->has_timedout_rq = true;
1590                 return false;
1591         }
1592         return true;
1593 }
1594
1595 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1596 {
1597         struct blk_expired_data *expired = priv;
1598
1599         if (blk_mq_req_expired(rq, expired))
1600                 blk_mq_rq_timed_out(rq);
1601         return true;
1602 }
1603
1604 static void blk_mq_timeout_work(struct work_struct *work)
1605 {
1606         struct request_queue *q =
1607                 container_of(work, struct request_queue, timeout_work);
1608         struct blk_expired_data expired = {
1609                 .timeout_start = jiffies,
1610         };
1611         struct blk_mq_hw_ctx *hctx;
1612         unsigned long i;
1613
1614         /* A deadlock might occur if a request is stuck requiring a
1615          * timeout at the same time a queue freeze is waiting
1616          * completion, since the timeout code would not be able to
1617          * acquire the queue reference here.
1618          *
1619          * That's why we don't use blk_queue_enter here; instead, we use
1620          * percpu_ref_tryget directly, because we need to be able to
1621          * obtain a reference even in the short window between the queue
1622          * starting to freeze, by dropping the first reference in
1623          * blk_freeze_queue_start, and the moment the last request is
1624          * consumed, marked by the instant q_usage_counter reaches
1625          * zero.
1626          */
1627         if (!percpu_ref_tryget(&q->q_usage_counter))
1628                 return;
1629
1630         /* check if there is any timed-out request */
1631         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1632         if (expired.has_timedout_rq) {
1633                 /*
1634                  * Before walking tags, we must ensure any submit started
1635                  * before the current time has finished. Since the submit
1636                  * uses srcu or rcu, wait for a synchronization point to
1637                  * ensure all running submits have finished
1638                  */
1639                 blk_mq_wait_quiesce_done(q->tag_set);
1640
1641                 expired.next = 0;
1642                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1643         }
1644
1645         if (expired.next != 0) {
1646                 mod_timer(&q->timeout, expired.next);
1647         } else {
1648                 /*
1649                  * Request timeouts are handled as a forward rolling timer. If
1650                  * we end up here it means that no requests are pending and
1651                  * also that no request has been pending for a while. Mark
1652                  * each hctx as idle.
1653                  */
1654                 queue_for_each_hw_ctx(q, hctx, i) {
1655                         /* the hctx may be unmapped, so check it here */
1656                         if (blk_mq_hw_queue_mapped(hctx))
1657                                 blk_mq_tag_idle(hctx);
1658                 }
1659         }
1660         blk_queue_exit(q);
1661 }
1662
1663 struct flush_busy_ctx_data {
1664         struct blk_mq_hw_ctx *hctx;
1665         struct list_head *list;
1666 };
1667
1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1669 {
1670         struct flush_busy_ctx_data *flush_data = data;
1671         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1672         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1673         enum hctx_type type = hctx->type;
1674
1675         spin_lock(&ctx->lock);
1676         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1677         sbitmap_clear_bit(sb, bitnr);
1678         spin_unlock(&ctx->lock);
1679         return true;
1680 }
1681
1682 /*
1683  * Process software queues that have been marked busy, splicing them
1684  * to the for-dispatch
1685  */
1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1687 {
1688         struct flush_busy_ctx_data data = {
1689                 .hctx = hctx,
1690                 .list = list,
1691         };
1692
1693         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1694 }
1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1696
1697 struct dispatch_rq_data {
1698         struct blk_mq_hw_ctx *hctx;
1699         struct request *rq;
1700 };
1701
1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1703                 void *data)
1704 {
1705         struct dispatch_rq_data *dispatch_data = data;
1706         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1707         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1708         enum hctx_type type = hctx->type;
1709
1710         spin_lock(&ctx->lock);
1711         if (!list_empty(&ctx->rq_lists[type])) {
1712                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1713                 list_del_init(&dispatch_data->rq->queuelist);
1714                 if (list_empty(&ctx->rq_lists[type]))
1715                         sbitmap_clear_bit(sb, bitnr);
1716         }
1717         spin_unlock(&ctx->lock);
1718
1719         return !dispatch_data->rq;
1720 }
1721
1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1723                                         struct blk_mq_ctx *start)
1724 {
1725         unsigned off = start ? start->index_hw[hctx->type] : 0;
1726         struct dispatch_rq_data data = {
1727                 .hctx = hctx,
1728                 .rq   = NULL,
1729         };
1730
1731         __sbitmap_for_each_set(&hctx->ctx_map, off,
1732                                dispatch_rq_from_ctx, &data);
1733
1734         return data.rq;
1735 }
1736
1737 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1738 {
1739         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1740         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1741         int tag;
1742
1743         blk_mq_tag_busy(rq->mq_hctx);
1744
1745         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1746                 bt = &rq->mq_hctx->tags->breserved_tags;
1747                 tag_offset = 0;
1748         } else {
1749                 if (!hctx_may_queue(rq->mq_hctx, bt))
1750                         return false;
1751         }
1752
1753         tag = __sbitmap_queue_get(bt);
1754         if (tag == BLK_MQ_NO_TAG)
1755                 return false;
1756
1757         rq->tag = tag + tag_offset;
1758         return true;
1759 }
1760
1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1762 {
1763         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1764                 return false;
1765
1766         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1767                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1768                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1769                 __blk_mq_inc_active_requests(hctx);
1770         }
1771         hctx->tags->rqs[rq->tag] = rq;
1772         return true;
1773 }
1774
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776                                 int flags, void *key)
1777 {
1778         struct blk_mq_hw_ctx *hctx;
1779
1780         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781
1782         spin_lock(&hctx->dispatch_wait_lock);
1783         if (!list_empty(&wait->entry)) {
1784                 struct sbitmap_queue *sbq;
1785
1786                 list_del_init(&wait->entry);
1787                 sbq = &hctx->tags->bitmap_tags;
1788                 atomic_dec(&sbq->ws_active);
1789         }
1790         spin_unlock(&hctx->dispatch_wait_lock);
1791
1792         blk_mq_run_hw_queue(hctx, true);
1793         return 1;
1794 }
1795
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803                                  struct request *rq)
1804 {
1805         struct sbitmap_queue *sbq;
1806         struct wait_queue_head *wq;
1807         wait_queue_entry_t *wait;
1808         bool ret;
1809
1810         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811             !(blk_mq_is_shared_tags(hctx->flags))) {
1812                 blk_mq_sched_mark_restart_hctx(hctx);
1813
1814                 /*
1815                  * It's possible that a tag was freed in the window between the
1816                  * allocation failure and adding the hardware queue to the wait
1817                  * queue.
1818                  *
1819                  * Don't clear RESTART here, someone else could have set it.
1820                  * At most this will cost an extra queue run.
1821                  */
1822                 return blk_mq_get_driver_tag(rq);
1823         }
1824
1825         wait = &hctx->dispatch_wait;
1826         if (!list_empty_careful(&wait->entry))
1827                 return false;
1828
1829         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830                 sbq = &hctx->tags->breserved_tags;
1831         else
1832                 sbq = &hctx->tags->bitmap_tags;
1833         wq = &bt_wait_ptr(sbq, hctx)->wait;
1834
1835         spin_lock_irq(&wq->lock);
1836         spin_lock(&hctx->dispatch_wait_lock);
1837         if (!list_empty(&wait->entry)) {
1838                 spin_unlock(&hctx->dispatch_wait_lock);
1839                 spin_unlock_irq(&wq->lock);
1840                 return false;
1841         }
1842
1843         atomic_inc(&sbq->ws_active);
1844         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845         __add_wait_queue(wq, wait);
1846
1847         /*
1848          * It's possible that a tag was freed in the window between the
1849          * allocation failure and adding the hardware queue to the wait
1850          * queue.
1851          */
1852         ret = blk_mq_get_driver_tag(rq);
1853         if (!ret) {
1854                 spin_unlock(&hctx->dispatch_wait_lock);
1855                 spin_unlock_irq(&wq->lock);
1856                 return false;
1857         }
1858
1859         /*
1860          * We got a tag, remove ourselves from the wait queue to ensure
1861          * someone else gets the wakeup.
1862          */
1863         list_del_init(&wait->entry);
1864         atomic_dec(&sbq->ws_active);
1865         spin_unlock(&hctx->dispatch_wait_lock);
1866         spin_unlock_irq(&wq->lock);
1867
1868         return true;
1869 }
1870
1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1873 /*
1874  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1875  * - EWMA is one simple way to compute running average value
1876  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1877  * - take 4 as factor for avoiding to get too small(0) result, and this
1878  *   factor doesn't matter because EWMA decreases exponentially
1879  */
1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1881 {
1882         unsigned int ewma;
1883
1884         ewma = hctx->dispatch_busy;
1885
1886         if (!ewma && !busy)
1887                 return;
1888
1889         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1890         if (busy)
1891                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1892         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1893
1894         hctx->dispatch_busy = ewma;
1895 }
1896
1897 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1898
1899 static void blk_mq_handle_dev_resource(struct request *rq,
1900                                        struct list_head *list)
1901 {
1902         list_add(&rq->queuelist, list);
1903         __blk_mq_requeue_request(rq);
1904 }
1905
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907                                         struct list_head *zone_list)
1908 {
1909         /*
1910          * If we end up here it is because we cannot dispatch a request to a
1911          * specific zone due to LLD level zone-write locking or other zone
1912          * related resource not being available. In this case, set the request
1913          * aside in zone_list for retrying it later.
1914          */
1915         list_add(&rq->queuelist, zone_list);
1916         __blk_mq_requeue_request(rq);
1917 }
1918
1919 enum prep_dispatch {
1920         PREP_DISPATCH_OK,
1921         PREP_DISPATCH_NO_TAG,
1922         PREP_DISPATCH_NO_BUDGET,
1923 };
1924
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926                                                   bool need_budget)
1927 {
1928         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929         int budget_token = -1;
1930
1931         if (need_budget) {
1932                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1933                 if (budget_token < 0) {
1934                         blk_mq_put_driver_tag(rq);
1935                         return PREP_DISPATCH_NO_BUDGET;
1936                 }
1937                 blk_mq_set_rq_budget_token(rq, budget_token);
1938         }
1939
1940         if (!blk_mq_get_driver_tag(rq)) {
1941                 /*
1942                  * The initial allocation attempt failed, so we need to
1943                  * rerun the hardware queue when a tag is freed. The
1944                  * waitqueue takes care of that. If the queue is run
1945                  * before we add this entry back on the dispatch list,
1946                  * we'll re-run it below.
1947                  */
1948                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949                         /*
1950                          * All budgets not got from this function will be put
1951                          * together during handling partial dispatch
1952                          */
1953                         if (need_budget)
1954                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1955                         return PREP_DISPATCH_NO_TAG;
1956                 }
1957         }
1958
1959         return PREP_DISPATCH_OK;
1960 }
1961
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964                 struct list_head *list)
1965 {
1966         struct request *rq;
1967
1968         list_for_each_entry(rq, list, queuelist) {
1969                 int budget_token = blk_mq_get_rq_budget_token(rq);
1970
1971                 if (budget_token >= 0)
1972                         blk_mq_put_dispatch_budget(q, budget_token);
1973         }
1974 }
1975
1976 /*
1977  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1978  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1979  * details)
1980  * Attention, we should explicitly call this in unusual cases:
1981  *  1) did not queue everything initially scheduled to queue
1982  *  2) the last attempt to queue a request failed
1983  */
1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1985                               bool from_schedule)
1986 {
1987         if (hctx->queue->mq_ops->commit_rqs && queued) {
1988                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1989                 hctx->queue->mq_ops->commit_rqs(hctx);
1990         }
1991 }
1992
1993 /*
1994  * Returns true if we did some work AND can potentially do more.
1995  */
1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1997                              unsigned int nr_budgets)
1998 {
1999         enum prep_dispatch prep;
2000         struct request_queue *q = hctx->queue;
2001         struct request *rq;
2002         int queued;
2003         blk_status_t ret = BLK_STS_OK;
2004         LIST_HEAD(zone_list);
2005         bool needs_resource = false;
2006
2007         if (list_empty(list))
2008                 return false;
2009
2010         /*
2011          * Now process all the entries, sending them to the driver.
2012          */
2013         queued = 0;
2014         do {
2015                 struct blk_mq_queue_data bd;
2016
2017                 rq = list_first_entry(list, struct request, queuelist);
2018
2019                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2020                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2021                 if (prep != PREP_DISPATCH_OK)
2022                         break;
2023
2024                 list_del_init(&rq->queuelist);
2025
2026                 bd.rq = rq;
2027                 bd.last = list_empty(list);
2028
2029                 /*
2030                  * once the request is queued to lld, no need to cover the
2031                  * budget any more
2032                  */
2033                 if (nr_budgets)
2034                         nr_budgets--;
2035                 ret = q->mq_ops->queue_rq(hctx, &bd);
2036                 switch (ret) {
2037                 case BLK_STS_OK:
2038                         queued++;
2039                         break;
2040                 case BLK_STS_RESOURCE:
2041                         needs_resource = true;
2042                         fallthrough;
2043                 case BLK_STS_DEV_RESOURCE:
2044                         blk_mq_handle_dev_resource(rq, list);
2045                         goto out;
2046                 case BLK_STS_ZONE_RESOURCE:
2047                         /*
2048                          * Move the request to zone_list and keep going through
2049                          * the dispatch list to find more requests the drive can
2050                          * accept.
2051                          */
2052                         blk_mq_handle_zone_resource(rq, &zone_list);
2053                         needs_resource = true;
2054                         break;
2055                 default:
2056                         blk_mq_end_request(rq, ret);
2057                 }
2058         } while (!list_empty(list));
2059 out:
2060         if (!list_empty(&zone_list))
2061                 list_splice_tail_init(&zone_list, list);
2062
2063         /* If we didn't flush the entire list, we could have told the driver
2064          * there was more coming, but that turned out to be a lie.
2065          */
2066         if (!list_empty(list) || ret != BLK_STS_OK)
2067                 blk_mq_commit_rqs(hctx, queued, false);
2068
2069         /*
2070          * Any items that need requeuing? Stuff them into hctx->dispatch,
2071          * that is where we will continue on next queue run.
2072          */
2073         if (!list_empty(list)) {
2074                 bool needs_restart;
2075                 /* For non-shared tags, the RESTART check will suffice */
2076                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2077                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2078                         blk_mq_is_shared_tags(hctx->flags));
2079
2080                 if (nr_budgets)
2081                         blk_mq_release_budgets(q, list);
2082
2083                 spin_lock(&hctx->lock);
2084                 list_splice_tail_init(list, &hctx->dispatch);
2085                 spin_unlock(&hctx->lock);
2086
2087                 /*
2088                  * Order adding requests to hctx->dispatch and checking
2089                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2090                  * in blk_mq_sched_restart(). Avoid restart code path to
2091                  * miss the new added requests to hctx->dispatch, meantime
2092                  * SCHED_RESTART is observed here.
2093                  */
2094                 smp_mb();
2095
2096                 /*
2097                  * If SCHED_RESTART was set by the caller of this function and
2098                  * it is no longer set that means that it was cleared by another
2099                  * thread and hence that a queue rerun is needed.
2100                  *
2101                  * If 'no_tag' is set, that means that we failed getting
2102                  * a driver tag with an I/O scheduler attached. If our dispatch
2103                  * waitqueue is no longer active, ensure that we run the queue
2104                  * AFTER adding our entries back to the list.
2105                  *
2106                  * If no I/O scheduler has been configured it is possible that
2107                  * the hardware queue got stopped and restarted before requests
2108                  * were pushed back onto the dispatch list. Rerun the queue to
2109                  * avoid starvation. Notes:
2110                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2111                  *   been stopped before rerunning a queue.
2112                  * - Some but not all block drivers stop a queue before
2113                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2114                  *   and dm-rq.
2115                  *
2116                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2117                  * bit is set, run queue after a delay to avoid IO stalls
2118                  * that could otherwise occur if the queue is idle.  We'll do
2119                  * similar if we couldn't get budget or couldn't lock a zone
2120                  * and SCHED_RESTART is set.
2121                  */
2122                 needs_restart = blk_mq_sched_needs_restart(hctx);
2123                 if (prep == PREP_DISPATCH_NO_BUDGET)
2124                         needs_resource = true;
2125                 if (!needs_restart ||
2126                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2127                         blk_mq_run_hw_queue(hctx, true);
2128                 else if (needs_resource)
2129                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2130
2131                 blk_mq_update_dispatch_busy(hctx, true);
2132                 return false;
2133         }
2134
2135         blk_mq_update_dispatch_busy(hctx, false);
2136         return true;
2137 }
2138
2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2140 {
2141         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2142
2143         if (cpu >= nr_cpu_ids)
2144                 cpu = cpumask_first(hctx->cpumask);
2145         return cpu;
2146 }
2147
2148 /*
2149  * It'd be great if the workqueue API had a way to pass
2150  * in a mask and had some smarts for more clever placement.
2151  * For now we just round-robin here, switching for every
2152  * BLK_MQ_CPU_WORK_BATCH queued items.
2153  */
2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156         bool tried = false;
2157         int next_cpu = hctx->next_cpu;
2158
2159         if (hctx->queue->nr_hw_queues == 1)
2160                 return WORK_CPU_UNBOUND;
2161
2162         if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165                                 cpu_online_mask);
2166                 if (next_cpu >= nr_cpu_ids)
2167                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2168                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169         }
2170
2171         /*
2172          * Do unbound schedule if we can't find a online CPU for this hctx,
2173          * and it should only happen in the path of handling CPU DEAD.
2174          */
2175         if (!cpu_online(next_cpu)) {
2176                 if (!tried) {
2177                         tried = true;
2178                         goto select_cpu;
2179                 }
2180
2181                 /*
2182                  * Make sure to re-select CPU next time once after CPUs
2183                  * in hctx->cpumask become online again.
2184                  */
2185                 hctx->next_cpu = next_cpu;
2186                 hctx->next_cpu_batch = 1;
2187                 return WORK_CPU_UNBOUND;
2188         }
2189
2190         hctx->next_cpu = next_cpu;
2191         return next_cpu;
2192 }
2193
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203         if (unlikely(blk_mq_hctx_stopped(hctx)))
2204                 return;
2205         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206                                     msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221         bool need_run;
2222
2223         /*
2224          * We can't run the queue inline with interrupts disabled.
2225          */
2226         WARN_ON_ONCE(!async && in_interrupt());
2227
2228         /*
2229          * When queue is quiesced, we may be switching io scheduler, or
2230          * updating nr_hw_queues, or other things, and we can't run queue
2231          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2232          *
2233          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2234          * quiesced.
2235          */
2236         __blk_mq_run_dispatch_ops(hctx->queue, false,
2237                 need_run = !blk_queue_quiesced(hctx->queue) &&
2238                 blk_mq_hctx_has_pending(hctx));
2239
2240         if (!need_run)
2241                 return;
2242
2243         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2244             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2245                 blk_mq_delay_run_hw_queue(hctx, 0);
2246                 return;
2247         }
2248
2249         blk_mq_run_dispatch_ops(hctx->queue,
2250                                 blk_mq_sched_dispatch_requests(hctx));
2251 }
2252 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2253
2254 /*
2255  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2256  * scheduler.
2257  */
2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2259 {
2260         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2261         /*
2262          * If the IO scheduler does not respect hardware queues when
2263          * dispatching, we just don't bother with multiple HW queues and
2264          * dispatch from hctx for the current CPU since running multiple queues
2265          * just causes lock contention inside the scheduler and pointless cache
2266          * bouncing.
2267          */
2268         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2269
2270         if (!blk_mq_hctx_stopped(hctx))
2271                 return hctx;
2272         return NULL;
2273 }
2274
2275 /**
2276  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2277  * @q: Pointer to the request queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  */
2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2281 {
2282         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2283         unsigned long i;
2284
2285         sq_hctx = NULL;
2286         if (blk_queue_sq_sched(q))
2287                 sq_hctx = blk_mq_get_sq_hctx(q);
2288         queue_for_each_hw_ctx(q, hctx, i) {
2289                 if (blk_mq_hctx_stopped(hctx))
2290                         continue;
2291                 /*
2292                  * Dispatch from this hctx either if there's no hctx preferred
2293                  * by IO scheduler or if it has requests that bypass the
2294                  * scheduler.
2295                  */
2296                 if (!sq_hctx || sq_hctx == hctx ||
2297                     !list_empty_careful(&hctx->dispatch))
2298                         blk_mq_run_hw_queue(hctx, async);
2299         }
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2302
2303 /**
2304  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2305  * @q: Pointer to the request queue to run.
2306  * @msecs: Milliseconds of delay to wait before running the queues.
2307  */
2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2309 {
2310         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2311         unsigned long i;
2312
2313         sq_hctx = NULL;
2314         if (blk_queue_sq_sched(q))
2315                 sq_hctx = blk_mq_get_sq_hctx(q);
2316         queue_for_each_hw_ctx(q, hctx, i) {
2317                 if (blk_mq_hctx_stopped(hctx))
2318                         continue;
2319                 /*
2320                  * If there is already a run_work pending, leave the
2321                  * pending delay untouched. Otherwise, a hctx can stall
2322                  * if another hctx is re-delaying the other's work
2323                  * before the work executes.
2324                  */
2325                 if (delayed_work_pending(&hctx->run_work))
2326                         continue;
2327                 /*
2328                  * Dispatch from this hctx either if there's no hctx preferred
2329                  * by IO scheduler or if it has requests that bypass the
2330                  * scheduler.
2331                  */
2332                 if (!sq_hctx || sq_hctx == hctx ||
2333                     !list_empty_careful(&hctx->dispatch))
2334                         blk_mq_delay_run_hw_queue(hctx, msecs);
2335         }
2336 }
2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2338
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queue() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2349 {
2350         cancel_delayed_work(&hctx->run_work);
2351
2352         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2353 }
2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2355
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queues() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queues(struct request_queue *q)
2366 {
2367         struct blk_mq_hw_ctx *hctx;
2368         unsigned long i;
2369
2370         queue_for_each_hw_ctx(q, hctx, i)
2371                 blk_mq_stop_hw_queue(hctx);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2374
2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2378
2379         blk_mq_run_hw_queue(hctx, false);
2380 }
2381 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2382
2383 void blk_mq_start_hw_queues(struct request_queue *q)
2384 {
2385         struct blk_mq_hw_ctx *hctx;
2386         unsigned long i;
2387
2388         queue_for_each_hw_ctx(q, hctx, i)
2389                 blk_mq_start_hw_queue(hctx);
2390 }
2391 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2392
2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2394 {
2395         if (!blk_mq_hctx_stopped(hctx))
2396                 return;
2397
2398         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399         blk_mq_run_hw_queue(hctx, async);
2400 }
2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2402
2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2404 {
2405         struct blk_mq_hw_ctx *hctx;
2406         unsigned long i;
2407
2408         queue_for_each_hw_ctx(q, hctx, i)
2409                 blk_mq_start_stopped_hw_queue(hctx, async);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2412
2413 static void blk_mq_run_work_fn(struct work_struct *work)
2414 {
2415         struct blk_mq_hw_ctx *hctx =
2416                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2417
2418         blk_mq_run_dispatch_ops(hctx->queue,
2419                                 blk_mq_sched_dispatch_requests(hctx));
2420 }
2421
2422 /**
2423  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2424  * @rq: Pointer to request to be inserted.
2425  * @flags: BLK_MQ_INSERT_*
2426  *
2427  * Should only be used carefully, when the caller knows we want to
2428  * bypass a potential IO scheduler on the target device.
2429  */
2430 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2431 {
2432         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2433
2434         spin_lock(&hctx->lock);
2435         if (flags & BLK_MQ_INSERT_AT_HEAD)
2436                 list_add(&rq->queuelist, &hctx->dispatch);
2437         else
2438                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2439         spin_unlock(&hctx->lock);
2440 }
2441
2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2443                 struct blk_mq_ctx *ctx, struct list_head *list,
2444                 bool run_queue_async)
2445 {
2446         struct request *rq;
2447         enum hctx_type type = hctx->type;
2448
2449         /*
2450          * Try to issue requests directly if the hw queue isn't busy to save an
2451          * extra enqueue & dequeue to the sw queue.
2452          */
2453         if (!hctx->dispatch_busy && !run_queue_async) {
2454                 blk_mq_run_dispatch_ops(hctx->queue,
2455                         blk_mq_try_issue_list_directly(hctx, list));
2456                 if (list_empty(list))
2457                         goto out;
2458         }
2459
2460         /*
2461          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2462          * offline now
2463          */
2464         list_for_each_entry(rq, list, queuelist) {
2465                 BUG_ON(rq->mq_ctx != ctx);
2466                 trace_block_rq_insert(rq);
2467         }
2468
2469         spin_lock(&ctx->lock);
2470         list_splice_tail_init(list, &ctx->rq_lists[type]);
2471         blk_mq_hctx_mark_pending(hctx, ctx);
2472         spin_unlock(&ctx->lock);
2473 out:
2474         blk_mq_run_hw_queue(hctx, run_queue_async);
2475 }
2476
2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2478 {
2479         struct request_queue *q = rq->q;
2480         struct blk_mq_ctx *ctx = rq->mq_ctx;
2481         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482
2483         if (blk_rq_is_passthrough(rq)) {
2484                 /*
2485                  * Passthrough request have to be added to hctx->dispatch
2486                  * directly.  The device may be in a situation where it can't
2487                  * handle FS request, and always returns BLK_STS_RESOURCE for
2488                  * them, which gets them added to hctx->dispatch.
2489                  *
2490                  * If a passthrough request is required to unblock the queues,
2491                  * and it is added to the scheduler queue, there is no chance to
2492                  * dispatch it given we prioritize requests in hctx->dispatch.
2493                  */
2494                 blk_mq_request_bypass_insert(rq, flags);
2495         } else if (rq->rq_flags & RQF_FLUSH_SEQ) {
2496                 /*
2497                  * Firstly normal IO request is inserted to scheduler queue or
2498                  * sw queue, meantime we add flush request to dispatch queue(
2499                  * hctx->dispatch) directly and there is at most one in-flight
2500                  * flush request for each hw queue, so it doesn't matter to add
2501                  * flush request to tail or front of the dispatch queue.
2502                  *
2503                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2504                  * command, and queueing it will fail when there is any
2505                  * in-flight normal IO request(NCQ command). When adding flush
2506                  * rq to the front of hctx->dispatch, it is easier to introduce
2507                  * extra time to flush rq's latency because of S_SCHED_RESTART
2508                  * compared with adding to the tail of dispatch queue, then
2509                  * chance of flush merge is increased, and less flush requests
2510                  * will be issued to controller. It is observed that ~10% time
2511                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2512                  * drive when adding flush rq to the front of hctx->dispatch.
2513                  *
2514                  * Simply queue flush rq to the front of hctx->dispatch so that
2515                  * intensive flush workloads can benefit in case of NCQ HW.
2516                  */
2517                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2518         } else if (q->elevator) {
2519                 LIST_HEAD(list);
2520
2521                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2522
2523                 list_add(&rq->queuelist, &list);
2524                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2525         } else {
2526                 trace_block_rq_insert(rq);
2527
2528                 spin_lock(&ctx->lock);
2529                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2530                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2531                 else
2532                         list_add_tail(&rq->queuelist,
2533                                       &ctx->rq_lists[hctx->type]);
2534                 blk_mq_hctx_mark_pending(hctx, ctx);
2535                 spin_unlock(&ctx->lock);
2536         }
2537 }
2538
2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2540                 unsigned int nr_segs)
2541 {
2542         int err;
2543
2544         if (bio->bi_opf & REQ_RAHEAD)
2545                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2546
2547         rq->__sector = bio->bi_iter.bi_sector;
2548         blk_rq_bio_prep(rq, bio, nr_segs);
2549
2550         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552         WARN_ON_ONCE(err);
2553
2554         blk_account_io_start(rq);
2555 }
2556
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                                             struct request *rq, bool last)
2559 {
2560         struct request_queue *q = rq->q;
2561         struct blk_mq_queue_data bd = {
2562                 .rq = rq,
2563                 .last = last,
2564         };
2565         blk_status_t ret;
2566
2567         /*
2568          * For OK queue, we are done. For error, caller may kill it.
2569          * Any other error (busy), just add it to our list as we
2570          * previously would have done.
2571          */
2572         ret = q->mq_ops->queue_rq(hctx, &bd);
2573         switch (ret) {
2574         case BLK_STS_OK:
2575                 blk_mq_update_dispatch_busy(hctx, false);
2576                 break;
2577         case BLK_STS_RESOURCE:
2578         case BLK_STS_DEV_RESOURCE:
2579                 blk_mq_update_dispatch_busy(hctx, true);
2580                 __blk_mq_requeue_request(rq);
2581                 break;
2582         default:
2583                 blk_mq_update_dispatch_busy(hctx, false);
2584                 break;
2585         }
2586
2587         return ret;
2588 }
2589
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592         int budget_token;
2593
2594         budget_token = blk_mq_get_dispatch_budget(rq->q);
2595         if (budget_token < 0)
2596                 return false;
2597         blk_mq_set_rq_budget_token(rq, budget_token);
2598         if (!blk_mq_get_driver_tag(rq)) {
2599                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2600                 return false;
2601         }
2602         return true;
2603 }
2604
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616                 struct request *rq)
2617 {
2618         blk_status_t ret;
2619
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621                 blk_mq_insert_request(rq, 0);
2622                 return;
2623         }
2624
2625         if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 blk_mq_run_hw_queue(hctx, false);
2628                 return;
2629         }
2630
2631         ret = __blk_mq_issue_directly(hctx, rq, true);
2632         switch (ret) {
2633         case BLK_STS_OK:
2634                 break;
2635         case BLK_STS_RESOURCE:
2636         case BLK_STS_DEV_RESOURCE:
2637                 blk_mq_request_bypass_insert(rq, 0);
2638                 blk_mq_run_hw_queue(hctx, false);
2639                 break;
2640         default:
2641                 blk_mq_end_request(rq, ret);
2642                 break;
2643         }
2644 }
2645
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649
2650         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651                 blk_mq_insert_request(rq, 0);
2652                 return BLK_STS_OK;
2653         }
2654
2655         if (!blk_mq_get_budget_and_tag(rq))
2656                 return BLK_STS_RESOURCE;
2657         return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662         struct blk_mq_hw_ctx *hctx = NULL;
2663         struct request *rq;
2664         int queued = 0;
2665         blk_status_t ret = BLK_STS_OK;
2666
2667         while ((rq = rq_list_pop(&plug->mq_list))) {
2668                 bool last = rq_list_empty(plug->mq_list);
2669
2670                 if (hctx != rq->mq_hctx) {
2671                         if (hctx) {
2672                                 blk_mq_commit_rqs(hctx, queued, false);
2673                                 queued = 0;
2674                         }
2675                         hctx = rq->mq_hctx;
2676                 }
2677
2678                 ret = blk_mq_request_issue_directly(rq, last);
2679                 switch (ret) {
2680                 case BLK_STS_OK:
2681                         queued++;
2682                         break;
2683                 case BLK_STS_RESOURCE:
2684                 case BLK_STS_DEV_RESOURCE:
2685                         blk_mq_request_bypass_insert(rq, 0);
2686                         blk_mq_run_hw_queue(hctx, false);
2687                         goto out;
2688                 default:
2689                         blk_mq_end_request(rq, ret);
2690                         break;
2691                 }
2692         }
2693
2694 out:
2695         if (ret != BLK_STS_OK)
2696                 blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700                                      struct blk_plug *plug)
2701 {
2702         if (blk_queue_quiesced(q))
2703                 return;
2704         q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709         struct blk_mq_hw_ctx *this_hctx = NULL;
2710         struct blk_mq_ctx *this_ctx = NULL;
2711         struct request *requeue_list = NULL;
2712         struct request **requeue_lastp = &requeue_list;
2713         unsigned int depth = 0;
2714         bool is_passthrough = false;
2715         LIST_HEAD(list);
2716
2717         do {
2718                 struct request *rq = rq_list_pop(&plug->mq_list);
2719
2720                 if (!this_hctx) {
2721                         this_hctx = rq->mq_hctx;
2722                         this_ctx = rq->mq_ctx;
2723                         is_passthrough = blk_rq_is_passthrough(rq);
2724                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725                            is_passthrough != blk_rq_is_passthrough(rq)) {
2726                         rq_list_add_tail(&requeue_lastp, rq);
2727                         continue;
2728                 }
2729                 list_add(&rq->queuelist, &list);
2730                 depth++;
2731         } while (!rq_list_empty(plug->mq_list));
2732
2733         plug->mq_list = requeue_list;
2734         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2735
2736         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2737         /* passthrough requests should never be issued to the I/O scheduler */
2738         if (this_hctx->queue->elevator && !is_passthrough) {
2739                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2740                                 &list, 0);
2741                 blk_mq_run_hw_queue(this_hctx, from_sched);
2742         } else {
2743                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2744         }
2745         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2746 }
2747
2748 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2749 {
2750         struct request *rq;
2751
2752         if (rq_list_empty(plug->mq_list))
2753                 return;
2754         plug->rq_count = 0;
2755
2756         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2757                 struct request_queue *q;
2758
2759                 rq = rq_list_peek(&plug->mq_list);
2760                 q = rq->q;
2761
2762                 /*
2763                  * Peek first request and see if we have a ->queue_rqs() hook.
2764                  * If we do, we can dispatch the whole plug list in one go. We
2765                  * already know at this point that all requests belong to the
2766                  * same queue, caller must ensure that's the case.
2767                  *
2768                  * Since we pass off the full list to the driver at this point,
2769                  * we do not increment the active request count for the queue.
2770                  * Bypass shared tags for now because of that.
2771                  */
2772                 if (q->mq_ops->queue_rqs &&
2773                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2774                         blk_mq_run_dispatch_ops(q,
2775                                 __blk_mq_flush_plug_list(q, plug));
2776                         if (rq_list_empty(plug->mq_list))
2777                                 return;
2778                 }
2779
2780                 blk_mq_run_dispatch_ops(q,
2781                                 blk_mq_plug_issue_direct(plug));
2782                 if (rq_list_empty(plug->mq_list))
2783                         return;
2784         }
2785
2786         do {
2787                 blk_mq_dispatch_plug_list(plug, from_schedule);
2788         } while (!rq_list_empty(plug->mq_list));
2789 }
2790
2791 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2792                 struct list_head *list)
2793 {
2794         int queued = 0;
2795         blk_status_t ret = BLK_STS_OK;
2796
2797         while (!list_empty(list)) {
2798                 struct request *rq = list_first_entry(list, struct request,
2799                                 queuelist);
2800
2801                 list_del_init(&rq->queuelist);
2802                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2803                 switch (ret) {
2804                 case BLK_STS_OK:
2805                         queued++;
2806                         break;
2807                 case BLK_STS_RESOURCE:
2808                 case BLK_STS_DEV_RESOURCE:
2809                         blk_mq_request_bypass_insert(rq, 0);
2810                         if (list_empty(list))
2811                                 blk_mq_run_hw_queue(hctx, false);
2812                         goto out;
2813                 default:
2814                         blk_mq_end_request(rq, ret);
2815                         break;
2816                 }
2817         }
2818
2819 out:
2820         if (ret != BLK_STS_OK)
2821                 blk_mq_commit_rqs(hctx, queued, false);
2822 }
2823
2824 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2825                                      struct bio *bio, unsigned int nr_segs)
2826 {
2827         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2828                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2829                         return true;
2830                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2831                         return true;
2832         }
2833         return false;
2834 }
2835
2836 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2837                                                struct blk_plug *plug,
2838                                                struct bio *bio,
2839                                                unsigned int nsegs)
2840 {
2841         struct blk_mq_alloc_data data = {
2842                 .q              = q,
2843                 .nr_tags        = 1,
2844                 .cmd_flags      = bio->bi_opf,
2845         };
2846         struct request *rq;
2847
2848         if (unlikely(bio_queue_enter(bio)))
2849                 return NULL;
2850
2851         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2852                 goto queue_exit;
2853
2854         rq_qos_throttle(q, bio);
2855
2856         if (plug) {
2857                 data.nr_tags = plug->nr_ios;
2858                 plug->nr_ios = 1;
2859                 data.cached_rq = &plug->cached_rq;
2860         }
2861
2862         rq = __blk_mq_alloc_requests(&data);
2863         if (rq)
2864                 return rq;
2865         rq_qos_cleanup(q, bio);
2866         if (bio->bi_opf & REQ_NOWAIT)
2867                 bio_wouldblock_error(bio);
2868 queue_exit:
2869         blk_queue_exit(q);
2870         return NULL;
2871 }
2872
2873 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2874                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2875 {
2876         struct request *rq;
2877         enum hctx_type type, hctx_type;
2878
2879         if (!plug)
2880                 return NULL;
2881         rq = rq_list_peek(&plug->cached_rq);
2882         if (!rq || rq->q != q)
2883                 return NULL;
2884
2885         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2886                 *bio = NULL;
2887                 return NULL;
2888         }
2889
2890         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2891         hctx_type = rq->mq_hctx->type;
2892         if (type != hctx_type &&
2893             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2894                 return NULL;
2895         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2896                 return NULL;
2897
2898         /*
2899          * If any qos ->throttle() end up blocking, we will have flushed the
2900          * plug and hence killed the cached_rq list as well. Pop this entry
2901          * before we throttle.
2902          */
2903         plug->cached_rq = rq_list_next(rq);
2904         rq_qos_throttle(q, *bio);
2905
2906         rq->cmd_flags = (*bio)->bi_opf;
2907         INIT_LIST_HEAD(&rq->queuelist);
2908         return rq;
2909 }
2910
2911 static void bio_set_ioprio(struct bio *bio)
2912 {
2913         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2914         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2915                 bio->bi_ioprio = get_current_ioprio();
2916         blkcg_set_ioprio(bio);
2917 }
2918
2919 /**
2920  * blk_mq_submit_bio - Create and send a request to block device.
2921  * @bio: Bio pointer.
2922  *
2923  * Builds up a request structure from @q and @bio and send to the device. The
2924  * request may not be queued directly to hardware if:
2925  * * This request can be merged with another one
2926  * * We want to place request at plug queue for possible future merging
2927  * * There is an IO scheduler active at this queue
2928  *
2929  * It will not queue the request if there is an error with the bio, or at the
2930  * request creation.
2931  */
2932 void blk_mq_submit_bio(struct bio *bio)
2933 {
2934         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2935         struct blk_plug *plug = blk_mq_plug(bio);
2936         const int is_sync = op_is_sync(bio->bi_opf);
2937         struct blk_mq_hw_ctx *hctx;
2938         struct request *rq;
2939         unsigned int nr_segs = 1;
2940         blk_status_t ret;
2941
2942         bio = blk_queue_bounce(bio, q);
2943         if (bio_may_exceed_limits(bio, &q->limits)) {
2944                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2945                 if (!bio)
2946                         return;
2947         }
2948
2949         if (!bio_integrity_prep(bio))
2950                 return;
2951
2952         bio_set_ioprio(bio);
2953
2954         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2955         if (!rq) {
2956                 if (!bio)
2957                         return;
2958                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2959                 if (unlikely(!rq))
2960                         return;
2961         }
2962
2963         trace_block_getrq(bio);
2964
2965         rq_qos_track(q, rq, bio);
2966
2967         blk_mq_bio_to_request(rq, bio, nr_segs);
2968
2969         ret = blk_crypto_rq_get_keyslot(rq);
2970         if (ret != BLK_STS_OK) {
2971                 bio->bi_status = ret;
2972                 bio_endio(bio);
2973                 blk_mq_free_request(rq);
2974                 return;
2975         }
2976
2977         if (op_is_flush(bio->bi_opf)) {
2978                 blk_insert_flush(rq);
2979                 return;
2980         }
2981
2982         if (plug) {
2983                 blk_add_rq_to_plug(plug, rq);
2984                 return;
2985         }
2986
2987         hctx = rq->mq_hctx;
2988         if ((rq->rq_flags & RQF_ELV) ||
2989             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2990                 blk_mq_insert_request(rq, 0);
2991                 blk_mq_run_hw_queue(hctx, true);
2992         } else {
2993                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2994         }
2995 }
2996
2997 #ifdef CONFIG_BLK_MQ_STACKING
2998 /**
2999  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3000  * @rq: the request being queued
3001  */
3002 blk_status_t blk_insert_cloned_request(struct request *rq)
3003 {
3004         struct request_queue *q = rq->q;
3005         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3006         unsigned int max_segments = blk_rq_get_max_segments(rq);
3007         blk_status_t ret;
3008
3009         if (blk_rq_sectors(rq) > max_sectors) {
3010                 /*
3011                  * SCSI device does not have a good way to return if
3012                  * Write Same/Zero is actually supported. If a device rejects
3013                  * a non-read/write command (discard, write same,etc.) the
3014                  * low-level device driver will set the relevant queue limit to
3015                  * 0 to prevent blk-lib from issuing more of the offending
3016                  * operations. Commands queued prior to the queue limit being
3017                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3018                  * errors being propagated to upper layers.
3019                  */
3020                 if (max_sectors == 0)
3021                         return BLK_STS_NOTSUPP;
3022
3023                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3024                         __func__, blk_rq_sectors(rq), max_sectors);
3025                 return BLK_STS_IOERR;
3026         }
3027
3028         /*
3029          * The queue settings related to segment counting may differ from the
3030          * original queue.
3031          */
3032         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3033         if (rq->nr_phys_segments > max_segments) {
3034                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3035                         __func__, rq->nr_phys_segments, max_segments);
3036                 return BLK_STS_IOERR;
3037         }
3038
3039         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3040                 return BLK_STS_IOERR;
3041
3042         ret = blk_crypto_rq_get_keyslot(rq);
3043         if (ret != BLK_STS_OK)
3044                 return ret;
3045
3046         blk_account_io_start(rq);
3047
3048         /*
3049          * Since we have a scheduler attached on the top device,
3050          * bypass a potential scheduler on the bottom device for
3051          * insert.
3052          */
3053         blk_mq_run_dispatch_ops(q,
3054                         ret = blk_mq_request_issue_directly(rq, true));
3055         if (ret)
3056                 blk_account_io_done(rq, ktime_get_ns());
3057         return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3060
3061 /**
3062  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3063  * @rq: the clone request to be cleaned up
3064  *
3065  * Description:
3066  *     Free all bios in @rq for a cloned request.
3067  */
3068 void blk_rq_unprep_clone(struct request *rq)
3069 {
3070         struct bio *bio;
3071
3072         while ((bio = rq->bio) != NULL) {
3073                 rq->bio = bio->bi_next;
3074
3075                 bio_put(bio);
3076         }
3077 }
3078 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3079
3080 /**
3081  * blk_rq_prep_clone - Helper function to setup clone request
3082  * @rq: the request to be setup
3083  * @rq_src: original request to be cloned
3084  * @bs: bio_set that bios for clone are allocated from
3085  * @gfp_mask: memory allocation mask for bio
3086  * @bio_ctr: setup function to be called for each clone bio.
3087  *           Returns %0 for success, non %0 for failure.
3088  * @data: private data to be passed to @bio_ctr
3089  *
3090  * Description:
3091  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3092  *     Also, pages which the original bios are pointing to are not copied
3093  *     and the cloned bios just point same pages.
3094  *     So cloned bios must be completed before original bios, which means
3095  *     the caller must complete @rq before @rq_src.
3096  */
3097 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3098                       struct bio_set *bs, gfp_t gfp_mask,
3099                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3100                       void *data)
3101 {
3102         struct bio *bio, *bio_src;
3103
3104         if (!bs)
3105                 bs = &fs_bio_set;
3106
3107         __rq_for_each_bio(bio_src, rq_src) {
3108                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3109                                       bs);
3110                 if (!bio)
3111                         goto free_and_out;
3112
3113                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3114                         goto free_and_out;
3115
3116                 if (rq->bio) {
3117                         rq->biotail->bi_next = bio;
3118                         rq->biotail = bio;
3119                 } else {
3120                         rq->bio = rq->biotail = bio;
3121                 }
3122                 bio = NULL;
3123         }
3124
3125         /* Copy attributes of the original request to the clone request. */
3126         rq->__sector = blk_rq_pos(rq_src);
3127         rq->__data_len = blk_rq_bytes(rq_src);
3128         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3129                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3130                 rq->special_vec = rq_src->special_vec;
3131         }
3132         rq->nr_phys_segments = rq_src->nr_phys_segments;
3133         rq->ioprio = rq_src->ioprio;
3134
3135         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3136                 goto free_and_out;
3137
3138         return 0;
3139
3140 free_and_out:
3141         if (bio)
3142                 bio_put(bio);
3143         blk_rq_unprep_clone(rq);
3144
3145         return -ENOMEM;
3146 }
3147 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3148 #endif /* CONFIG_BLK_MQ_STACKING */
3149
3150 /*
3151  * Steal bios from a request and add them to a bio list.
3152  * The request must not have been partially completed before.
3153  */
3154 void blk_steal_bios(struct bio_list *list, struct request *rq)
3155 {
3156         if (rq->bio) {
3157                 if (list->tail)
3158                         list->tail->bi_next = rq->bio;
3159                 else
3160                         list->head = rq->bio;
3161                 list->tail = rq->biotail;
3162
3163                 rq->bio = NULL;
3164                 rq->biotail = NULL;
3165         }
3166
3167         rq->__data_len = 0;
3168 }
3169 EXPORT_SYMBOL_GPL(blk_steal_bios);
3170
3171 static size_t order_to_size(unsigned int order)
3172 {
3173         return (size_t)PAGE_SIZE << order;
3174 }
3175
3176 /* called before freeing request pool in @tags */
3177 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3178                                     struct blk_mq_tags *tags)
3179 {
3180         struct page *page;
3181         unsigned long flags;
3182
3183         /*
3184          * There is no need to clear mapping if driver tags is not initialized
3185          * or the mapping belongs to the driver tags.
3186          */
3187         if (!drv_tags || drv_tags == tags)
3188                 return;
3189
3190         list_for_each_entry(page, &tags->page_list, lru) {
3191                 unsigned long start = (unsigned long)page_address(page);
3192                 unsigned long end = start + order_to_size(page->private);
3193                 int i;
3194
3195                 for (i = 0; i < drv_tags->nr_tags; i++) {
3196                         struct request *rq = drv_tags->rqs[i];
3197                         unsigned long rq_addr = (unsigned long)rq;
3198
3199                         if (rq_addr >= start && rq_addr < end) {
3200                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3201                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3202                         }
3203                 }
3204         }
3205
3206         /*
3207          * Wait until all pending iteration is done.
3208          *
3209          * Request reference is cleared and it is guaranteed to be observed
3210          * after the ->lock is released.
3211          */
3212         spin_lock_irqsave(&drv_tags->lock, flags);
3213         spin_unlock_irqrestore(&drv_tags->lock, flags);
3214 }
3215
3216 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3217                      unsigned int hctx_idx)
3218 {
3219         struct blk_mq_tags *drv_tags;
3220         struct page *page;
3221
3222         if (list_empty(&tags->page_list))
3223                 return;
3224
3225         if (blk_mq_is_shared_tags(set->flags))
3226                 drv_tags = set->shared_tags;
3227         else
3228                 drv_tags = set->tags[hctx_idx];
3229
3230         if (tags->static_rqs && set->ops->exit_request) {
3231                 int i;
3232
3233                 for (i = 0; i < tags->nr_tags; i++) {
3234                         struct request *rq = tags->static_rqs[i];
3235
3236                         if (!rq)
3237                                 continue;
3238                         set->ops->exit_request(set, rq, hctx_idx);
3239                         tags->static_rqs[i] = NULL;
3240                 }
3241         }
3242
3243         blk_mq_clear_rq_mapping(drv_tags, tags);
3244
3245         while (!list_empty(&tags->page_list)) {
3246                 page = list_first_entry(&tags->page_list, struct page, lru);
3247                 list_del_init(&page->lru);
3248                 /*
3249                  * Remove kmemleak object previously allocated in
3250                  * blk_mq_alloc_rqs().
3251                  */
3252                 kmemleak_free(page_address(page));
3253                 __free_pages(page, page->private);
3254         }
3255 }
3256
3257 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3258 {
3259         kfree(tags->rqs);
3260         tags->rqs = NULL;
3261         kfree(tags->static_rqs);
3262         tags->static_rqs = NULL;
3263
3264         blk_mq_free_tags(tags);
3265 }
3266
3267 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3268                 unsigned int hctx_idx)
3269 {
3270         int i;
3271
3272         for (i = 0; i < set->nr_maps; i++) {
3273                 unsigned int start = set->map[i].queue_offset;
3274                 unsigned int end = start + set->map[i].nr_queues;
3275
3276                 if (hctx_idx >= start && hctx_idx < end)
3277                         break;
3278         }
3279
3280         if (i >= set->nr_maps)
3281                 i = HCTX_TYPE_DEFAULT;
3282
3283         return i;
3284 }
3285
3286 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3287                 unsigned int hctx_idx)
3288 {
3289         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3290
3291         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3292 }
3293
3294 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3295                                                unsigned int hctx_idx,
3296                                                unsigned int nr_tags,
3297                                                unsigned int reserved_tags)
3298 {
3299         int node = blk_mq_get_hctx_node(set, hctx_idx);
3300         struct blk_mq_tags *tags;
3301
3302         if (node == NUMA_NO_NODE)
3303                 node = set->numa_node;
3304
3305         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3306                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3307         if (!tags)
3308                 return NULL;
3309
3310         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3311                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3312                                  node);
3313         if (!tags->rqs)
3314                 goto err_free_tags;
3315
3316         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3317                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3318                                         node);
3319         if (!tags->static_rqs)
3320                 goto err_free_rqs;
3321
3322         return tags;
3323
3324 err_free_rqs:
3325         kfree(tags->rqs);
3326 err_free_tags:
3327         blk_mq_free_tags(tags);
3328         return NULL;
3329 }
3330
3331 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3332                                unsigned int hctx_idx, int node)
3333 {
3334         int ret;
3335
3336         if (set->ops->init_request) {
3337                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3338                 if (ret)
3339                         return ret;
3340         }
3341
3342         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3343         return 0;
3344 }
3345
3346 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3347                             struct blk_mq_tags *tags,
3348                             unsigned int hctx_idx, unsigned int depth)
3349 {
3350         unsigned int i, j, entries_per_page, max_order = 4;
3351         int node = blk_mq_get_hctx_node(set, hctx_idx);
3352         size_t rq_size, left;
3353
3354         if (node == NUMA_NO_NODE)
3355                 node = set->numa_node;
3356
3357         INIT_LIST_HEAD(&tags->page_list);
3358
3359         /*
3360          * rq_size is the size of the request plus driver payload, rounded
3361          * to the cacheline size
3362          */
3363         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3364                                 cache_line_size());
3365         left = rq_size * depth;
3366
3367         for (i = 0; i < depth; ) {
3368                 int this_order = max_order;
3369                 struct page *page;
3370                 int to_do;
3371                 void *p;
3372
3373                 while (this_order && left < order_to_size(this_order - 1))
3374                         this_order--;
3375
3376                 do {
3377                         page = alloc_pages_node(node,
3378                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3379                                 this_order);
3380                         if (page)
3381                                 break;
3382                         if (!this_order--)
3383                                 break;
3384                         if (order_to_size(this_order) < rq_size)
3385                                 break;
3386                 } while (1);
3387
3388                 if (!page)
3389                         goto fail;
3390
3391                 page->private = this_order;
3392                 list_add_tail(&page->lru, &tags->page_list);
3393
3394                 p = page_address(page);
3395                 /*
3396                  * Allow kmemleak to scan these pages as they contain pointers
3397                  * to additional allocations like via ops->init_request().
3398                  */
3399                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3400                 entries_per_page = order_to_size(this_order) / rq_size;
3401                 to_do = min(entries_per_page, depth - i);
3402                 left -= to_do * rq_size;
3403                 for (j = 0; j < to_do; j++) {
3404                         struct request *rq = p;
3405
3406                         tags->static_rqs[i] = rq;
3407                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3408                                 tags->static_rqs[i] = NULL;
3409                                 goto fail;
3410                         }
3411
3412                         p += rq_size;
3413                         i++;
3414                 }
3415         }
3416         return 0;
3417
3418 fail:
3419         blk_mq_free_rqs(set, tags, hctx_idx);
3420         return -ENOMEM;
3421 }
3422
3423 struct rq_iter_data {
3424         struct blk_mq_hw_ctx *hctx;
3425         bool has_rq;
3426 };
3427
3428 static bool blk_mq_has_request(struct request *rq, void *data)
3429 {
3430         struct rq_iter_data *iter_data = data;
3431
3432         if (rq->mq_hctx != iter_data->hctx)
3433                 return true;
3434         iter_data->has_rq = true;
3435         return false;
3436 }
3437
3438 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3439 {
3440         struct blk_mq_tags *tags = hctx->sched_tags ?
3441                         hctx->sched_tags : hctx->tags;
3442         struct rq_iter_data data = {
3443                 .hctx   = hctx,
3444         };
3445
3446         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3447         return data.has_rq;
3448 }
3449
3450 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3451                 struct blk_mq_hw_ctx *hctx)
3452 {
3453         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3454                 return false;
3455         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3456                 return false;
3457         return true;
3458 }
3459
3460 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3461 {
3462         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3463                         struct blk_mq_hw_ctx, cpuhp_online);
3464
3465         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3466             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3467                 return 0;
3468
3469         /*
3470          * Prevent new request from being allocated on the current hctx.
3471          *
3472          * The smp_mb__after_atomic() Pairs with the implied barrier in
3473          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3474          * seen once we return from the tag allocator.
3475          */
3476         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3477         smp_mb__after_atomic();
3478
3479         /*
3480          * Try to grab a reference to the queue and wait for any outstanding
3481          * requests.  If we could not grab a reference the queue has been
3482          * frozen and there are no requests.
3483          */
3484         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3485                 while (blk_mq_hctx_has_requests(hctx))
3486                         msleep(5);
3487                 percpu_ref_put(&hctx->queue->q_usage_counter);
3488         }
3489
3490         return 0;
3491 }
3492
3493 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3494 {
3495         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3496                         struct blk_mq_hw_ctx, cpuhp_online);
3497
3498         if (cpumask_test_cpu(cpu, hctx->cpumask))
3499                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3500         return 0;
3501 }
3502
3503 /*
3504  * 'cpu' is going away. splice any existing rq_list entries from this
3505  * software queue to the hw queue dispatch list, and ensure that it
3506  * gets run.
3507  */
3508 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3509 {
3510         struct blk_mq_hw_ctx *hctx;
3511         struct blk_mq_ctx *ctx;
3512         LIST_HEAD(tmp);
3513         enum hctx_type type;
3514
3515         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3516         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3517                 return 0;
3518
3519         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3520         type = hctx->type;
3521
3522         spin_lock(&ctx->lock);
3523         if (!list_empty(&ctx->rq_lists[type])) {
3524                 list_splice_init(&ctx->rq_lists[type], &tmp);
3525                 blk_mq_hctx_clear_pending(hctx, ctx);
3526         }
3527         spin_unlock(&ctx->lock);
3528
3529         if (list_empty(&tmp))
3530                 return 0;
3531
3532         spin_lock(&hctx->lock);
3533         list_splice_tail_init(&tmp, &hctx->dispatch);
3534         spin_unlock(&hctx->lock);
3535
3536         blk_mq_run_hw_queue(hctx, true);
3537         return 0;
3538 }
3539
3540 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3541 {
3542         if (!(hctx->flags & BLK_MQ_F_STACKING))
3543                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3544                                                     &hctx->cpuhp_online);
3545         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3546                                             &hctx->cpuhp_dead);
3547 }
3548
3549 /*
3550  * Before freeing hw queue, clearing the flush request reference in
3551  * tags->rqs[] for avoiding potential UAF.
3552  */
3553 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3554                 unsigned int queue_depth, struct request *flush_rq)
3555 {
3556         int i;
3557         unsigned long flags;
3558
3559         /* The hw queue may not be mapped yet */
3560         if (!tags)
3561                 return;
3562
3563         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3564
3565         for (i = 0; i < queue_depth; i++)
3566                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3567
3568         /*
3569          * Wait until all pending iteration is done.
3570          *
3571          * Request reference is cleared and it is guaranteed to be observed
3572          * after the ->lock is released.
3573          */
3574         spin_lock_irqsave(&tags->lock, flags);
3575         spin_unlock_irqrestore(&tags->lock, flags);
3576 }
3577
3578 /* hctx->ctxs will be freed in queue's release handler */
3579 static void blk_mq_exit_hctx(struct request_queue *q,
3580                 struct blk_mq_tag_set *set,
3581                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3582 {
3583         struct request *flush_rq = hctx->fq->flush_rq;
3584
3585         if (blk_mq_hw_queue_mapped(hctx))
3586                 blk_mq_tag_idle(hctx);
3587
3588         if (blk_queue_init_done(q))
3589                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3590                                 set->queue_depth, flush_rq);
3591         if (set->ops->exit_request)
3592                 set->ops->exit_request(set, flush_rq, hctx_idx);
3593
3594         if (set->ops->exit_hctx)
3595                 set->ops->exit_hctx(hctx, hctx_idx);
3596
3597         blk_mq_remove_cpuhp(hctx);
3598
3599         xa_erase(&q->hctx_table, hctx_idx);
3600
3601         spin_lock(&q->unused_hctx_lock);
3602         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3603         spin_unlock(&q->unused_hctx_lock);
3604 }
3605
3606 static void blk_mq_exit_hw_queues(struct request_queue *q,
3607                 struct blk_mq_tag_set *set, int nr_queue)
3608 {
3609         struct blk_mq_hw_ctx *hctx;
3610         unsigned long i;
3611
3612         queue_for_each_hw_ctx(q, hctx, i) {
3613                 if (i == nr_queue)
3614                         break;
3615                 blk_mq_exit_hctx(q, set, hctx, i);
3616         }
3617 }
3618
3619 static int blk_mq_init_hctx(struct request_queue *q,
3620                 struct blk_mq_tag_set *set,
3621                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3622 {
3623         hctx->queue_num = hctx_idx;
3624
3625         if (!(hctx->flags & BLK_MQ_F_STACKING))
3626                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3627                                 &hctx->cpuhp_online);
3628         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3629
3630         hctx->tags = set->tags[hctx_idx];
3631
3632         if (set->ops->init_hctx &&
3633             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3634                 goto unregister_cpu_notifier;
3635
3636         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3637                                 hctx->numa_node))
3638                 goto exit_hctx;
3639
3640         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3641                 goto exit_flush_rq;
3642
3643         return 0;
3644
3645  exit_flush_rq:
3646         if (set->ops->exit_request)
3647                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3648  exit_hctx:
3649         if (set->ops->exit_hctx)
3650                 set->ops->exit_hctx(hctx, hctx_idx);
3651  unregister_cpu_notifier:
3652         blk_mq_remove_cpuhp(hctx);
3653         return -1;
3654 }
3655
3656 static struct blk_mq_hw_ctx *
3657 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3658                 int node)
3659 {
3660         struct blk_mq_hw_ctx *hctx;
3661         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3662
3663         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3664         if (!hctx)
3665                 goto fail_alloc_hctx;
3666
3667         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3668                 goto free_hctx;
3669
3670         atomic_set(&hctx->nr_active, 0);
3671         if (node == NUMA_NO_NODE)
3672                 node = set->numa_node;
3673         hctx->numa_node = node;
3674
3675         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3676         spin_lock_init(&hctx->lock);
3677         INIT_LIST_HEAD(&hctx->dispatch);
3678         hctx->queue = q;
3679         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3680
3681         INIT_LIST_HEAD(&hctx->hctx_list);
3682
3683         /*
3684          * Allocate space for all possible cpus to avoid allocation at
3685          * runtime
3686          */
3687         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3688                         gfp, node);
3689         if (!hctx->ctxs)
3690                 goto free_cpumask;
3691
3692         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3693                                 gfp, node, false, false))
3694                 goto free_ctxs;
3695         hctx->nr_ctx = 0;
3696
3697         spin_lock_init(&hctx->dispatch_wait_lock);
3698         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3699         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3700
3701         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3702         if (!hctx->fq)
3703                 goto free_bitmap;
3704
3705         blk_mq_hctx_kobj_init(hctx);
3706
3707         return hctx;
3708
3709  free_bitmap:
3710         sbitmap_free(&hctx->ctx_map);
3711  free_ctxs:
3712         kfree(hctx->ctxs);
3713  free_cpumask:
3714         free_cpumask_var(hctx->cpumask);
3715  free_hctx:
3716         kfree(hctx);
3717  fail_alloc_hctx:
3718         return NULL;
3719 }
3720
3721 static void blk_mq_init_cpu_queues(struct request_queue *q,
3722                                    unsigned int nr_hw_queues)
3723 {
3724         struct blk_mq_tag_set *set = q->tag_set;
3725         unsigned int i, j;
3726
3727         for_each_possible_cpu(i) {
3728                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3729                 struct blk_mq_hw_ctx *hctx;
3730                 int k;
3731
3732                 __ctx->cpu = i;
3733                 spin_lock_init(&__ctx->lock);
3734                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3735                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3736
3737                 __ctx->queue = q;
3738
3739                 /*
3740                  * Set local node, IFF we have more than one hw queue. If
3741                  * not, we remain on the home node of the device
3742                  */
3743                 for (j = 0; j < set->nr_maps; j++) {
3744                         hctx = blk_mq_map_queue_type(q, j, i);
3745                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3746                                 hctx->numa_node = cpu_to_node(i);
3747                 }
3748         }
3749 }
3750
3751 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3752                                              unsigned int hctx_idx,
3753                                              unsigned int depth)
3754 {
3755         struct blk_mq_tags *tags;
3756         int ret;
3757
3758         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3759         if (!tags)
3760                 return NULL;
3761
3762         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3763         if (ret) {
3764                 blk_mq_free_rq_map(tags);
3765                 return NULL;
3766         }
3767
3768         return tags;
3769 }
3770
3771 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3772                                        int hctx_idx)
3773 {
3774         if (blk_mq_is_shared_tags(set->flags)) {
3775                 set->tags[hctx_idx] = set->shared_tags;
3776
3777                 return true;
3778         }
3779
3780         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3781                                                        set->queue_depth);
3782
3783         return set->tags[hctx_idx];
3784 }
3785
3786 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3787                              struct blk_mq_tags *tags,
3788                              unsigned int hctx_idx)
3789 {
3790         if (tags) {
3791                 blk_mq_free_rqs(set, tags, hctx_idx);
3792                 blk_mq_free_rq_map(tags);
3793         }
3794 }
3795
3796 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3797                                       unsigned int hctx_idx)
3798 {
3799         if (!blk_mq_is_shared_tags(set->flags))
3800                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3801
3802         set->tags[hctx_idx] = NULL;
3803 }
3804
3805 static void blk_mq_map_swqueue(struct request_queue *q)
3806 {
3807         unsigned int j, hctx_idx;
3808         unsigned long i;
3809         struct blk_mq_hw_ctx *hctx;
3810         struct blk_mq_ctx *ctx;
3811         struct blk_mq_tag_set *set = q->tag_set;
3812
3813         queue_for_each_hw_ctx(q, hctx, i) {
3814                 cpumask_clear(hctx->cpumask);
3815                 hctx->nr_ctx = 0;
3816                 hctx->dispatch_from = NULL;
3817         }
3818
3819         /*
3820          * Map software to hardware queues.
3821          *
3822          * If the cpu isn't present, the cpu is mapped to first hctx.
3823          */
3824         for_each_possible_cpu(i) {
3825
3826                 ctx = per_cpu_ptr(q->queue_ctx, i);
3827                 for (j = 0; j < set->nr_maps; j++) {
3828                         if (!set->map[j].nr_queues) {
3829                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3830                                                 HCTX_TYPE_DEFAULT, i);
3831                                 continue;
3832                         }
3833                         hctx_idx = set->map[j].mq_map[i];
3834                         /* unmapped hw queue can be remapped after CPU topo changed */
3835                         if (!set->tags[hctx_idx] &&
3836                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3837                                 /*
3838                                  * If tags initialization fail for some hctx,
3839                                  * that hctx won't be brought online.  In this
3840                                  * case, remap the current ctx to hctx[0] which
3841                                  * is guaranteed to always have tags allocated
3842                                  */
3843                                 set->map[j].mq_map[i] = 0;
3844                         }
3845
3846                         hctx = blk_mq_map_queue_type(q, j, i);
3847                         ctx->hctxs[j] = hctx;
3848                         /*
3849                          * If the CPU is already set in the mask, then we've
3850                          * mapped this one already. This can happen if
3851                          * devices share queues across queue maps.
3852                          */
3853                         if (cpumask_test_cpu(i, hctx->cpumask))
3854                                 continue;
3855
3856                         cpumask_set_cpu(i, hctx->cpumask);
3857                         hctx->type = j;
3858                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3859                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3860
3861                         /*
3862                          * If the nr_ctx type overflows, we have exceeded the
3863                          * amount of sw queues we can support.
3864                          */
3865                         BUG_ON(!hctx->nr_ctx);
3866                 }
3867
3868                 for (; j < HCTX_MAX_TYPES; j++)
3869                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3870                                         HCTX_TYPE_DEFAULT, i);
3871         }
3872
3873         queue_for_each_hw_ctx(q, hctx, i) {
3874                 /*
3875                  * If no software queues are mapped to this hardware queue,
3876                  * disable it and free the request entries.
3877                  */
3878                 if (!hctx->nr_ctx) {
3879                         /* Never unmap queue 0.  We need it as a
3880                          * fallback in case of a new remap fails
3881                          * allocation
3882                          */
3883                         if (i)
3884                                 __blk_mq_free_map_and_rqs(set, i);
3885
3886                         hctx->tags = NULL;
3887                         continue;
3888                 }
3889
3890                 hctx->tags = set->tags[i];
3891                 WARN_ON(!hctx->tags);
3892
3893                 /*
3894                  * Set the map size to the number of mapped software queues.
3895                  * This is more accurate and more efficient than looping
3896                  * over all possibly mapped software queues.
3897                  */
3898                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3899
3900                 /*
3901                  * Initialize batch roundrobin counts
3902                  */
3903                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3904                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3905         }
3906 }
3907
3908 /*
3909  * Caller needs to ensure that we're either frozen/quiesced, or that
3910  * the queue isn't live yet.
3911  */
3912 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3913 {
3914         struct blk_mq_hw_ctx *hctx;
3915         unsigned long i;
3916
3917         queue_for_each_hw_ctx(q, hctx, i) {
3918                 if (shared) {
3919                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3920                 } else {
3921                         blk_mq_tag_idle(hctx);
3922                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3923                 }
3924         }
3925 }
3926
3927 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3928                                          bool shared)
3929 {
3930         struct request_queue *q;
3931
3932         lockdep_assert_held(&set->tag_list_lock);
3933
3934         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3935                 blk_mq_freeze_queue(q);
3936                 queue_set_hctx_shared(q, shared);
3937                 blk_mq_unfreeze_queue(q);
3938         }
3939 }
3940
3941 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3942 {
3943         struct blk_mq_tag_set *set = q->tag_set;
3944
3945         mutex_lock(&set->tag_list_lock);
3946         list_del(&q->tag_set_list);
3947         if (list_is_singular(&set->tag_list)) {
3948                 /* just transitioned to unshared */
3949                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3950                 /* update existing queue */
3951                 blk_mq_update_tag_set_shared(set, false);
3952         }
3953         mutex_unlock(&set->tag_list_lock);
3954         INIT_LIST_HEAD(&q->tag_set_list);
3955 }
3956
3957 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3958                                      struct request_queue *q)
3959 {
3960         mutex_lock(&set->tag_list_lock);
3961
3962         /*
3963          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3964          */
3965         if (!list_empty(&set->tag_list) &&
3966             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3967                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3968                 /* update existing queue */
3969                 blk_mq_update_tag_set_shared(set, true);
3970         }
3971         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3972                 queue_set_hctx_shared(q, true);
3973         list_add_tail(&q->tag_set_list, &set->tag_list);
3974
3975         mutex_unlock(&set->tag_list_lock);
3976 }
3977
3978 /* All allocations will be freed in release handler of q->mq_kobj */
3979 static int blk_mq_alloc_ctxs(struct request_queue *q)
3980 {
3981         struct blk_mq_ctxs *ctxs;
3982         int cpu;
3983
3984         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3985         if (!ctxs)
3986                 return -ENOMEM;
3987
3988         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3989         if (!ctxs->queue_ctx)
3990                 goto fail;
3991
3992         for_each_possible_cpu(cpu) {
3993                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3994                 ctx->ctxs = ctxs;
3995         }
3996
3997         q->mq_kobj = &ctxs->kobj;
3998         q->queue_ctx = ctxs->queue_ctx;
3999
4000         return 0;
4001  fail:
4002         kfree(ctxs);
4003         return -ENOMEM;
4004 }
4005
4006 /*
4007  * It is the actual release handler for mq, but we do it from
4008  * request queue's release handler for avoiding use-after-free
4009  * and headache because q->mq_kobj shouldn't have been introduced,
4010  * but we can't group ctx/kctx kobj without it.
4011  */
4012 void blk_mq_release(struct request_queue *q)
4013 {
4014         struct blk_mq_hw_ctx *hctx, *next;
4015         unsigned long i;
4016
4017         queue_for_each_hw_ctx(q, hctx, i)
4018                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4019
4020         /* all hctx are in .unused_hctx_list now */
4021         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4022                 list_del_init(&hctx->hctx_list);
4023                 kobject_put(&hctx->kobj);
4024         }
4025
4026         xa_destroy(&q->hctx_table);
4027
4028         /*
4029          * release .mq_kobj and sw queue's kobject now because
4030          * both share lifetime with request queue.
4031          */
4032         blk_mq_sysfs_deinit(q);
4033 }
4034
4035 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4036                 void *queuedata)
4037 {
4038         struct request_queue *q;
4039         int ret;
4040
4041         q = blk_alloc_queue(set->numa_node);
4042         if (!q)
4043                 return ERR_PTR(-ENOMEM);
4044         q->queuedata = queuedata;
4045         ret = blk_mq_init_allocated_queue(set, q);
4046         if (ret) {
4047                 blk_put_queue(q);
4048                 return ERR_PTR(ret);
4049         }
4050         return q;
4051 }
4052
4053 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4054 {
4055         return blk_mq_init_queue_data(set, NULL);
4056 }
4057 EXPORT_SYMBOL(blk_mq_init_queue);
4058
4059 /**
4060  * blk_mq_destroy_queue - shutdown a request queue
4061  * @q: request queue to shutdown
4062  *
4063  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4064  * requests will be failed with -ENODEV. The caller is responsible for dropping
4065  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4066  *
4067  * Context: can sleep
4068  */
4069 void blk_mq_destroy_queue(struct request_queue *q)
4070 {
4071         WARN_ON_ONCE(!queue_is_mq(q));
4072         WARN_ON_ONCE(blk_queue_registered(q));
4073
4074         might_sleep();
4075
4076         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4077         blk_queue_start_drain(q);
4078         blk_mq_freeze_queue_wait(q);
4079
4080         blk_sync_queue(q);
4081         blk_mq_cancel_work_sync(q);
4082         blk_mq_exit_queue(q);
4083 }
4084 EXPORT_SYMBOL(blk_mq_destroy_queue);
4085
4086 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4087                 struct lock_class_key *lkclass)
4088 {
4089         struct request_queue *q;
4090         struct gendisk *disk;
4091
4092         q = blk_mq_init_queue_data(set, queuedata);
4093         if (IS_ERR(q))
4094                 return ERR_CAST(q);
4095
4096         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4097         if (!disk) {
4098                 blk_mq_destroy_queue(q);
4099                 blk_put_queue(q);
4100                 return ERR_PTR(-ENOMEM);
4101         }
4102         set_bit(GD_OWNS_QUEUE, &disk->state);
4103         return disk;
4104 }
4105 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4106
4107 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4108                 struct lock_class_key *lkclass)
4109 {
4110         struct gendisk *disk;
4111
4112         if (!blk_get_queue(q))
4113                 return NULL;
4114         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4115         if (!disk)
4116                 blk_put_queue(q);
4117         return disk;
4118 }
4119 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4120
4121 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4122                 struct blk_mq_tag_set *set, struct request_queue *q,
4123                 int hctx_idx, int node)
4124 {
4125         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4126
4127         /* reuse dead hctx first */
4128         spin_lock(&q->unused_hctx_lock);
4129         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4130                 if (tmp->numa_node == node) {
4131                         hctx = tmp;
4132                         break;
4133                 }
4134         }
4135         if (hctx)
4136                 list_del_init(&hctx->hctx_list);
4137         spin_unlock(&q->unused_hctx_lock);
4138
4139         if (!hctx)
4140                 hctx = blk_mq_alloc_hctx(q, set, node);
4141         if (!hctx)
4142                 goto fail;
4143
4144         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4145                 goto free_hctx;
4146
4147         return hctx;
4148
4149  free_hctx:
4150         kobject_put(&hctx->kobj);
4151  fail:
4152         return NULL;
4153 }
4154
4155 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4156                                                 struct request_queue *q)
4157 {
4158         struct blk_mq_hw_ctx *hctx;
4159         unsigned long i, j;
4160
4161         /* protect against switching io scheduler  */
4162         mutex_lock(&q->sysfs_lock);
4163         for (i = 0; i < set->nr_hw_queues; i++) {
4164                 int old_node;
4165                 int node = blk_mq_get_hctx_node(set, i);
4166                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4167
4168                 if (old_hctx) {
4169                         old_node = old_hctx->numa_node;
4170                         blk_mq_exit_hctx(q, set, old_hctx, i);
4171                 }
4172
4173                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4174                         if (!old_hctx)
4175                                 break;
4176                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4177                                         node, old_node);
4178                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4179                         WARN_ON_ONCE(!hctx);
4180                 }
4181         }
4182         /*
4183          * Increasing nr_hw_queues fails. Free the newly allocated
4184          * hctxs and keep the previous q->nr_hw_queues.
4185          */
4186         if (i != set->nr_hw_queues) {
4187                 j = q->nr_hw_queues;
4188         } else {
4189                 j = i;
4190                 q->nr_hw_queues = set->nr_hw_queues;
4191         }
4192
4193         xa_for_each_start(&q->hctx_table, j, hctx, j)
4194                 blk_mq_exit_hctx(q, set, hctx, j);
4195         mutex_unlock(&q->sysfs_lock);
4196 }
4197
4198 static void blk_mq_update_poll_flag(struct request_queue *q)
4199 {
4200         struct blk_mq_tag_set *set = q->tag_set;
4201
4202         if (set->nr_maps > HCTX_TYPE_POLL &&
4203             set->map[HCTX_TYPE_POLL].nr_queues)
4204                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4205         else
4206                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4207 }
4208
4209 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4210                 struct request_queue *q)
4211 {
4212         /* mark the queue as mq asap */
4213         q->mq_ops = set->ops;
4214
4215         if (blk_mq_alloc_ctxs(q))
4216                 goto err_exit;
4217
4218         /* init q->mq_kobj and sw queues' kobjects */
4219         blk_mq_sysfs_init(q);
4220
4221         INIT_LIST_HEAD(&q->unused_hctx_list);
4222         spin_lock_init(&q->unused_hctx_lock);
4223
4224         xa_init(&q->hctx_table);
4225
4226         blk_mq_realloc_hw_ctxs(set, q);
4227         if (!q->nr_hw_queues)
4228                 goto err_hctxs;
4229
4230         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4231         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4232
4233         q->tag_set = set;
4234
4235         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4236         blk_mq_update_poll_flag(q);
4237
4238         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4239         INIT_LIST_HEAD(&q->requeue_list);
4240         spin_lock_init(&q->requeue_lock);
4241
4242         q->nr_requests = set->queue_depth;
4243
4244         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4245         blk_mq_add_queue_tag_set(set, q);
4246         blk_mq_map_swqueue(q);
4247         return 0;
4248
4249 err_hctxs:
4250         blk_mq_release(q);
4251 err_exit:
4252         q->mq_ops = NULL;
4253         return -ENOMEM;
4254 }
4255 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4256
4257 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4258 void blk_mq_exit_queue(struct request_queue *q)
4259 {
4260         struct blk_mq_tag_set *set = q->tag_set;
4261
4262         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4263         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4264         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4265         blk_mq_del_queue_tag_set(q);
4266 }
4267
4268 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4269 {
4270         int i;
4271
4272         if (blk_mq_is_shared_tags(set->flags)) {
4273                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4274                                                 BLK_MQ_NO_HCTX_IDX,
4275                                                 set->queue_depth);
4276                 if (!set->shared_tags)
4277                         return -ENOMEM;
4278         }
4279
4280         for (i = 0; i < set->nr_hw_queues; i++) {
4281                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4282                         goto out_unwind;
4283                 cond_resched();
4284         }
4285
4286         return 0;
4287
4288 out_unwind:
4289         while (--i >= 0)
4290                 __blk_mq_free_map_and_rqs(set, i);
4291
4292         if (blk_mq_is_shared_tags(set->flags)) {
4293                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4294                                         BLK_MQ_NO_HCTX_IDX);
4295         }
4296
4297         return -ENOMEM;
4298 }
4299
4300 /*
4301  * Allocate the request maps associated with this tag_set. Note that this
4302  * may reduce the depth asked for, if memory is tight. set->queue_depth
4303  * will be updated to reflect the allocated depth.
4304  */
4305 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4306 {
4307         unsigned int depth;
4308         int err;
4309
4310         depth = set->queue_depth;
4311         do {
4312                 err = __blk_mq_alloc_rq_maps(set);
4313                 if (!err)
4314                         break;
4315
4316                 set->queue_depth >>= 1;
4317                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4318                         err = -ENOMEM;
4319                         break;
4320                 }
4321         } while (set->queue_depth);
4322
4323         if (!set->queue_depth || err) {
4324                 pr_err("blk-mq: failed to allocate request map\n");
4325                 return -ENOMEM;
4326         }
4327
4328         if (depth != set->queue_depth)
4329                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4330                                                 depth, set->queue_depth);
4331
4332         return 0;
4333 }
4334
4335 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4336 {
4337         /*
4338          * blk_mq_map_queues() and multiple .map_queues() implementations
4339          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4340          * number of hardware queues.
4341          */
4342         if (set->nr_maps == 1)
4343                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4344
4345         if (set->ops->map_queues && !is_kdump_kernel()) {
4346                 int i;
4347
4348                 /*
4349                  * transport .map_queues is usually done in the following
4350                  * way:
4351                  *
4352                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4353                  *      mask = get_cpu_mask(queue)
4354                  *      for_each_cpu(cpu, mask)
4355                  *              set->map[x].mq_map[cpu] = queue;
4356                  * }
4357                  *
4358                  * When we need to remap, the table has to be cleared for
4359                  * killing stale mapping since one CPU may not be mapped
4360                  * to any hw queue.
4361                  */
4362                 for (i = 0; i < set->nr_maps; i++)
4363                         blk_mq_clear_mq_map(&set->map[i]);
4364
4365                 set->ops->map_queues(set);
4366         } else {
4367                 BUG_ON(set->nr_maps > 1);
4368                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4369         }
4370 }
4371
4372 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4373                                        int new_nr_hw_queues)
4374 {
4375         struct blk_mq_tags **new_tags;
4376
4377         if (set->nr_hw_queues >= new_nr_hw_queues)
4378                 goto done;
4379
4380         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4381                                 GFP_KERNEL, set->numa_node);
4382         if (!new_tags)
4383                 return -ENOMEM;
4384
4385         if (set->tags)
4386                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4387                        sizeof(*set->tags));
4388         kfree(set->tags);
4389         set->tags = new_tags;
4390 done:
4391         set->nr_hw_queues = new_nr_hw_queues;
4392         return 0;
4393 }
4394
4395 /*
4396  * Alloc a tag set to be associated with one or more request queues.
4397  * May fail with EINVAL for various error conditions. May adjust the
4398  * requested depth down, if it's too large. In that case, the set
4399  * value will be stored in set->queue_depth.
4400  */
4401 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4402 {
4403         int i, ret;
4404
4405         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4406
4407         if (!set->nr_hw_queues)
4408                 return -EINVAL;
4409         if (!set->queue_depth)
4410                 return -EINVAL;
4411         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4412                 return -EINVAL;
4413
4414         if (!set->ops->queue_rq)
4415                 return -EINVAL;
4416
4417         if (!set->ops->get_budget ^ !set->ops->put_budget)
4418                 return -EINVAL;
4419
4420         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4421                 pr_info("blk-mq: reduced tag depth to %u\n",
4422                         BLK_MQ_MAX_DEPTH);
4423                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4424         }
4425
4426         if (!set->nr_maps)
4427                 set->nr_maps = 1;
4428         else if (set->nr_maps > HCTX_MAX_TYPES)
4429                 return -EINVAL;
4430
4431         /*
4432          * If a crashdump is active, then we are potentially in a very
4433          * memory constrained environment. Limit us to 1 queue and
4434          * 64 tags to prevent using too much memory.
4435          */
4436         if (is_kdump_kernel()) {
4437                 set->nr_hw_queues = 1;
4438                 set->nr_maps = 1;
4439                 set->queue_depth = min(64U, set->queue_depth);
4440         }
4441         /*
4442          * There is no use for more h/w queues than cpus if we just have
4443          * a single map
4444          */
4445         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4446                 set->nr_hw_queues = nr_cpu_ids;
4447
4448         if (set->flags & BLK_MQ_F_BLOCKING) {
4449                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4450                 if (!set->srcu)
4451                         return -ENOMEM;
4452                 ret = init_srcu_struct(set->srcu);
4453                 if (ret)
4454                         goto out_free_srcu;
4455         }
4456
4457         ret = -ENOMEM;
4458         set->tags = kcalloc_node(set->nr_hw_queues,
4459                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4460                                  set->numa_node);
4461         if (!set->tags)
4462                 goto out_cleanup_srcu;
4463
4464         for (i = 0; i < set->nr_maps; i++) {
4465                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4466                                                   sizeof(set->map[i].mq_map[0]),
4467                                                   GFP_KERNEL, set->numa_node);
4468                 if (!set->map[i].mq_map)
4469                         goto out_free_mq_map;
4470                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4471         }
4472
4473         blk_mq_update_queue_map(set);
4474
4475         ret = blk_mq_alloc_set_map_and_rqs(set);
4476         if (ret)
4477                 goto out_free_mq_map;
4478
4479         mutex_init(&set->tag_list_lock);
4480         INIT_LIST_HEAD(&set->tag_list);
4481
4482         return 0;
4483
4484 out_free_mq_map:
4485         for (i = 0; i < set->nr_maps; i++) {
4486                 kfree(set->map[i].mq_map);
4487                 set->map[i].mq_map = NULL;
4488         }
4489         kfree(set->tags);
4490         set->tags = NULL;
4491 out_cleanup_srcu:
4492         if (set->flags & BLK_MQ_F_BLOCKING)
4493                 cleanup_srcu_struct(set->srcu);
4494 out_free_srcu:
4495         if (set->flags & BLK_MQ_F_BLOCKING)
4496                 kfree(set->srcu);
4497         return ret;
4498 }
4499 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4500
4501 /* allocate and initialize a tagset for a simple single-queue device */
4502 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4503                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4504                 unsigned int set_flags)
4505 {
4506         memset(set, 0, sizeof(*set));
4507         set->ops = ops;
4508         set->nr_hw_queues = 1;
4509         set->nr_maps = 1;
4510         set->queue_depth = queue_depth;
4511         set->numa_node = NUMA_NO_NODE;
4512         set->flags = set_flags;
4513         return blk_mq_alloc_tag_set(set);
4514 }
4515 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4516
4517 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4518 {
4519         int i, j;
4520
4521         for (i = 0; i < set->nr_hw_queues; i++)
4522                 __blk_mq_free_map_and_rqs(set, i);
4523
4524         if (blk_mq_is_shared_tags(set->flags)) {
4525                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4526                                         BLK_MQ_NO_HCTX_IDX);
4527         }
4528
4529         for (j = 0; j < set->nr_maps; j++) {
4530                 kfree(set->map[j].mq_map);
4531                 set->map[j].mq_map = NULL;
4532         }
4533
4534         kfree(set->tags);
4535         set->tags = NULL;
4536         if (set->flags & BLK_MQ_F_BLOCKING) {
4537                 cleanup_srcu_struct(set->srcu);
4538                 kfree(set->srcu);
4539         }
4540 }
4541 EXPORT_SYMBOL(blk_mq_free_tag_set);
4542
4543 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4544 {
4545         struct blk_mq_tag_set *set = q->tag_set;
4546         struct blk_mq_hw_ctx *hctx;
4547         int ret;
4548         unsigned long i;
4549
4550         if (!set)
4551                 return -EINVAL;
4552
4553         if (q->nr_requests == nr)
4554                 return 0;
4555
4556         blk_mq_freeze_queue(q);
4557         blk_mq_quiesce_queue(q);
4558
4559         ret = 0;
4560         queue_for_each_hw_ctx(q, hctx, i) {
4561                 if (!hctx->tags)
4562                         continue;
4563                 /*
4564                  * If we're using an MQ scheduler, just update the scheduler
4565                  * queue depth. This is similar to what the old code would do.
4566                  */
4567                 if (hctx->sched_tags) {
4568                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4569                                                       nr, true);
4570                 } else {
4571                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4572                                                       false);
4573                 }
4574                 if (ret)
4575                         break;
4576                 if (q->elevator && q->elevator->type->ops.depth_updated)
4577                         q->elevator->type->ops.depth_updated(hctx);
4578         }
4579         if (!ret) {
4580                 q->nr_requests = nr;
4581                 if (blk_mq_is_shared_tags(set->flags)) {
4582                         if (q->elevator)
4583                                 blk_mq_tag_update_sched_shared_tags(q);
4584                         else
4585                                 blk_mq_tag_resize_shared_tags(set, nr);
4586                 }
4587         }
4588
4589         blk_mq_unquiesce_queue(q);
4590         blk_mq_unfreeze_queue(q);
4591
4592         return ret;
4593 }
4594
4595 /*
4596  * request_queue and elevator_type pair.
4597  * It is just used by __blk_mq_update_nr_hw_queues to cache
4598  * the elevator_type associated with a request_queue.
4599  */
4600 struct blk_mq_qe_pair {
4601         struct list_head node;
4602         struct request_queue *q;
4603         struct elevator_type *type;
4604 };
4605
4606 /*
4607  * Cache the elevator_type in qe pair list and switch the
4608  * io scheduler to 'none'
4609  */
4610 static bool blk_mq_elv_switch_none(struct list_head *head,
4611                 struct request_queue *q)
4612 {
4613         struct blk_mq_qe_pair *qe;
4614
4615         if (!q->elevator)
4616                 return true;
4617
4618         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4619         if (!qe)
4620                 return false;
4621
4622         /* q->elevator needs protection from ->sysfs_lock */
4623         mutex_lock(&q->sysfs_lock);
4624
4625         INIT_LIST_HEAD(&qe->node);
4626         qe->q = q;
4627         qe->type = q->elevator->type;
4628         /* keep a reference to the elevator module as we'll switch back */
4629         __elevator_get(qe->type);
4630         list_add(&qe->node, head);
4631         elevator_disable(q);
4632         mutex_unlock(&q->sysfs_lock);
4633
4634         return true;
4635 }
4636
4637 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4638                                                 struct request_queue *q)
4639 {
4640         struct blk_mq_qe_pair *qe;
4641
4642         list_for_each_entry(qe, head, node)
4643                 if (qe->q == q)
4644                         return qe;
4645
4646         return NULL;
4647 }
4648
4649 static void blk_mq_elv_switch_back(struct list_head *head,
4650                                   struct request_queue *q)
4651 {
4652         struct blk_mq_qe_pair *qe;
4653         struct elevator_type *t;
4654
4655         qe = blk_lookup_qe_pair(head, q);
4656         if (!qe)
4657                 return;
4658         t = qe->type;
4659         list_del(&qe->node);
4660         kfree(qe);
4661
4662         mutex_lock(&q->sysfs_lock);
4663         elevator_switch(q, t);
4664         /* drop the reference acquired in blk_mq_elv_switch_none */
4665         elevator_put(t);
4666         mutex_unlock(&q->sysfs_lock);
4667 }
4668
4669 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4670                                                         int nr_hw_queues)
4671 {
4672         struct request_queue *q;
4673         LIST_HEAD(head);
4674         int prev_nr_hw_queues;
4675
4676         lockdep_assert_held(&set->tag_list_lock);
4677
4678         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4679                 nr_hw_queues = nr_cpu_ids;
4680         if (nr_hw_queues < 1)
4681                 return;
4682         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4683                 return;
4684
4685         list_for_each_entry(q, &set->tag_list, tag_set_list)
4686                 blk_mq_freeze_queue(q);
4687         /*
4688          * Switch IO scheduler to 'none', cleaning up the data associated
4689          * with the previous scheduler. We will switch back once we are done
4690          * updating the new sw to hw queue mappings.
4691          */
4692         list_for_each_entry(q, &set->tag_list, tag_set_list)
4693                 if (!blk_mq_elv_switch_none(&head, q))
4694                         goto switch_back;
4695
4696         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4697                 blk_mq_debugfs_unregister_hctxs(q);
4698                 blk_mq_sysfs_unregister_hctxs(q);
4699         }
4700
4701         prev_nr_hw_queues = set->nr_hw_queues;
4702         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4703                 goto reregister;
4704
4705 fallback:
4706         blk_mq_update_queue_map(set);
4707         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4708                 blk_mq_realloc_hw_ctxs(set, q);
4709                 blk_mq_update_poll_flag(q);
4710                 if (q->nr_hw_queues != set->nr_hw_queues) {
4711                         int i = prev_nr_hw_queues;
4712
4713                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4714                                         nr_hw_queues, prev_nr_hw_queues);
4715                         for (; i < set->nr_hw_queues; i++)
4716                                 __blk_mq_free_map_and_rqs(set, i);
4717
4718                         set->nr_hw_queues = prev_nr_hw_queues;
4719                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4720                         goto fallback;
4721                 }
4722                 blk_mq_map_swqueue(q);
4723         }
4724
4725 reregister:
4726         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4727                 blk_mq_sysfs_register_hctxs(q);
4728                 blk_mq_debugfs_register_hctxs(q);
4729         }
4730
4731 switch_back:
4732         list_for_each_entry(q, &set->tag_list, tag_set_list)
4733                 blk_mq_elv_switch_back(&head, q);
4734
4735         list_for_each_entry(q, &set->tag_list, tag_set_list)
4736                 blk_mq_unfreeze_queue(q);
4737 }
4738
4739 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4740 {
4741         mutex_lock(&set->tag_list_lock);
4742         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4743         mutex_unlock(&set->tag_list_lock);
4744 }
4745 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4746
4747 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4748                 unsigned int flags)
4749 {
4750         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4751         long state = get_current_state();
4752         int ret;
4753
4754         do {
4755                 ret = q->mq_ops->poll(hctx, iob);
4756                 if (ret > 0) {
4757                         __set_current_state(TASK_RUNNING);
4758                         return ret;
4759                 }
4760
4761                 if (signal_pending_state(state, current))
4762                         __set_current_state(TASK_RUNNING);
4763                 if (task_is_running(current))
4764                         return 1;
4765
4766                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4767                         break;
4768                 cpu_relax();
4769         } while (!need_resched());
4770
4771         __set_current_state(TASK_RUNNING);
4772         return 0;
4773 }
4774
4775 unsigned int blk_mq_rq_cpu(struct request *rq)
4776 {
4777         return rq->mq_ctx->cpu;
4778 }
4779 EXPORT_SYMBOL(blk_mq_rq_cpu);
4780
4781 void blk_mq_cancel_work_sync(struct request_queue *q)
4782 {
4783         struct blk_mq_hw_ctx *hctx;
4784         unsigned long i;
4785
4786         cancel_delayed_work_sync(&q->requeue_work);
4787
4788         queue_for_each_hw_ctx(q, hctx, i)
4789                 cancel_delayed_work_sync(&hctx->run_work);
4790 }
4791
4792 static int __init blk_mq_init(void)
4793 {
4794         int i;
4795
4796         for_each_possible_cpu(i)
4797                 init_llist_head(&per_cpu(blk_cpu_done, i));
4798         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4799
4800         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4801                                   "block/softirq:dead", NULL,
4802                                   blk_softirq_cpu_dead);
4803         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4804                                 blk_mq_hctx_notify_dead);
4805         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4806                                 blk_mq_hctx_notify_online,
4807                                 blk_mq_hctx_notify_offline);
4808         return 0;
4809 }
4810 subsys_initcall(blk_mq_init);