Merge tag 'docs-5.17' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52         int ddir, sectors, bucket;
53
54         ddir = rq_data_dir(rq);
55         sectors = blk_rq_stats_sectors(rq);
56
57         bucket = ddir + 2 * ilog2(sectors);
58
59         if (bucket < 0)
60                 return -1;
61         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63
64         return bucket;
65 }
66
67 #define BLK_QC_T_SHIFT          16
68 #define BLK_QC_T_INTERNAL       (1U << 31)
69
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71                 blk_qc_t qc)
72 {
73         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77                 blk_qc_t qc)
78 {
79         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80
81         if (qc & BLK_QC_T_INTERNAL)
82                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83         return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89                 (rq->tag != -1 ?
90                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92
93 /*
94  * Check if any of the ctx, dispatch list or elevator
95  * have pending work in this hardware queue.
96  */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99         return !list_empty_careful(&hctx->dispatch) ||
100                 sbitmap_any_bit_set(&hctx->ctx_map) ||
101                         blk_mq_sched_has_work(hctx);
102 }
103
104 /*
105  * Mark this ctx as having pending work in this hardware queue
106  */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108                                      struct blk_mq_ctx *ctx)
109 {
110         const int bit = ctx->index_hw[hctx->type];
111
112         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113                 sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117                                       struct blk_mq_ctx *ctx)
118 {
119         const int bit = ctx->index_hw[hctx->type];
120
121         sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123
124 struct mq_inflight {
125         struct block_device *part;
126         unsigned int inflight[2];
127 };
128
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130                                   struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         struct blk_mq_hw_ctx *hctx;
263         unsigned int i;
264         bool rcu = false;
265
266         queue_for_each_hw_ctx(q, hctx, i) {
267                 if (hctx->flags & BLK_MQ_F_BLOCKING)
268                         synchronize_srcu(hctx->srcu);
269                 else
270                         rcu = true;
271         }
272         if (rcu)
273                 synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276
277 /**
278  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279  * @q: request queue.
280  *
281  * Note: this function does not prevent that the struct request end_io()
282  * callback function is invoked. Once this function is returned, we make
283  * sure no dispatch can happen until the queue is unquiesced via
284  * blk_mq_unquiesce_queue().
285  */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288         blk_mq_quiesce_queue_nowait(q);
289         blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292
293 /*
294  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295  * @q: request queue.
296  *
297  * This function recovers queue into the state before quiescing
298  * which is done by blk_mq_quiesce_queue.
299  */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302         unsigned long flags;
303         bool run_queue = false;
304
305         spin_lock_irqsave(&q->queue_lock, flags);
306         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307                 ;
308         } else if (!--q->quiesce_depth) {
309                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310                 run_queue = true;
311         }
312         spin_unlock_irqrestore(&q->queue_lock, flags);
313
314         /* dispatch requests which are inserted during quiescing */
315         if (run_queue)
316                 blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322         struct blk_mq_hw_ctx *hctx;
323         unsigned int i;
324
325         queue_for_each_hw_ctx(q, hctx, i)
326                 if (blk_mq_hw_queue_mapped(hctx))
327                         blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333         struct blk_mq_ctx *ctx = data->ctx;
334         struct blk_mq_hw_ctx *hctx = data->hctx;
335         struct request_queue *q = data->q;
336         struct request *rq = tags->static_rqs[tag];
337
338         rq->q = q;
339         rq->mq_ctx = ctx;
340         rq->mq_hctx = hctx;
341         rq->cmd_flags = data->cmd_flags;
342
343         if (data->flags & BLK_MQ_REQ_PM)
344                 data->rq_flags |= RQF_PM;
345         if (blk_queue_io_stat(q))
346                 data->rq_flags |= RQF_IO_STAT;
347         rq->rq_flags = data->rq_flags;
348
349         if (!(data->rq_flags & RQF_ELV)) {
350                 rq->tag = tag;
351                 rq->internal_tag = BLK_MQ_NO_TAG;
352         } else {
353                 rq->tag = BLK_MQ_NO_TAG;
354                 rq->internal_tag = tag;
355         }
356         rq->timeout = 0;
357
358         if (blk_mq_need_time_stamp(rq))
359                 rq->start_time_ns = ktime_get_ns();
360         else
361                 rq->start_time_ns = 0;
362         rq->rq_disk = NULL;
363         rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365         rq->alloc_time_ns = alloc_time_ns;
366 #endif
367         rq->io_start_time_ns = 0;
368         rq->stats_sectors = 0;
369         rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371         rq->nr_integrity_segments = 0;
372 #endif
373         rq->end_io = NULL;
374         rq->end_io_data = NULL;
375
376         blk_crypto_rq_set_defaults(rq);
377         INIT_LIST_HEAD(&rq->queuelist);
378         /* tag was already set */
379         WRITE_ONCE(rq->deadline, 0);
380         refcount_set(&rq->ref, 1);
381
382         if (rq->rq_flags & RQF_ELV) {
383                 struct elevator_queue *e = data->q->elevator;
384
385                 rq->elv.icq = NULL;
386                 INIT_HLIST_NODE(&rq->hash);
387                 RB_CLEAR_NODE(&rq->rb_node);
388
389                 if (!op_is_flush(data->cmd_flags) &&
390                     e->type->ops.prepare_request) {
391                         if (e->type->icq_cache)
392                                 blk_mq_sched_assign_ioc(rq);
393
394                         e->type->ops.prepare_request(rq);
395                         rq->rq_flags |= RQF_ELVPRIV;
396                 }
397         }
398
399         return rq;
400 }
401
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404                 u64 alloc_time_ns)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         /* caller already holds a reference, add for remainder */
428         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429         data->nr_tags -= nr;
430
431         return rq_list_pop(data->cached_rq);
432 }
433
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436         struct request_queue *q = data->q;
437         u64 alloc_time_ns = 0;
438         struct request *rq;
439         unsigned int tag;
440
441         /* alloc_time includes depth and tag waits */
442         if (blk_queue_rq_alloc_time(q))
443                 alloc_time_ns = ktime_get_ns();
444
445         if (data->cmd_flags & REQ_NOWAIT)
446                 data->flags |= BLK_MQ_REQ_NOWAIT;
447
448         if (q->elevator) {
449                 struct elevator_queue *e = q->elevator;
450
451                 data->rq_flags |= RQF_ELV;
452
453                 /*
454                  * Flush/passthrough requests are special and go directly to the
455                  * dispatch list. Don't include reserved tags in the
456                  * limiting, as it isn't useful.
457                  */
458                 if (!op_is_flush(data->cmd_flags) &&
459                     !blk_op_is_passthrough(data->cmd_flags) &&
460                     e->type->ops.limit_depth &&
461                     !(data->flags & BLK_MQ_REQ_RESERVED))
462                         e->type->ops.limit_depth(data->cmd_flags, data);
463         }
464
465 retry:
466         data->ctx = blk_mq_get_ctx(q);
467         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468         if (!(data->rq_flags & RQF_ELV))
469                 blk_mq_tag_busy(data->hctx);
470
471         /*
472          * Try batched alloc if we want more than 1 tag.
473          */
474         if (data->nr_tags > 1) {
475                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476                 if (rq)
477                         return rq;
478                 data->nr_tags = 1;
479         }
480
481         /*
482          * Waiting allocations only fail because of an inactive hctx.  In that
483          * case just retry the hctx assignment and tag allocation as CPU hotplug
484          * should have migrated us to an online CPU by now.
485          */
486         tag = blk_mq_get_tag(data);
487         if (tag == BLK_MQ_NO_TAG) {
488                 if (data->flags & BLK_MQ_REQ_NOWAIT)
489                         return NULL;
490                 /*
491                  * Give up the CPU and sleep for a random short time to
492                  * ensure that thread using a realtime scheduling class
493                  * are migrated off the CPU, and thus off the hctx that
494                  * is going away.
495                  */
496                 msleep(3);
497                 goto retry;
498         }
499
500         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501                                         alloc_time_ns);
502 }
503
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505                 blk_mq_req_flags_t flags)
506 {
507         struct blk_mq_alloc_data data = {
508                 .q              = q,
509                 .flags          = flags,
510                 .cmd_flags      = op,
511                 .nr_tags        = 1,
512         };
513         struct request *rq;
514         int ret;
515
516         ret = blk_queue_enter(q, flags);
517         if (ret)
518                 return ERR_PTR(ret);
519
520         rq = __blk_mq_alloc_requests(&data);
521         if (!rq)
522                 goto out_queue_exit;
523         rq->__data_len = 0;
524         rq->__sector = (sector_t) -1;
525         rq->bio = rq->biotail = NULL;
526         return rq;
527 out_queue_exit:
528         blk_queue_exit(q);
529         return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536         struct blk_mq_alloc_data data = {
537                 .q              = q,
538                 .flags          = flags,
539                 .cmd_flags      = op,
540                 .nr_tags        = 1,
541         };
542         u64 alloc_time_ns = 0;
543         unsigned int cpu;
544         unsigned int tag;
545         int ret;
546
547         /* alloc_time includes depth and tag waits */
548         if (blk_queue_rq_alloc_time(q))
549                 alloc_time_ns = ktime_get_ns();
550
551         /*
552          * If the tag allocator sleeps we could get an allocation for a
553          * different hardware context.  No need to complicate the low level
554          * allocator for this for the rare use case of a command tied to
555          * a specific queue.
556          */
557         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558                 return ERR_PTR(-EINVAL);
559
560         if (hctx_idx >= q->nr_hw_queues)
561                 return ERR_PTR(-EIO);
562
563         ret = blk_queue_enter(q, flags);
564         if (ret)
565                 return ERR_PTR(ret);
566
567         /*
568          * Check if the hardware context is actually mapped to anything.
569          * If not tell the caller that it should skip this queue.
570          */
571         ret = -EXDEV;
572         data.hctx = q->queue_hw_ctx[hctx_idx];
573         if (!blk_mq_hw_queue_mapped(data.hctx))
574                 goto out_queue_exit;
575         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576         data.ctx = __blk_mq_get_ctx(q, cpu);
577
578         if (!q->elevator)
579                 blk_mq_tag_busy(data.hctx);
580         else
581                 data.rq_flags |= RQF_ELV;
582
583         ret = -EWOULDBLOCK;
584         tag = blk_mq_get_tag(&data);
585         if (tag == BLK_MQ_NO_TAG)
586                 goto out_queue_exit;
587         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588                                         alloc_time_ns);
589
590 out_queue_exit:
591         blk_queue_exit(q);
592         return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595
596 static void __blk_mq_free_request(struct request *rq)
597 {
598         struct request_queue *q = rq->q;
599         struct blk_mq_ctx *ctx = rq->mq_ctx;
600         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601         const int sched_tag = rq->internal_tag;
602
603         blk_crypto_free_request(rq);
604         blk_pm_mark_last_busy(rq);
605         rq->mq_hctx = NULL;
606         if (rq->tag != BLK_MQ_NO_TAG)
607                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608         if (sched_tag != BLK_MQ_NO_TAG)
609                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610         blk_mq_sched_restart(hctx);
611         blk_queue_exit(q);
612 }
613
614 void blk_mq_free_request(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618
619         if (rq->rq_flags & RQF_ELVPRIV) {
620                 struct elevator_queue *e = q->elevator;
621
622                 if (e->type->ops.finish_request)
623                         e->type->ops.finish_request(rq);
624                 if (rq->elv.icq) {
625                         put_io_context(rq->elv.icq->ioc);
626                         rq->elv.icq = NULL;
627                 }
628         }
629
630         if (rq->rq_flags & RQF_MQ_INFLIGHT)
631                 __blk_mq_dec_active_requests(hctx);
632
633         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634                 laptop_io_completion(q->disk->bdi);
635
636         rq_qos_done(q, rq);
637
638         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639         if (refcount_dec_and_test(&rq->ref))
640                 __blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646         struct request *rq;
647
648         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649                 blk_mq_free_request(rq);
650 }
651
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653                           unsigned int nbytes, blk_status_t error)
654 {
655         if (unlikely(error)) {
656                 bio->bi_status = error;
657         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658                 /*
659                  * Partial zone append completions cannot be supported as the
660                  * BIO fragments may end up not being written sequentially.
661                  */
662                 if (bio->bi_iter.bi_size != nbytes)
663                         bio->bi_status = BLK_STS_IOERR;
664                 else
665                         bio->bi_iter.bi_sector = rq->__sector;
666         }
667
668         bio_advance(bio, nbytes);
669
670         if (unlikely(rq->rq_flags & RQF_QUIET))
671                 bio_set_flag(bio, BIO_QUIET);
672         /* don't actually finish bio if it's part of flush sequence */
673         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674                 bio_endio(bio);
675 }
676
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679         if (req->part && blk_do_io_stat(req)) {
680                 const int sgrp = op_stat_group(req_op(req));
681
682                 part_stat_lock();
683                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684                 part_stat_unlock();
685         }
686 }
687
688 /**
689  * blk_update_request - Complete multiple bytes without completing the request
690  * @req:      the request being processed
691  * @error:    block status code
692  * @nr_bytes: number of bytes to complete for @req
693  *
694  * Description:
695  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
696  *     the request structure even if @req doesn't have leftover.
697  *     If @req has leftover, sets it up for the next range of segments.
698  *
699  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700  *     %false return from this function.
701  *
702  * Note:
703  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704  *      except in the consistency check at the end of this function.
705  *
706  * Return:
707  *     %false - this request doesn't have any more data
708  *     %true  - this request has more data
709  **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711                 unsigned int nr_bytes)
712 {
713         int total_bytes;
714
715         trace_block_rq_complete(req, error, nr_bytes);
716
717         if (!req->bio)
718                 return false;
719
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722             error == BLK_STS_OK)
723                 req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725
726         if (unlikely(error && !blk_rq_is_passthrough(req) &&
727                      !(req->rq_flags & RQF_QUIET)))
728                 blk_print_req_error(req, error);
729
730         blk_account_io_completion(req, nr_bytes);
731
732         total_bytes = 0;
733         while (req->bio) {
734                 struct bio *bio = req->bio;
735                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736
737                 if (bio_bytes == bio->bi_iter.bi_size)
738                         req->bio = bio->bi_next;
739
740                 /* Completion has already been traced */
741                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742                 req_bio_endio(req, bio, bio_bytes, error);
743
744                 total_bytes += bio_bytes;
745                 nr_bytes -= bio_bytes;
746
747                 if (!nr_bytes)
748                         break;
749         }
750
751         /*
752          * completely done
753          */
754         if (!req->bio) {
755                 /*
756                  * Reset counters so that the request stacking driver
757                  * can find how many bytes remain in the request
758                  * later.
759                  */
760                 req->__data_len = 0;
761                 return false;
762         }
763
764         req->__data_len -= total_bytes;
765
766         /* update sector only for requests with clear definition of sector */
767         if (!blk_rq_is_passthrough(req))
768                 req->__sector += total_bytes >> 9;
769
770         /* mixed attributes always follow the first bio */
771         if (req->rq_flags & RQF_MIXED_MERGE) {
772                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774         }
775
776         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777                 /*
778                  * If total number of sectors is less than the first segment
779                  * size, something has gone terribly wrong.
780                  */
781                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782                         blk_dump_rq_flags(req, "request botched");
783                         req->__data_len = blk_rq_cur_bytes(req);
784                 }
785
786                 /* recalculate the number of segments */
787                 req->nr_phys_segments = blk_recalc_rq_segments(req);
788         }
789
790         return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796         if (rq->rq_flags & RQF_STATS) {
797                 blk_mq_poll_stats_start(rq->q);
798                 blk_stat_add(rq, now);
799         }
800
801         blk_mq_sched_completed_request(rq, now);
802         blk_account_io_done(rq, now);
803 }
804
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807         if (blk_mq_need_time_stamp(rq))
808                 __blk_mq_end_request_acct(rq, ktime_get_ns());
809
810         if (rq->end_io) {
811                 rq_qos_done(rq->q, rq);
812                 rq->end_io(rq, error);
813         } else {
814                 blk_mq_free_request(rq);
815         }
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822                 BUG();
823         __blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826
827 #define TAG_COMP_BATCH          32
828
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830                                           int *tag_array, int nr_tags)
831 {
832         struct request_queue *q = hctx->queue;
833
834         /*
835          * All requests should have been marked as RQF_MQ_INFLIGHT, so
836          * update hctx->nr_active in batch
837          */
838         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839                 __blk_mq_sub_active_requests(hctx, nr_tags);
840
841         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847         int tags[TAG_COMP_BATCH], nr_tags = 0;
848         struct blk_mq_hw_ctx *cur_hctx = NULL;
849         struct request *rq;
850         u64 now = 0;
851
852         if (iob->need_ts)
853                 now = ktime_get_ns();
854
855         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856                 prefetch(rq->bio);
857                 prefetch(rq->rq_next);
858
859                 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860                 if (iob->need_ts)
861                         __blk_mq_end_request_acct(rq, now);
862
863                 rq_qos_done(rq->q, rq);
864
865                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
866                 if (!refcount_dec_and_test(&rq->ref))
867                         continue;
868
869                 blk_crypto_free_request(rq);
870                 blk_pm_mark_last_busy(rq);
871
872                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
873                         if (cur_hctx)
874                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
875                         nr_tags = 0;
876                         cur_hctx = rq->mq_hctx;
877                 }
878                 tags[nr_tags++] = rq->tag;
879         }
880
881         if (nr_tags)
882                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
883 }
884 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
885
886 static void blk_complete_reqs(struct llist_head *list)
887 {
888         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
889         struct request *rq, *next;
890
891         llist_for_each_entry_safe(rq, next, entry, ipi_list)
892                 rq->q->mq_ops->complete(rq);
893 }
894
895 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
896 {
897         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
898 }
899
900 static int blk_softirq_cpu_dead(unsigned int cpu)
901 {
902         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
903         return 0;
904 }
905
906 static void __blk_mq_complete_request_remote(void *data)
907 {
908         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
909 }
910
911 static inline bool blk_mq_complete_need_ipi(struct request *rq)
912 {
913         int cpu = raw_smp_processor_id();
914
915         if (!IS_ENABLED(CONFIG_SMP) ||
916             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
917                 return false;
918         /*
919          * With force threaded interrupts enabled, raising softirq from an SMP
920          * function call will always result in waking the ksoftirqd thread.
921          * This is probably worse than completing the request on a different
922          * cache domain.
923          */
924         if (force_irqthreads())
925                 return false;
926
927         /* same CPU or cache domain?  Complete locally */
928         if (cpu == rq->mq_ctx->cpu ||
929             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
930              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
931                 return false;
932
933         /* don't try to IPI to an offline CPU */
934         return cpu_online(rq->mq_ctx->cpu);
935 }
936
937 static void blk_mq_complete_send_ipi(struct request *rq)
938 {
939         struct llist_head *list;
940         unsigned int cpu;
941
942         cpu = rq->mq_ctx->cpu;
943         list = &per_cpu(blk_cpu_done, cpu);
944         if (llist_add(&rq->ipi_list, list)) {
945                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
946                 smp_call_function_single_async(cpu, &rq->csd);
947         }
948 }
949
950 static void blk_mq_raise_softirq(struct request *rq)
951 {
952         struct llist_head *list;
953
954         preempt_disable();
955         list = this_cpu_ptr(&blk_cpu_done);
956         if (llist_add(&rq->ipi_list, list))
957                 raise_softirq(BLOCK_SOFTIRQ);
958         preempt_enable();
959 }
960
961 bool blk_mq_complete_request_remote(struct request *rq)
962 {
963         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
964
965         /*
966          * For a polled request, always complete locallly, it's pointless
967          * to redirect the completion.
968          */
969         if (rq->cmd_flags & REQ_POLLED)
970                 return false;
971
972         if (blk_mq_complete_need_ipi(rq)) {
973                 blk_mq_complete_send_ipi(rq);
974                 return true;
975         }
976
977         if (rq->q->nr_hw_queues == 1) {
978                 blk_mq_raise_softirq(rq);
979                 return true;
980         }
981         return false;
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
984
985 /**
986  * blk_mq_complete_request - end I/O on a request
987  * @rq:         the request being processed
988  *
989  * Description:
990  *      Complete a request by scheduling the ->complete_rq operation.
991  **/
992 void blk_mq_complete_request(struct request *rq)
993 {
994         if (!blk_mq_complete_request_remote(rq))
995                 rq->q->mq_ops->complete(rq);
996 }
997 EXPORT_SYMBOL(blk_mq_complete_request);
998
999 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
1000         __releases(hctx->srcu)
1001 {
1002         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1003                 rcu_read_unlock();
1004         else
1005                 srcu_read_unlock(hctx->srcu, srcu_idx);
1006 }
1007
1008 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1009         __acquires(hctx->srcu)
1010 {
1011         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1012                 /* shut up gcc false positive */
1013                 *srcu_idx = 0;
1014                 rcu_read_lock();
1015         } else
1016                 *srcu_idx = srcu_read_lock(hctx->srcu);
1017 }
1018
1019 /**
1020  * blk_mq_start_request - Start processing a request
1021  * @rq: Pointer to request to be started
1022  *
1023  * Function used by device drivers to notify the block layer that a request
1024  * is going to be processed now, so blk layer can do proper initializations
1025  * such as starting the timeout timer.
1026  */
1027 void blk_mq_start_request(struct request *rq)
1028 {
1029         struct request_queue *q = rq->q;
1030
1031         trace_block_rq_issue(rq);
1032
1033         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1034                 u64 start_time;
1035 #ifdef CONFIG_BLK_CGROUP
1036                 if (rq->bio)
1037                         start_time = bio_issue_time(&rq->bio->bi_issue);
1038                 else
1039 #endif
1040                         start_time = ktime_get_ns();
1041                 rq->io_start_time_ns = start_time;
1042                 rq->stats_sectors = blk_rq_sectors(rq);
1043                 rq->rq_flags |= RQF_STATS;
1044                 rq_qos_issue(q, rq);
1045         }
1046
1047         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1048
1049         blk_add_timer(rq);
1050         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1051
1052 #ifdef CONFIG_BLK_DEV_INTEGRITY
1053         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1054                 q->integrity.profile->prepare_fn(rq);
1055 #endif
1056         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1057                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1058 }
1059 EXPORT_SYMBOL(blk_mq_start_request);
1060
1061 static void __blk_mq_requeue_request(struct request *rq)
1062 {
1063         struct request_queue *q = rq->q;
1064
1065         blk_mq_put_driver_tag(rq);
1066
1067         trace_block_rq_requeue(rq);
1068         rq_qos_requeue(q, rq);
1069
1070         if (blk_mq_request_started(rq)) {
1071                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1072                 rq->rq_flags &= ~RQF_TIMED_OUT;
1073         }
1074 }
1075
1076 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1077 {
1078         __blk_mq_requeue_request(rq);
1079
1080         /* this request will be re-inserted to io scheduler queue */
1081         blk_mq_sched_requeue_request(rq);
1082
1083         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1084 }
1085 EXPORT_SYMBOL(blk_mq_requeue_request);
1086
1087 static void blk_mq_requeue_work(struct work_struct *work)
1088 {
1089         struct request_queue *q =
1090                 container_of(work, struct request_queue, requeue_work.work);
1091         LIST_HEAD(rq_list);
1092         struct request *rq, *next;
1093
1094         spin_lock_irq(&q->requeue_lock);
1095         list_splice_init(&q->requeue_list, &rq_list);
1096         spin_unlock_irq(&q->requeue_lock);
1097
1098         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1099                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1100                         continue;
1101
1102                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1103                 list_del_init(&rq->queuelist);
1104                 /*
1105                  * If RQF_DONTPREP, rq has contained some driver specific
1106                  * data, so insert it to hctx dispatch list to avoid any
1107                  * merge.
1108                  */
1109                 if (rq->rq_flags & RQF_DONTPREP)
1110                         blk_mq_request_bypass_insert(rq, false, false);
1111                 else
1112                         blk_mq_sched_insert_request(rq, true, false, false);
1113         }
1114
1115         while (!list_empty(&rq_list)) {
1116                 rq = list_entry(rq_list.next, struct request, queuelist);
1117                 list_del_init(&rq->queuelist);
1118                 blk_mq_sched_insert_request(rq, false, false, false);
1119         }
1120
1121         blk_mq_run_hw_queues(q, false);
1122 }
1123
1124 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1125                                 bool kick_requeue_list)
1126 {
1127         struct request_queue *q = rq->q;
1128         unsigned long flags;
1129
1130         /*
1131          * We abuse this flag that is otherwise used by the I/O scheduler to
1132          * request head insertion from the workqueue.
1133          */
1134         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1135
1136         spin_lock_irqsave(&q->requeue_lock, flags);
1137         if (at_head) {
1138                 rq->rq_flags |= RQF_SOFTBARRIER;
1139                 list_add(&rq->queuelist, &q->requeue_list);
1140         } else {
1141                 list_add_tail(&rq->queuelist, &q->requeue_list);
1142         }
1143         spin_unlock_irqrestore(&q->requeue_lock, flags);
1144
1145         if (kick_requeue_list)
1146                 blk_mq_kick_requeue_list(q);
1147 }
1148
1149 void blk_mq_kick_requeue_list(struct request_queue *q)
1150 {
1151         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1152 }
1153 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1154
1155 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1156                                     unsigned long msecs)
1157 {
1158         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1159                                     msecs_to_jiffies(msecs));
1160 }
1161 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1162
1163 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1164                                void *priv, bool reserved)
1165 {
1166         /*
1167          * If we find a request that isn't idle and the queue matches,
1168          * we know the queue is busy. Return false to stop the iteration.
1169          */
1170         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1171                 bool *busy = priv;
1172
1173                 *busy = true;
1174                 return false;
1175         }
1176
1177         return true;
1178 }
1179
1180 bool blk_mq_queue_inflight(struct request_queue *q)
1181 {
1182         bool busy = false;
1183
1184         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1185         return busy;
1186 }
1187 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1188
1189 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1190 {
1191         req->rq_flags |= RQF_TIMED_OUT;
1192         if (req->q->mq_ops->timeout) {
1193                 enum blk_eh_timer_return ret;
1194
1195                 ret = req->q->mq_ops->timeout(req, reserved);
1196                 if (ret == BLK_EH_DONE)
1197                         return;
1198                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1199         }
1200
1201         blk_add_timer(req);
1202 }
1203
1204 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1205 {
1206         unsigned long deadline;
1207
1208         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1209                 return false;
1210         if (rq->rq_flags & RQF_TIMED_OUT)
1211                 return false;
1212
1213         deadline = READ_ONCE(rq->deadline);
1214         if (time_after_eq(jiffies, deadline))
1215                 return true;
1216
1217         if (*next == 0)
1218                 *next = deadline;
1219         else if (time_after(*next, deadline))
1220                 *next = deadline;
1221         return false;
1222 }
1223
1224 void blk_mq_put_rq_ref(struct request *rq)
1225 {
1226         if (is_flush_rq(rq))
1227                 rq->end_io(rq, 0);
1228         else if (refcount_dec_and_test(&rq->ref))
1229                 __blk_mq_free_request(rq);
1230 }
1231
1232 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1233                 struct request *rq, void *priv, bool reserved)
1234 {
1235         unsigned long *next = priv;
1236
1237         /*
1238          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1239          * be reallocated underneath the timeout handler's processing, then
1240          * the expire check is reliable. If the request is not expired, then
1241          * it was completed and reallocated as a new request after returning
1242          * from blk_mq_check_expired().
1243          */
1244         if (blk_mq_req_expired(rq, next))
1245                 blk_mq_rq_timed_out(rq, reserved);
1246         return true;
1247 }
1248
1249 static void blk_mq_timeout_work(struct work_struct *work)
1250 {
1251         struct request_queue *q =
1252                 container_of(work, struct request_queue, timeout_work);
1253         unsigned long next = 0;
1254         struct blk_mq_hw_ctx *hctx;
1255         int i;
1256
1257         /* A deadlock might occur if a request is stuck requiring a
1258          * timeout at the same time a queue freeze is waiting
1259          * completion, since the timeout code would not be able to
1260          * acquire the queue reference here.
1261          *
1262          * That's why we don't use blk_queue_enter here; instead, we use
1263          * percpu_ref_tryget directly, because we need to be able to
1264          * obtain a reference even in the short window between the queue
1265          * starting to freeze, by dropping the first reference in
1266          * blk_freeze_queue_start, and the moment the last request is
1267          * consumed, marked by the instant q_usage_counter reaches
1268          * zero.
1269          */
1270         if (!percpu_ref_tryget(&q->q_usage_counter))
1271                 return;
1272
1273         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1274
1275         if (next != 0) {
1276                 mod_timer(&q->timeout, next);
1277         } else {
1278                 /*
1279                  * Request timeouts are handled as a forward rolling timer. If
1280                  * we end up here it means that no requests are pending and
1281                  * also that no request has been pending for a while. Mark
1282                  * each hctx as idle.
1283                  */
1284                 queue_for_each_hw_ctx(q, hctx, i) {
1285                         /* the hctx may be unmapped, so check it here */
1286                         if (blk_mq_hw_queue_mapped(hctx))
1287                                 blk_mq_tag_idle(hctx);
1288                 }
1289         }
1290         blk_queue_exit(q);
1291 }
1292
1293 struct flush_busy_ctx_data {
1294         struct blk_mq_hw_ctx *hctx;
1295         struct list_head *list;
1296 };
1297
1298 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1299 {
1300         struct flush_busy_ctx_data *flush_data = data;
1301         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1302         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1303         enum hctx_type type = hctx->type;
1304
1305         spin_lock(&ctx->lock);
1306         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1307         sbitmap_clear_bit(sb, bitnr);
1308         spin_unlock(&ctx->lock);
1309         return true;
1310 }
1311
1312 /*
1313  * Process software queues that have been marked busy, splicing them
1314  * to the for-dispatch
1315  */
1316 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1317 {
1318         struct flush_busy_ctx_data data = {
1319                 .hctx = hctx,
1320                 .list = list,
1321         };
1322
1323         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1324 }
1325 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1326
1327 struct dispatch_rq_data {
1328         struct blk_mq_hw_ctx *hctx;
1329         struct request *rq;
1330 };
1331
1332 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1333                 void *data)
1334 {
1335         struct dispatch_rq_data *dispatch_data = data;
1336         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1337         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1338         enum hctx_type type = hctx->type;
1339
1340         spin_lock(&ctx->lock);
1341         if (!list_empty(&ctx->rq_lists[type])) {
1342                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1343                 list_del_init(&dispatch_data->rq->queuelist);
1344                 if (list_empty(&ctx->rq_lists[type]))
1345                         sbitmap_clear_bit(sb, bitnr);
1346         }
1347         spin_unlock(&ctx->lock);
1348
1349         return !dispatch_data->rq;
1350 }
1351
1352 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1353                                         struct blk_mq_ctx *start)
1354 {
1355         unsigned off = start ? start->index_hw[hctx->type] : 0;
1356         struct dispatch_rq_data data = {
1357                 .hctx = hctx,
1358                 .rq   = NULL,
1359         };
1360
1361         __sbitmap_for_each_set(&hctx->ctx_map, off,
1362                                dispatch_rq_from_ctx, &data);
1363
1364         return data.rq;
1365 }
1366
1367 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1368 {
1369         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1370         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1371         int tag;
1372
1373         blk_mq_tag_busy(rq->mq_hctx);
1374
1375         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1376                 bt = &rq->mq_hctx->tags->breserved_tags;
1377                 tag_offset = 0;
1378         } else {
1379                 if (!hctx_may_queue(rq->mq_hctx, bt))
1380                         return false;
1381         }
1382
1383         tag = __sbitmap_queue_get(bt);
1384         if (tag == BLK_MQ_NO_TAG)
1385                 return false;
1386
1387         rq->tag = tag + tag_offset;
1388         return true;
1389 }
1390
1391 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1392 {
1393         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1394                 return false;
1395
1396         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1397                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1398                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1399                 __blk_mq_inc_active_requests(hctx);
1400         }
1401         hctx->tags->rqs[rq->tag] = rq;
1402         return true;
1403 }
1404
1405 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1406                                 int flags, void *key)
1407 {
1408         struct blk_mq_hw_ctx *hctx;
1409
1410         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1411
1412         spin_lock(&hctx->dispatch_wait_lock);
1413         if (!list_empty(&wait->entry)) {
1414                 struct sbitmap_queue *sbq;
1415
1416                 list_del_init(&wait->entry);
1417                 sbq = &hctx->tags->bitmap_tags;
1418                 atomic_dec(&sbq->ws_active);
1419         }
1420         spin_unlock(&hctx->dispatch_wait_lock);
1421
1422         blk_mq_run_hw_queue(hctx, true);
1423         return 1;
1424 }
1425
1426 /*
1427  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1428  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1429  * restart. For both cases, take care to check the condition again after
1430  * marking us as waiting.
1431  */
1432 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1433                                  struct request *rq)
1434 {
1435         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1436         struct wait_queue_head *wq;
1437         wait_queue_entry_t *wait;
1438         bool ret;
1439
1440         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1441                 blk_mq_sched_mark_restart_hctx(hctx);
1442
1443                 /*
1444                  * It's possible that a tag was freed in the window between the
1445                  * allocation failure and adding the hardware queue to the wait
1446                  * queue.
1447                  *
1448                  * Don't clear RESTART here, someone else could have set it.
1449                  * At most this will cost an extra queue run.
1450                  */
1451                 return blk_mq_get_driver_tag(rq);
1452         }
1453
1454         wait = &hctx->dispatch_wait;
1455         if (!list_empty_careful(&wait->entry))
1456                 return false;
1457
1458         wq = &bt_wait_ptr(sbq, hctx)->wait;
1459
1460         spin_lock_irq(&wq->lock);
1461         spin_lock(&hctx->dispatch_wait_lock);
1462         if (!list_empty(&wait->entry)) {
1463                 spin_unlock(&hctx->dispatch_wait_lock);
1464                 spin_unlock_irq(&wq->lock);
1465                 return false;
1466         }
1467
1468         atomic_inc(&sbq->ws_active);
1469         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1470         __add_wait_queue(wq, wait);
1471
1472         /*
1473          * It's possible that a tag was freed in the window between the
1474          * allocation failure and adding the hardware queue to the wait
1475          * queue.
1476          */
1477         ret = blk_mq_get_driver_tag(rq);
1478         if (!ret) {
1479                 spin_unlock(&hctx->dispatch_wait_lock);
1480                 spin_unlock_irq(&wq->lock);
1481                 return false;
1482         }
1483
1484         /*
1485          * We got a tag, remove ourselves from the wait queue to ensure
1486          * someone else gets the wakeup.
1487          */
1488         list_del_init(&wait->entry);
1489         atomic_dec(&sbq->ws_active);
1490         spin_unlock(&hctx->dispatch_wait_lock);
1491         spin_unlock_irq(&wq->lock);
1492
1493         return true;
1494 }
1495
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1497 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1498 /*
1499  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1500  * - EWMA is one simple way to compute running average value
1501  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1502  * - take 4 as factor for avoiding to get too small(0) result, and this
1503  *   factor doesn't matter because EWMA decreases exponentially
1504  */
1505 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1506 {
1507         unsigned int ewma;
1508
1509         ewma = hctx->dispatch_busy;
1510
1511         if (!ewma && !busy)
1512                 return;
1513
1514         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1515         if (busy)
1516                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1517         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1518
1519         hctx->dispatch_busy = ewma;
1520 }
1521
1522 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1523
1524 static void blk_mq_handle_dev_resource(struct request *rq,
1525                                        struct list_head *list)
1526 {
1527         struct request *next =
1528                 list_first_entry_or_null(list, struct request, queuelist);
1529
1530         /*
1531          * If an I/O scheduler has been configured and we got a driver tag for
1532          * the next request already, free it.
1533          */
1534         if (next)
1535                 blk_mq_put_driver_tag(next);
1536
1537         list_add(&rq->queuelist, list);
1538         __blk_mq_requeue_request(rq);
1539 }
1540
1541 static void blk_mq_handle_zone_resource(struct request *rq,
1542                                         struct list_head *zone_list)
1543 {
1544         /*
1545          * If we end up here it is because we cannot dispatch a request to a
1546          * specific zone due to LLD level zone-write locking or other zone
1547          * related resource not being available. In this case, set the request
1548          * aside in zone_list for retrying it later.
1549          */
1550         list_add(&rq->queuelist, zone_list);
1551         __blk_mq_requeue_request(rq);
1552 }
1553
1554 enum prep_dispatch {
1555         PREP_DISPATCH_OK,
1556         PREP_DISPATCH_NO_TAG,
1557         PREP_DISPATCH_NO_BUDGET,
1558 };
1559
1560 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1561                                                   bool need_budget)
1562 {
1563         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1564         int budget_token = -1;
1565
1566         if (need_budget) {
1567                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1568                 if (budget_token < 0) {
1569                         blk_mq_put_driver_tag(rq);
1570                         return PREP_DISPATCH_NO_BUDGET;
1571                 }
1572                 blk_mq_set_rq_budget_token(rq, budget_token);
1573         }
1574
1575         if (!blk_mq_get_driver_tag(rq)) {
1576                 /*
1577                  * The initial allocation attempt failed, so we need to
1578                  * rerun the hardware queue when a tag is freed. The
1579                  * waitqueue takes care of that. If the queue is run
1580                  * before we add this entry back on the dispatch list,
1581                  * we'll re-run it below.
1582                  */
1583                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1584                         /*
1585                          * All budgets not got from this function will be put
1586                          * together during handling partial dispatch
1587                          */
1588                         if (need_budget)
1589                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1590                         return PREP_DISPATCH_NO_TAG;
1591                 }
1592         }
1593
1594         return PREP_DISPATCH_OK;
1595 }
1596
1597 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1598 static void blk_mq_release_budgets(struct request_queue *q,
1599                 struct list_head *list)
1600 {
1601         struct request *rq;
1602
1603         list_for_each_entry(rq, list, queuelist) {
1604                 int budget_token = blk_mq_get_rq_budget_token(rq);
1605
1606                 if (budget_token >= 0)
1607                         blk_mq_put_dispatch_budget(q, budget_token);
1608         }
1609 }
1610
1611 /*
1612  * Returns true if we did some work AND can potentially do more.
1613  */
1614 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1615                              unsigned int nr_budgets)
1616 {
1617         enum prep_dispatch prep;
1618         struct request_queue *q = hctx->queue;
1619         struct request *rq, *nxt;
1620         int errors, queued;
1621         blk_status_t ret = BLK_STS_OK;
1622         LIST_HEAD(zone_list);
1623         bool needs_resource = false;
1624
1625         if (list_empty(list))
1626                 return false;
1627
1628         /*
1629          * Now process all the entries, sending them to the driver.
1630          */
1631         errors = queued = 0;
1632         do {
1633                 struct blk_mq_queue_data bd;
1634
1635                 rq = list_first_entry(list, struct request, queuelist);
1636
1637                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1638                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1639                 if (prep != PREP_DISPATCH_OK)
1640                         break;
1641
1642                 list_del_init(&rq->queuelist);
1643
1644                 bd.rq = rq;
1645
1646                 /*
1647                  * Flag last if we have no more requests, or if we have more
1648                  * but can't assign a driver tag to it.
1649                  */
1650                 if (list_empty(list))
1651                         bd.last = true;
1652                 else {
1653                         nxt = list_first_entry(list, struct request, queuelist);
1654                         bd.last = !blk_mq_get_driver_tag(nxt);
1655                 }
1656
1657                 /*
1658                  * once the request is queued to lld, no need to cover the
1659                  * budget any more
1660                  */
1661                 if (nr_budgets)
1662                         nr_budgets--;
1663                 ret = q->mq_ops->queue_rq(hctx, &bd);
1664                 switch (ret) {
1665                 case BLK_STS_OK:
1666                         queued++;
1667                         break;
1668                 case BLK_STS_RESOURCE:
1669                         needs_resource = true;
1670                         fallthrough;
1671                 case BLK_STS_DEV_RESOURCE:
1672                         blk_mq_handle_dev_resource(rq, list);
1673                         goto out;
1674                 case BLK_STS_ZONE_RESOURCE:
1675                         /*
1676                          * Move the request to zone_list and keep going through
1677                          * the dispatch list to find more requests the drive can
1678                          * accept.
1679                          */
1680                         blk_mq_handle_zone_resource(rq, &zone_list);
1681                         needs_resource = true;
1682                         break;
1683                 default:
1684                         errors++;
1685                         blk_mq_end_request(rq, ret);
1686                 }
1687         } while (!list_empty(list));
1688 out:
1689         if (!list_empty(&zone_list))
1690                 list_splice_tail_init(&zone_list, list);
1691
1692         /* If we didn't flush the entire list, we could have told the driver
1693          * there was more coming, but that turned out to be a lie.
1694          */
1695         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1696                 q->mq_ops->commit_rqs(hctx);
1697         /*
1698          * Any items that need requeuing? Stuff them into hctx->dispatch,
1699          * that is where we will continue on next queue run.
1700          */
1701         if (!list_empty(list)) {
1702                 bool needs_restart;
1703                 /* For non-shared tags, the RESTART check will suffice */
1704                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1705                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1706
1707                 if (nr_budgets)
1708                         blk_mq_release_budgets(q, list);
1709
1710                 spin_lock(&hctx->lock);
1711                 list_splice_tail_init(list, &hctx->dispatch);
1712                 spin_unlock(&hctx->lock);
1713
1714                 /*
1715                  * Order adding requests to hctx->dispatch and checking
1716                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1717                  * in blk_mq_sched_restart(). Avoid restart code path to
1718                  * miss the new added requests to hctx->dispatch, meantime
1719                  * SCHED_RESTART is observed here.
1720                  */
1721                 smp_mb();
1722
1723                 /*
1724                  * If SCHED_RESTART was set by the caller of this function and
1725                  * it is no longer set that means that it was cleared by another
1726                  * thread and hence that a queue rerun is needed.
1727                  *
1728                  * If 'no_tag' is set, that means that we failed getting
1729                  * a driver tag with an I/O scheduler attached. If our dispatch
1730                  * waitqueue is no longer active, ensure that we run the queue
1731                  * AFTER adding our entries back to the list.
1732                  *
1733                  * If no I/O scheduler has been configured it is possible that
1734                  * the hardware queue got stopped and restarted before requests
1735                  * were pushed back onto the dispatch list. Rerun the queue to
1736                  * avoid starvation. Notes:
1737                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1738                  *   been stopped before rerunning a queue.
1739                  * - Some but not all block drivers stop a queue before
1740                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1741                  *   and dm-rq.
1742                  *
1743                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1744                  * bit is set, run queue after a delay to avoid IO stalls
1745                  * that could otherwise occur if the queue is idle.  We'll do
1746                  * similar if we couldn't get budget or couldn't lock a zone
1747                  * and SCHED_RESTART is set.
1748                  */
1749                 needs_restart = blk_mq_sched_needs_restart(hctx);
1750                 if (prep == PREP_DISPATCH_NO_BUDGET)
1751                         needs_resource = true;
1752                 if (!needs_restart ||
1753                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1754                         blk_mq_run_hw_queue(hctx, true);
1755                 else if (needs_restart && needs_resource)
1756                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1757
1758                 blk_mq_update_dispatch_busy(hctx, true);
1759                 return false;
1760         } else
1761                 blk_mq_update_dispatch_busy(hctx, false);
1762
1763         return (queued + errors) != 0;
1764 }
1765
1766 /**
1767  * __blk_mq_run_hw_queue - Run a hardware queue.
1768  * @hctx: Pointer to the hardware queue to run.
1769  *
1770  * Send pending requests to the hardware.
1771  */
1772 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1773 {
1774         int srcu_idx;
1775
1776         /*
1777          * We can't run the queue inline with ints disabled. Ensure that
1778          * we catch bad users of this early.
1779          */
1780         WARN_ON_ONCE(in_interrupt());
1781
1782         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1783
1784         hctx_lock(hctx, &srcu_idx);
1785         blk_mq_sched_dispatch_requests(hctx);
1786         hctx_unlock(hctx, srcu_idx);
1787 }
1788
1789 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1790 {
1791         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1792
1793         if (cpu >= nr_cpu_ids)
1794                 cpu = cpumask_first(hctx->cpumask);
1795         return cpu;
1796 }
1797
1798 /*
1799  * It'd be great if the workqueue API had a way to pass
1800  * in a mask and had some smarts for more clever placement.
1801  * For now we just round-robin here, switching for every
1802  * BLK_MQ_CPU_WORK_BATCH queued items.
1803  */
1804 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1805 {
1806         bool tried = false;
1807         int next_cpu = hctx->next_cpu;
1808
1809         if (hctx->queue->nr_hw_queues == 1)
1810                 return WORK_CPU_UNBOUND;
1811
1812         if (--hctx->next_cpu_batch <= 0) {
1813 select_cpu:
1814                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1815                                 cpu_online_mask);
1816                 if (next_cpu >= nr_cpu_ids)
1817                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1818                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1819         }
1820
1821         /*
1822          * Do unbound schedule if we can't find a online CPU for this hctx,
1823          * and it should only happen in the path of handling CPU DEAD.
1824          */
1825         if (!cpu_online(next_cpu)) {
1826                 if (!tried) {
1827                         tried = true;
1828                         goto select_cpu;
1829                 }
1830
1831                 /*
1832                  * Make sure to re-select CPU next time once after CPUs
1833                  * in hctx->cpumask become online again.
1834                  */
1835                 hctx->next_cpu = next_cpu;
1836                 hctx->next_cpu_batch = 1;
1837                 return WORK_CPU_UNBOUND;
1838         }
1839
1840         hctx->next_cpu = next_cpu;
1841         return next_cpu;
1842 }
1843
1844 /**
1845  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1846  * @hctx: Pointer to the hardware queue to run.
1847  * @async: If we want to run the queue asynchronously.
1848  * @msecs: Milliseconds of delay to wait before running the queue.
1849  *
1850  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1851  * with a delay of @msecs.
1852  */
1853 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1854                                         unsigned long msecs)
1855 {
1856         if (unlikely(blk_mq_hctx_stopped(hctx)))
1857                 return;
1858
1859         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1860                 int cpu = get_cpu();
1861                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1862                         __blk_mq_run_hw_queue(hctx);
1863                         put_cpu();
1864                         return;
1865                 }
1866
1867                 put_cpu();
1868         }
1869
1870         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1871                                     msecs_to_jiffies(msecs));
1872 }
1873
1874 /**
1875  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1876  * @hctx: Pointer to the hardware queue to run.
1877  * @msecs: Milliseconds of delay to wait before running the queue.
1878  *
1879  * Run a hardware queue asynchronously with a delay of @msecs.
1880  */
1881 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1882 {
1883         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1884 }
1885 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1886
1887 /**
1888  * blk_mq_run_hw_queue - Start to run a hardware queue.
1889  * @hctx: Pointer to the hardware queue to run.
1890  * @async: If we want to run the queue asynchronously.
1891  *
1892  * Check if the request queue is not in a quiesced state and if there are
1893  * pending requests to be sent. If this is true, run the queue to send requests
1894  * to hardware.
1895  */
1896 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1897 {
1898         int srcu_idx;
1899         bool need_run;
1900
1901         /*
1902          * When queue is quiesced, we may be switching io scheduler, or
1903          * updating nr_hw_queues, or other things, and we can't run queue
1904          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1905          *
1906          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1907          * quiesced.
1908          */
1909         hctx_lock(hctx, &srcu_idx);
1910         need_run = !blk_queue_quiesced(hctx->queue) &&
1911                 blk_mq_hctx_has_pending(hctx);
1912         hctx_unlock(hctx, srcu_idx);
1913
1914         if (need_run)
1915                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1916 }
1917 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1918
1919 /*
1920  * Is the request queue handled by an IO scheduler that does not respect
1921  * hardware queues when dispatching?
1922  */
1923 static bool blk_mq_has_sqsched(struct request_queue *q)
1924 {
1925         struct elevator_queue *e = q->elevator;
1926
1927         if (e && e->type->ops.dispatch_request &&
1928             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1929                 return true;
1930         return false;
1931 }
1932
1933 /*
1934  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1935  * scheduler.
1936  */
1937 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1938 {
1939         struct blk_mq_hw_ctx *hctx;
1940
1941         /*
1942          * If the IO scheduler does not respect hardware queues when
1943          * dispatching, we just don't bother with multiple HW queues and
1944          * dispatch from hctx for the current CPU since running multiple queues
1945          * just causes lock contention inside the scheduler and pointless cache
1946          * bouncing.
1947          */
1948         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1949                                      raw_smp_processor_id());
1950         if (!blk_mq_hctx_stopped(hctx))
1951                 return hctx;
1952         return NULL;
1953 }
1954
1955 /**
1956  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1957  * @q: Pointer to the request queue to run.
1958  * @async: If we want to run the queue asynchronously.
1959  */
1960 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1961 {
1962         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1963         int i;
1964
1965         sq_hctx = NULL;
1966         if (blk_mq_has_sqsched(q))
1967                 sq_hctx = blk_mq_get_sq_hctx(q);
1968         queue_for_each_hw_ctx(q, hctx, i) {
1969                 if (blk_mq_hctx_stopped(hctx))
1970                         continue;
1971                 /*
1972                  * Dispatch from this hctx either if there's no hctx preferred
1973                  * by IO scheduler or if it has requests that bypass the
1974                  * scheduler.
1975                  */
1976                 if (!sq_hctx || sq_hctx == hctx ||
1977                     !list_empty_careful(&hctx->dispatch))
1978                         blk_mq_run_hw_queue(hctx, async);
1979         }
1980 }
1981 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1982
1983 /**
1984  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1985  * @q: Pointer to the request queue to run.
1986  * @msecs: Milliseconds of delay to wait before running the queues.
1987  */
1988 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1989 {
1990         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1991         int i;
1992
1993         sq_hctx = NULL;
1994         if (blk_mq_has_sqsched(q))
1995                 sq_hctx = blk_mq_get_sq_hctx(q);
1996         queue_for_each_hw_ctx(q, hctx, i) {
1997                 if (blk_mq_hctx_stopped(hctx))
1998                         continue;
1999                 /*
2000                  * Dispatch from this hctx either if there's no hctx preferred
2001                  * by IO scheduler or if it has requests that bypass the
2002                  * scheduler.
2003                  */
2004                 if (!sq_hctx || sq_hctx == hctx ||
2005                     !list_empty_careful(&hctx->dispatch))
2006                         blk_mq_delay_run_hw_queue(hctx, msecs);
2007         }
2008 }
2009 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2010
2011 /**
2012  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2013  * @q: request queue.
2014  *
2015  * The caller is responsible for serializing this function against
2016  * blk_mq_{start,stop}_hw_queue().
2017  */
2018 bool blk_mq_queue_stopped(struct request_queue *q)
2019 {
2020         struct blk_mq_hw_ctx *hctx;
2021         int i;
2022
2023         queue_for_each_hw_ctx(q, hctx, i)
2024                 if (blk_mq_hctx_stopped(hctx))
2025                         return true;
2026
2027         return false;
2028 }
2029 EXPORT_SYMBOL(blk_mq_queue_stopped);
2030
2031 /*
2032  * This function is often used for pausing .queue_rq() by driver when
2033  * there isn't enough resource or some conditions aren't satisfied, and
2034  * BLK_STS_RESOURCE is usually returned.
2035  *
2036  * We do not guarantee that dispatch can be drained or blocked
2037  * after blk_mq_stop_hw_queue() returns. Please use
2038  * blk_mq_quiesce_queue() for that requirement.
2039  */
2040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2041 {
2042         cancel_delayed_work(&hctx->run_work);
2043
2044         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2045 }
2046 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2047
2048 /*
2049  * This function is often used for pausing .queue_rq() by driver when
2050  * there isn't enough resource or some conditions aren't satisfied, and
2051  * BLK_STS_RESOURCE is usually returned.
2052  *
2053  * We do not guarantee that dispatch can be drained or blocked
2054  * after blk_mq_stop_hw_queues() returns. Please use
2055  * blk_mq_quiesce_queue() for that requirement.
2056  */
2057 void blk_mq_stop_hw_queues(struct request_queue *q)
2058 {
2059         struct blk_mq_hw_ctx *hctx;
2060         int i;
2061
2062         queue_for_each_hw_ctx(q, hctx, i)
2063                 blk_mq_stop_hw_queue(hctx);
2064 }
2065 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2066
2067 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2068 {
2069         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2070
2071         blk_mq_run_hw_queue(hctx, false);
2072 }
2073 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2074
2075 void blk_mq_start_hw_queues(struct request_queue *q)
2076 {
2077         struct blk_mq_hw_ctx *hctx;
2078         int i;
2079
2080         queue_for_each_hw_ctx(q, hctx, i)
2081                 blk_mq_start_hw_queue(hctx);
2082 }
2083 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2084
2085 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087         if (!blk_mq_hctx_stopped(hctx))
2088                 return;
2089
2090         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2091         blk_mq_run_hw_queue(hctx, async);
2092 }
2093 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2094
2095 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2096 {
2097         struct blk_mq_hw_ctx *hctx;
2098         int i;
2099
2100         queue_for_each_hw_ctx(q, hctx, i)
2101                 blk_mq_start_stopped_hw_queue(hctx, async);
2102 }
2103 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2104
2105 static void blk_mq_run_work_fn(struct work_struct *work)
2106 {
2107         struct blk_mq_hw_ctx *hctx;
2108
2109         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2110
2111         /*
2112          * If we are stopped, don't run the queue.
2113          */
2114         if (blk_mq_hctx_stopped(hctx))
2115                 return;
2116
2117         __blk_mq_run_hw_queue(hctx);
2118 }
2119
2120 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2121                                             struct request *rq,
2122                                             bool at_head)
2123 {
2124         struct blk_mq_ctx *ctx = rq->mq_ctx;
2125         enum hctx_type type = hctx->type;
2126
2127         lockdep_assert_held(&ctx->lock);
2128
2129         trace_block_rq_insert(rq);
2130
2131         if (at_head)
2132                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2133         else
2134                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2135 }
2136
2137 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2138                              bool at_head)
2139 {
2140         struct blk_mq_ctx *ctx = rq->mq_ctx;
2141
2142         lockdep_assert_held(&ctx->lock);
2143
2144         __blk_mq_insert_req_list(hctx, rq, at_head);
2145         blk_mq_hctx_mark_pending(hctx, ctx);
2146 }
2147
2148 /**
2149  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2150  * @rq: Pointer to request to be inserted.
2151  * @at_head: true if the request should be inserted at the head of the list.
2152  * @run_queue: If we should run the hardware queue after inserting the request.
2153  *
2154  * Should only be used carefully, when the caller knows we want to
2155  * bypass a potential IO scheduler on the target device.
2156  */
2157 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2158                                   bool run_queue)
2159 {
2160         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2161
2162         spin_lock(&hctx->lock);
2163         if (at_head)
2164                 list_add(&rq->queuelist, &hctx->dispatch);
2165         else
2166                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2167         spin_unlock(&hctx->lock);
2168
2169         if (run_queue)
2170                 blk_mq_run_hw_queue(hctx, false);
2171 }
2172
2173 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2174                             struct list_head *list)
2175
2176 {
2177         struct request *rq;
2178         enum hctx_type type = hctx->type;
2179
2180         /*
2181          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2182          * offline now
2183          */
2184         list_for_each_entry(rq, list, queuelist) {
2185                 BUG_ON(rq->mq_ctx != ctx);
2186                 trace_block_rq_insert(rq);
2187         }
2188
2189         spin_lock(&ctx->lock);
2190         list_splice_tail_init(list, &ctx->rq_lists[type]);
2191         blk_mq_hctx_mark_pending(hctx, ctx);
2192         spin_unlock(&ctx->lock);
2193 }
2194
2195 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2196                               bool from_schedule)
2197 {
2198         if (hctx->queue->mq_ops->commit_rqs) {
2199                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2200                 hctx->queue->mq_ops->commit_rqs(hctx);
2201         }
2202         *queued = 0;
2203 }
2204
2205 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2206 {
2207         struct blk_mq_hw_ctx *hctx = NULL;
2208         struct request *rq;
2209         int queued = 0;
2210         int errors = 0;
2211
2212         while ((rq = rq_list_pop(&plug->mq_list))) {
2213                 bool last = rq_list_empty(plug->mq_list);
2214                 blk_status_t ret;
2215
2216                 if (hctx != rq->mq_hctx) {
2217                         if (hctx)
2218                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2219                         hctx = rq->mq_hctx;
2220                 }
2221
2222                 ret = blk_mq_request_issue_directly(rq, last);
2223                 switch (ret) {
2224                 case BLK_STS_OK:
2225                         queued++;
2226                         break;
2227                 case BLK_STS_RESOURCE:
2228                 case BLK_STS_DEV_RESOURCE:
2229                         blk_mq_request_bypass_insert(rq, false, last);
2230                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2231                         return;
2232                 default:
2233                         blk_mq_end_request(rq, ret);
2234                         errors++;
2235                         break;
2236                 }
2237         }
2238
2239         /*
2240          * If we didn't flush the entire list, we could have told the driver
2241          * there was more coming, but that turned out to be a lie.
2242          */
2243         if (errors)
2244                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2245 }
2246
2247 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2248 {
2249         struct blk_mq_hw_ctx *this_hctx;
2250         struct blk_mq_ctx *this_ctx;
2251         unsigned int depth;
2252         LIST_HEAD(list);
2253
2254         if (rq_list_empty(plug->mq_list))
2255                 return;
2256         plug->rq_count = 0;
2257
2258         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2259                 blk_mq_plug_issue_direct(plug, false);
2260                 if (rq_list_empty(plug->mq_list))
2261                         return;
2262         }
2263
2264         this_hctx = NULL;
2265         this_ctx = NULL;
2266         depth = 0;
2267         do {
2268                 struct request *rq;
2269
2270                 rq = rq_list_pop(&plug->mq_list);
2271
2272                 if (!this_hctx) {
2273                         this_hctx = rq->mq_hctx;
2274                         this_ctx = rq->mq_ctx;
2275                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2276                         trace_block_unplug(this_hctx->queue, depth,
2277                                                 !from_schedule);
2278                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2279                                                 &list, from_schedule);
2280                         depth = 0;
2281                         this_hctx = rq->mq_hctx;
2282                         this_ctx = rq->mq_ctx;
2283
2284                 }
2285
2286                 list_add(&rq->queuelist, &list);
2287                 depth++;
2288         } while (!rq_list_empty(plug->mq_list));
2289
2290         if (!list_empty(&list)) {
2291                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2292                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2293                                                 from_schedule);
2294         }
2295 }
2296
2297 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2298                 unsigned int nr_segs)
2299 {
2300         int err;
2301
2302         if (bio->bi_opf & REQ_RAHEAD)
2303                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2304
2305         rq->__sector = bio->bi_iter.bi_sector;
2306         rq->write_hint = bio->bi_write_hint;
2307         blk_rq_bio_prep(rq, bio, nr_segs);
2308
2309         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2310         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2311         WARN_ON_ONCE(err);
2312
2313         blk_account_io_start(rq);
2314 }
2315
2316 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2317                                             struct request *rq, bool last)
2318 {
2319         struct request_queue *q = rq->q;
2320         struct blk_mq_queue_data bd = {
2321                 .rq = rq,
2322                 .last = last,
2323         };
2324         blk_status_t ret;
2325
2326         /*
2327          * For OK queue, we are done. For error, caller may kill it.
2328          * Any other error (busy), just add it to our list as we
2329          * previously would have done.
2330          */
2331         ret = q->mq_ops->queue_rq(hctx, &bd);
2332         switch (ret) {
2333         case BLK_STS_OK:
2334                 blk_mq_update_dispatch_busy(hctx, false);
2335                 break;
2336         case BLK_STS_RESOURCE:
2337         case BLK_STS_DEV_RESOURCE:
2338                 blk_mq_update_dispatch_busy(hctx, true);
2339                 __blk_mq_requeue_request(rq);
2340                 break;
2341         default:
2342                 blk_mq_update_dispatch_busy(hctx, false);
2343                 break;
2344         }
2345
2346         return ret;
2347 }
2348
2349 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2350                                                 struct request *rq,
2351                                                 bool bypass_insert, bool last)
2352 {
2353         struct request_queue *q = rq->q;
2354         bool run_queue = true;
2355         int budget_token;
2356
2357         /*
2358          * RCU or SRCU read lock is needed before checking quiesced flag.
2359          *
2360          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2361          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2362          * and avoid driver to try to dispatch again.
2363          */
2364         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2365                 run_queue = false;
2366                 bypass_insert = false;
2367                 goto insert;
2368         }
2369
2370         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2371                 goto insert;
2372
2373         budget_token = blk_mq_get_dispatch_budget(q);
2374         if (budget_token < 0)
2375                 goto insert;
2376
2377         blk_mq_set_rq_budget_token(rq, budget_token);
2378
2379         if (!blk_mq_get_driver_tag(rq)) {
2380                 blk_mq_put_dispatch_budget(q, budget_token);
2381                 goto insert;
2382         }
2383
2384         return __blk_mq_issue_directly(hctx, rq, last);
2385 insert:
2386         if (bypass_insert)
2387                 return BLK_STS_RESOURCE;
2388
2389         blk_mq_sched_insert_request(rq, false, run_queue, false);
2390
2391         return BLK_STS_OK;
2392 }
2393
2394 /**
2395  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2396  * @hctx: Pointer of the associated hardware queue.
2397  * @rq: Pointer to request to be sent.
2398  *
2399  * If the device has enough resources to accept a new request now, send the
2400  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2401  * we can try send it another time in the future. Requests inserted at this
2402  * queue have higher priority.
2403  */
2404 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2405                 struct request *rq)
2406 {
2407         blk_status_t ret;
2408         int srcu_idx;
2409
2410         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2411
2412         hctx_lock(hctx, &srcu_idx);
2413
2414         ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2415         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2416                 blk_mq_request_bypass_insert(rq, false, true);
2417         else if (ret != BLK_STS_OK)
2418                 blk_mq_end_request(rq, ret);
2419
2420         hctx_unlock(hctx, srcu_idx);
2421 }
2422
2423 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2424 {
2425         blk_status_t ret;
2426         int srcu_idx;
2427         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2428
2429         hctx_lock(hctx, &srcu_idx);
2430         ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2431         hctx_unlock(hctx, srcu_idx);
2432
2433         return ret;
2434 }
2435
2436 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2437                 struct list_head *list)
2438 {
2439         int queued = 0;
2440         int errors = 0;
2441
2442         while (!list_empty(list)) {
2443                 blk_status_t ret;
2444                 struct request *rq = list_first_entry(list, struct request,
2445                                 queuelist);
2446
2447                 list_del_init(&rq->queuelist);
2448                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2449                 if (ret != BLK_STS_OK) {
2450                         if (ret == BLK_STS_RESOURCE ||
2451                                         ret == BLK_STS_DEV_RESOURCE) {
2452                                 blk_mq_request_bypass_insert(rq, false,
2453                                                         list_empty(list));
2454                                 break;
2455                         }
2456                         blk_mq_end_request(rq, ret);
2457                         errors++;
2458                 } else
2459                         queued++;
2460         }
2461
2462         /*
2463          * If we didn't flush the entire list, we could have told
2464          * the driver there was more coming, but that turned out to
2465          * be a lie.
2466          */
2467         if ((!list_empty(list) || errors) &&
2468              hctx->queue->mq_ops->commit_rqs && queued)
2469                 hctx->queue->mq_ops->commit_rqs(hctx);
2470 }
2471
2472 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2473 {
2474         if (!plug->multiple_queues) {
2475                 struct request *nxt = rq_list_peek(&plug->mq_list);
2476
2477                 if (nxt && nxt->q != rq->q)
2478                         plug->multiple_queues = true;
2479         }
2480         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2481                 plug->has_elevator = true;
2482         rq->rq_next = NULL;
2483         rq_list_add(&plug->mq_list, rq);
2484         plug->rq_count++;
2485 }
2486
2487 /*
2488  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2489  * queues. This is important for md arrays to benefit from merging
2490  * requests.
2491  */
2492 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2493 {
2494         if (plug->multiple_queues)
2495                 return BLK_MAX_REQUEST_COUNT * 2;
2496         return BLK_MAX_REQUEST_COUNT;
2497 }
2498
2499 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2500                                      struct bio *bio, unsigned int nr_segs,
2501                                      bool *same_queue_rq)
2502 {
2503         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2504                 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2505                         return true;
2506                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2507                         return true;
2508         }
2509         return false;
2510 }
2511
2512 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2513                                                struct blk_plug *plug,
2514                                                struct bio *bio,
2515                                                unsigned int nsegs,
2516                                                bool *same_queue_rq)
2517 {
2518         struct blk_mq_alloc_data data = {
2519                 .q              = q,
2520                 .nr_tags        = 1,
2521                 .cmd_flags      = bio->bi_opf,
2522         };
2523         struct request *rq;
2524
2525         if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2526                 return NULL;
2527
2528         rq_qos_throttle(q, bio);
2529
2530         if (plug) {
2531                 data.nr_tags = plug->nr_ios;
2532                 plug->nr_ios = 1;
2533                 data.cached_rq = &plug->cached_rq;
2534         }
2535
2536         rq = __blk_mq_alloc_requests(&data);
2537         if (rq)
2538                 return rq;
2539
2540         rq_qos_cleanup(q, bio);
2541         if (bio->bi_opf & REQ_NOWAIT)
2542                 bio_wouldblock_error(bio);
2543
2544         return NULL;
2545 }
2546
2547 static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
2548 {
2549         if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2550                 return false;
2551
2552         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2553                 return false;
2554
2555         return true;
2556 }
2557
2558 static inline struct request *blk_mq_get_request(struct request_queue *q,
2559                                                  struct blk_plug *plug,
2560                                                  struct bio *bio,
2561                                                  unsigned int nsegs,
2562                                                  bool *same_queue_rq)
2563 {
2564         struct request *rq;
2565         bool checked = false;
2566
2567         if (plug) {
2568                 rq = rq_list_peek(&plug->cached_rq);
2569                 if (rq && rq->q == q) {
2570                         if (unlikely(!submit_bio_checks(bio)))
2571                                 return NULL;
2572                         if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2573                                                 same_queue_rq))
2574                                 return NULL;
2575                         checked = true;
2576                         if (!blk_mq_can_use_cached_rq(rq, bio))
2577                                 goto fallback;
2578                         rq->cmd_flags = bio->bi_opf;
2579                         plug->cached_rq = rq_list_next(rq);
2580                         INIT_LIST_HEAD(&rq->queuelist);
2581                         rq_qos_throttle(q, bio);
2582                         return rq;
2583                 }
2584         }
2585
2586 fallback:
2587         if (unlikely(bio_queue_enter(bio)))
2588                 return NULL;
2589         if (unlikely(!checked && !submit_bio_checks(bio)))
2590                 goto out_put;
2591         rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2592         if (rq)
2593                 return rq;
2594 out_put:
2595         blk_queue_exit(q);
2596         return NULL;
2597 }
2598
2599 /**
2600  * blk_mq_submit_bio - Create and send a request to block device.
2601  * @bio: Bio pointer.
2602  *
2603  * Builds up a request structure from @q and @bio and send to the device. The
2604  * request may not be queued directly to hardware if:
2605  * * This request can be merged with another one
2606  * * We want to place request at plug queue for possible future merging
2607  * * There is an IO scheduler active at this queue
2608  *
2609  * It will not queue the request if there is an error with the bio, or at the
2610  * request creation.
2611  */
2612 void blk_mq_submit_bio(struct bio *bio)
2613 {
2614         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2615         const int is_sync = op_is_sync(bio->bi_opf);
2616         struct request *rq;
2617         struct blk_plug *plug;
2618         bool same_queue_rq = false;
2619         unsigned int nr_segs = 1;
2620         blk_status_t ret;
2621
2622         if (unlikely(!blk_crypto_bio_prep(&bio)))
2623                 return;
2624
2625         blk_queue_bounce(q, &bio);
2626         if (blk_may_split(q, bio))
2627                 __blk_queue_split(q, &bio, &nr_segs);
2628
2629         if (!bio_integrity_prep(bio))
2630                 return;
2631
2632         plug = blk_mq_plug(q, bio);
2633         rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2634         if (unlikely(!rq))
2635                 return;
2636
2637         trace_block_getrq(bio);
2638
2639         rq_qos_track(q, rq, bio);
2640
2641         blk_mq_bio_to_request(rq, bio, nr_segs);
2642
2643         ret = blk_crypto_init_request(rq);
2644         if (ret != BLK_STS_OK) {
2645                 bio->bi_status = ret;
2646                 bio_endio(bio);
2647                 blk_mq_free_request(rq);
2648                 return;
2649         }
2650
2651         if (op_is_flush(bio->bi_opf)) {
2652                 blk_insert_flush(rq);
2653                 return;
2654         }
2655
2656         if (plug && (q->nr_hw_queues == 1 ||
2657             blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2658             q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2659                 /*
2660                  * Use plugging if we have a ->commit_rqs() hook as well, as
2661                  * we know the driver uses bd->last in a smart fashion.
2662                  *
2663                  * Use normal plugging if this disk is slow HDD, as sequential
2664                  * IO may benefit a lot from plug merging.
2665                  */
2666                 unsigned int request_count = plug->rq_count;
2667                 struct request *last = NULL;
2668
2669                 if (!request_count) {
2670                         trace_block_plug(q);
2671                 } else if (!blk_queue_nomerges(q)) {
2672                         last = rq_list_peek(&plug->mq_list);
2673                         if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2674                                 last = NULL;
2675                 }
2676
2677                 if (request_count >= blk_plug_max_rq_count(plug) || last) {
2678                         blk_mq_flush_plug_list(plug, false);
2679                         trace_block_plug(q);
2680                 }
2681
2682                 blk_add_rq_to_plug(plug, rq);
2683         } else if (rq->rq_flags & RQF_ELV) {
2684                 /* Insert the request at the IO scheduler queue */
2685                 blk_mq_sched_insert_request(rq, false, true, true);
2686         } else if (plug && !blk_queue_nomerges(q)) {
2687                 struct request *next_rq = NULL;
2688
2689                 /*
2690                  * We do limited plugging. If the bio can be merged, do that.
2691                  * Otherwise the existing request in the plug list will be
2692                  * issued. So the plug list will have one request at most
2693                  * The plug list might get flushed before this. If that happens,
2694                  * the plug list is empty, and same_queue_rq is invalid.
2695                  */
2696                 if (same_queue_rq) {
2697                         next_rq = rq_list_pop(&plug->mq_list);
2698                         plug->rq_count--;
2699                 }
2700                 blk_add_rq_to_plug(plug, rq);
2701                 trace_block_plug(q);
2702
2703                 if (next_rq) {
2704                         trace_block_unplug(q, 1, true);
2705                         blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2706                 }
2707         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2708                    !rq->mq_hctx->dispatch_busy) {
2709                 /*
2710                  * There is no scheduler and we can try to send directly
2711                  * to the hardware.
2712                  */
2713                 blk_mq_try_issue_directly(rq->mq_hctx, rq);
2714         } else {
2715                 /* Default case. */
2716                 blk_mq_sched_insert_request(rq, false, true, true);
2717         }
2718 }
2719
2720 static size_t order_to_size(unsigned int order)
2721 {
2722         return (size_t)PAGE_SIZE << order;
2723 }
2724
2725 /* called before freeing request pool in @tags */
2726 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2727                                     struct blk_mq_tags *tags)
2728 {
2729         struct page *page;
2730         unsigned long flags;
2731
2732         /* There is no need to clear a driver tags own mapping */
2733         if (drv_tags == tags)
2734                 return;
2735
2736         list_for_each_entry(page, &tags->page_list, lru) {
2737                 unsigned long start = (unsigned long)page_address(page);
2738                 unsigned long end = start + order_to_size(page->private);
2739                 int i;
2740
2741                 for (i = 0; i < drv_tags->nr_tags; i++) {
2742                         struct request *rq = drv_tags->rqs[i];
2743                         unsigned long rq_addr = (unsigned long)rq;
2744
2745                         if (rq_addr >= start && rq_addr < end) {
2746                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2747                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2748                         }
2749                 }
2750         }
2751
2752         /*
2753          * Wait until all pending iteration is done.
2754          *
2755          * Request reference is cleared and it is guaranteed to be observed
2756          * after the ->lock is released.
2757          */
2758         spin_lock_irqsave(&drv_tags->lock, flags);
2759         spin_unlock_irqrestore(&drv_tags->lock, flags);
2760 }
2761
2762 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2763                      unsigned int hctx_idx)
2764 {
2765         struct blk_mq_tags *drv_tags;
2766         struct page *page;
2767
2768         if (blk_mq_is_shared_tags(set->flags))
2769                 drv_tags = set->shared_tags;
2770         else
2771                 drv_tags = set->tags[hctx_idx];
2772
2773         if (tags->static_rqs && set->ops->exit_request) {
2774                 int i;
2775
2776                 for (i = 0; i < tags->nr_tags; i++) {
2777                         struct request *rq = tags->static_rqs[i];
2778
2779                         if (!rq)
2780                                 continue;
2781                         set->ops->exit_request(set, rq, hctx_idx);
2782                         tags->static_rqs[i] = NULL;
2783                 }
2784         }
2785
2786         blk_mq_clear_rq_mapping(drv_tags, tags);
2787
2788         while (!list_empty(&tags->page_list)) {
2789                 page = list_first_entry(&tags->page_list, struct page, lru);
2790                 list_del_init(&page->lru);
2791                 /*
2792                  * Remove kmemleak object previously allocated in
2793                  * blk_mq_alloc_rqs().
2794                  */
2795                 kmemleak_free(page_address(page));
2796                 __free_pages(page, page->private);
2797         }
2798 }
2799
2800 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2801 {
2802         kfree(tags->rqs);
2803         tags->rqs = NULL;
2804         kfree(tags->static_rqs);
2805         tags->static_rqs = NULL;
2806
2807         blk_mq_free_tags(tags);
2808 }
2809
2810 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2811                                                unsigned int hctx_idx,
2812                                                unsigned int nr_tags,
2813                                                unsigned int reserved_tags)
2814 {
2815         struct blk_mq_tags *tags;
2816         int node;
2817
2818         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2819         if (node == NUMA_NO_NODE)
2820                 node = set->numa_node;
2821
2822         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2823                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2824         if (!tags)
2825                 return NULL;
2826
2827         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2828                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2829                                  node);
2830         if (!tags->rqs) {
2831                 blk_mq_free_tags(tags);
2832                 return NULL;
2833         }
2834
2835         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2836                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2837                                         node);
2838         if (!tags->static_rqs) {
2839                 kfree(tags->rqs);
2840                 blk_mq_free_tags(tags);
2841                 return NULL;
2842         }
2843
2844         return tags;
2845 }
2846
2847 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2848                                unsigned int hctx_idx, int node)
2849 {
2850         int ret;
2851
2852         if (set->ops->init_request) {
2853                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2854                 if (ret)
2855                         return ret;
2856         }
2857
2858         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2859         return 0;
2860 }
2861
2862 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2863                             struct blk_mq_tags *tags,
2864                             unsigned int hctx_idx, unsigned int depth)
2865 {
2866         unsigned int i, j, entries_per_page, max_order = 4;
2867         size_t rq_size, left;
2868         int node;
2869
2870         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2871         if (node == NUMA_NO_NODE)
2872                 node = set->numa_node;
2873
2874         INIT_LIST_HEAD(&tags->page_list);
2875
2876         /*
2877          * rq_size is the size of the request plus driver payload, rounded
2878          * to the cacheline size
2879          */
2880         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2881                                 cache_line_size());
2882         left = rq_size * depth;
2883
2884         for (i = 0; i < depth; ) {
2885                 int this_order = max_order;
2886                 struct page *page;
2887                 int to_do;
2888                 void *p;
2889
2890                 while (this_order && left < order_to_size(this_order - 1))
2891                         this_order--;
2892
2893                 do {
2894                         page = alloc_pages_node(node,
2895                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2896                                 this_order);
2897                         if (page)
2898                                 break;
2899                         if (!this_order--)
2900                                 break;
2901                         if (order_to_size(this_order) < rq_size)
2902                                 break;
2903                 } while (1);
2904
2905                 if (!page)
2906                         goto fail;
2907
2908                 page->private = this_order;
2909                 list_add_tail(&page->lru, &tags->page_list);
2910
2911                 p = page_address(page);
2912                 /*
2913                  * Allow kmemleak to scan these pages as they contain pointers
2914                  * to additional allocations like via ops->init_request().
2915                  */
2916                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2917                 entries_per_page = order_to_size(this_order) / rq_size;
2918                 to_do = min(entries_per_page, depth - i);
2919                 left -= to_do * rq_size;
2920                 for (j = 0; j < to_do; j++) {
2921                         struct request *rq = p;
2922
2923                         tags->static_rqs[i] = rq;
2924                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2925                                 tags->static_rqs[i] = NULL;
2926                                 goto fail;
2927                         }
2928
2929                         p += rq_size;
2930                         i++;
2931                 }
2932         }
2933         return 0;
2934
2935 fail:
2936         blk_mq_free_rqs(set, tags, hctx_idx);
2937         return -ENOMEM;
2938 }
2939
2940 struct rq_iter_data {
2941         struct blk_mq_hw_ctx *hctx;
2942         bool has_rq;
2943 };
2944
2945 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2946 {
2947         struct rq_iter_data *iter_data = data;
2948
2949         if (rq->mq_hctx != iter_data->hctx)
2950                 return true;
2951         iter_data->has_rq = true;
2952         return false;
2953 }
2954
2955 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2956 {
2957         struct blk_mq_tags *tags = hctx->sched_tags ?
2958                         hctx->sched_tags : hctx->tags;
2959         struct rq_iter_data data = {
2960                 .hctx   = hctx,
2961         };
2962
2963         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2964         return data.has_rq;
2965 }
2966
2967 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2968                 struct blk_mq_hw_ctx *hctx)
2969 {
2970         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2971                 return false;
2972         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2973                 return false;
2974         return true;
2975 }
2976
2977 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2978 {
2979         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2980                         struct blk_mq_hw_ctx, cpuhp_online);
2981
2982         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2983             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2984                 return 0;
2985
2986         /*
2987          * Prevent new request from being allocated on the current hctx.
2988          *
2989          * The smp_mb__after_atomic() Pairs with the implied barrier in
2990          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2991          * seen once we return from the tag allocator.
2992          */
2993         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2994         smp_mb__after_atomic();
2995
2996         /*
2997          * Try to grab a reference to the queue and wait for any outstanding
2998          * requests.  If we could not grab a reference the queue has been
2999          * frozen and there are no requests.
3000          */
3001         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3002                 while (blk_mq_hctx_has_requests(hctx))
3003                         msleep(5);
3004                 percpu_ref_put(&hctx->queue->q_usage_counter);
3005         }
3006
3007         return 0;
3008 }
3009
3010 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3011 {
3012         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3013                         struct blk_mq_hw_ctx, cpuhp_online);
3014
3015         if (cpumask_test_cpu(cpu, hctx->cpumask))
3016                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3017         return 0;
3018 }
3019
3020 /*
3021  * 'cpu' is going away. splice any existing rq_list entries from this
3022  * software queue to the hw queue dispatch list, and ensure that it
3023  * gets run.
3024  */
3025 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3026 {
3027         struct blk_mq_hw_ctx *hctx;
3028         struct blk_mq_ctx *ctx;
3029         LIST_HEAD(tmp);
3030         enum hctx_type type;
3031
3032         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3033         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3034                 return 0;
3035
3036         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3037         type = hctx->type;
3038
3039         spin_lock(&ctx->lock);
3040         if (!list_empty(&ctx->rq_lists[type])) {
3041                 list_splice_init(&ctx->rq_lists[type], &tmp);
3042                 blk_mq_hctx_clear_pending(hctx, ctx);
3043         }
3044         spin_unlock(&ctx->lock);
3045
3046         if (list_empty(&tmp))
3047                 return 0;
3048
3049         spin_lock(&hctx->lock);
3050         list_splice_tail_init(&tmp, &hctx->dispatch);
3051         spin_unlock(&hctx->lock);
3052
3053         blk_mq_run_hw_queue(hctx, true);
3054         return 0;
3055 }
3056
3057 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3058 {
3059         if (!(hctx->flags & BLK_MQ_F_STACKING))
3060                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3061                                                     &hctx->cpuhp_online);
3062         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3063                                             &hctx->cpuhp_dead);
3064 }
3065
3066 /*
3067  * Before freeing hw queue, clearing the flush request reference in
3068  * tags->rqs[] for avoiding potential UAF.
3069  */
3070 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3071                 unsigned int queue_depth, struct request *flush_rq)
3072 {
3073         int i;
3074         unsigned long flags;
3075
3076         /* The hw queue may not be mapped yet */
3077         if (!tags)
3078                 return;
3079
3080         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3081
3082         for (i = 0; i < queue_depth; i++)
3083                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3084
3085         /*
3086          * Wait until all pending iteration is done.
3087          *
3088          * Request reference is cleared and it is guaranteed to be observed
3089          * after the ->lock is released.
3090          */
3091         spin_lock_irqsave(&tags->lock, flags);
3092         spin_unlock_irqrestore(&tags->lock, flags);
3093 }
3094
3095 /* hctx->ctxs will be freed in queue's release handler */
3096 static void blk_mq_exit_hctx(struct request_queue *q,
3097                 struct blk_mq_tag_set *set,
3098                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3099 {
3100         struct request *flush_rq = hctx->fq->flush_rq;
3101
3102         if (blk_mq_hw_queue_mapped(hctx))
3103                 blk_mq_tag_idle(hctx);
3104
3105         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3106                         set->queue_depth, flush_rq);
3107         if (set->ops->exit_request)
3108                 set->ops->exit_request(set, flush_rq, hctx_idx);
3109
3110         if (set->ops->exit_hctx)
3111                 set->ops->exit_hctx(hctx, hctx_idx);
3112
3113         blk_mq_remove_cpuhp(hctx);
3114
3115         spin_lock(&q->unused_hctx_lock);
3116         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3117         spin_unlock(&q->unused_hctx_lock);
3118 }
3119
3120 static void blk_mq_exit_hw_queues(struct request_queue *q,
3121                 struct blk_mq_tag_set *set, int nr_queue)
3122 {
3123         struct blk_mq_hw_ctx *hctx;
3124         unsigned int i;
3125
3126         queue_for_each_hw_ctx(q, hctx, i) {
3127                 if (i == nr_queue)
3128                         break;
3129                 blk_mq_debugfs_unregister_hctx(hctx);
3130                 blk_mq_exit_hctx(q, set, hctx, i);
3131         }
3132 }
3133
3134 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3135 {
3136         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3137
3138         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3139                            __alignof__(struct blk_mq_hw_ctx)) !=
3140                      sizeof(struct blk_mq_hw_ctx));
3141
3142         if (tag_set->flags & BLK_MQ_F_BLOCKING)
3143                 hw_ctx_size += sizeof(struct srcu_struct);
3144
3145         return hw_ctx_size;
3146 }
3147
3148 static int blk_mq_init_hctx(struct request_queue *q,
3149                 struct blk_mq_tag_set *set,
3150                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3151 {
3152         hctx->queue_num = hctx_idx;
3153
3154         if (!(hctx->flags & BLK_MQ_F_STACKING))
3155                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3156                                 &hctx->cpuhp_online);
3157         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3158
3159         hctx->tags = set->tags[hctx_idx];
3160
3161         if (set->ops->init_hctx &&
3162             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3163                 goto unregister_cpu_notifier;
3164
3165         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3166                                 hctx->numa_node))
3167                 goto exit_hctx;
3168         return 0;
3169
3170  exit_hctx:
3171         if (set->ops->exit_hctx)
3172                 set->ops->exit_hctx(hctx, hctx_idx);
3173  unregister_cpu_notifier:
3174         blk_mq_remove_cpuhp(hctx);
3175         return -1;
3176 }
3177
3178 static struct blk_mq_hw_ctx *
3179 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3180                 int node)
3181 {
3182         struct blk_mq_hw_ctx *hctx;
3183         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3184
3185         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3186         if (!hctx)
3187                 goto fail_alloc_hctx;
3188
3189         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3190                 goto free_hctx;
3191
3192         atomic_set(&hctx->nr_active, 0);
3193         if (node == NUMA_NO_NODE)
3194                 node = set->numa_node;
3195         hctx->numa_node = node;
3196
3197         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3198         spin_lock_init(&hctx->lock);
3199         INIT_LIST_HEAD(&hctx->dispatch);
3200         hctx->queue = q;
3201         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3202
3203         INIT_LIST_HEAD(&hctx->hctx_list);
3204
3205         /*
3206          * Allocate space for all possible cpus to avoid allocation at
3207          * runtime
3208          */
3209         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3210                         gfp, node);
3211         if (!hctx->ctxs)
3212                 goto free_cpumask;
3213
3214         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3215                                 gfp, node, false, false))
3216                 goto free_ctxs;
3217         hctx->nr_ctx = 0;
3218
3219         spin_lock_init(&hctx->dispatch_wait_lock);
3220         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3221         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3222
3223         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3224         if (!hctx->fq)
3225                 goto free_bitmap;
3226
3227         if (hctx->flags & BLK_MQ_F_BLOCKING)
3228                 init_srcu_struct(hctx->srcu);
3229         blk_mq_hctx_kobj_init(hctx);
3230
3231         return hctx;
3232
3233  free_bitmap:
3234         sbitmap_free(&hctx->ctx_map);
3235  free_ctxs:
3236         kfree(hctx->ctxs);
3237  free_cpumask:
3238         free_cpumask_var(hctx->cpumask);
3239  free_hctx:
3240         kfree(hctx);
3241  fail_alloc_hctx:
3242         return NULL;
3243 }
3244
3245 static void blk_mq_init_cpu_queues(struct request_queue *q,
3246                                    unsigned int nr_hw_queues)
3247 {
3248         struct blk_mq_tag_set *set = q->tag_set;
3249         unsigned int i, j;
3250
3251         for_each_possible_cpu(i) {
3252                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3253                 struct blk_mq_hw_ctx *hctx;
3254                 int k;
3255
3256                 __ctx->cpu = i;
3257                 spin_lock_init(&__ctx->lock);
3258                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3259                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3260
3261                 __ctx->queue = q;
3262
3263                 /*
3264                  * Set local node, IFF we have more than one hw queue. If
3265                  * not, we remain on the home node of the device
3266                  */
3267                 for (j = 0; j < set->nr_maps; j++) {
3268                         hctx = blk_mq_map_queue_type(q, j, i);
3269                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3270                                 hctx->numa_node = cpu_to_node(i);
3271                 }
3272         }
3273 }
3274
3275 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3276                                              unsigned int hctx_idx,
3277                                              unsigned int depth)
3278 {
3279         struct blk_mq_tags *tags;
3280         int ret;
3281
3282         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3283         if (!tags)
3284                 return NULL;
3285
3286         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3287         if (ret) {
3288                 blk_mq_free_rq_map(tags);
3289                 return NULL;
3290         }
3291
3292         return tags;
3293 }
3294
3295 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3296                                        int hctx_idx)
3297 {
3298         if (blk_mq_is_shared_tags(set->flags)) {
3299                 set->tags[hctx_idx] = set->shared_tags;
3300
3301                 return true;
3302         }
3303
3304         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3305                                                        set->queue_depth);
3306
3307         return set->tags[hctx_idx];
3308 }
3309
3310 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3311                              struct blk_mq_tags *tags,
3312                              unsigned int hctx_idx)
3313 {
3314         if (tags) {
3315                 blk_mq_free_rqs(set, tags, hctx_idx);
3316                 blk_mq_free_rq_map(tags);
3317         }
3318 }
3319
3320 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3321                                       unsigned int hctx_idx)
3322 {
3323         if (!blk_mq_is_shared_tags(set->flags))
3324                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3325
3326         set->tags[hctx_idx] = NULL;
3327 }
3328
3329 static void blk_mq_map_swqueue(struct request_queue *q)
3330 {
3331         unsigned int i, j, hctx_idx;
3332         struct blk_mq_hw_ctx *hctx;
3333         struct blk_mq_ctx *ctx;
3334         struct blk_mq_tag_set *set = q->tag_set;
3335
3336         queue_for_each_hw_ctx(q, hctx, i) {
3337                 cpumask_clear(hctx->cpumask);
3338                 hctx->nr_ctx = 0;
3339                 hctx->dispatch_from = NULL;
3340         }
3341
3342         /*
3343          * Map software to hardware queues.
3344          *
3345          * If the cpu isn't present, the cpu is mapped to first hctx.
3346          */
3347         for_each_possible_cpu(i) {
3348
3349                 ctx = per_cpu_ptr(q->queue_ctx, i);
3350                 for (j = 0; j < set->nr_maps; j++) {
3351                         if (!set->map[j].nr_queues) {
3352                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3353                                                 HCTX_TYPE_DEFAULT, i);
3354                                 continue;
3355                         }
3356                         hctx_idx = set->map[j].mq_map[i];
3357                         /* unmapped hw queue can be remapped after CPU topo changed */
3358                         if (!set->tags[hctx_idx] &&
3359                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3360                                 /*
3361                                  * If tags initialization fail for some hctx,
3362                                  * that hctx won't be brought online.  In this
3363                                  * case, remap the current ctx to hctx[0] which
3364                                  * is guaranteed to always have tags allocated
3365                                  */
3366                                 set->map[j].mq_map[i] = 0;
3367                         }
3368
3369                         hctx = blk_mq_map_queue_type(q, j, i);
3370                         ctx->hctxs[j] = hctx;
3371                         /*
3372                          * If the CPU is already set in the mask, then we've
3373                          * mapped this one already. This can happen if
3374                          * devices share queues across queue maps.
3375                          */
3376                         if (cpumask_test_cpu(i, hctx->cpumask))
3377                                 continue;
3378
3379                         cpumask_set_cpu(i, hctx->cpumask);
3380                         hctx->type = j;
3381                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3382                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3383
3384                         /*
3385                          * If the nr_ctx type overflows, we have exceeded the
3386                          * amount of sw queues we can support.
3387                          */
3388                         BUG_ON(!hctx->nr_ctx);
3389                 }
3390
3391                 for (; j < HCTX_MAX_TYPES; j++)
3392                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3393                                         HCTX_TYPE_DEFAULT, i);
3394         }
3395
3396         queue_for_each_hw_ctx(q, hctx, i) {
3397                 /*
3398                  * If no software queues are mapped to this hardware queue,
3399                  * disable it and free the request entries.
3400                  */
3401                 if (!hctx->nr_ctx) {
3402                         /* Never unmap queue 0.  We need it as a
3403                          * fallback in case of a new remap fails
3404                          * allocation
3405                          */
3406                         if (i)
3407                                 __blk_mq_free_map_and_rqs(set, i);
3408
3409                         hctx->tags = NULL;
3410                         continue;
3411                 }
3412
3413                 hctx->tags = set->tags[i];
3414                 WARN_ON(!hctx->tags);
3415
3416                 /*
3417                  * Set the map size to the number of mapped software queues.
3418                  * This is more accurate and more efficient than looping
3419                  * over all possibly mapped software queues.
3420                  */
3421                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3422
3423                 /*
3424                  * Initialize batch roundrobin counts
3425                  */
3426                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3427                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3428         }
3429 }
3430
3431 /*
3432  * Caller needs to ensure that we're either frozen/quiesced, or that
3433  * the queue isn't live yet.
3434  */
3435 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3436 {
3437         struct blk_mq_hw_ctx *hctx;
3438         int i;
3439
3440         queue_for_each_hw_ctx(q, hctx, i) {
3441                 if (shared) {
3442                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3443                 } else {
3444                         blk_mq_tag_idle(hctx);
3445                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3446                 }
3447         }
3448 }
3449
3450 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3451                                          bool shared)
3452 {
3453         struct request_queue *q;
3454
3455         lockdep_assert_held(&set->tag_list_lock);
3456
3457         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3458                 blk_mq_freeze_queue(q);
3459                 queue_set_hctx_shared(q, shared);
3460                 blk_mq_unfreeze_queue(q);
3461         }
3462 }
3463
3464 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3465 {
3466         struct blk_mq_tag_set *set = q->tag_set;
3467
3468         mutex_lock(&set->tag_list_lock);
3469         list_del(&q->tag_set_list);
3470         if (list_is_singular(&set->tag_list)) {
3471                 /* just transitioned to unshared */
3472                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3473                 /* update existing queue */
3474                 blk_mq_update_tag_set_shared(set, false);
3475         }
3476         mutex_unlock(&set->tag_list_lock);
3477         INIT_LIST_HEAD(&q->tag_set_list);
3478 }
3479
3480 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3481                                      struct request_queue *q)
3482 {
3483         mutex_lock(&set->tag_list_lock);
3484
3485         /*
3486          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3487          */
3488         if (!list_empty(&set->tag_list) &&
3489             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3490                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3491                 /* update existing queue */
3492                 blk_mq_update_tag_set_shared(set, true);
3493         }
3494         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3495                 queue_set_hctx_shared(q, true);
3496         list_add_tail(&q->tag_set_list, &set->tag_list);
3497
3498         mutex_unlock(&set->tag_list_lock);
3499 }
3500
3501 /* All allocations will be freed in release handler of q->mq_kobj */
3502 static int blk_mq_alloc_ctxs(struct request_queue *q)
3503 {
3504         struct blk_mq_ctxs *ctxs;
3505         int cpu;
3506
3507         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3508         if (!ctxs)
3509                 return -ENOMEM;
3510
3511         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3512         if (!ctxs->queue_ctx)
3513                 goto fail;
3514
3515         for_each_possible_cpu(cpu) {
3516                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3517                 ctx->ctxs = ctxs;
3518         }
3519
3520         q->mq_kobj = &ctxs->kobj;
3521         q->queue_ctx = ctxs->queue_ctx;
3522
3523         return 0;
3524  fail:
3525         kfree(ctxs);
3526         return -ENOMEM;
3527 }
3528
3529 /*
3530  * It is the actual release handler for mq, but we do it from
3531  * request queue's release handler for avoiding use-after-free
3532  * and headache because q->mq_kobj shouldn't have been introduced,
3533  * but we can't group ctx/kctx kobj without it.
3534  */
3535 void blk_mq_release(struct request_queue *q)
3536 {
3537         struct blk_mq_hw_ctx *hctx, *next;
3538         int i;
3539
3540         queue_for_each_hw_ctx(q, hctx, i)
3541                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3542
3543         /* all hctx are in .unused_hctx_list now */
3544         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3545                 list_del_init(&hctx->hctx_list);
3546                 kobject_put(&hctx->kobj);
3547         }
3548
3549         kfree(q->queue_hw_ctx);
3550
3551         /*
3552          * release .mq_kobj and sw queue's kobject now because
3553          * both share lifetime with request queue.
3554          */
3555         blk_mq_sysfs_deinit(q);
3556 }
3557
3558 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3559                 void *queuedata)
3560 {
3561         struct request_queue *q;
3562         int ret;
3563
3564         q = blk_alloc_queue(set->numa_node);
3565         if (!q)
3566                 return ERR_PTR(-ENOMEM);
3567         q->queuedata = queuedata;
3568         ret = blk_mq_init_allocated_queue(set, q);
3569         if (ret) {
3570                 blk_cleanup_queue(q);
3571                 return ERR_PTR(ret);
3572         }
3573         return q;
3574 }
3575
3576 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3577 {
3578         return blk_mq_init_queue_data(set, NULL);
3579 }
3580 EXPORT_SYMBOL(blk_mq_init_queue);
3581
3582 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3583                 struct lock_class_key *lkclass)
3584 {
3585         struct request_queue *q;
3586         struct gendisk *disk;
3587
3588         q = blk_mq_init_queue_data(set, queuedata);
3589         if (IS_ERR(q))
3590                 return ERR_CAST(q);
3591
3592         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3593         if (!disk) {
3594                 blk_cleanup_queue(q);
3595                 return ERR_PTR(-ENOMEM);
3596         }
3597         return disk;
3598 }
3599 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3600
3601 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3602                 struct blk_mq_tag_set *set, struct request_queue *q,
3603                 int hctx_idx, int node)
3604 {
3605         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3606
3607         /* reuse dead hctx first */
3608         spin_lock(&q->unused_hctx_lock);
3609         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3610                 if (tmp->numa_node == node) {
3611                         hctx = tmp;
3612                         break;
3613                 }
3614         }
3615         if (hctx)
3616                 list_del_init(&hctx->hctx_list);
3617         spin_unlock(&q->unused_hctx_lock);
3618
3619         if (!hctx)
3620                 hctx = blk_mq_alloc_hctx(q, set, node);
3621         if (!hctx)
3622                 goto fail;
3623
3624         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3625                 goto free_hctx;
3626
3627         return hctx;
3628
3629  free_hctx:
3630         kobject_put(&hctx->kobj);
3631  fail:
3632         return NULL;
3633 }
3634
3635 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3636                                                 struct request_queue *q)
3637 {
3638         int i, j, end;
3639         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3640
3641         if (q->nr_hw_queues < set->nr_hw_queues) {
3642                 struct blk_mq_hw_ctx **new_hctxs;
3643
3644                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3645                                        sizeof(*new_hctxs), GFP_KERNEL,
3646                                        set->numa_node);
3647                 if (!new_hctxs)
3648                         return;
3649                 if (hctxs)
3650                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3651                                sizeof(*hctxs));
3652                 q->queue_hw_ctx = new_hctxs;
3653                 kfree(hctxs);
3654                 hctxs = new_hctxs;
3655         }
3656
3657         /* protect against switching io scheduler  */
3658         mutex_lock(&q->sysfs_lock);
3659         for (i = 0; i < set->nr_hw_queues; i++) {
3660                 int node;
3661                 struct blk_mq_hw_ctx *hctx;
3662
3663                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3664                 /*
3665                  * If the hw queue has been mapped to another numa node,
3666                  * we need to realloc the hctx. If allocation fails, fallback
3667                  * to use the previous one.
3668                  */
3669                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3670                         continue;
3671
3672                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3673                 if (hctx) {
3674                         if (hctxs[i])
3675                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3676                         hctxs[i] = hctx;
3677                 } else {
3678                         if (hctxs[i])
3679                                 pr_warn("Allocate new hctx on node %d fails,\
3680                                                 fallback to previous one on node %d\n",
3681                                                 node, hctxs[i]->numa_node);
3682                         else
3683                                 break;
3684                 }
3685         }
3686         /*
3687          * Increasing nr_hw_queues fails. Free the newly allocated
3688          * hctxs and keep the previous q->nr_hw_queues.
3689          */
3690         if (i != set->nr_hw_queues) {
3691                 j = q->nr_hw_queues;
3692                 end = i;
3693         } else {
3694                 j = i;
3695                 end = q->nr_hw_queues;
3696                 q->nr_hw_queues = set->nr_hw_queues;
3697         }
3698
3699         for (; j < end; j++) {
3700                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3701
3702                 if (hctx) {
3703                         blk_mq_exit_hctx(q, set, hctx, j);
3704                         hctxs[j] = NULL;
3705                 }
3706         }
3707         mutex_unlock(&q->sysfs_lock);
3708 }
3709
3710 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3711                 struct request_queue *q)
3712 {
3713         /* mark the queue as mq asap */
3714         q->mq_ops = set->ops;
3715
3716         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3717                                              blk_mq_poll_stats_bkt,
3718                                              BLK_MQ_POLL_STATS_BKTS, q);
3719         if (!q->poll_cb)
3720                 goto err_exit;
3721
3722         if (blk_mq_alloc_ctxs(q))
3723                 goto err_poll;
3724
3725         /* init q->mq_kobj and sw queues' kobjects */
3726         blk_mq_sysfs_init(q);
3727
3728         INIT_LIST_HEAD(&q->unused_hctx_list);
3729         spin_lock_init(&q->unused_hctx_lock);
3730
3731         blk_mq_realloc_hw_ctxs(set, q);
3732         if (!q->nr_hw_queues)
3733                 goto err_hctxs;
3734
3735         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3736         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3737
3738         q->tag_set = set;
3739
3740         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3741         if (set->nr_maps > HCTX_TYPE_POLL &&
3742             set->map[HCTX_TYPE_POLL].nr_queues)
3743                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3744
3745         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3746         INIT_LIST_HEAD(&q->requeue_list);
3747         spin_lock_init(&q->requeue_lock);
3748
3749         q->nr_requests = set->queue_depth;
3750
3751         /*
3752          * Default to classic polling
3753          */
3754         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3755
3756         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3757         blk_mq_add_queue_tag_set(set, q);
3758         blk_mq_map_swqueue(q);
3759         return 0;
3760
3761 err_hctxs:
3762         kfree(q->queue_hw_ctx);
3763         q->nr_hw_queues = 0;
3764         blk_mq_sysfs_deinit(q);
3765 err_poll:
3766         blk_stat_free_callback(q->poll_cb);
3767         q->poll_cb = NULL;
3768 err_exit:
3769         q->mq_ops = NULL;
3770         return -ENOMEM;
3771 }
3772 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3773
3774 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3775 void blk_mq_exit_queue(struct request_queue *q)
3776 {
3777         struct blk_mq_tag_set *set = q->tag_set;
3778
3779         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3780         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3781         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3782         blk_mq_del_queue_tag_set(q);
3783 }
3784
3785 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3786 {
3787         int i;
3788
3789         if (blk_mq_is_shared_tags(set->flags)) {
3790                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3791                                                 BLK_MQ_NO_HCTX_IDX,
3792                                                 set->queue_depth);
3793                 if (!set->shared_tags)
3794                         return -ENOMEM;
3795         }
3796
3797         for (i = 0; i < set->nr_hw_queues; i++) {
3798                 if (!__blk_mq_alloc_map_and_rqs(set, i))
3799                         goto out_unwind;
3800                 cond_resched();
3801         }
3802
3803         return 0;
3804
3805 out_unwind:
3806         while (--i >= 0)
3807                 __blk_mq_free_map_and_rqs(set, i);
3808
3809         if (blk_mq_is_shared_tags(set->flags)) {
3810                 blk_mq_free_map_and_rqs(set, set->shared_tags,
3811                                         BLK_MQ_NO_HCTX_IDX);
3812         }
3813
3814         return -ENOMEM;
3815 }
3816
3817 /*
3818  * Allocate the request maps associated with this tag_set. Note that this
3819  * may reduce the depth asked for, if memory is tight. set->queue_depth
3820  * will be updated to reflect the allocated depth.
3821  */
3822 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3823 {
3824         unsigned int depth;
3825         int err;
3826
3827         depth = set->queue_depth;
3828         do {
3829                 err = __blk_mq_alloc_rq_maps(set);
3830                 if (!err)
3831                         break;
3832
3833                 set->queue_depth >>= 1;
3834                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3835                         err = -ENOMEM;
3836                         break;
3837                 }
3838         } while (set->queue_depth);
3839
3840         if (!set->queue_depth || err) {
3841                 pr_err("blk-mq: failed to allocate request map\n");
3842                 return -ENOMEM;
3843         }
3844
3845         if (depth != set->queue_depth)
3846                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3847                                                 depth, set->queue_depth);
3848
3849         return 0;
3850 }
3851
3852 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3853 {
3854         /*
3855          * blk_mq_map_queues() and multiple .map_queues() implementations
3856          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3857          * number of hardware queues.
3858          */
3859         if (set->nr_maps == 1)
3860                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3861
3862         if (set->ops->map_queues && !is_kdump_kernel()) {
3863                 int i;
3864
3865                 /*
3866                  * transport .map_queues is usually done in the following
3867                  * way:
3868                  *
3869                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3870                  *      mask = get_cpu_mask(queue)
3871                  *      for_each_cpu(cpu, mask)
3872                  *              set->map[x].mq_map[cpu] = queue;
3873                  * }
3874                  *
3875                  * When we need to remap, the table has to be cleared for
3876                  * killing stale mapping since one CPU may not be mapped
3877                  * to any hw queue.
3878                  */
3879                 for (i = 0; i < set->nr_maps; i++)
3880                         blk_mq_clear_mq_map(&set->map[i]);
3881
3882                 return set->ops->map_queues(set);
3883         } else {
3884                 BUG_ON(set->nr_maps > 1);
3885                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3886         }
3887 }
3888
3889 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3890                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3891 {
3892         struct blk_mq_tags **new_tags;
3893
3894         if (cur_nr_hw_queues >= new_nr_hw_queues)
3895                 return 0;
3896
3897         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3898                                 GFP_KERNEL, set->numa_node);
3899         if (!new_tags)
3900                 return -ENOMEM;
3901
3902         if (set->tags)
3903                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3904                        sizeof(*set->tags));
3905         kfree(set->tags);
3906         set->tags = new_tags;
3907         set->nr_hw_queues = new_nr_hw_queues;
3908
3909         return 0;
3910 }
3911
3912 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3913                                 int new_nr_hw_queues)
3914 {
3915         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3916 }
3917
3918 /*
3919  * Alloc a tag set to be associated with one or more request queues.
3920  * May fail with EINVAL for various error conditions. May adjust the
3921  * requested depth down, if it's too large. In that case, the set
3922  * value will be stored in set->queue_depth.
3923  */
3924 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3925 {
3926         int i, ret;
3927
3928         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3929
3930         if (!set->nr_hw_queues)
3931                 return -EINVAL;
3932         if (!set->queue_depth)
3933                 return -EINVAL;
3934         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3935                 return -EINVAL;
3936
3937         if (!set->ops->queue_rq)
3938                 return -EINVAL;
3939
3940         if (!set->ops->get_budget ^ !set->ops->put_budget)
3941                 return -EINVAL;
3942
3943         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3944                 pr_info("blk-mq: reduced tag depth to %u\n",
3945                         BLK_MQ_MAX_DEPTH);
3946                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3947         }
3948
3949         if (!set->nr_maps)
3950                 set->nr_maps = 1;
3951         else if (set->nr_maps > HCTX_MAX_TYPES)
3952                 return -EINVAL;
3953
3954         /*
3955          * If a crashdump is active, then we are potentially in a very
3956          * memory constrained environment. Limit us to 1 queue and
3957          * 64 tags to prevent using too much memory.
3958          */
3959         if (is_kdump_kernel()) {
3960                 set->nr_hw_queues = 1;
3961                 set->nr_maps = 1;
3962                 set->queue_depth = min(64U, set->queue_depth);
3963         }
3964         /*
3965          * There is no use for more h/w queues than cpus if we just have
3966          * a single map
3967          */
3968         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3969                 set->nr_hw_queues = nr_cpu_ids;
3970
3971         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3972                 return -ENOMEM;
3973
3974         ret = -ENOMEM;
3975         for (i = 0; i < set->nr_maps; i++) {
3976                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3977                                                   sizeof(set->map[i].mq_map[0]),
3978                                                   GFP_KERNEL, set->numa_node);
3979                 if (!set->map[i].mq_map)
3980                         goto out_free_mq_map;
3981                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3982         }
3983
3984         ret = blk_mq_update_queue_map(set);
3985         if (ret)
3986                 goto out_free_mq_map;
3987
3988         ret = blk_mq_alloc_set_map_and_rqs(set);
3989         if (ret)
3990                 goto out_free_mq_map;
3991
3992         mutex_init(&set->tag_list_lock);
3993         INIT_LIST_HEAD(&set->tag_list);
3994
3995         return 0;
3996
3997 out_free_mq_map:
3998         for (i = 0; i < set->nr_maps; i++) {
3999                 kfree(set->map[i].mq_map);
4000                 set->map[i].mq_map = NULL;
4001         }
4002         kfree(set->tags);
4003         set->tags = NULL;
4004         return ret;
4005 }
4006 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4007
4008 /* allocate and initialize a tagset for a simple single-queue device */
4009 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4010                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4011                 unsigned int set_flags)
4012 {
4013         memset(set, 0, sizeof(*set));
4014         set->ops = ops;
4015         set->nr_hw_queues = 1;
4016         set->nr_maps = 1;
4017         set->queue_depth = queue_depth;
4018         set->numa_node = NUMA_NO_NODE;
4019         set->flags = set_flags;
4020         return blk_mq_alloc_tag_set(set);
4021 }
4022 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4023
4024 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4025 {
4026         int i, j;
4027
4028         for (i = 0; i < set->nr_hw_queues; i++)
4029                 __blk_mq_free_map_and_rqs(set, i);
4030
4031         if (blk_mq_is_shared_tags(set->flags)) {
4032                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4033                                         BLK_MQ_NO_HCTX_IDX);
4034         }
4035
4036         for (j = 0; j < set->nr_maps; j++) {
4037                 kfree(set->map[j].mq_map);
4038                 set->map[j].mq_map = NULL;
4039         }
4040
4041         kfree(set->tags);
4042         set->tags = NULL;
4043 }
4044 EXPORT_SYMBOL(blk_mq_free_tag_set);
4045
4046 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4047 {
4048         struct blk_mq_tag_set *set = q->tag_set;
4049         struct blk_mq_hw_ctx *hctx;
4050         int i, ret;
4051
4052         if (!set)
4053                 return -EINVAL;
4054
4055         if (q->nr_requests == nr)
4056                 return 0;
4057
4058         blk_mq_freeze_queue(q);
4059         blk_mq_quiesce_queue(q);
4060
4061         ret = 0;
4062         queue_for_each_hw_ctx(q, hctx, i) {
4063                 if (!hctx->tags)
4064                         continue;
4065                 /*
4066                  * If we're using an MQ scheduler, just update the scheduler
4067                  * queue depth. This is similar to what the old code would do.
4068                  */
4069                 if (hctx->sched_tags) {
4070                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4071                                                       nr, true);
4072                 } else {
4073                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4074                                                       false);
4075                 }
4076                 if (ret)
4077                         break;
4078                 if (q->elevator && q->elevator->type->ops.depth_updated)
4079                         q->elevator->type->ops.depth_updated(hctx);
4080         }
4081         if (!ret) {
4082                 q->nr_requests = nr;
4083                 if (blk_mq_is_shared_tags(set->flags)) {
4084                         if (q->elevator)
4085                                 blk_mq_tag_update_sched_shared_tags(q);
4086                         else
4087                                 blk_mq_tag_resize_shared_tags(set, nr);
4088                 }
4089         }
4090
4091         blk_mq_unquiesce_queue(q);
4092         blk_mq_unfreeze_queue(q);
4093
4094         return ret;
4095 }
4096
4097 /*
4098  * request_queue and elevator_type pair.
4099  * It is just used by __blk_mq_update_nr_hw_queues to cache
4100  * the elevator_type associated with a request_queue.
4101  */
4102 struct blk_mq_qe_pair {
4103         struct list_head node;
4104         struct request_queue *q;
4105         struct elevator_type *type;
4106 };
4107
4108 /*
4109  * Cache the elevator_type in qe pair list and switch the
4110  * io scheduler to 'none'
4111  */
4112 static bool blk_mq_elv_switch_none(struct list_head *head,
4113                 struct request_queue *q)
4114 {
4115         struct blk_mq_qe_pair *qe;
4116
4117         if (!q->elevator)
4118                 return true;
4119
4120         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4121         if (!qe)
4122                 return false;
4123
4124         INIT_LIST_HEAD(&qe->node);
4125         qe->q = q;
4126         qe->type = q->elevator->type;
4127         list_add(&qe->node, head);
4128
4129         mutex_lock(&q->sysfs_lock);
4130         /*
4131          * After elevator_switch_mq, the previous elevator_queue will be
4132          * released by elevator_release. The reference of the io scheduler
4133          * module get by elevator_get will also be put. So we need to get
4134          * a reference of the io scheduler module here to prevent it to be
4135          * removed.
4136          */
4137         __module_get(qe->type->elevator_owner);
4138         elevator_switch_mq(q, NULL);
4139         mutex_unlock(&q->sysfs_lock);
4140
4141         return true;
4142 }
4143
4144 static void blk_mq_elv_switch_back(struct list_head *head,
4145                 struct request_queue *q)
4146 {
4147         struct blk_mq_qe_pair *qe;
4148         struct elevator_type *t = NULL;
4149
4150         list_for_each_entry(qe, head, node)
4151                 if (qe->q == q) {
4152                         t = qe->type;
4153                         break;
4154                 }
4155
4156         if (!t)
4157                 return;
4158
4159         list_del(&qe->node);
4160         kfree(qe);
4161
4162         mutex_lock(&q->sysfs_lock);
4163         elevator_switch_mq(q, t);
4164         mutex_unlock(&q->sysfs_lock);
4165 }
4166
4167 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4168                                                         int nr_hw_queues)
4169 {
4170         struct request_queue *q;
4171         LIST_HEAD(head);
4172         int prev_nr_hw_queues;
4173
4174         lockdep_assert_held(&set->tag_list_lock);
4175
4176         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4177                 nr_hw_queues = nr_cpu_ids;
4178         if (nr_hw_queues < 1)
4179                 return;
4180         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4181                 return;
4182
4183         list_for_each_entry(q, &set->tag_list, tag_set_list)
4184                 blk_mq_freeze_queue(q);
4185         /*
4186          * Switch IO scheduler to 'none', cleaning up the data associated
4187          * with the previous scheduler. We will switch back once we are done
4188          * updating the new sw to hw queue mappings.
4189          */
4190         list_for_each_entry(q, &set->tag_list, tag_set_list)
4191                 if (!blk_mq_elv_switch_none(&head, q))
4192                         goto switch_back;
4193
4194         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4195                 blk_mq_debugfs_unregister_hctxs(q);
4196                 blk_mq_sysfs_unregister(q);
4197         }
4198
4199         prev_nr_hw_queues = set->nr_hw_queues;
4200         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4201             0)
4202                 goto reregister;
4203
4204         set->nr_hw_queues = nr_hw_queues;
4205 fallback:
4206         blk_mq_update_queue_map(set);
4207         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4208                 blk_mq_realloc_hw_ctxs(set, q);
4209                 if (q->nr_hw_queues != set->nr_hw_queues) {
4210                         int i = prev_nr_hw_queues;
4211
4212                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4213                                         nr_hw_queues, prev_nr_hw_queues);
4214                         for (; i < set->nr_hw_queues; i++)
4215                                 __blk_mq_free_map_and_rqs(set, i);
4216
4217                         set->nr_hw_queues = prev_nr_hw_queues;
4218                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4219                         goto fallback;
4220                 }
4221                 blk_mq_map_swqueue(q);
4222         }
4223
4224 reregister:
4225         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4226                 blk_mq_sysfs_register(q);
4227                 blk_mq_debugfs_register_hctxs(q);
4228         }
4229
4230 switch_back:
4231         list_for_each_entry(q, &set->tag_list, tag_set_list)
4232                 blk_mq_elv_switch_back(&head, q);
4233
4234         list_for_each_entry(q, &set->tag_list, tag_set_list)
4235                 blk_mq_unfreeze_queue(q);
4236 }
4237
4238 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4239 {
4240         mutex_lock(&set->tag_list_lock);
4241         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4242         mutex_unlock(&set->tag_list_lock);
4243 }
4244 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4245
4246 /* Enable polling stats and return whether they were already enabled. */
4247 static bool blk_poll_stats_enable(struct request_queue *q)
4248 {
4249         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4250             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4251                 return true;
4252         blk_stat_add_callback(q, q->poll_cb);
4253         return false;
4254 }
4255
4256 static void blk_mq_poll_stats_start(struct request_queue *q)
4257 {
4258         /*
4259          * We don't arm the callback if polling stats are not enabled or the
4260          * callback is already active.
4261          */
4262         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4263             blk_stat_is_active(q->poll_cb))
4264                 return;
4265
4266         blk_stat_activate_msecs(q->poll_cb, 100);
4267 }
4268
4269 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4270 {
4271         struct request_queue *q = cb->data;
4272         int bucket;
4273
4274         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4275                 if (cb->stat[bucket].nr_samples)
4276                         q->poll_stat[bucket] = cb->stat[bucket];
4277         }
4278 }
4279
4280 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4281                                        struct request *rq)
4282 {
4283         unsigned long ret = 0;
4284         int bucket;
4285
4286         /*
4287          * If stats collection isn't on, don't sleep but turn it on for
4288          * future users
4289          */
4290         if (!blk_poll_stats_enable(q))
4291                 return 0;
4292
4293         /*
4294          * As an optimistic guess, use half of the mean service time
4295          * for this type of request. We can (and should) make this smarter.
4296          * For instance, if the completion latencies are tight, we can
4297          * get closer than just half the mean. This is especially
4298          * important on devices where the completion latencies are longer
4299          * than ~10 usec. We do use the stats for the relevant IO size
4300          * if available which does lead to better estimates.
4301          */
4302         bucket = blk_mq_poll_stats_bkt(rq);
4303         if (bucket < 0)
4304                 return ret;
4305
4306         if (q->poll_stat[bucket].nr_samples)
4307                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4308
4309         return ret;
4310 }
4311
4312 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4313 {
4314         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4315         struct request *rq = blk_qc_to_rq(hctx, qc);
4316         struct hrtimer_sleeper hs;
4317         enum hrtimer_mode mode;
4318         unsigned int nsecs;
4319         ktime_t kt;
4320
4321         /*
4322          * If a request has completed on queue that uses an I/O scheduler, we
4323          * won't get back a request from blk_qc_to_rq.
4324          */
4325         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4326                 return false;
4327
4328         /*
4329          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4330          *
4331          *  0:  use half of prev avg
4332          * >0:  use this specific value
4333          */
4334         if (q->poll_nsec > 0)
4335                 nsecs = q->poll_nsec;
4336         else
4337                 nsecs = blk_mq_poll_nsecs(q, rq);
4338
4339         if (!nsecs)
4340                 return false;
4341
4342         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4343
4344         /*
4345          * This will be replaced with the stats tracking code, using
4346          * 'avg_completion_time / 2' as the pre-sleep target.
4347          */
4348         kt = nsecs;
4349
4350         mode = HRTIMER_MODE_REL;
4351         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4352         hrtimer_set_expires(&hs.timer, kt);
4353
4354         do {
4355                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4356                         break;
4357                 set_current_state(TASK_UNINTERRUPTIBLE);
4358                 hrtimer_sleeper_start_expires(&hs, mode);
4359                 if (hs.task)
4360                         io_schedule();
4361                 hrtimer_cancel(&hs.timer);
4362                 mode = HRTIMER_MODE_ABS;
4363         } while (hs.task && !signal_pending(current));
4364
4365         __set_current_state(TASK_RUNNING);
4366         destroy_hrtimer_on_stack(&hs.timer);
4367
4368         /*
4369          * If we sleep, have the caller restart the poll loop to reset the
4370          * state.  Like for the other success return cases, the caller is
4371          * responsible for checking if the IO completed.  If the IO isn't
4372          * complete, we'll get called again and will go straight to the busy
4373          * poll loop.
4374          */
4375         return true;
4376 }
4377
4378 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4379                                struct io_comp_batch *iob, unsigned int flags)
4380 {
4381         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4382         long state = get_current_state();
4383         int ret;
4384
4385         do {
4386                 ret = q->mq_ops->poll(hctx, iob);
4387                 if (ret > 0) {
4388                         __set_current_state(TASK_RUNNING);
4389                         return ret;
4390                 }
4391
4392                 if (signal_pending_state(state, current))
4393                         __set_current_state(TASK_RUNNING);
4394                 if (task_is_running(current))
4395                         return 1;
4396
4397                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4398                         break;
4399                 cpu_relax();
4400         } while (!need_resched());
4401
4402         __set_current_state(TASK_RUNNING);
4403         return 0;
4404 }
4405
4406 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4407                 unsigned int flags)
4408 {
4409         if (!(flags & BLK_POLL_NOSLEEP) &&
4410             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4411                 if (blk_mq_poll_hybrid(q, cookie))
4412                         return 1;
4413         }
4414         return blk_mq_poll_classic(q, cookie, iob, flags);
4415 }
4416
4417 unsigned int blk_mq_rq_cpu(struct request *rq)
4418 {
4419         return rq->mq_ctx->cpu;
4420 }
4421 EXPORT_SYMBOL(blk_mq_rq_cpu);
4422
4423 void blk_mq_cancel_work_sync(struct request_queue *q)
4424 {
4425         if (queue_is_mq(q)) {
4426                 struct blk_mq_hw_ctx *hctx;
4427                 int i;
4428
4429                 cancel_delayed_work_sync(&q->requeue_work);
4430
4431                 queue_for_each_hw_ctx(q, hctx, i)
4432                         cancel_delayed_work_sync(&hctx->run_work);
4433         }
4434 }
4435
4436 static int __init blk_mq_init(void)
4437 {
4438         int i;
4439
4440         for_each_possible_cpu(i)
4441                 init_llist_head(&per_cpu(blk_cpu_done, i));
4442         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4443
4444         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4445                                   "block/softirq:dead", NULL,
4446                                   blk_softirq_cpu_dead);
4447         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4448                                 blk_mq_hctx_notify_dead);
4449         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4450                                 blk_mq_hctx_notify_online,
4451                                 blk_mq_hctx_notify_offline);
4452         return 0;
4453 }
4454 subsys_initcall(blk_mq_init);