powerpc/64s: Use EMIT_WARN_ENTRY for SRR debug warnings
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52         int ddir, sectors, bucket;
53
54         ddir = rq_data_dir(rq);
55         sectors = blk_rq_stats_sectors(rq);
56
57         bucket = ddir + 2 * ilog2(sectors);
58
59         if (bucket < 0)
60                 return -1;
61         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63
64         return bucket;
65 }
66
67 #define BLK_QC_T_SHIFT          16
68 #define BLK_QC_T_INTERNAL       (1U << 31)
69
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71                 blk_qc_t qc)
72 {
73         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77                 blk_qc_t qc)
78 {
79         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80
81         if (qc & BLK_QC_T_INTERNAL)
82                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83         return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89                 (rq->tag != -1 ?
90                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92
93 /*
94  * Check if any of the ctx, dispatch list or elevator
95  * have pending work in this hardware queue.
96  */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99         return !list_empty_careful(&hctx->dispatch) ||
100                 sbitmap_any_bit_set(&hctx->ctx_map) ||
101                         blk_mq_sched_has_work(hctx);
102 }
103
104 /*
105  * Mark this ctx as having pending work in this hardware queue
106  */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108                                      struct blk_mq_ctx *ctx)
109 {
110         const int bit = ctx->index_hw[hctx->type];
111
112         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113                 sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117                                       struct blk_mq_ctx *ctx)
118 {
119         const int bit = ctx->index_hw[hctx->type];
120
121         sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123
124 struct mq_inflight {
125         struct block_device *part;
126         unsigned int inflight[2];
127 };
128
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130                                   struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         struct blk_mq_hw_ctx *hctx;
263         unsigned int i;
264         bool rcu = false;
265
266         queue_for_each_hw_ctx(q, hctx, i) {
267                 if (hctx->flags & BLK_MQ_F_BLOCKING)
268                         synchronize_srcu(hctx->srcu);
269                 else
270                         rcu = true;
271         }
272         if (rcu)
273                 synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276
277 /**
278  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279  * @q: request queue.
280  *
281  * Note: this function does not prevent that the struct request end_io()
282  * callback function is invoked. Once this function is returned, we make
283  * sure no dispatch can happen until the queue is unquiesced via
284  * blk_mq_unquiesce_queue().
285  */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288         blk_mq_quiesce_queue_nowait(q);
289         blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292
293 /*
294  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295  * @q: request queue.
296  *
297  * This function recovers queue into the state before quiescing
298  * which is done by blk_mq_quiesce_queue.
299  */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302         unsigned long flags;
303         bool run_queue = false;
304
305         spin_lock_irqsave(&q->queue_lock, flags);
306         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307                 ;
308         } else if (!--q->quiesce_depth) {
309                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310                 run_queue = true;
311         }
312         spin_unlock_irqrestore(&q->queue_lock, flags);
313
314         /* dispatch requests which are inserted during quiescing */
315         if (run_queue)
316                 blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322         struct blk_mq_hw_ctx *hctx;
323         unsigned int i;
324
325         queue_for_each_hw_ctx(q, hctx, i)
326                 if (blk_mq_hw_queue_mapped(hctx))
327                         blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333         struct blk_mq_ctx *ctx = data->ctx;
334         struct blk_mq_hw_ctx *hctx = data->hctx;
335         struct request_queue *q = data->q;
336         struct request *rq = tags->static_rqs[tag];
337
338         rq->q = q;
339         rq->mq_ctx = ctx;
340         rq->mq_hctx = hctx;
341         rq->cmd_flags = data->cmd_flags;
342
343         if (data->flags & BLK_MQ_REQ_PM)
344                 data->rq_flags |= RQF_PM;
345         if (blk_queue_io_stat(q))
346                 data->rq_flags |= RQF_IO_STAT;
347         rq->rq_flags = data->rq_flags;
348
349         if (!(data->rq_flags & RQF_ELV)) {
350                 rq->tag = tag;
351                 rq->internal_tag = BLK_MQ_NO_TAG;
352         } else {
353                 rq->tag = BLK_MQ_NO_TAG;
354                 rq->internal_tag = tag;
355         }
356         rq->timeout = 0;
357
358         if (blk_mq_need_time_stamp(rq))
359                 rq->start_time_ns = ktime_get_ns();
360         else
361                 rq->start_time_ns = 0;
362         rq->rq_disk = NULL;
363         rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365         rq->alloc_time_ns = alloc_time_ns;
366 #endif
367         rq->io_start_time_ns = 0;
368         rq->stats_sectors = 0;
369         rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371         rq->nr_integrity_segments = 0;
372 #endif
373         rq->end_io = NULL;
374         rq->end_io_data = NULL;
375
376         blk_crypto_rq_set_defaults(rq);
377         INIT_LIST_HEAD(&rq->queuelist);
378         /* tag was already set */
379         WRITE_ONCE(rq->deadline, 0);
380         refcount_set(&rq->ref, 1);
381
382         if (rq->rq_flags & RQF_ELV) {
383                 struct elevator_queue *e = data->q->elevator;
384
385                 rq->elv.icq = NULL;
386                 INIT_HLIST_NODE(&rq->hash);
387                 RB_CLEAR_NODE(&rq->rb_node);
388
389                 if (!op_is_flush(data->cmd_flags) &&
390                     e->type->ops.prepare_request) {
391                         if (e->type->icq_cache)
392                                 blk_mq_sched_assign_ioc(rq);
393
394                         e->type->ops.prepare_request(rq);
395                         rq->rq_flags |= RQF_ELVPRIV;
396                 }
397         }
398
399         return rq;
400 }
401
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404                 u64 alloc_time_ns)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         /* caller already holds a reference, add for remainder */
428         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429         data->nr_tags -= nr;
430
431         return rq_list_pop(data->cached_rq);
432 }
433
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436         struct request_queue *q = data->q;
437         u64 alloc_time_ns = 0;
438         struct request *rq;
439         unsigned int tag;
440
441         /* alloc_time includes depth and tag waits */
442         if (blk_queue_rq_alloc_time(q))
443                 alloc_time_ns = ktime_get_ns();
444
445         if (data->cmd_flags & REQ_NOWAIT)
446                 data->flags |= BLK_MQ_REQ_NOWAIT;
447
448         if (q->elevator) {
449                 struct elevator_queue *e = q->elevator;
450
451                 data->rq_flags |= RQF_ELV;
452
453                 /*
454                  * Flush/passthrough requests are special and go directly to the
455                  * dispatch list. Don't include reserved tags in the
456                  * limiting, as it isn't useful.
457                  */
458                 if (!op_is_flush(data->cmd_flags) &&
459                     !blk_op_is_passthrough(data->cmd_flags) &&
460                     e->type->ops.limit_depth &&
461                     !(data->flags & BLK_MQ_REQ_RESERVED))
462                         e->type->ops.limit_depth(data->cmd_flags, data);
463         }
464
465 retry:
466         data->ctx = blk_mq_get_ctx(q);
467         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468         if (!(data->rq_flags & RQF_ELV))
469                 blk_mq_tag_busy(data->hctx);
470
471         /*
472          * Try batched alloc if we want more than 1 tag.
473          */
474         if (data->nr_tags > 1) {
475                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476                 if (rq)
477                         return rq;
478                 data->nr_tags = 1;
479         }
480
481         /*
482          * Waiting allocations only fail because of an inactive hctx.  In that
483          * case just retry the hctx assignment and tag allocation as CPU hotplug
484          * should have migrated us to an online CPU by now.
485          */
486         tag = blk_mq_get_tag(data);
487         if (tag == BLK_MQ_NO_TAG) {
488                 if (data->flags & BLK_MQ_REQ_NOWAIT)
489                         return NULL;
490                 /*
491                  * Give up the CPU and sleep for a random short time to
492                  * ensure that thread using a realtime scheduling class
493                  * are migrated off the CPU, and thus off the hctx that
494                  * is going away.
495                  */
496                 msleep(3);
497                 goto retry;
498         }
499
500         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501                                         alloc_time_ns);
502 }
503
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505                 blk_mq_req_flags_t flags)
506 {
507         struct blk_mq_alloc_data data = {
508                 .q              = q,
509                 .flags          = flags,
510                 .cmd_flags      = op,
511                 .nr_tags        = 1,
512         };
513         struct request *rq;
514         int ret;
515
516         ret = blk_queue_enter(q, flags);
517         if (ret)
518                 return ERR_PTR(ret);
519
520         rq = __blk_mq_alloc_requests(&data);
521         if (!rq)
522                 goto out_queue_exit;
523         rq->__data_len = 0;
524         rq->__sector = (sector_t) -1;
525         rq->bio = rq->biotail = NULL;
526         return rq;
527 out_queue_exit:
528         blk_queue_exit(q);
529         return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536         struct blk_mq_alloc_data data = {
537                 .q              = q,
538                 .flags          = flags,
539                 .cmd_flags      = op,
540                 .nr_tags        = 1,
541         };
542         u64 alloc_time_ns = 0;
543         unsigned int cpu;
544         unsigned int tag;
545         int ret;
546
547         /* alloc_time includes depth and tag waits */
548         if (blk_queue_rq_alloc_time(q))
549                 alloc_time_ns = ktime_get_ns();
550
551         /*
552          * If the tag allocator sleeps we could get an allocation for a
553          * different hardware context.  No need to complicate the low level
554          * allocator for this for the rare use case of a command tied to
555          * a specific queue.
556          */
557         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558                 return ERR_PTR(-EINVAL);
559
560         if (hctx_idx >= q->nr_hw_queues)
561                 return ERR_PTR(-EIO);
562
563         ret = blk_queue_enter(q, flags);
564         if (ret)
565                 return ERR_PTR(ret);
566
567         /*
568          * Check if the hardware context is actually mapped to anything.
569          * If not tell the caller that it should skip this queue.
570          */
571         ret = -EXDEV;
572         data.hctx = q->queue_hw_ctx[hctx_idx];
573         if (!blk_mq_hw_queue_mapped(data.hctx))
574                 goto out_queue_exit;
575         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576         data.ctx = __blk_mq_get_ctx(q, cpu);
577
578         if (!q->elevator)
579                 blk_mq_tag_busy(data.hctx);
580         else
581                 data.rq_flags |= RQF_ELV;
582
583         ret = -EWOULDBLOCK;
584         tag = blk_mq_get_tag(&data);
585         if (tag == BLK_MQ_NO_TAG)
586                 goto out_queue_exit;
587         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588                                         alloc_time_ns);
589
590 out_queue_exit:
591         blk_queue_exit(q);
592         return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595
596 static void __blk_mq_free_request(struct request *rq)
597 {
598         struct request_queue *q = rq->q;
599         struct blk_mq_ctx *ctx = rq->mq_ctx;
600         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601         const int sched_tag = rq->internal_tag;
602
603         blk_crypto_free_request(rq);
604         blk_pm_mark_last_busy(rq);
605         rq->mq_hctx = NULL;
606         if (rq->tag != BLK_MQ_NO_TAG)
607                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608         if (sched_tag != BLK_MQ_NO_TAG)
609                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610         blk_mq_sched_restart(hctx);
611         blk_queue_exit(q);
612 }
613
614 void blk_mq_free_request(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618
619         if (rq->rq_flags & RQF_ELVPRIV) {
620                 struct elevator_queue *e = q->elevator;
621
622                 if (e->type->ops.finish_request)
623                         e->type->ops.finish_request(rq);
624                 if (rq->elv.icq) {
625                         put_io_context(rq->elv.icq->ioc);
626                         rq->elv.icq = NULL;
627                 }
628         }
629
630         if (rq->rq_flags & RQF_MQ_INFLIGHT)
631                 __blk_mq_dec_active_requests(hctx);
632
633         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634                 laptop_io_completion(q->disk->bdi);
635
636         rq_qos_done(q, rq);
637
638         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639         if (refcount_dec_and_test(&rq->ref))
640                 __blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646         struct request *rq;
647
648         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649                 blk_mq_free_request(rq);
650 }
651
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653                           unsigned int nbytes, blk_status_t error)
654 {
655         if (unlikely(error)) {
656                 bio->bi_status = error;
657         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658                 /*
659                  * Partial zone append completions cannot be supported as the
660                  * BIO fragments may end up not being written sequentially.
661                  */
662                 if (bio->bi_iter.bi_size != nbytes)
663                         bio->bi_status = BLK_STS_IOERR;
664                 else
665                         bio->bi_iter.bi_sector = rq->__sector;
666         }
667
668         bio_advance(bio, nbytes);
669
670         if (unlikely(rq->rq_flags & RQF_QUIET))
671                 bio_set_flag(bio, BIO_QUIET);
672         /* don't actually finish bio if it's part of flush sequence */
673         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674                 bio_endio(bio);
675 }
676
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679         if (req->part && blk_do_io_stat(req)) {
680                 const int sgrp = op_stat_group(req_op(req));
681
682                 part_stat_lock();
683                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684                 part_stat_unlock();
685         }
686 }
687
688 /**
689  * blk_update_request - Complete multiple bytes without completing the request
690  * @req:      the request being processed
691  * @error:    block status code
692  * @nr_bytes: number of bytes to complete for @req
693  *
694  * Description:
695  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
696  *     the request structure even if @req doesn't have leftover.
697  *     If @req has leftover, sets it up for the next range of segments.
698  *
699  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700  *     %false return from this function.
701  *
702  * Note:
703  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704  *      except in the consistency check at the end of this function.
705  *
706  * Return:
707  *     %false - this request doesn't have any more data
708  *     %true  - this request has more data
709  **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711                 unsigned int nr_bytes)
712 {
713         int total_bytes;
714
715         trace_block_rq_complete(req, error, nr_bytes);
716
717         if (!req->bio)
718                 return false;
719
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722             error == BLK_STS_OK)
723                 req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725
726         if (unlikely(error && !blk_rq_is_passthrough(req) &&
727                      !(req->rq_flags & RQF_QUIET)))
728                 blk_print_req_error(req, error);
729
730         blk_account_io_completion(req, nr_bytes);
731
732         total_bytes = 0;
733         while (req->bio) {
734                 struct bio *bio = req->bio;
735                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736
737                 if (bio_bytes == bio->bi_iter.bi_size)
738                         req->bio = bio->bi_next;
739
740                 /* Completion has already been traced */
741                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742                 req_bio_endio(req, bio, bio_bytes, error);
743
744                 total_bytes += bio_bytes;
745                 nr_bytes -= bio_bytes;
746
747                 if (!nr_bytes)
748                         break;
749         }
750
751         /*
752          * completely done
753          */
754         if (!req->bio) {
755                 /*
756                  * Reset counters so that the request stacking driver
757                  * can find how many bytes remain in the request
758                  * later.
759                  */
760                 req->__data_len = 0;
761                 return false;
762         }
763
764         req->__data_len -= total_bytes;
765
766         /* update sector only for requests with clear definition of sector */
767         if (!blk_rq_is_passthrough(req))
768                 req->__sector += total_bytes >> 9;
769
770         /* mixed attributes always follow the first bio */
771         if (req->rq_flags & RQF_MIXED_MERGE) {
772                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774         }
775
776         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777                 /*
778                  * If total number of sectors is less than the first segment
779                  * size, something has gone terribly wrong.
780                  */
781                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782                         blk_dump_rq_flags(req, "request botched");
783                         req->__data_len = blk_rq_cur_bytes(req);
784                 }
785
786                 /* recalculate the number of segments */
787                 req->nr_phys_segments = blk_recalc_rq_segments(req);
788         }
789
790         return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796         if (rq->rq_flags & RQF_STATS) {
797                 blk_mq_poll_stats_start(rq->q);
798                 blk_stat_add(rq, now);
799         }
800
801         blk_mq_sched_completed_request(rq, now);
802         blk_account_io_done(rq, now);
803 }
804
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807         if (blk_mq_need_time_stamp(rq))
808                 __blk_mq_end_request_acct(rq, ktime_get_ns());
809
810         if (rq->end_io) {
811                 rq_qos_done(rq->q, rq);
812                 rq->end_io(rq, error);
813         } else {
814                 blk_mq_free_request(rq);
815         }
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822                 BUG();
823         __blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826
827 #define TAG_COMP_BATCH          32
828
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830                                           int *tag_array, int nr_tags)
831 {
832         struct request_queue *q = hctx->queue;
833
834         /*
835          * All requests should have been marked as RQF_MQ_INFLIGHT, so
836          * update hctx->nr_active in batch
837          */
838         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839                 __blk_mq_sub_active_requests(hctx, nr_tags);
840
841         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847         int tags[TAG_COMP_BATCH], nr_tags = 0;
848         struct blk_mq_hw_ctx *cur_hctx = NULL;
849         struct request *rq;
850         u64 now = 0;
851
852         if (iob->need_ts)
853                 now = ktime_get_ns();
854
855         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856                 prefetch(rq->bio);
857                 prefetch(rq->rq_next);
858
859                 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860                 if (iob->need_ts)
861                         __blk_mq_end_request_acct(rq, now);
862
863                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
864                 if (!refcount_dec_and_test(&rq->ref))
865                         continue;
866
867                 blk_crypto_free_request(rq);
868                 blk_pm_mark_last_busy(rq);
869                 rq_qos_done(rq->q, rq);
870
871                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
872                         if (cur_hctx)
873                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
874                         nr_tags = 0;
875                         cur_hctx = rq->mq_hctx;
876                 }
877                 tags[nr_tags++] = rq->tag;
878         }
879
880         if (nr_tags)
881                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
884
885 static void blk_complete_reqs(struct llist_head *list)
886 {
887         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
888         struct request *rq, *next;
889
890         llist_for_each_entry_safe(rq, next, entry, ipi_list)
891                 rq->q->mq_ops->complete(rq);
892 }
893
894 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
895 {
896         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
897 }
898
899 static int blk_softirq_cpu_dead(unsigned int cpu)
900 {
901         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
902         return 0;
903 }
904
905 static void __blk_mq_complete_request_remote(void *data)
906 {
907         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
908 }
909
910 static inline bool blk_mq_complete_need_ipi(struct request *rq)
911 {
912         int cpu = raw_smp_processor_id();
913
914         if (!IS_ENABLED(CONFIG_SMP) ||
915             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
916                 return false;
917         /*
918          * With force threaded interrupts enabled, raising softirq from an SMP
919          * function call will always result in waking the ksoftirqd thread.
920          * This is probably worse than completing the request on a different
921          * cache domain.
922          */
923         if (force_irqthreads())
924                 return false;
925
926         /* same CPU or cache domain?  Complete locally */
927         if (cpu == rq->mq_ctx->cpu ||
928             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
929              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
930                 return false;
931
932         /* don't try to IPI to an offline CPU */
933         return cpu_online(rq->mq_ctx->cpu);
934 }
935
936 static void blk_mq_complete_send_ipi(struct request *rq)
937 {
938         struct llist_head *list;
939         unsigned int cpu;
940
941         cpu = rq->mq_ctx->cpu;
942         list = &per_cpu(blk_cpu_done, cpu);
943         if (llist_add(&rq->ipi_list, list)) {
944                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
945                 smp_call_function_single_async(cpu, &rq->csd);
946         }
947 }
948
949 static void blk_mq_raise_softirq(struct request *rq)
950 {
951         struct llist_head *list;
952
953         preempt_disable();
954         list = this_cpu_ptr(&blk_cpu_done);
955         if (llist_add(&rq->ipi_list, list))
956                 raise_softirq(BLOCK_SOFTIRQ);
957         preempt_enable();
958 }
959
960 bool blk_mq_complete_request_remote(struct request *rq)
961 {
962         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
963
964         /*
965          * For a polled request, always complete locallly, it's pointless
966          * to redirect the completion.
967          */
968         if (rq->cmd_flags & REQ_POLLED)
969                 return false;
970
971         if (blk_mq_complete_need_ipi(rq)) {
972                 blk_mq_complete_send_ipi(rq);
973                 return true;
974         }
975
976         if (rq->q->nr_hw_queues == 1) {
977                 blk_mq_raise_softirq(rq);
978                 return true;
979         }
980         return false;
981 }
982 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
983
984 /**
985  * blk_mq_complete_request - end I/O on a request
986  * @rq:         the request being processed
987  *
988  * Description:
989  *      Complete a request by scheduling the ->complete_rq operation.
990  **/
991 void blk_mq_complete_request(struct request *rq)
992 {
993         if (!blk_mq_complete_request_remote(rq))
994                 rq->q->mq_ops->complete(rq);
995 }
996 EXPORT_SYMBOL(blk_mq_complete_request);
997
998 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
999         __releases(hctx->srcu)
1000 {
1001         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1002                 rcu_read_unlock();
1003         else
1004                 srcu_read_unlock(hctx->srcu, srcu_idx);
1005 }
1006
1007 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1008         __acquires(hctx->srcu)
1009 {
1010         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1011                 /* shut up gcc false positive */
1012                 *srcu_idx = 0;
1013                 rcu_read_lock();
1014         } else
1015                 *srcu_idx = srcu_read_lock(hctx->srcu);
1016 }
1017
1018 /**
1019  * blk_mq_start_request - Start processing a request
1020  * @rq: Pointer to request to be started
1021  *
1022  * Function used by device drivers to notify the block layer that a request
1023  * is going to be processed now, so blk layer can do proper initializations
1024  * such as starting the timeout timer.
1025  */
1026 void blk_mq_start_request(struct request *rq)
1027 {
1028         struct request_queue *q = rq->q;
1029
1030         trace_block_rq_issue(rq);
1031
1032         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1033                 u64 start_time;
1034 #ifdef CONFIG_BLK_CGROUP
1035                 if (rq->bio)
1036                         start_time = bio_issue_time(&rq->bio->bi_issue);
1037                 else
1038 #endif
1039                         start_time = ktime_get_ns();
1040                 rq->io_start_time_ns = start_time;
1041                 rq->stats_sectors = blk_rq_sectors(rq);
1042                 rq->rq_flags |= RQF_STATS;
1043                 rq_qos_issue(q, rq);
1044         }
1045
1046         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1047
1048         blk_add_timer(rq);
1049         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1050
1051 #ifdef CONFIG_BLK_DEV_INTEGRITY
1052         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1053                 q->integrity.profile->prepare_fn(rq);
1054 #endif
1055         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1056                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1057 }
1058 EXPORT_SYMBOL(blk_mq_start_request);
1059
1060 static void __blk_mq_requeue_request(struct request *rq)
1061 {
1062         struct request_queue *q = rq->q;
1063
1064         blk_mq_put_driver_tag(rq);
1065
1066         trace_block_rq_requeue(rq);
1067         rq_qos_requeue(q, rq);
1068
1069         if (blk_mq_request_started(rq)) {
1070                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1071                 rq->rq_flags &= ~RQF_TIMED_OUT;
1072         }
1073 }
1074
1075 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1076 {
1077         __blk_mq_requeue_request(rq);
1078
1079         /* this request will be re-inserted to io scheduler queue */
1080         blk_mq_sched_requeue_request(rq);
1081
1082         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1083 }
1084 EXPORT_SYMBOL(blk_mq_requeue_request);
1085
1086 static void blk_mq_requeue_work(struct work_struct *work)
1087 {
1088         struct request_queue *q =
1089                 container_of(work, struct request_queue, requeue_work.work);
1090         LIST_HEAD(rq_list);
1091         struct request *rq, *next;
1092
1093         spin_lock_irq(&q->requeue_lock);
1094         list_splice_init(&q->requeue_list, &rq_list);
1095         spin_unlock_irq(&q->requeue_lock);
1096
1097         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1098                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1099                         continue;
1100
1101                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1102                 list_del_init(&rq->queuelist);
1103                 /*
1104                  * If RQF_DONTPREP, rq has contained some driver specific
1105                  * data, so insert it to hctx dispatch list to avoid any
1106                  * merge.
1107                  */
1108                 if (rq->rq_flags & RQF_DONTPREP)
1109                         blk_mq_request_bypass_insert(rq, false, false);
1110                 else
1111                         blk_mq_sched_insert_request(rq, true, false, false);
1112         }
1113
1114         while (!list_empty(&rq_list)) {
1115                 rq = list_entry(rq_list.next, struct request, queuelist);
1116                 list_del_init(&rq->queuelist);
1117                 blk_mq_sched_insert_request(rq, false, false, false);
1118         }
1119
1120         blk_mq_run_hw_queues(q, false);
1121 }
1122
1123 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1124                                 bool kick_requeue_list)
1125 {
1126         struct request_queue *q = rq->q;
1127         unsigned long flags;
1128
1129         /*
1130          * We abuse this flag that is otherwise used by the I/O scheduler to
1131          * request head insertion from the workqueue.
1132          */
1133         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1134
1135         spin_lock_irqsave(&q->requeue_lock, flags);
1136         if (at_head) {
1137                 rq->rq_flags |= RQF_SOFTBARRIER;
1138                 list_add(&rq->queuelist, &q->requeue_list);
1139         } else {
1140                 list_add_tail(&rq->queuelist, &q->requeue_list);
1141         }
1142         spin_unlock_irqrestore(&q->requeue_lock, flags);
1143
1144         if (kick_requeue_list)
1145                 blk_mq_kick_requeue_list(q);
1146 }
1147
1148 void blk_mq_kick_requeue_list(struct request_queue *q)
1149 {
1150         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1151 }
1152 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1153
1154 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1155                                     unsigned long msecs)
1156 {
1157         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1158                                     msecs_to_jiffies(msecs));
1159 }
1160 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1161
1162 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1163                                void *priv, bool reserved)
1164 {
1165         /*
1166          * If we find a request that isn't idle and the queue matches,
1167          * we know the queue is busy. Return false to stop the iteration.
1168          */
1169         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1170                 bool *busy = priv;
1171
1172                 *busy = true;
1173                 return false;
1174         }
1175
1176         return true;
1177 }
1178
1179 bool blk_mq_queue_inflight(struct request_queue *q)
1180 {
1181         bool busy = false;
1182
1183         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1184         return busy;
1185 }
1186 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1187
1188 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1189 {
1190         req->rq_flags |= RQF_TIMED_OUT;
1191         if (req->q->mq_ops->timeout) {
1192                 enum blk_eh_timer_return ret;
1193
1194                 ret = req->q->mq_ops->timeout(req, reserved);
1195                 if (ret == BLK_EH_DONE)
1196                         return;
1197                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1198         }
1199
1200         blk_add_timer(req);
1201 }
1202
1203 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1204 {
1205         unsigned long deadline;
1206
1207         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1208                 return false;
1209         if (rq->rq_flags & RQF_TIMED_OUT)
1210                 return false;
1211
1212         deadline = READ_ONCE(rq->deadline);
1213         if (time_after_eq(jiffies, deadline))
1214                 return true;
1215
1216         if (*next == 0)
1217                 *next = deadline;
1218         else if (time_after(*next, deadline))
1219                 *next = deadline;
1220         return false;
1221 }
1222
1223 void blk_mq_put_rq_ref(struct request *rq)
1224 {
1225         if (is_flush_rq(rq))
1226                 rq->end_io(rq, 0);
1227         else if (refcount_dec_and_test(&rq->ref))
1228                 __blk_mq_free_request(rq);
1229 }
1230
1231 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1232                 struct request *rq, void *priv, bool reserved)
1233 {
1234         unsigned long *next = priv;
1235
1236         /*
1237          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1238          * be reallocated underneath the timeout handler's processing, then
1239          * the expire check is reliable. If the request is not expired, then
1240          * it was completed and reallocated as a new request after returning
1241          * from blk_mq_check_expired().
1242          */
1243         if (blk_mq_req_expired(rq, next))
1244                 blk_mq_rq_timed_out(rq, reserved);
1245         return true;
1246 }
1247
1248 static void blk_mq_timeout_work(struct work_struct *work)
1249 {
1250         struct request_queue *q =
1251                 container_of(work, struct request_queue, timeout_work);
1252         unsigned long next = 0;
1253         struct blk_mq_hw_ctx *hctx;
1254         int i;
1255
1256         /* A deadlock might occur if a request is stuck requiring a
1257          * timeout at the same time a queue freeze is waiting
1258          * completion, since the timeout code would not be able to
1259          * acquire the queue reference here.
1260          *
1261          * That's why we don't use blk_queue_enter here; instead, we use
1262          * percpu_ref_tryget directly, because we need to be able to
1263          * obtain a reference even in the short window between the queue
1264          * starting to freeze, by dropping the first reference in
1265          * blk_freeze_queue_start, and the moment the last request is
1266          * consumed, marked by the instant q_usage_counter reaches
1267          * zero.
1268          */
1269         if (!percpu_ref_tryget(&q->q_usage_counter))
1270                 return;
1271
1272         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1273
1274         if (next != 0) {
1275                 mod_timer(&q->timeout, next);
1276         } else {
1277                 /*
1278                  * Request timeouts are handled as a forward rolling timer. If
1279                  * we end up here it means that no requests are pending and
1280                  * also that no request has been pending for a while. Mark
1281                  * each hctx as idle.
1282                  */
1283                 queue_for_each_hw_ctx(q, hctx, i) {
1284                         /* the hctx may be unmapped, so check it here */
1285                         if (blk_mq_hw_queue_mapped(hctx))
1286                                 blk_mq_tag_idle(hctx);
1287                 }
1288         }
1289         blk_queue_exit(q);
1290 }
1291
1292 struct flush_busy_ctx_data {
1293         struct blk_mq_hw_ctx *hctx;
1294         struct list_head *list;
1295 };
1296
1297 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1298 {
1299         struct flush_busy_ctx_data *flush_data = data;
1300         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1301         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1302         enum hctx_type type = hctx->type;
1303
1304         spin_lock(&ctx->lock);
1305         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1306         sbitmap_clear_bit(sb, bitnr);
1307         spin_unlock(&ctx->lock);
1308         return true;
1309 }
1310
1311 /*
1312  * Process software queues that have been marked busy, splicing them
1313  * to the for-dispatch
1314  */
1315 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1316 {
1317         struct flush_busy_ctx_data data = {
1318                 .hctx = hctx,
1319                 .list = list,
1320         };
1321
1322         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1325
1326 struct dispatch_rq_data {
1327         struct blk_mq_hw_ctx *hctx;
1328         struct request *rq;
1329 };
1330
1331 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1332                 void *data)
1333 {
1334         struct dispatch_rq_data *dispatch_data = data;
1335         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1336         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1337         enum hctx_type type = hctx->type;
1338
1339         spin_lock(&ctx->lock);
1340         if (!list_empty(&ctx->rq_lists[type])) {
1341                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1342                 list_del_init(&dispatch_data->rq->queuelist);
1343                 if (list_empty(&ctx->rq_lists[type]))
1344                         sbitmap_clear_bit(sb, bitnr);
1345         }
1346         spin_unlock(&ctx->lock);
1347
1348         return !dispatch_data->rq;
1349 }
1350
1351 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1352                                         struct blk_mq_ctx *start)
1353 {
1354         unsigned off = start ? start->index_hw[hctx->type] : 0;
1355         struct dispatch_rq_data data = {
1356                 .hctx = hctx,
1357                 .rq   = NULL,
1358         };
1359
1360         __sbitmap_for_each_set(&hctx->ctx_map, off,
1361                                dispatch_rq_from_ctx, &data);
1362
1363         return data.rq;
1364 }
1365
1366 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1367 {
1368         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1369         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1370         int tag;
1371
1372         blk_mq_tag_busy(rq->mq_hctx);
1373
1374         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1375                 bt = &rq->mq_hctx->tags->breserved_tags;
1376                 tag_offset = 0;
1377         } else {
1378                 if (!hctx_may_queue(rq->mq_hctx, bt))
1379                         return false;
1380         }
1381
1382         tag = __sbitmap_queue_get(bt);
1383         if (tag == BLK_MQ_NO_TAG)
1384                 return false;
1385
1386         rq->tag = tag + tag_offset;
1387         return true;
1388 }
1389
1390 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1391 {
1392         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1393                 return false;
1394
1395         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1396                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1397                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1398                 __blk_mq_inc_active_requests(hctx);
1399         }
1400         hctx->tags->rqs[rq->tag] = rq;
1401         return true;
1402 }
1403
1404 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1405                                 int flags, void *key)
1406 {
1407         struct blk_mq_hw_ctx *hctx;
1408
1409         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1410
1411         spin_lock(&hctx->dispatch_wait_lock);
1412         if (!list_empty(&wait->entry)) {
1413                 struct sbitmap_queue *sbq;
1414
1415                 list_del_init(&wait->entry);
1416                 sbq = &hctx->tags->bitmap_tags;
1417                 atomic_dec(&sbq->ws_active);
1418         }
1419         spin_unlock(&hctx->dispatch_wait_lock);
1420
1421         blk_mq_run_hw_queue(hctx, true);
1422         return 1;
1423 }
1424
1425 /*
1426  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1427  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1428  * restart. For both cases, take care to check the condition again after
1429  * marking us as waiting.
1430  */
1431 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1432                                  struct request *rq)
1433 {
1434         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1435         struct wait_queue_head *wq;
1436         wait_queue_entry_t *wait;
1437         bool ret;
1438
1439         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1440                 blk_mq_sched_mark_restart_hctx(hctx);
1441
1442                 /*
1443                  * It's possible that a tag was freed in the window between the
1444                  * allocation failure and adding the hardware queue to the wait
1445                  * queue.
1446                  *
1447                  * Don't clear RESTART here, someone else could have set it.
1448                  * At most this will cost an extra queue run.
1449                  */
1450                 return blk_mq_get_driver_tag(rq);
1451         }
1452
1453         wait = &hctx->dispatch_wait;
1454         if (!list_empty_careful(&wait->entry))
1455                 return false;
1456
1457         wq = &bt_wait_ptr(sbq, hctx)->wait;
1458
1459         spin_lock_irq(&wq->lock);
1460         spin_lock(&hctx->dispatch_wait_lock);
1461         if (!list_empty(&wait->entry)) {
1462                 spin_unlock(&hctx->dispatch_wait_lock);
1463                 spin_unlock_irq(&wq->lock);
1464                 return false;
1465         }
1466
1467         atomic_inc(&sbq->ws_active);
1468         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1469         __add_wait_queue(wq, wait);
1470
1471         /*
1472          * It's possible that a tag was freed in the window between the
1473          * allocation failure and adding the hardware queue to the wait
1474          * queue.
1475          */
1476         ret = blk_mq_get_driver_tag(rq);
1477         if (!ret) {
1478                 spin_unlock(&hctx->dispatch_wait_lock);
1479                 spin_unlock_irq(&wq->lock);
1480                 return false;
1481         }
1482
1483         /*
1484          * We got a tag, remove ourselves from the wait queue to ensure
1485          * someone else gets the wakeup.
1486          */
1487         list_del_init(&wait->entry);
1488         atomic_dec(&sbq->ws_active);
1489         spin_unlock(&hctx->dispatch_wait_lock);
1490         spin_unlock_irq(&wq->lock);
1491
1492         return true;
1493 }
1494
1495 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1497 /*
1498  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1499  * - EWMA is one simple way to compute running average value
1500  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1501  * - take 4 as factor for avoiding to get too small(0) result, and this
1502  *   factor doesn't matter because EWMA decreases exponentially
1503  */
1504 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1505 {
1506         unsigned int ewma;
1507
1508         ewma = hctx->dispatch_busy;
1509
1510         if (!ewma && !busy)
1511                 return;
1512
1513         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1514         if (busy)
1515                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1516         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1517
1518         hctx->dispatch_busy = ewma;
1519 }
1520
1521 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1522
1523 static void blk_mq_handle_dev_resource(struct request *rq,
1524                                        struct list_head *list)
1525 {
1526         struct request *next =
1527                 list_first_entry_or_null(list, struct request, queuelist);
1528
1529         /*
1530          * If an I/O scheduler has been configured and we got a driver tag for
1531          * the next request already, free it.
1532          */
1533         if (next)
1534                 blk_mq_put_driver_tag(next);
1535
1536         list_add(&rq->queuelist, list);
1537         __blk_mq_requeue_request(rq);
1538 }
1539
1540 static void blk_mq_handle_zone_resource(struct request *rq,
1541                                         struct list_head *zone_list)
1542 {
1543         /*
1544          * If we end up here it is because we cannot dispatch a request to a
1545          * specific zone due to LLD level zone-write locking or other zone
1546          * related resource not being available. In this case, set the request
1547          * aside in zone_list for retrying it later.
1548          */
1549         list_add(&rq->queuelist, zone_list);
1550         __blk_mq_requeue_request(rq);
1551 }
1552
1553 enum prep_dispatch {
1554         PREP_DISPATCH_OK,
1555         PREP_DISPATCH_NO_TAG,
1556         PREP_DISPATCH_NO_BUDGET,
1557 };
1558
1559 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1560                                                   bool need_budget)
1561 {
1562         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1563         int budget_token = -1;
1564
1565         if (need_budget) {
1566                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1567                 if (budget_token < 0) {
1568                         blk_mq_put_driver_tag(rq);
1569                         return PREP_DISPATCH_NO_BUDGET;
1570                 }
1571                 blk_mq_set_rq_budget_token(rq, budget_token);
1572         }
1573
1574         if (!blk_mq_get_driver_tag(rq)) {
1575                 /*
1576                  * The initial allocation attempt failed, so we need to
1577                  * rerun the hardware queue when a tag is freed. The
1578                  * waitqueue takes care of that. If the queue is run
1579                  * before we add this entry back on the dispatch list,
1580                  * we'll re-run it below.
1581                  */
1582                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1583                         /*
1584                          * All budgets not got from this function will be put
1585                          * together during handling partial dispatch
1586                          */
1587                         if (need_budget)
1588                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1589                         return PREP_DISPATCH_NO_TAG;
1590                 }
1591         }
1592
1593         return PREP_DISPATCH_OK;
1594 }
1595
1596 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1597 static void blk_mq_release_budgets(struct request_queue *q,
1598                 struct list_head *list)
1599 {
1600         struct request *rq;
1601
1602         list_for_each_entry(rq, list, queuelist) {
1603                 int budget_token = blk_mq_get_rq_budget_token(rq);
1604
1605                 if (budget_token >= 0)
1606                         blk_mq_put_dispatch_budget(q, budget_token);
1607         }
1608 }
1609
1610 /*
1611  * Returns true if we did some work AND can potentially do more.
1612  */
1613 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1614                              unsigned int nr_budgets)
1615 {
1616         enum prep_dispatch prep;
1617         struct request_queue *q = hctx->queue;
1618         struct request *rq, *nxt;
1619         int errors, queued;
1620         blk_status_t ret = BLK_STS_OK;
1621         LIST_HEAD(zone_list);
1622         bool needs_resource = false;
1623
1624         if (list_empty(list))
1625                 return false;
1626
1627         /*
1628          * Now process all the entries, sending them to the driver.
1629          */
1630         errors = queued = 0;
1631         do {
1632                 struct blk_mq_queue_data bd;
1633
1634                 rq = list_first_entry(list, struct request, queuelist);
1635
1636                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1637                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1638                 if (prep != PREP_DISPATCH_OK)
1639                         break;
1640
1641                 list_del_init(&rq->queuelist);
1642
1643                 bd.rq = rq;
1644
1645                 /*
1646                  * Flag last if we have no more requests, or if we have more
1647                  * but can't assign a driver tag to it.
1648                  */
1649                 if (list_empty(list))
1650                         bd.last = true;
1651                 else {
1652                         nxt = list_first_entry(list, struct request, queuelist);
1653                         bd.last = !blk_mq_get_driver_tag(nxt);
1654                 }
1655
1656                 /*
1657                  * once the request is queued to lld, no need to cover the
1658                  * budget any more
1659                  */
1660                 if (nr_budgets)
1661                         nr_budgets--;
1662                 ret = q->mq_ops->queue_rq(hctx, &bd);
1663                 switch (ret) {
1664                 case BLK_STS_OK:
1665                         queued++;
1666                         break;
1667                 case BLK_STS_RESOURCE:
1668                         needs_resource = true;
1669                         fallthrough;
1670                 case BLK_STS_DEV_RESOURCE:
1671                         blk_mq_handle_dev_resource(rq, list);
1672                         goto out;
1673                 case BLK_STS_ZONE_RESOURCE:
1674                         /*
1675                          * Move the request to zone_list and keep going through
1676                          * the dispatch list to find more requests the drive can
1677                          * accept.
1678                          */
1679                         blk_mq_handle_zone_resource(rq, &zone_list);
1680                         needs_resource = true;
1681                         break;
1682                 default:
1683                         errors++;
1684                         blk_mq_end_request(rq, ret);
1685                 }
1686         } while (!list_empty(list));
1687 out:
1688         if (!list_empty(&zone_list))
1689                 list_splice_tail_init(&zone_list, list);
1690
1691         /* If we didn't flush the entire list, we could have told the driver
1692          * there was more coming, but that turned out to be a lie.
1693          */
1694         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1695                 q->mq_ops->commit_rqs(hctx);
1696         /*
1697          * Any items that need requeuing? Stuff them into hctx->dispatch,
1698          * that is where we will continue on next queue run.
1699          */
1700         if (!list_empty(list)) {
1701                 bool needs_restart;
1702                 /* For non-shared tags, the RESTART check will suffice */
1703                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1704                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1705
1706                 if (nr_budgets)
1707                         blk_mq_release_budgets(q, list);
1708
1709                 spin_lock(&hctx->lock);
1710                 list_splice_tail_init(list, &hctx->dispatch);
1711                 spin_unlock(&hctx->lock);
1712
1713                 /*
1714                  * Order adding requests to hctx->dispatch and checking
1715                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1716                  * in blk_mq_sched_restart(). Avoid restart code path to
1717                  * miss the new added requests to hctx->dispatch, meantime
1718                  * SCHED_RESTART is observed here.
1719                  */
1720                 smp_mb();
1721
1722                 /*
1723                  * If SCHED_RESTART was set by the caller of this function and
1724                  * it is no longer set that means that it was cleared by another
1725                  * thread and hence that a queue rerun is needed.
1726                  *
1727                  * If 'no_tag' is set, that means that we failed getting
1728                  * a driver tag with an I/O scheduler attached. If our dispatch
1729                  * waitqueue is no longer active, ensure that we run the queue
1730                  * AFTER adding our entries back to the list.
1731                  *
1732                  * If no I/O scheduler has been configured it is possible that
1733                  * the hardware queue got stopped and restarted before requests
1734                  * were pushed back onto the dispatch list. Rerun the queue to
1735                  * avoid starvation. Notes:
1736                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1737                  *   been stopped before rerunning a queue.
1738                  * - Some but not all block drivers stop a queue before
1739                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1740                  *   and dm-rq.
1741                  *
1742                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1743                  * bit is set, run queue after a delay to avoid IO stalls
1744                  * that could otherwise occur if the queue is idle.  We'll do
1745                  * similar if we couldn't get budget or couldn't lock a zone
1746                  * and SCHED_RESTART is set.
1747                  */
1748                 needs_restart = blk_mq_sched_needs_restart(hctx);
1749                 if (prep == PREP_DISPATCH_NO_BUDGET)
1750                         needs_resource = true;
1751                 if (!needs_restart ||
1752                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1753                         blk_mq_run_hw_queue(hctx, true);
1754                 else if (needs_restart && needs_resource)
1755                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1756
1757                 blk_mq_update_dispatch_busy(hctx, true);
1758                 return false;
1759         } else
1760                 blk_mq_update_dispatch_busy(hctx, false);
1761
1762         return (queued + errors) != 0;
1763 }
1764
1765 /**
1766  * __blk_mq_run_hw_queue - Run a hardware queue.
1767  * @hctx: Pointer to the hardware queue to run.
1768  *
1769  * Send pending requests to the hardware.
1770  */
1771 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1772 {
1773         int srcu_idx;
1774
1775         /*
1776          * We can't run the queue inline with ints disabled. Ensure that
1777          * we catch bad users of this early.
1778          */
1779         WARN_ON_ONCE(in_interrupt());
1780
1781         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1782
1783         hctx_lock(hctx, &srcu_idx);
1784         blk_mq_sched_dispatch_requests(hctx);
1785         hctx_unlock(hctx, srcu_idx);
1786 }
1787
1788 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1789 {
1790         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1791
1792         if (cpu >= nr_cpu_ids)
1793                 cpu = cpumask_first(hctx->cpumask);
1794         return cpu;
1795 }
1796
1797 /*
1798  * It'd be great if the workqueue API had a way to pass
1799  * in a mask and had some smarts for more clever placement.
1800  * For now we just round-robin here, switching for every
1801  * BLK_MQ_CPU_WORK_BATCH queued items.
1802  */
1803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1804 {
1805         bool tried = false;
1806         int next_cpu = hctx->next_cpu;
1807
1808         if (hctx->queue->nr_hw_queues == 1)
1809                 return WORK_CPU_UNBOUND;
1810
1811         if (--hctx->next_cpu_batch <= 0) {
1812 select_cpu:
1813                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1814                                 cpu_online_mask);
1815                 if (next_cpu >= nr_cpu_ids)
1816                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1817                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1818         }
1819
1820         /*
1821          * Do unbound schedule if we can't find a online CPU for this hctx,
1822          * and it should only happen in the path of handling CPU DEAD.
1823          */
1824         if (!cpu_online(next_cpu)) {
1825                 if (!tried) {
1826                         tried = true;
1827                         goto select_cpu;
1828                 }
1829
1830                 /*
1831                  * Make sure to re-select CPU next time once after CPUs
1832                  * in hctx->cpumask become online again.
1833                  */
1834                 hctx->next_cpu = next_cpu;
1835                 hctx->next_cpu_batch = 1;
1836                 return WORK_CPU_UNBOUND;
1837         }
1838
1839         hctx->next_cpu = next_cpu;
1840         return next_cpu;
1841 }
1842
1843 /**
1844  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1845  * @hctx: Pointer to the hardware queue to run.
1846  * @async: If we want to run the queue asynchronously.
1847  * @msecs: Milliseconds of delay to wait before running the queue.
1848  *
1849  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1850  * with a delay of @msecs.
1851  */
1852 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1853                                         unsigned long msecs)
1854 {
1855         if (unlikely(blk_mq_hctx_stopped(hctx)))
1856                 return;
1857
1858         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1859                 int cpu = get_cpu();
1860                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1861                         __blk_mq_run_hw_queue(hctx);
1862                         put_cpu();
1863                         return;
1864                 }
1865
1866                 put_cpu();
1867         }
1868
1869         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1870                                     msecs_to_jiffies(msecs));
1871 }
1872
1873 /**
1874  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1875  * @hctx: Pointer to the hardware queue to run.
1876  * @msecs: Milliseconds of delay to wait before running the queue.
1877  *
1878  * Run a hardware queue asynchronously with a delay of @msecs.
1879  */
1880 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1881 {
1882         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1883 }
1884 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1885
1886 /**
1887  * blk_mq_run_hw_queue - Start to run a hardware queue.
1888  * @hctx: Pointer to the hardware queue to run.
1889  * @async: If we want to run the queue asynchronously.
1890  *
1891  * Check if the request queue is not in a quiesced state and if there are
1892  * pending requests to be sent. If this is true, run the queue to send requests
1893  * to hardware.
1894  */
1895 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1896 {
1897         int srcu_idx;
1898         bool need_run;
1899
1900         /*
1901          * When queue is quiesced, we may be switching io scheduler, or
1902          * updating nr_hw_queues, or other things, and we can't run queue
1903          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1904          *
1905          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1906          * quiesced.
1907          */
1908         hctx_lock(hctx, &srcu_idx);
1909         need_run = !blk_queue_quiesced(hctx->queue) &&
1910                 blk_mq_hctx_has_pending(hctx);
1911         hctx_unlock(hctx, srcu_idx);
1912
1913         if (need_run)
1914                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1915 }
1916 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1917
1918 /*
1919  * Is the request queue handled by an IO scheduler that does not respect
1920  * hardware queues when dispatching?
1921  */
1922 static bool blk_mq_has_sqsched(struct request_queue *q)
1923 {
1924         struct elevator_queue *e = q->elevator;
1925
1926         if (e && e->type->ops.dispatch_request &&
1927             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1928                 return true;
1929         return false;
1930 }
1931
1932 /*
1933  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1934  * scheduler.
1935  */
1936 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1937 {
1938         struct blk_mq_hw_ctx *hctx;
1939
1940         /*
1941          * If the IO scheduler does not respect hardware queues when
1942          * dispatching, we just don't bother with multiple HW queues and
1943          * dispatch from hctx for the current CPU since running multiple queues
1944          * just causes lock contention inside the scheduler and pointless cache
1945          * bouncing.
1946          */
1947         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1948                                      raw_smp_processor_id());
1949         if (!blk_mq_hctx_stopped(hctx))
1950                 return hctx;
1951         return NULL;
1952 }
1953
1954 /**
1955  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1956  * @q: Pointer to the request queue to run.
1957  * @async: If we want to run the queue asynchronously.
1958  */
1959 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1960 {
1961         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1962         int i;
1963
1964         sq_hctx = NULL;
1965         if (blk_mq_has_sqsched(q))
1966                 sq_hctx = blk_mq_get_sq_hctx(q);
1967         queue_for_each_hw_ctx(q, hctx, i) {
1968                 if (blk_mq_hctx_stopped(hctx))
1969                         continue;
1970                 /*
1971                  * Dispatch from this hctx either if there's no hctx preferred
1972                  * by IO scheduler or if it has requests that bypass the
1973                  * scheduler.
1974                  */
1975                 if (!sq_hctx || sq_hctx == hctx ||
1976                     !list_empty_careful(&hctx->dispatch))
1977                         blk_mq_run_hw_queue(hctx, async);
1978         }
1979 }
1980 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1981
1982 /**
1983  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1984  * @q: Pointer to the request queue to run.
1985  * @msecs: Milliseconds of delay to wait before running the queues.
1986  */
1987 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1988 {
1989         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1990         int i;
1991
1992         sq_hctx = NULL;
1993         if (blk_mq_has_sqsched(q))
1994                 sq_hctx = blk_mq_get_sq_hctx(q);
1995         queue_for_each_hw_ctx(q, hctx, i) {
1996                 if (blk_mq_hctx_stopped(hctx))
1997                         continue;
1998                 /*
1999                  * Dispatch from this hctx either if there's no hctx preferred
2000                  * by IO scheduler or if it has requests that bypass the
2001                  * scheduler.
2002                  */
2003                 if (!sq_hctx || sq_hctx == hctx ||
2004                     !list_empty_careful(&hctx->dispatch))
2005                         blk_mq_delay_run_hw_queue(hctx, msecs);
2006         }
2007 }
2008 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2009
2010 /**
2011  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2012  * @q: request queue.
2013  *
2014  * The caller is responsible for serializing this function against
2015  * blk_mq_{start,stop}_hw_queue().
2016  */
2017 bool blk_mq_queue_stopped(struct request_queue *q)
2018 {
2019         struct blk_mq_hw_ctx *hctx;
2020         int i;
2021
2022         queue_for_each_hw_ctx(q, hctx, i)
2023                 if (blk_mq_hctx_stopped(hctx))
2024                         return true;
2025
2026         return false;
2027 }
2028 EXPORT_SYMBOL(blk_mq_queue_stopped);
2029
2030 /*
2031  * This function is often used for pausing .queue_rq() by driver when
2032  * there isn't enough resource or some conditions aren't satisfied, and
2033  * BLK_STS_RESOURCE is usually returned.
2034  *
2035  * We do not guarantee that dispatch can be drained or blocked
2036  * after blk_mq_stop_hw_queue() returns. Please use
2037  * blk_mq_quiesce_queue() for that requirement.
2038  */
2039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2040 {
2041         cancel_delayed_work(&hctx->run_work);
2042
2043         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2044 }
2045 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2046
2047 /*
2048  * This function is often used for pausing .queue_rq() by driver when
2049  * there isn't enough resource or some conditions aren't satisfied, and
2050  * BLK_STS_RESOURCE is usually returned.
2051  *
2052  * We do not guarantee that dispatch can be drained or blocked
2053  * after blk_mq_stop_hw_queues() returns. Please use
2054  * blk_mq_quiesce_queue() for that requirement.
2055  */
2056 void blk_mq_stop_hw_queues(struct request_queue *q)
2057 {
2058         struct blk_mq_hw_ctx *hctx;
2059         int i;
2060
2061         queue_for_each_hw_ctx(q, hctx, i)
2062                 blk_mq_stop_hw_queue(hctx);
2063 }
2064 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2065
2066 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2067 {
2068         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2069
2070         blk_mq_run_hw_queue(hctx, false);
2071 }
2072 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2073
2074 void blk_mq_start_hw_queues(struct request_queue *q)
2075 {
2076         struct blk_mq_hw_ctx *hctx;
2077         int i;
2078
2079         queue_for_each_hw_ctx(q, hctx, i)
2080                 blk_mq_start_hw_queue(hctx);
2081 }
2082 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2083
2084 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2085 {
2086         if (!blk_mq_hctx_stopped(hctx))
2087                 return;
2088
2089         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2090         blk_mq_run_hw_queue(hctx, async);
2091 }
2092 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2093
2094 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2095 {
2096         struct blk_mq_hw_ctx *hctx;
2097         int i;
2098
2099         queue_for_each_hw_ctx(q, hctx, i)
2100                 blk_mq_start_stopped_hw_queue(hctx, async);
2101 }
2102 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2103
2104 static void blk_mq_run_work_fn(struct work_struct *work)
2105 {
2106         struct blk_mq_hw_ctx *hctx;
2107
2108         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2109
2110         /*
2111          * If we are stopped, don't run the queue.
2112          */
2113         if (blk_mq_hctx_stopped(hctx))
2114                 return;
2115
2116         __blk_mq_run_hw_queue(hctx);
2117 }
2118
2119 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2120                                             struct request *rq,
2121                                             bool at_head)
2122 {
2123         struct blk_mq_ctx *ctx = rq->mq_ctx;
2124         enum hctx_type type = hctx->type;
2125
2126         lockdep_assert_held(&ctx->lock);
2127
2128         trace_block_rq_insert(rq);
2129
2130         if (at_head)
2131                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2132         else
2133                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2134 }
2135
2136 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2137                              bool at_head)
2138 {
2139         struct blk_mq_ctx *ctx = rq->mq_ctx;
2140
2141         lockdep_assert_held(&ctx->lock);
2142
2143         __blk_mq_insert_req_list(hctx, rq, at_head);
2144         blk_mq_hctx_mark_pending(hctx, ctx);
2145 }
2146
2147 /**
2148  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2149  * @rq: Pointer to request to be inserted.
2150  * @at_head: true if the request should be inserted at the head of the list.
2151  * @run_queue: If we should run the hardware queue after inserting the request.
2152  *
2153  * Should only be used carefully, when the caller knows we want to
2154  * bypass a potential IO scheduler on the target device.
2155  */
2156 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2157                                   bool run_queue)
2158 {
2159         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2160
2161         spin_lock(&hctx->lock);
2162         if (at_head)
2163                 list_add(&rq->queuelist, &hctx->dispatch);
2164         else
2165                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2166         spin_unlock(&hctx->lock);
2167
2168         if (run_queue)
2169                 blk_mq_run_hw_queue(hctx, false);
2170 }
2171
2172 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2173                             struct list_head *list)
2174
2175 {
2176         struct request *rq;
2177         enum hctx_type type = hctx->type;
2178
2179         /*
2180          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2181          * offline now
2182          */
2183         list_for_each_entry(rq, list, queuelist) {
2184                 BUG_ON(rq->mq_ctx != ctx);
2185                 trace_block_rq_insert(rq);
2186         }
2187
2188         spin_lock(&ctx->lock);
2189         list_splice_tail_init(list, &ctx->rq_lists[type]);
2190         blk_mq_hctx_mark_pending(hctx, ctx);
2191         spin_unlock(&ctx->lock);
2192 }
2193
2194 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2195                               bool from_schedule)
2196 {
2197         if (hctx->queue->mq_ops->commit_rqs) {
2198                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2199                 hctx->queue->mq_ops->commit_rqs(hctx);
2200         }
2201         *queued = 0;
2202 }
2203
2204 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2205 {
2206         struct blk_mq_hw_ctx *hctx = NULL;
2207         struct request *rq;
2208         int queued = 0;
2209         int errors = 0;
2210
2211         while ((rq = rq_list_pop(&plug->mq_list))) {
2212                 bool last = rq_list_empty(plug->mq_list);
2213                 blk_status_t ret;
2214
2215                 if (hctx != rq->mq_hctx) {
2216                         if (hctx)
2217                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2218                         hctx = rq->mq_hctx;
2219                 }
2220
2221                 ret = blk_mq_request_issue_directly(rq, last);
2222                 switch (ret) {
2223                 case BLK_STS_OK:
2224                         queued++;
2225                         break;
2226                 case BLK_STS_RESOURCE:
2227                 case BLK_STS_DEV_RESOURCE:
2228                         blk_mq_request_bypass_insert(rq, false, last);
2229                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2230                         return;
2231                 default:
2232                         blk_mq_end_request(rq, ret);
2233                         errors++;
2234                         break;
2235                 }
2236         }
2237
2238         /*
2239          * If we didn't flush the entire list, we could have told the driver
2240          * there was more coming, but that turned out to be a lie.
2241          */
2242         if (errors)
2243                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2244 }
2245
2246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2247 {
2248         struct blk_mq_hw_ctx *this_hctx;
2249         struct blk_mq_ctx *this_ctx;
2250         unsigned int depth;
2251         LIST_HEAD(list);
2252
2253         if (rq_list_empty(plug->mq_list))
2254                 return;
2255         plug->rq_count = 0;
2256
2257         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2258                 blk_mq_plug_issue_direct(plug, false);
2259                 if (rq_list_empty(plug->mq_list))
2260                         return;
2261         }
2262
2263         this_hctx = NULL;
2264         this_ctx = NULL;
2265         depth = 0;
2266         do {
2267                 struct request *rq;
2268
2269                 rq = rq_list_pop(&plug->mq_list);
2270
2271                 if (!this_hctx) {
2272                         this_hctx = rq->mq_hctx;
2273                         this_ctx = rq->mq_ctx;
2274                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2275                         trace_block_unplug(this_hctx->queue, depth,
2276                                                 !from_schedule);
2277                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2278                                                 &list, from_schedule);
2279                         depth = 0;
2280                         this_hctx = rq->mq_hctx;
2281                         this_ctx = rq->mq_ctx;
2282
2283                 }
2284
2285                 list_add(&rq->queuelist, &list);
2286                 depth++;
2287         } while (!rq_list_empty(plug->mq_list));
2288
2289         if (!list_empty(&list)) {
2290                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2291                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2292                                                 from_schedule);
2293         }
2294 }
2295
2296 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2297                 unsigned int nr_segs)
2298 {
2299         int err;
2300
2301         if (bio->bi_opf & REQ_RAHEAD)
2302                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2303
2304         rq->__sector = bio->bi_iter.bi_sector;
2305         rq->write_hint = bio->bi_write_hint;
2306         blk_rq_bio_prep(rq, bio, nr_segs);
2307
2308         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2309         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2310         WARN_ON_ONCE(err);
2311
2312         blk_account_io_start(rq);
2313 }
2314
2315 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2316                                             struct request *rq, bool last)
2317 {
2318         struct request_queue *q = rq->q;
2319         struct blk_mq_queue_data bd = {
2320                 .rq = rq,
2321                 .last = last,
2322         };
2323         blk_status_t ret;
2324
2325         /*
2326          * For OK queue, we are done. For error, caller may kill it.
2327          * Any other error (busy), just add it to our list as we
2328          * previously would have done.
2329          */
2330         ret = q->mq_ops->queue_rq(hctx, &bd);
2331         switch (ret) {
2332         case BLK_STS_OK:
2333                 blk_mq_update_dispatch_busy(hctx, false);
2334                 break;
2335         case BLK_STS_RESOURCE:
2336         case BLK_STS_DEV_RESOURCE:
2337                 blk_mq_update_dispatch_busy(hctx, true);
2338                 __blk_mq_requeue_request(rq);
2339                 break;
2340         default:
2341                 blk_mq_update_dispatch_busy(hctx, false);
2342                 break;
2343         }
2344
2345         return ret;
2346 }
2347
2348 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2349                                                 struct request *rq,
2350                                                 bool bypass_insert, bool last)
2351 {
2352         struct request_queue *q = rq->q;
2353         bool run_queue = true;
2354         int budget_token;
2355
2356         /*
2357          * RCU or SRCU read lock is needed before checking quiesced flag.
2358          *
2359          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2360          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2361          * and avoid driver to try to dispatch again.
2362          */
2363         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2364                 run_queue = false;
2365                 bypass_insert = false;
2366                 goto insert;
2367         }
2368
2369         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2370                 goto insert;
2371
2372         budget_token = blk_mq_get_dispatch_budget(q);
2373         if (budget_token < 0)
2374                 goto insert;
2375
2376         blk_mq_set_rq_budget_token(rq, budget_token);
2377
2378         if (!blk_mq_get_driver_tag(rq)) {
2379                 blk_mq_put_dispatch_budget(q, budget_token);
2380                 goto insert;
2381         }
2382
2383         return __blk_mq_issue_directly(hctx, rq, last);
2384 insert:
2385         if (bypass_insert)
2386                 return BLK_STS_RESOURCE;
2387
2388         blk_mq_sched_insert_request(rq, false, run_queue, false);
2389
2390         return BLK_STS_OK;
2391 }
2392
2393 /**
2394  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2395  * @hctx: Pointer of the associated hardware queue.
2396  * @rq: Pointer to request to be sent.
2397  *
2398  * If the device has enough resources to accept a new request now, send the
2399  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2400  * we can try send it another time in the future. Requests inserted at this
2401  * queue have higher priority.
2402  */
2403 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2404                 struct request *rq)
2405 {
2406         blk_status_t ret;
2407         int srcu_idx;
2408
2409         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2410
2411         hctx_lock(hctx, &srcu_idx);
2412
2413         ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2414         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2415                 blk_mq_request_bypass_insert(rq, false, true);
2416         else if (ret != BLK_STS_OK)
2417                 blk_mq_end_request(rq, ret);
2418
2419         hctx_unlock(hctx, srcu_idx);
2420 }
2421
2422 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2423 {
2424         blk_status_t ret;
2425         int srcu_idx;
2426         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2427
2428         hctx_lock(hctx, &srcu_idx);
2429         ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2430         hctx_unlock(hctx, srcu_idx);
2431
2432         return ret;
2433 }
2434
2435 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2436                 struct list_head *list)
2437 {
2438         int queued = 0;
2439         int errors = 0;
2440
2441         while (!list_empty(list)) {
2442                 blk_status_t ret;
2443                 struct request *rq = list_first_entry(list, struct request,
2444                                 queuelist);
2445
2446                 list_del_init(&rq->queuelist);
2447                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2448                 if (ret != BLK_STS_OK) {
2449                         if (ret == BLK_STS_RESOURCE ||
2450                                         ret == BLK_STS_DEV_RESOURCE) {
2451                                 blk_mq_request_bypass_insert(rq, false,
2452                                                         list_empty(list));
2453                                 break;
2454                         }
2455                         blk_mq_end_request(rq, ret);
2456                         errors++;
2457                 } else
2458                         queued++;
2459         }
2460
2461         /*
2462          * If we didn't flush the entire list, we could have told
2463          * the driver there was more coming, but that turned out to
2464          * be a lie.
2465          */
2466         if ((!list_empty(list) || errors) &&
2467              hctx->queue->mq_ops->commit_rqs && queued)
2468                 hctx->queue->mq_ops->commit_rqs(hctx);
2469 }
2470
2471 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2472 {
2473         if (!plug->multiple_queues) {
2474                 struct request *nxt = rq_list_peek(&plug->mq_list);
2475
2476                 if (nxt && nxt->q != rq->q)
2477                         plug->multiple_queues = true;
2478         }
2479         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2480                 plug->has_elevator = true;
2481         rq->rq_next = NULL;
2482         rq_list_add(&plug->mq_list, rq);
2483         plug->rq_count++;
2484 }
2485
2486 /*
2487  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2488  * queues. This is important for md arrays to benefit from merging
2489  * requests.
2490  */
2491 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2492 {
2493         if (plug->multiple_queues)
2494                 return BLK_MAX_REQUEST_COUNT * 2;
2495         return BLK_MAX_REQUEST_COUNT;
2496 }
2497
2498 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2499                                      struct bio *bio, unsigned int nr_segs,
2500                                      bool *same_queue_rq)
2501 {
2502         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2503                 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2504                         return true;
2505                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2506                         return true;
2507         }
2508         return false;
2509 }
2510
2511 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2512                                                struct blk_plug *plug,
2513                                                struct bio *bio,
2514                                                unsigned int nsegs,
2515                                                bool *same_queue_rq)
2516 {
2517         struct blk_mq_alloc_data data = {
2518                 .q              = q,
2519                 .nr_tags        = 1,
2520                 .cmd_flags      = bio->bi_opf,
2521         };
2522         struct request *rq;
2523
2524         if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2525                 return NULL;
2526
2527         rq_qos_throttle(q, bio);
2528
2529         if (plug) {
2530                 data.nr_tags = plug->nr_ios;
2531                 plug->nr_ios = 1;
2532                 data.cached_rq = &plug->cached_rq;
2533         }
2534
2535         rq = __blk_mq_alloc_requests(&data);
2536         if (rq)
2537                 return rq;
2538
2539         rq_qos_cleanup(q, bio);
2540         if (bio->bi_opf & REQ_NOWAIT)
2541                 bio_wouldblock_error(bio);
2542
2543         return NULL;
2544 }
2545
2546 static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
2547 {
2548         if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2549                 return false;
2550
2551         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2552                 return false;
2553
2554         return true;
2555 }
2556
2557 static inline struct request *blk_mq_get_request(struct request_queue *q,
2558                                                  struct blk_plug *plug,
2559                                                  struct bio *bio,
2560                                                  unsigned int nsegs,
2561                                                  bool *same_queue_rq)
2562 {
2563         struct request *rq;
2564         bool checked = false;
2565
2566         if (plug) {
2567                 rq = rq_list_peek(&plug->cached_rq);
2568                 if (rq && rq->q == q) {
2569                         if (unlikely(!submit_bio_checks(bio)))
2570                                 return NULL;
2571                         if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2572                                                 same_queue_rq))
2573                                 return NULL;
2574                         checked = true;
2575                         if (!blk_mq_can_use_cached_rq(rq, bio))
2576                                 goto fallback;
2577                         rq->cmd_flags = bio->bi_opf;
2578                         plug->cached_rq = rq_list_next(rq);
2579                         INIT_LIST_HEAD(&rq->queuelist);
2580                         rq_qos_throttle(q, bio);
2581                         return rq;
2582                 }
2583         }
2584
2585 fallback:
2586         if (unlikely(bio_queue_enter(bio)))
2587                 return NULL;
2588         if (unlikely(!checked && !submit_bio_checks(bio)))
2589                 goto out_put;
2590         rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2591         if (rq)
2592                 return rq;
2593 out_put:
2594         blk_queue_exit(q);
2595         return NULL;
2596 }
2597
2598 /**
2599  * blk_mq_submit_bio - Create and send a request to block device.
2600  * @bio: Bio pointer.
2601  *
2602  * Builds up a request structure from @q and @bio and send to the device. The
2603  * request may not be queued directly to hardware if:
2604  * * This request can be merged with another one
2605  * * We want to place request at plug queue for possible future merging
2606  * * There is an IO scheduler active at this queue
2607  *
2608  * It will not queue the request if there is an error with the bio, or at the
2609  * request creation.
2610  */
2611 void blk_mq_submit_bio(struct bio *bio)
2612 {
2613         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2614         const int is_sync = op_is_sync(bio->bi_opf);
2615         struct request *rq;
2616         struct blk_plug *plug;
2617         bool same_queue_rq = false;
2618         unsigned int nr_segs = 1;
2619         blk_status_t ret;
2620
2621         if (unlikely(!blk_crypto_bio_prep(&bio)))
2622                 return;
2623
2624         blk_queue_bounce(q, &bio);
2625         if (blk_may_split(q, bio))
2626                 __blk_queue_split(q, &bio, &nr_segs);
2627
2628         if (!bio_integrity_prep(bio))
2629                 return;
2630
2631         plug = blk_mq_plug(q, bio);
2632         rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2633         if (unlikely(!rq))
2634                 return;
2635
2636         trace_block_getrq(bio);
2637
2638         rq_qos_track(q, rq, bio);
2639
2640         blk_mq_bio_to_request(rq, bio, nr_segs);
2641
2642         ret = blk_crypto_init_request(rq);
2643         if (ret != BLK_STS_OK) {
2644                 bio->bi_status = ret;
2645                 bio_endio(bio);
2646                 blk_mq_free_request(rq);
2647                 return;
2648         }
2649
2650         if (op_is_flush(bio->bi_opf)) {
2651                 blk_insert_flush(rq);
2652                 return;
2653         }
2654
2655         if (plug && (q->nr_hw_queues == 1 ||
2656             blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2657             q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2658                 /*
2659                  * Use plugging if we have a ->commit_rqs() hook as well, as
2660                  * we know the driver uses bd->last in a smart fashion.
2661                  *
2662                  * Use normal plugging if this disk is slow HDD, as sequential
2663                  * IO may benefit a lot from plug merging.
2664                  */
2665                 unsigned int request_count = plug->rq_count;
2666                 struct request *last = NULL;
2667
2668                 if (!request_count) {
2669                         trace_block_plug(q);
2670                 } else if (!blk_queue_nomerges(q)) {
2671                         last = rq_list_peek(&plug->mq_list);
2672                         if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2673                                 last = NULL;
2674                 }
2675
2676                 if (request_count >= blk_plug_max_rq_count(plug) || last) {
2677                         blk_mq_flush_plug_list(plug, false);
2678                         trace_block_plug(q);
2679                 }
2680
2681                 blk_add_rq_to_plug(plug, rq);
2682         } else if (rq->rq_flags & RQF_ELV) {
2683                 /* Insert the request at the IO scheduler queue */
2684                 blk_mq_sched_insert_request(rq, false, true, true);
2685         } else if (plug && !blk_queue_nomerges(q)) {
2686                 struct request *next_rq = NULL;
2687
2688                 /*
2689                  * We do limited plugging. If the bio can be merged, do that.
2690                  * Otherwise the existing request in the plug list will be
2691                  * issued. So the plug list will have one request at most
2692                  * The plug list might get flushed before this. If that happens,
2693                  * the plug list is empty, and same_queue_rq is invalid.
2694                  */
2695                 if (same_queue_rq) {
2696                         next_rq = rq_list_pop(&plug->mq_list);
2697                         plug->rq_count--;
2698                 }
2699                 blk_add_rq_to_plug(plug, rq);
2700                 trace_block_plug(q);
2701
2702                 if (next_rq) {
2703                         trace_block_unplug(q, 1, true);
2704                         blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2705                 }
2706         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2707                    !rq->mq_hctx->dispatch_busy) {
2708                 /*
2709                  * There is no scheduler and we can try to send directly
2710                  * to the hardware.
2711                  */
2712                 blk_mq_try_issue_directly(rq->mq_hctx, rq);
2713         } else {
2714                 /* Default case. */
2715                 blk_mq_sched_insert_request(rq, false, true, true);
2716         }
2717 }
2718
2719 static size_t order_to_size(unsigned int order)
2720 {
2721         return (size_t)PAGE_SIZE << order;
2722 }
2723
2724 /* called before freeing request pool in @tags */
2725 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2726                                     struct blk_mq_tags *tags)
2727 {
2728         struct page *page;
2729         unsigned long flags;
2730
2731         /* There is no need to clear a driver tags own mapping */
2732         if (drv_tags == tags)
2733                 return;
2734
2735         list_for_each_entry(page, &tags->page_list, lru) {
2736                 unsigned long start = (unsigned long)page_address(page);
2737                 unsigned long end = start + order_to_size(page->private);
2738                 int i;
2739
2740                 for (i = 0; i < drv_tags->nr_tags; i++) {
2741                         struct request *rq = drv_tags->rqs[i];
2742                         unsigned long rq_addr = (unsigned long)rq;
2743
2744                         if (rq_addr >= start && rq_addr < end) {
2745                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2746                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2747                         }
2748                 }
2749         }
2750
2751         /*
2752          * Wait until all pending iteration is done.
2753          *
2754          * Request reference is cleared and it is guaranteed to be observed
2755          * after the ->lock is released.
2756          */
2757         spin_lock_irqsave(&drv_tags->lock, flags);
2758         spin_unlock_irqrestore(&drv_tags->lock, flags);
2759 }
2760
2761 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2762                      unsigned int hctx_idx)
2763 {
2764         struct blk_mq_tags *drv_tags;
2765         struct page *page;
2766
2767         if (blk_mq_is_shared_tags(set->flags))
2768                 drv_tags = set->shared_tags;
2769         else
2770                 drv_tags = set->tags[hctx_idx];
2771
2772         if (tags->static_rqs && set->ops->exit_request) {
2773                 int i;
2774
2775                 for (i = 0; i < tags->nr_tags; i++) {
2776                         struct request *rq = tags->static_rqs[i];
2777
2778                         if (!rq)
2779                                 continue;
2780                         set->ops->exit_request(set, rq, hctx_idx);
2781                         tags->static_rqs[i] = NULL;
2782                 }
2783         }
2784
2785         blk_mq_clear_rq_mapping(drv_tags, tags);
2786
2787         while (!list_empty(&tags->page_list)) {
2788                 page = list_first_entry(&tags->page_list, struct page, lru);
2789                 list_del_init(&page->lru);
2790                 /*
2791                  * Remove kmemleak object previously allocated in
2792                  * blk_mq_alloc_rqs().
2793                  */
2794                 kmemleak_free(page_address(page));
2795                 __free_pages(page, page->private);
2796         }
2797 }
2798
2799 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2800 {
2801         kfree(tags->rqs);
2802         tags->rqs = NULL;
2803         kfree(tags->static_rqs);
2804         tags->static_rqs = NULL;
2805
2806         blk_mq_free_tags(tags);
2807 }
2808
2809 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2810                                                unsigned int hctx_idx,
2811                                                unsigned int nr_tags,
2812                                                unsigned int reserved_tags)
2813 {
2814         struct blk_mq_tags *tags;
2815         int node;
2816
2817         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2818         if (node == NUMA_NO_NODE)
2819                 node = set->numa_node;
2820
2821         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2822                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2823         if (!tags)
2824                 return NULL;
2825
2826         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2827                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2828                                  node);
2829         if (!tags->rqs) {
2830                 blk_mq_free_tags(tags);
2831                 return NULL;
2832         }
2833
2834         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2835                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2836                                         node);
2837         if (!tags->static_rqs) {
2838                 kfree(tags->rqs);
2839                 blk_mq_free_tags(tags);
2840                 return NULL;
2841         }
2842
2843         return tags;
2844 }
2845
2846 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2847                                unsigned int hctx_idx, int node)
2848 {
2849         int ret;
2850
2851         if (set->ops->init_request) {
2852                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2853                 if (ret)
2854                         return ret;
2855         }
2856
2857         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2858         return 0;
2859 }
2860
2861 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2862                             struct blk_mq_tags *tags,
2863                             unsigned int hctx_idx, unsigned int depth)
2864 {
2865         unsigned int i, j, entries_per_page, max_order = 4;
2866         size_t rq_size, left;
2867         int node;
2868
2869         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2870         if (node == NUMA_NO_NODE)
2871                 node = set->numa_node;
2872
2873         INIT_LIST_HEAD(&tags->page_list);
2874
2875         /*
2876          * rq_size is the size of the request plus driver payload, rounded
2877          * to the cacheline size
2878          */
2879         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2880                                 cache_line_size());
2881         left = rq_size * depth;
2882
2883         for (i = 0; i < depth; ) {
2884                 int this_order = max_order;
2885                 struct page *page;
2886                 int to_do;
2887                 void *p;
2888
2889                 while (this_order && left < order_to_size(this_order - 1))
2890                         this_order--;
2891
2892                 do {
2893                         page = alloc_pages_node(node,
2894                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2895                                 this_order);
2896                         if (page)
2897                                 break;
2898                         if (!this_order--)
2899                                 break;
2900                         if (order_to_size(this_order) < rq_size)
2901                                 break;
2902                 } while (1);
2903
2904                 if (!page)
2905                         goto fail;
2906
2907                 page->private = this_order;
2908                 list_add_tail(&page->lru, &tags->page_list);
2909
2910                 p = page_address(page);
2911                 /*
2912                  * Allow kmemleak to scan these pages as they contain pointers
2913                  * to additional allocations like via ops->init_request().
2914                  */
2915                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2916                 entries_per_page = order_to_size(this_order) / rq_size;
2917                 to_do = min(entries_per_page, depth - i);
2918                 left -= to_do * rq_size;
2919                 for (j = 0; j < to_do; j++) {
2920                         struct request *rq = p;
2921
2922                         tags->static_rqs[i] = rq;
2923                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2924                                 tags->static_rqs[i] = NULL;
2925                                 goto fail;
2926                         }
2927
2928                         p += rq_size;
2929                         i++;
2930                 }
2931         }
2932         return 0;
2933
2934 fail:
2935         blk_mq_free_rqs(set, tags, hctx_idx);
2936         return -ENOMEM;
2937 }
2938
2939 struct rq_iter_data {
2940         struct blk_mq_hw_ctx *hctx;
2941         bool has_rq;
2942 };
2943
2944 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2945 {
2946         struct rq_iter_data *iter_data = data;
2947
2948         if (rq->mq_hctx != iter_data->hctx)
2949                 return true;
2950         iter_data->has_rq = true;
2951         return false;
2952 }
2953
2954 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2955 {
2956         struct blk_mq_tags *tags = hctx->sched_tags ?
2957                         hctx->sched_tags : hctx->tags;
2958         struct rq_iter_data data = {
2959                 .hctx   = hctx,
2960         };
2961
2962         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2963         return data.has_rq;
2964 }
2965
2966 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2967                 struct blk_mq_hw_ctx *hctx)
2968 {
2969         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2970                 return false;
2971         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2972                 return false;
2973         return true;
2974 }
2975
2976 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2977 {
2978         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2979                         struct blk_mq_hw_ctx, cpuhp_online);
2980
2981         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2982             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2983                 return 0;
2984
2985         /*
2986          * Prevent new request from being allocated on the current hctx.
2987          *
2988          * The smp_mb__after_atomic() Pairs with the implied barrier in
2989          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2990          * seen once we return from the tag allocator.
2991          */
2992         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2993         smp_mb__after_atomic();
2994
2995         /*
2996          * Try to grab a reference to the queue and wait for any outstanding
2997          * requests.  If we could not grab a reference the queue has been
2998          * frozen and there are no requests.
2999          */
3000         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3001                 while (blk_mq_hctx_has_requests(hctx))
3002                         msleep(5);
3003                 percpu_ref_put(&hctx->queue->q_usage_counter);
3004         }
3005
3006         return 0;
3007 }
3008
3009 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3010 {
3011         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3012                         struct blk_mq_hw_ctx, cpuhp_online);
3013
3014         if (cpumask_test_cpu(cpu, hctx->cpumask))
3015                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3016         return 0;
3017 }
3018
3019 /*
3020  * 'cpu' is going away. splice any existing rq_list entries from this
3021  * software queue to the hw queue dispatch list, and ensure that it
3022  * gets run.
3023  */
3024 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3025 {
3026         struct blk_mq_hw_ctx *hctx;
3027         struct blk_mq_ctx *ctx;
3028         LIST_HEAD(tmp);
3029         enum hctx_type type;
3030
3031         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3032         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3033                 return 0;
3034
3035         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3036         type = hctx->type;
3037
3038         spin_lock(&ctx->lock);
3039         if (!list_empty(&ctx->rq_lists[type])) {
3040                 list_splice_init(&ctx->rq_lists[type], &tmp);
3041                 blk_mq_hctx_clear_pending(hctx, ctx);
3042         }
3043         spin_unlock(&ctx->lock);
3044
3045         if (list_empty(&tmp))
3046                 return 0;
3047
3048         spin_lock(&hctx->lock);
3049         list_splice_tail_init(&tmp, &hctx->dispatch);
3050         spin_unlock(&hctx->lock);
3051
3052         blk_mq_run_hw_queue(hctx, true);
3053         return 0;
3054 }
3055
3056 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3057 {
3058         if (!(hctx->flags & BLK_MQ_F_STACKING))
3059                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3060                                                     &hctx->cpuhp_online);
3061         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3062                                             &hctx->cpuhp_dead);
3063 }
3064
3065 /*
3066  * Before freeing hw queue, clearing the flush request reference in
3067  * tags->rqs[] for avoiding potential UAF.
3068  */
3069 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3070                 unsigned int queue_depth, struct request *flush_rq)
3071 {
3072         int i;
3073         unsigned long flags;
3074
3075         /* The hw queue may not be mapped yet */
3076         if (!tags)
3077                 return;
3078
3079         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3080
3081         for (i = 0; i < queue_depth; i++)
3082                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3083
3084         /*
3085          * Wait until all pending iteration is done.
3086          *
3087          * Request reference is cleared and it is guaranteed to be observed
3088          * after the ->lock is released.
3089          */
3090         spin_lock_irqsave(&tags->lock, flags);
3091         spin_unlock_irqrestore(&tags->lock, flags);
3092 }
3093
3094 /* hctx->ctxs will be freed in queue's release handler */
3095 static void blk_mq_exit_hctx(struct request_queue *q,
3096                 struct blk_mq_tag_set *set,
3097                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3098 {
3099         struct request *flush_rq = hctx->fq->flush_rq;
3100
3101         if (blk_mq_hw_queue_mapped(hctx))
3102                 blk_mq_tag_idle(hctx);
3103
3104         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3105                         set->queue_depth, flush_rq);
3106         if (set->ops->exit_request)
3107                 set->ops->exit_request(set, flush_rq, hctx_idx);
3108
3109         if (set->ops->exit_hctx)
3110                 set->ops->exit_hctx(hctx, hctx_idx);
3111
3112         blk_mq_remove_cpuhp(hctx);
3113
3114         spin_lock(&q->unused_hctx_lock);
3115         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3116         spin_unlock(&q->unused_hctx_lock);
3117 }
3118
3119 static void blk_mq_exit_hw_queues(struct request_queue *q,
3120                 struct blk_mq_tag_set *set, int nr_queue)
3121 {
3122         struct blk_mq_hw_ctx *hctx;
3123         unsigned int i;
3124
3125         queue_for_each_hw_ctx(q, hctx, i) {
3126                 if (i == nr_queue)
3127                         break;
3128                 blk_mq_debugfs_unregister_hctx(hctx);
3129                 blk_mq_exit_hctx(q, set, hctx, i);
3130         }
3131 }
3132
3133 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3134 {
3135         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3136
3137         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3138                            __alignof__(struct blk_mq_hw_ctx)) !=
3139                      sizeof(struct blk_mq_hw_ctx));
3140
3141         if (tag_set->flags & BLK_MQ_F_BLOCKING)
3142                 hw_ctx_size += sizeof(struct srcu_struct);
3143
3144         return hw_ctx_size;
3145 }
3146
3147 static int blk_mq_init_hctx(struct request_queue *q,
3148                 struct blk_mq_tag_set *set,
3149                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3150 {
3151         hctx->queue_num = hctx_idx;
3152
3153         if (!(hctx->flags & BLK_MQ_F_STACKING))
3154                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3155                                 &hctx->cpuhp_online);
3156         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3157
3158         hctx->tags = set->tags[hctx_idx];
3159
3160         if (set->ops->init_hctx &&
3161             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3162                 goto unregister_cpu_notifier;
3163
3164         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3165                                 hctx->numa_node))
3166                 goto exit_hctx;
3167         return 0;
3168
3169  exit_hctx:
3170         if (set->ops->exit_hctx)
3171                 set->ops->exit_hctx(hctx, hctx_idx);
3172  unregister_cpu_notifier:
3173         blk_mq_remove_cpuhp(hctx);
3174         return -1;
3175 }
3176
3177 static struct blk_mq_hw_ctx *
3178 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3179                 int node)
3180 {
3181         struct blk_mq_hw_ctx *hctx;
3182         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3183
3184         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3185         if (!hctx)
3186                 goto fail_alloc_hctx;
3187
3188         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3189                 goto free_hctx;
3190
3191         atomic_set(&hctx->nr_active, 0);
3192         if (node == NUMA_NO_NODE)
3193                 node = set->numa_node;
3194         hctx->numa_node = node;
3195
3196         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3197         spin_lock_init(&hctx->lock);
3198         INIT_LIST_HEAD(&hctx->dispatch);
3199         hctx->queue = q;
3200         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3201
3202         INIT_LIST_HEAD(&hctx->hctx_list);
3203
3204         /*
3205          * Allocate space for all possible cpus to avoid allocation at
3206          * runtime
3207          */
3208         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3209                         gfp, node);
3210         if (!hctx->ctxs)
3211                 goto free_cpumask;
3212
3213         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3214                                 gfp, node, false, false))
3215                 goto free_ctxs;
3216         hctx->nr_ctx = 0;
3217
3218         spin_lock_init(&hctx->dispatch_wait_lock);
3219         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3220         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3221
3222         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3223         if (!hctx->fq)
3224                 goto free_bitmap;
3225
3226         if (hctx->flags & BLK_MQ_F_BLOCKING)
3227                 init_srcu_struct(hctx->srcu);
3228         blk_mq_hctx_kobj_init(hctx);
3229
3230         return hctx;
3231
3232  free_bitmap:
3233         sbitmap_free(&hctx->ctx_map);
3234  free_ctxs:
3235         kfree(hctx->ctxs);
3236  free_cpumask:
3237         free_cpumask_var(hctx->cpumask);
3238  free_hctx:
3239         kfree(hctx);
3240  fail_alloc_hctx:
3241         return NULL;
3242 }
3243
3244 static void blk_mq_init_cpu_queues(struct request_queue *q,
3245                                    unsigned int nr_hw_queues)
3246 {
3247         struct blk_mq_tag_set *set = q->tag_set;
3248         unsigned int i, j;
3249
3250         for_each_possible_cpu(i) {
3251                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3252                 struct blk_mq_hw_ctx *hctx;
3253                 int k;
3254
3255                 __ctx->cpu = i;
3256                 spin_lock_init(&__ctx->lock);
3257                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3258                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3259
3260                 __ctx->queue = q;
3261
3262                 /*
3263                  * Set local node, IFF we have more than one hw queue. If
3264                  * not, we remain on the home node of the device
3265                  */
3266                 for (j = 0; j < set->nr_maps; j++) {
3267                         hctx = blk_mq_map_queue_type(q, j, i);
3268                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3269                                 hctx->numa_node = cpu_to_node(i);
3270                 }
3271         }
3272 }
3273
3274 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3275                                              unsigned int hctx_idx,
3276                                              unsigned int depth)
3277 {
3278         struct blk_mq_tags *tags;
3279         int ret;
3280
3281         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3282         if (!tags)
3283                 return NULL;
3284
3285         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3286         if (ret) {
3287                 blk_mq_free_rq_map(tags);
3288                 return NULL;
3289         }
3290
3291         return tags;
3292 }
3293
3294 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3295                                        int hctx_idx)
3296 {
3297         if (blk_mq_is_shared_tags(set->flags)) {
3298                 set->tags[hctx_idx] = set->shared_tags;
3299
3300                 return true;
3301         }
3302
3303         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3304                                                        set->queue_depth);
3305
3306         return set->tags[hctx_idx];
3307 }
3308
3309 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3310                              struct blk_mq_tags *tags,
3311                              unsigned int hctx_idx)
3312 {
3313         if (tags) {
3314                 blk_mq_free_rqs(set, tags, hctx_idx);
3315                 blk_mq_free_rq_map(tags);
3316         }
3317 }
3318
3319 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3320                                       unsigned int hctx_idx)
3321 {
3322         if (!blk_mq_is_shared_tags(set->flags))
3323                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3324
3325         set->tags[hctx_idx] = NULL;
3326 }
3327
3328 static void blk_mq_map_swqueue(struct request_queue *q)
3329 {
3330         unsigned int i, j, hctx_idx;
3331         struct blk_mq_hw_ctx *hctx;
3332         struct blk_mq_ctx *ctx;
3333         struct blk_mq_tag_set *set = q->tag_set;
3334
3335         queue_for_each_hw_ctx(q, hctx, i) {
3336                 cpumask_clear(hctx->cpumask);
3337                 hctx->nr_ctx = 0;
3338                 hctx->dispatch_from = NULL;
3339         }
3340
3341         /*
3342          * Map software to hardware queues.
3343          *
3344          * If the cpu isn't present, the cpu is mapped to first hctx.
3345          */
3346         for_each_possible_cpu(i) {
3347
3348                 ctx = per_cpu_ptr(q->queue_ctx, i);
3349                 for (j = 0; j < set->nr_maps; j++) {
3350                         if (!set->map[j].nr_queues) {
3351                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3352                                                 HCTX_TYPE_DEFAULT, i);
3353                                 continue;
3354                         }
3355                         hctx_idx = set->map[j].mq_map[i];
3356                         /* unmapped hw queue can be remapped after CPU topo changed */
3357                         if (!set->tags[hctx_idx] &&
3358                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3359                                 /*
3360                                  * If tags initialization fail for some hctx,
3361                                  * that hctx won't be brought online.  In this
3362                                  * case, remap the current ctx to hctx[0] which
3363                                  * is guaranteed to always have tags allocated
3364                                  */
3365                                 set->map[j].mq_map[i] = 0;
3366                         }
3367
3368                         hctx = blk_mq_map_queue_type(q, j, i);
3369                         ctx->hctxs[j] = hctx;
3370                         /*
3371                          * If the CPU is already set in the mask, then we've
3372                          * mapped this one already. This can happen if
3373                          * devices share queues across queue maps.
3374                          */
3375                         if (cpumask_test_cpu(i, hctx->cpumask))
3376                                 continue;
3377
3378                         cpumask_set_cpu(i, hctx->cpumask);
3379                         hctx->type = j;
3380                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3381                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3382
3383                         /*
3384                          * If the nr_ctx type overflows, we have exceeded the
3385                          * amount of sw queues we can support.
3386                          */
3387                         BUG_ON(!hctx->nr_ctx);
3388                 }
3389
3390                 for (; j < HCTX_MAX_TYPES; j++)
3391                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3392                                         HCTX_TYPE_DEFAULT, i);
3393         }
3394
3395         queue_for_each_hw_ctx(q, hctx, i) {
3396                 /*
3397                  * If no software queues are mapped to this hardware queue,
3398                  * disable it and free the request entries.
3399                  */
3400                 if (!hctx->nr_ctx) {
3401                         /* Never unmap queue 0.  We need it as a
3402                          * fallback in case of a new remap fails
3403                          * allocation
3404                          */
3405                         if (i)
3406                                 __blk_mq_free_map_and_rqs(set, i);
3407
3408                         hctx->tags = NULL;
3409                         continue;
3410                 }
3411
3412                 hctx->tags = set->tags[i];
3413                 WARN_ON(!hctx->tags);
3414
3415                 /*
3416                  * Set the map size to the number of mapped software queues.
3417                  * This is more accurate and more efficient than looping
3418                  * over all possibly mapped software queues.
3419                  */
3420                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3421
3422                 /*
3423                  * Initialize batch roundrobin counts
3424                  */
3425                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3426                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3427         }
3428 }
3429
3430 /*
3431  * Caller needs to ensure that we're either frozen/quiesced, or that
3432  * the queue isn't live yet.
3433  */
3434 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3435 {
3436         struct blk_mq_hw_ctx *hctx;
3437         int i;
3438
3439         queue_for_each_hw_ctx(q, hctx, i) {
3440                 if (shared) {
3441                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3442                 } else {
3443                         blk_mq_tag_idle(hctx);
3444                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3445                 }
3446         }
3447 }
3448
3449 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3450                                          bool shared)
3451 {
3452         struct request_queue *q;
3453
3454         lockdep_assert_held(&set->tag_list_lock);
3455
3456         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3457                 blk_mq_freeze_queue(q);
3458                 queue_set_hctx_shared(q, shared);
3459                 blk_mq_unfreeze_queue(q);
3460         }
3461 }
3462
3463 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3464 {
3465         struct blk_mq_tag_set *set = q->tag_set;
3466
3467         mutex_lock(&set->tag_list_lock);
3468         list_del(&q->tag_set_list);
3469         if (list_is_singular(&set->tag_list)) {
3470                 /* just transitioned to unshared */
3471                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3472                 /* update existing queue */
3473                 blk_mq_update_tag_set_shared(set, false);
3474         }
3475         mutex_unlock(&set->tag_list_lock);
3476         INIT_LIST_HEAD(&q->tag_set_list);
3477 }
3478
3479 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3480                                      struct request_queue *q)
3481 {
3482         mutex_lock(&set->tag_list_lock);
3483
3484         /*
3485          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3486          */
3487         if (!list_empty(&set->tag_list) &&
3488             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3489                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3490                 /* update existing queue */
3491                 blk_mq_update_tag_set_shared(set, true);
3492         }
3493         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3494                 queue_set_hctx_shared(q, true);
3495         list_add_tail(&q->tag_set_list, &set->tag_list);
3496
3497         mutex_unlock(&set->tag_list_lock);
3498 }
3499
3500 /* All allocations will be freed in release handler of q->mq_kobj */
3501 static int blk_mq_alloc_ctxs(struct request_queue *q)
3502 {
3503         struct blk_mq_ctxs *ctxs;
3504         int cpu;
3505
3506         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3507         if (!ctxs)
3508                 return -ENOMEM;
3509
3510         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3511         if (!ctxs->queue_ctx)
3512                 goto fail;
3513
3514         for_each_possible_cpu(cpu) {
3515                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3516                 ctx->ctxs = ctxs;
3517         }
3518
3519         q->mq_kobj = &ctxs->kobj;
3520         q->queue_ctx = ctxs->queue_ctx;
3521
3522         return 0;
3523  fail:
3524         kfree(ctxs);
3525         return -ENOMEM;
3526 }
3527
3528 /*
3529  * It is the actual release handler for mq, but we do it from
3530  * request queue's release handler for avoiding use-after-free
3531  * and headache because q->mq_kobj shouldn't have been introduced,
3532  * but we can't group ctx/kctx kobj without it.
3533  */
3534 void blk_mq_release(struct request_queue *q)
3535 {
3536         struct blk_mq_hw_ctx *hctx, *next;
3537         int i;
3538
3539         queue_for_each_hw_ctx(q, hctx, i)
3540                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3541
3542         /* all hctx are in .unused_hctx_list now */
3543         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3544                 list_del_init(&hctx->hctx_list);
3545                 kobject_put(&hctx->kobj);
3546         }
3547
3548         kfree(q->queue_hw_ctx);
3549
3550         /*
3551          * release .mq_kobj and sw queue's kobject now because
3552          * both share lifetime with request queue.
3553          */
3554         blk_mq_sysfs_deinit(q);
3555 }
3556
3557 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3558                 void *queuedata)
3559 {
3560         struct request_queue *q;
3561         int ret;
3562
3563         q = blk_alloc_queue(set->numa_node);
3564         if (!q)
3565                 return ERR_PTR(-ENOMEM);
3566         q->queuedata = queuedata;
3567         ret = blk_mq_init_allocated_queue(set, q);
3568         if (ret) {
3569                 blk_cleanup_queue(q);
3570                 return ERR_PTR(ret);
3571         }
3572         return q;
3573 }
3574
3575 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3576 {
3577         return blk_mq_init_queue_data(set, NULL);
3578 }
3579 EXPORT_SYMBOL(blk_mq_init_queue);
3580
3581 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3582                 struct lock_class_key *lkclass)
3583 {
3584         struct request_queue *q;
3585         struct gendisk *disk;
3586
3587         q = blk_mq_init_queue_data(set, queuedata);
3588         if (IS_ERR(q))
3589                 return ERR_CAST(q);
3590
3591         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3592         if (!disk) {
3593                 blk_cleanup_queue(q);
3594                 return ERR_PTR(-ENOMEM);
3595         }
3596         return disk;
3597 }
3598 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3599
3600 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3601                 struct blk_mq_tag_set *set, struct request_queue *q,
3602                 int hctx_idx, int node)
3603 {
3604         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3605
3606         /* reuse dead hctx first */
3607         spin_lock(&q->unused_hctx_lock);
3608         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3609                 if (tmp->numa_node == node) {
3610                         hctx = tmp;
3611                         break;
3612                 }
3613         }
3614         if (hctx)
3615                 list_del_init(&hctx->hctx_list);
3616         spin_unlock(&q->unused_hctx_lock);
3617
3618         if (!hctx)
3619                 hctx = blk_mq_alloc_hctx(q, set, node);
3620         if (!hctx)
3621                 goto fail;
3622
3623         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3624                 goto free_hctx;
3625
3626         return hctx;
3627
3628  free_hctx:
3629         kobject_put(&hctx->kobj);
3630  fail:
3631         return NULL;
3632 }
3633
3634 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3635                                                 struct request_queue *q)
3636 {
3637         int i, j, end;
3638         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3639
3640         if (q->nr_hw_queues < set->nr_hw_queues) {
3641                 struct blk_mq_hw_ctx **new_hctxs;
3642
3643                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3644                                        sizeof(*new_hctxs), GFP_KERNEL,
3645                                        set->numa_node);
3646                 if (!new_hctxs)
3647                         return;
3648                 if (hctxs)
3649                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3650                                sizeof(*hctxs));
3651                 q->queue_hw_ctx = new_hctxs;
3652                 kfree(hctxs);
3653                 hctxs = new_hctxs;
3654         }
3655
3656         /* protect against switching io scheduler  */
3657         mutex_lock(&q->sysfs_lock);
3658         for (i = 0; i < set->nr_hw_queues; i++) {
3659                 int node;
3660                 struct blk_mq_hw_ctx *hctx;
3661
3662                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3663                 /*
3664                  * If the hw queue has been mapped to another numa node,
3665                  * we need to realloc the hctx. If allocation fails, fallback
3666                  * to use the previous one.
3667                  */
3668                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3669                         continue;
3670
3671                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3672                 if (hctx) {
3673                         if (hctxs[i])
3674                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3675                         hctxs[i] = hctx;
3676                 } else {
3677                         if (hctxs[i])
3678                                 pr_warn("Allocate new hctx on node %d fails,\
3679                                                 fallback to previous one on node %d\n",
3680                                                 node, hctxs[i]->numa_node);
3681                         else
3682                                 break;
3683                 }
3684         }
3685         /*
3686          * Increasing nr_hw_queues fails. Free the newly allocated
3687          * hctxs and keep the previous q->nr_hw_queues.
3688          */
3689         if (i != set->nr_hw_queues) {
3690                 j = q->nr_hw_queues;
3691                 end = i;
3692         } else {
3693                 j = i;
3694                 end = q->nr_hw_queues;
3695                 q->nr_hw_queues = set->nr_hw_queues;
3696         }
3697
3698         for (; j < end; j++) {
3699                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3700
3701                 if (hctx) {
3702                         blk_mq_exit_hctx(q, set, hctx, j);
3703                         hctxs[j] = NULL;
3704                 }
3705         }
3706         mutex_unlock(&q->sysfs_lock);
3707 }
3708
3709 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3710                 struct request_queue *q)
3711 {
3712         /* mark the queue as mq asap */
3713         q->mq_ops = set->ops;
3714
3715         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3716                                              blk_mq_poll_stats_bkt,
3717                                              BLK_MQ_POLL_STATS_BKTS, q);
3718         if (!q->poll_cb)
3719                 goto err_exit;
3720
3721         if (blk_mq_alloc_ctxs(q))
3722                 goto err_poll;
3723
3724         /* init q->mq_kobj and sw queues' kobjects */
3725         blk_mq_sysfs_init(q);
3726
3727         INIT_LIST_HEAD(&q->unused_hctx_list);
3728         spin_lock_init(&q->unused_hctx_lock);
3729
3730         blk_mq_realloc_hw_ctxs(set, q);
3731         if (!q->nr_hw_queues)
3732                 goto err_hctxs;
3733
3734         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3735         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3736
3737         q->tag_set = set;
3738
3739         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3740         if (set->nr_maps > HCTX_TYPE_POLL &&
3741             set->map[HCTX_TYPE_POLL].nr_queues)
3742                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3743
3744         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3745         INIT_LIST_HEAD(&q->requeue_list);
3746         spin_lock_init(&q->requeue_lock);
3747
3748         q->nr_requests = set->queue_depth;
3749
3750         /*
3751          * Default to classic polling
3752          */
3753         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3754
3755         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3756         blk_mq_add_queue_tag_set(set, q);
3757         blk_mq_map_swqueue(q);
3758         return 0;
3759
3760 err_hctxs:
3761         kfree(q->queue_hw_ctx);
3762         q->nr_hw_queues = 0;
3763         blk_mq_sysfs_deinit(q);
3764 err_poll:
3765         blk_stat_free_callback(q->poll_cb);
3766         q->poll_cb = NULL;
3767 err_exit:
3768         q->mq_ops = NULL;
3769         return -ENOMEM;
3770 }
3771 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3772
3773 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3774 void blk_mq_exit_queue(struct request_queue *q)
3775 {
3776         struct blk_mq_tag_set *set = q->tag_set;
3777
3778         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3779         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3780         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3781         blk_mq_del_queue_tag_set(q);
3782 }
3783
3784 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3785 {
3786         int i;
3787
3788         if (blk_mq_is_shared_tags(set->flags)) {
3789                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3790                                                 BLK_MQ_NO_HCTX_IDX,
3791                                                 set->queue_depth);
3792                 if (!set->shared_tags)
3793                         return -ENOMEM;
3794         }
3795
3796         for (i = 0; i < set->nr_hw_queues; i++) {
3797                 if (!__blk_mq_alloc_map_and_rqs(set, i))
3798                         goto out_unwind;
3799                 cond_resched();
3800         }
3801
3802         return 0;
3803
3804 out_unwind:
3805         while (--i >= 0)
3806                 __blk_mq_free_map_and_rqs(set, i);
3807
3808         if (blk_mq_is_shared_tags(set->flags)) {
3809                 blk_mq_free_map_and_rqs(set, set->shared_tags,
3810                                         BLK_MQ_NO_HCTX_IDX);
3811         }
3812
3813         return -ENOMEM;
3814 }
3815
3816 /*
3817  * Allocate the request maps associated with this tag_set. Note that this
3818  * may reduce the depth asked for, if memory is tight. set->queue_depth
3819  * will be updated to reflect the allocated depth.
3820  */
3821 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3822 {
3823         unsigned int depth;
3824         int err;
3825
3826         depth = set->queue_depth;
3827         do {
3828                 err = __blk_mq_alloc_rq_maps(set);
3829                 if (!err)
3830                         break;
3831
3832                 set->queue_depth >>= 1;
3833                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3834                         err = -ENOMEM;
3835                         break;
3836                 }
3837         } while (set->queue_depth);
3838
3839         if (!set->queue_depth || err) {
3840                 pr_err("blk-mq: failed to allocate request map\n");
3841                 return -ENOMEM;
3842         }
3843
3844         if (depth != set->queue_depth)
3845                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3846                                                 depth, set->queue_depth);
3847
3848         return 0;
3849 }
3850
3851 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3852 {
3853         /*
3854          * blk_mq_map_queues() and multiple .map_queues() implementations
3855          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3856          * number of hardware queues.
3857          */
3858         if (set->nr_maps == 1)
3859                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3860
3861         if (set->ops->map_queues && !is_kdump_kernel()) {
3862                 int i;
3863
3864                 /*
3865                  * transport .map_queues is usually done in the following
3866                  * way:
3867                  *
3868                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3869                  *      mask = get_cpu_mask(queue)
3870                  *      for_each_cpu(cpu, mask)
3871                  *              set->map[x].mq_map[cpu] = queue;
3872                  * }
3873                  *
3874                  * When we need to remap, the table has to be cleared for
3875                  * killing stale mapping since one CPU may not be mapped
3876                  * to any hw queue.
3877                  */
3878                 for (i = 0; i < set->nr_maps; i++)
3879                         blk_mq_clear_mq_map(&set->map[i]);
3880
3881                 return set->ops->map_queues(set);
3882         } else {
3883                 BUG_ON(set->nr_maps > 1);
3884                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3885         }
3886 }
3887
3888 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3889                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3890 {
3891         struct blk_mq_tags **new_tags;
3892
3893         if (cur_nr_hw_queues >= new_nr_hw_queues)
3894                 return 0;
3895
3896         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3897                                 GFP_KERNEL, set->numa_node);
3898         if (!new_tags)
3899                 return -ENOMEM;
3900
3901         if (set->tags)
3902                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3903                        sizeof(*set->tags));
3904         kfree(set->tags);
3905         set->tags = new_tags;
3906         set->nr_hw_queues = new_nr_hw_queues;
3907
3908         return 0;
3909 }
3910
3911 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3912                                 int new_nr_hw_queues)
3913 {
3914         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3915 }
3916
3917 /*
3918  * Alloc a tag set to be associated with one or more request queues.
3919  * May fail with EINVAL for various error conditions. May adjust the
3920  * requested depth down, if it's too large. In that case, the set
3921  * value will be stored in set->queue_depth.
3922  */
3923 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3924 {
3925         int i, ret;
3926
3927         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3928
3929         if (!set->nr_hw_queues)
3930                 return -EINVAL;
3931         if (!set->queue_depth)
3932                 return -EINVAL;
3933         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3934                 return -EINVAL;
3935
3936         if (!set->ops->queue_rq)
3937                 return -EINVAL;
3938
3939         if (!set->ops->get_budget ^ !set->ops->put_budget)
3940                 return -EINVAL;
3941
3942         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3943                 pr_info("blk-mq: reduced tag depth to %u\n",
3944                         BLK_MQ_MAX_DEPTH);
3945                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3946         }
3947
3948         if (!set->nr_maps)
3949                 set->nr_maps = 1;
3950         else if (set->nr_maps > HCTX_MAX_TYPES)
3951                 return -EINVAL;
3952
3953         /*
3954          * If a crashdump is active, then we are potentially in a very
3955          * memory constrained environment. Limit us to 1 queue and
3956          * 64 tags to prevent using too much memory.
3957          */
3958         if (is_kdump_kernel()) {
3959                 set->nr_hw_queues = 1;
3960                 set->nr_maps = 1;
3961                 set->queue_depth = min(64U, set->queue_depth);
3962         }
3963         /*
3964          * There is no use for more h/w queues than cpus if we just have
3965          * a single map
3966          */
3967         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3968                 set->nr_hw_queues = nr_cpu_ids;
3969
3970         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3971                 return -ENOMEM;
3972
3973         ret = -ENOMEM;
3974         for (i = 0; i < set->nr_maps; i++) {
3975                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3976                                                   sizeof(set->map[i].mq_map[0]),
3977                                                   GFP_KERNEL, set->numa_node);
3978                 if (!set->map[i].mq_map)
3979                         goto out_free_mq_map;
3980                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3981         }
3982
3983         ret = blk_mq_update_queue_map(set);
3984         if (ret)
3985                 goto out_free_mq_map;
3986
3987         ret = blk_mq_alloc_set_map_and_rqs(set);
3988         if (ret)
3989                 goto out_free_mq_map;
3990
3991         mutex_init(&set->tag_list_lock);
3992         INIT_LIST_HEAD(&set->tag_list);
3993
3994         return 0;
3995
3996 out_free_mq_map:
3997         for (i = 0; i < set->nr_maps; i++) {
3998                 kfree(set->map[i].mq_map);
3999                 set->map[i].mq_map = NULL;
4000         }
4001         kfree(set->tags);
4002         set->tags = NULL;
4003         return ret;
4004 }
4005 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4006
4007 /* allocate and initialize a tagset for a simple single-queue device */
4008 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4009                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4010                 unsigned int set_flags)
4011 {
4012         memset(set, 0, sizeof(*set));
4013         set->ops = ops;
4014         set->nr_hw_queues = 1;
4015         set->nr_maps = 1;
4016         set->queue_depth = queue_depth;
4017         set->numa_node = NUMA_NO_NODE;
4018         set->flags = set_flags;
4019         return blk_mq_alloc_tag_set(set);
4020 }
4021 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4022
4023 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4024 {
4025         int i, j;
4026
4027         for (i = 0; i < set->nr_hw_queues; i++)
4028                 __blk_mq_free_map_and_rqs(set, i);
4029
4030         if (blk_mq_is_shared_tags(set->flags)) {
4031                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4032                                         BLK_MQ_NO_HCTX_IDX);
4033         }
4034
4035         for (j = 0; j < set->nr_maps; j++) {
4036                 kfree(set->map[j].mq_map);
4037                 set->map[j].mq_map = NULL;
4038         }
4039
4040         kfree(set->tags);
4041         set->tags = NULL;
4042 }
4043 EXPORT_SYMBOL(blk_mq_free_tag_set);
4044
4045 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4046 {
4047         struct blk_mq_tag_set *set = q->tag_set;
4048         struct blk_mq_hw_ctx *hctx;
4049         int i, ret;
4050
4051         if (!set)
4052                 return -EINVAL;
4053
4054         if (q->nr_requests == nr)
4055                 return 0;
4056
4057         blk_mq_freeze_queue(q);
4058         blk_mq_quiesce_queue(q);
4059
4060         ret = 0;
4061         queue_for_each_hw_ctx(q, hctx, i) {
4062                 if (!hctx->tags)
4063                         continue;
4064                 /*
4065                  * If we're using an MQ scheduler, just update the scheduler
4066                  * queue depth. This is similar to what the old code would do.
4067                  */
4068                 if (hctx->sched_tags) {
4069                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4070                                                       nr, true);
4071                 } else {
4072                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4073                                                       false);
4074                 }
4075                 if (ret)
4076                         break;
4077                 if (q->elevator && q->elevator->type->ops.depth_updated)
4078                         q->elevator->type->ops.depth_updated(hctx);
4079         }
4080         if (!ret) {
4081                 q->nr_requests = nr;
4082                 if (blk_mq_is_shared_tags(set->flags)) {
4083                         if (q->elevator)
4084                                 blk_mq_tag_update_sched_shared_tags(q);
4085                         else
4086                                 blk_mq_tag_resize_shared_tags(set, nr);
4087                 }
4088         }
4089
4090         blk_mq_unquiesce_queue(q);
4091         blk_mq_unfreeze_queue(q);
4092
4093         return ret;
4094 }
4095
4096 /*
4097  * request_queue and elevator_type pair.
4098  * It is just used by __blk_mq_update_nr_hw_queues to cache
4099  * the elevator_type associated with a request_queue.
4100  */
4101 struct blk_mq_qe_pair {
4102         struct list_head node;
4103         struct request_queue *q;
4104         struct elevator_type *type;
4105 };
4106
4107 /*
4108  * Cache the elevator_type in qe pair list and switch the
4109  * io scheduler to 'none'
4110  */
4111 static bool blk_mq_elv_switch_none(struct list_head *head,
4112                 struct request_queue *q)
4113 {
4114         struct blk_mq_qe_pair *qe;
4115
4116         if (!q->elevator)
4117                 return true;
4118
4119         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4120         if (!qe)
4121                 return false;
4122
4123         INIT_LIST_HEAD(&qe->node);
4124         qe->q = q;
4125         qe->type = q->elevator->type;
4126         list_add(&qe->node, head);
4127
4128         mutex_lock(&q->sysfs_lock);
4129         /*
4130          * After elevator_switch_mq, the previous elevator_queue will be
4131          * released by elevator_release. The reference of the io scheduler
4132          * module get by elevator_get will also be put. So we need to get
4133          * a reference of the io scheduler module here to prevent it to be
4134          * removed.
4135          */
4136         __module_get(qe->type->elevator_owner);
4137         elevator_switch_mq(q, NULL);
4138         mutex_unlock(&q->sysfs_lock);
4139
4140         return true;
4141 }
4142
4143 static void blk_mq_elv_switch_back(struct list_head *head,
4144                 struct request_queue *q)
4145 {
4146         struct blk_mq_qe_pair *qe;
4147         struct elevator_type *t = NULL;
4148
4149         list_for_each_entry(qe, head, node)
4150                 if (qe->q == q) {
4151                         t = qe->type;
4152                         break;
4153                 }
4154
4155         if (!t)
4156                 return;
4157
4158         list_del(&qe->node);
4159         kfree(qe);
4160
4161         mutex_lock(&q->sysfs_lock);
4162         elevator_switch_mq(q, t);
4163         mutex_unlock(&q->sysfs_lock);
4164 }
4165
4166 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4167                                                         int nr_hw_queues)
4168 {
4169         struct request_queue *q;
4170         LIST_HEAD(head);
4171         int prev_nr_hw_queues;
4172
4173         lockdep_assert_held(&set->tag_list_lock);
4174
4175         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4176                 nr_hw_queues = nr_cpu_ids;
4177         if (nr_hw_queues < 1)
4178                 return;
4179         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4180                 return;
4181
4182         list_for_each_entry(q, &set->tag_list, tag_set_list)
4183                 blk_mq_freeze_queue(q);
4184         /*
4185          * Switch IO scheduler to 'none', cleaning up the data associated
4186          * with the previous scheduler. We will switch back once we are done
4187          * updating the new sw to hw queue mappings.
4188          */
4189         list_for_each_entry(q, &set->tag_list, tag_set_list)
4190                 if (!blk_mq_elv_switch_none(&head, q))
4191                         goto switch_back;
4192
4193         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4194                 blk_mq_debugfs_unregister_hctxs(q);
4195                 blk_mq_sysfs_unregister(q);
4196         }
4197
4198         prev_nr_hw_queues = set->nr_hw_queues;
4199         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4200             0)
4201                 goto reregister;
4202
4203         set->nr_hw_queues = nr_hw_queues;
4204 fallback:
4205         blk_mq_update_queue_map(set);
4206         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4207                 blk_mq_realloc_hw_ctxs(set, q);
4208                 if (q->nr_hw_queues != set->nr_hw_queues) {
4209                         int i = prev_nr_hw_queues;
4210
4211                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4212                                         nr_hw_queues, prev_nr_hw_queues);
4213                         for (; i < set->nr_hw_queues; i++)
4214                                 __blk_mq_free_map_and_rqs(set, i);
4215
4216                         set->nr_hw_queues = prev_nr_hw_queues;
4217                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4218                         goto fallback;
4219                 }
4220                 blk_mq_map_swqueue(q);
4221         }
4222
4223 reregister:
4224         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4225                 blk_mq_sysfs_register(q);
4226                 blk_mq_debugfs_register_hctxs(q);
4227         }
4228
4229 switch_back:
4230         list_for_each_entry(q, &set->tag_list, tag_set_list)
4231                 blk_mq_elv_switch_back(&head, q);
4232
4233         list_for_each_entry(q, &set->tag_list, tag_set_list)
4234                 blk_mq_unfreeze_queue(q);
4235 }
4236
4237 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4238 {
4239         mutex_lock(&set->tag_list_lock);
4240         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4241         mutex_unlock(&set->tag_list_lock);
4242 }
4243 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4244
4245 /* Enable polling stats and return whether they were already enabled. */
4246 static bool blk_poll_stats_enable(struct request_queue *q)
4247 {
4248         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4249             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4250                 return true;
4251         blk_stat_add_callback(q, q->poll_cb);
4252         return false;
4253 }
4254
4255 static void blk_mq_poll_stats_start(struct request_queue *q)
4256 {
4257         /*
4258          * We don't arm the callback if polling stats are not enabled or the
4259          * callback is already active.
4260          */
4261         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4262             blk_stat_is_active(q->poll_cb))
4263                 return;
4264
4265         blk_stat_activate_msecs(q->poll_cb, 100);
4266 }
4267
4268 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4269 {
4270         struct request_queue *q = cb->data;
4271         int bucket;
4272
4273         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4274                 if (cb->stat[bucket].nr_samples)
4275                         q->poll_stat[bucket] = cb->stat[bucket];
4276         }
4277 }
4278
4279 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4280                                        struct request *rq)
4281 {
4282         unsigned long ret = 0;
4283         int bucket;
4284
4285         /*
4286          * If stats collection isn't on, don't sleep but turn it on for
4287          * future users
4288          */
4289         if (!blk_poll_stats_enable(q))
4290                 return 0;
4291
4292         /*
4293          * As an optimistic guess, use half of the mean service time
4294          * for this type of request. We can (and should) make this smarter.
4295          * For instance, if the completion latencies are tight, we can
4296          * get closer than just half the mean. This is especially
4297          * important on devices where the completion latencies are longer
4298          * than ~10 usec. We do use the stats for the relevant IO size
4299          * if available which does lead to better estimates.
4300          */
4301         bucket = blk_mq_poll_stats_bkt(rq);
4302         if (bucket < 0)
4303                 return ret;
4304
4305         if (q->poll_stat[bucket].nr_samples)
4306                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4307
4308         return ret;
4309 }
4310
4311 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4312 {
4313         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4314         struct request *rq = blk_qc_to_rq(hctx, qc);
4315         struct hrtimer_sleeper hs;
4316         enum hrtimer_mode mode;
4317         unsigned int nsecs;
4318         ktime_t kt;
4319
4320         /*
4321          * If a request has completed on queue that uses an I/O scheduler, we
4322          * won't get back a request from blk_qc_to_rq.
4323          */
4324         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4325                 return false;
4326
4327         /*
4328          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4329          *
4330          *  0:  use half of prev avg
4331          * >0:  use this specific value
4332          */
4333         if (q->poll_nsec > 0)
4334                 nsecs = q->poll_nsec;
4335         else
4336                 nsecs = blk_mq_poll_nsecs(q, rq);
4337
4338         if (!nsecs)
4339                 return false;
4340
4341         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4342
4343         /*
4344          * This will be replaced with the stats tracking code, using
4345          * 'avg_completion_time / 2' as the pre-sleep target.
4346          */
4347         kt = nsecs;
4348
4349         mode = HRTIMER_MODE_REL;
4350         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4351         hrtimer_set_expires(&hs.timer, kt);
4352
4353         do {
4354                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4355                         break;
4356                 set_current_state(TASK_UNINTERRUPTIBLE);
4357                 hrtimer_sleeper_start_expires(&hs, mode);
4358                 if (hs.task)
4359                         io_schedule();
4360                 hrtimer_cancel(&hs.timer);
4361                 mode = HRTIMER_MODE_ABS;
4362         } while (hs.task && !signal_pending(current));
4363
4364         __set_current_state(TASK_RUNNING);
4365         destroy_hrtimer_on_stack(&hs.timer);
4366
4367         /*
4368          * If we sleep, have the caller restart the poll loop to reset the
4369          * state.  Like for the other success return cases, the caller is
4370          * responsible for checking if the IO completed.  If the IO isn't
4371          * complete, we'll get called again and will go straight to the busy
4372          * poll loop.
4373          */
4374         return true;
4375 }
4376
4377 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4378                                struct io_comp_batch *iob, unsigned int flags)
4379 {
4380         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4381         long state = get_current_state();
4382         int ret;
4383
4384         do {
4385                 ret = q->mq_ops->poll(hctx, iob);
4386                 if (ret > 0) {
4387                         __set_current_state(TASK_RUNNING);
4388                         return ret;
4389                 }
4390
4391                 if (signal_pending_state(state, current))
4392                         __set_current_state(TASK_RUNNING);
4393                 if (task_is_running(current))
4394                         return 1;
4395
4396                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4397                         break;
4398                 cpu_relax();
4399         } while (!need_resched());
4400
4401         __set_current_state(TASK_RUNNING);
4402         return 0;
4403 }
4404
4405 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4406                 unsigned int flags)
4407 {
4408         if (!(flags & BLK_POLL_NOSLEEP) &&
4409             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4410                 if (blk_mq_poll_hybrid(q, cookie))
4411                         return 1;
4412         }
4413         return blk_mq_poll_classic(q, cookie, iob, flags);
4414 }
4415
4416 unsigned int blk_mq_rq_cpu(struct request *rq)
4417 {
4418         return rq->mq_ctx->cpu;
4419 }
4420 EXPORT_SYMBOL(blk_mq_rq_cpu);
4421
4422 void blk_mq_cancel_work_sync(struct request_queue *q)
4423 {
4424         if (queue_is_mq(q)) {
4425                 struct blk_mq_hw_ctx *hctx;
4426                 int i;
4427
4428                 cancel_delayed_work_sync(&q->requeue_work);
4429
4430                 queue_for_each_hw_ctx(q, hctx, i)
4431                         cancel_delayed_work_sync(&hctx->run_work);
4432         }
4433 }
4434
4435 static int __init blk_mq_init(void)
4436 {
4437         int i;
4438
4439         for_each_possible_cpu(i)
4440                 init_llist_head(&per_cpu(blk_cpu_done, i));
4441         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4442
4443         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4444                                   "block/softirq:dead", NULL,
4445                                   blk_softirq_cpu_dead);
4446         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4447                                 blk_mq_hctx_notify_dead);
4448         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4449                                 blk_mq_hctx_notify_online,
4450                                 blk_mq_hctx_notify_offline);
4451         return 0;
4452 }
4453 subsys_initcall(blk_mq_init);