arm: use fallback for random_get_entropy() instead of zero
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if ((!mi->part->bd_partno || rq->part == mi->part) &&
137             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138                 mi->inflight[rq_data_dir(rq)]++;
139
140         return true;
141 }
142
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144                 struct block_device *part)
145 {
146         struct mq_inflight mi = { .part = part };
147
148         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149
150         return mi.inflight[0] + mi.inflight[1];
151 }
152
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154                 unsigned int inflight[2])
155 {
156         struct mq_inflight mi = { .part = part };
157
158         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159         inflight[0] = mi.inflight[0];
160         inflight[1] = mi.inflight[1];
161 }
162
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165         mutex_lock(&q->mq_freeze_lock);
166         if (++q->mq_freeze_depth == 1) {
167                 percpu_ref_kill(&q->q_usage_counter);
168                 mutex_unlock(&q->mq_freeze_lock);
169                 if (queue_is_mq(q))
170                         blk_mq_run_hw_queues(q, false);
171         } else {
172                 mutex_unlock(&q->mq_freeze_lock);
173         }
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184                                      unsigned long timeout)
185 {
186         return wait_event_timeout(q->mq_freeze_wq,
187                                         percpu_ref_is_zero(&q->q_usage_counter),
188                                         timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198         /*
199          * In the !blk_mq case we are only calling this to kill the
200          * q_usage_counter, otherwise this increases the freeze depth
201          * and waits for it to return to zero.  For this reason there is
202          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203          * exported to drivers as the only user for unfreeze is blk_mq.
204          */
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211         /*
212          * ...just an alias to keep freeze and unfreeze actions balanced
213          * in the blk_mq_* namespace
214          */
215         blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221         mutex_lock(&q->mq_freeze_lock);
222         if (force_atomic)
223                 q->q_usage_counter.data->force_atomic = true;
224         q->mq_freeze_depth--;
225         WARN_ON_ONCE(q->mq_freeze_depth < 0);
226         if (!q->mq_freeze_depth) {
227                 percpu_ref_resurrect(&q->q_usage_counter);
228                 wake_up_all(&q->mq_freeze_wq);
229         }
230         mutex_unlock(&q->mq_freeze_lock);
231 }
232
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235         __blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245         unsigned long flags;
246
247         spin_lock_irqsave(&q->queue_lock, flags);
248         if (!q->quiesce_depth++)
249                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250         spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263         if (blk_queue_has_srcu(q))
264                 synchronize_srcu(q->srcu);
265         else
266                 synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281         blk_mq_quiesce_queue_nowait(q);
282         blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295         unsigned long flags;
296         bool run_queue = false;
297
298         spin_lock_irqsave(&q->queue_lock, flags);
299         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300                 ;
301         } else if (!--q->quiesce_depth) {
302                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303                 run_queue = true;
304         }
305         spin_unlock_irqrestore(&q->queue_lock, flags);
306
307         /* dispatch requests which are inserted during quiescing */
308         if (run_queue)
309                 blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (!(data->rq_flags & RQF_ELV)) {
360                 rq->tag = tag;
361                 rq->internal_tag = BLK_MQ_NO_TAG;
362         } else {
363                 rq->tag = BLK_MQ_NO_TAG;
364                 rq->internal_tag = tag;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_ELV) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (!op_is_flush(data->cmd_flags) &&
398                     e->type->ops.prepare_request) {
399                         e->type->ops.prepare_request(rq);
400                         rq->rq_flags |= RQF_ELVPRIV;
401                 }
402         }
403
404         return rq;
405 }
406
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409                 u64 alloc_time_ns)
410 {
411         unsigned int tag, tag_offset;
412         struct blk_mq_tags *tags;
413         struct request *rq;
414         unsigned long tag_mask;
415         int i, nr = 0;
416
417         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418         if (unlikely(!tag_mask))
419                 return NULL;
420
421         tags = blk_mq_tags_from_data(data);
422         for (i = 0; tag_mask; i++) {
423                 if (!(tag_mask & (1UL << i)))
424                         continue;
425                 tag = tag_offset + i;
426                 prefetch(tags->static_rqs[tag]);
427                 tag_mask &= ~(1UL << i);
428                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429                 rq_list_add(data->cached_rq, rq);
430                 nr++;
431         }
432         /* caller already holds a reference, add for remainder */
433         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434         data->nr_tags -= nr;
435
436         return rq_list_pop(data->cached_rq);
437 }
438
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441         struct request_queue *q = data->q;
442         u64 alloc_time_ns = 0;
443         struct request *rq;
444         unsigned int tag;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         if (data->cmd_flags & REQ_NOWAIT)
451                 data->flags |= BLK_MQ_REQ_NOWAIT;
452
453         if (q->elevator) {
454                 struct elevator_queue *e = q->elevator;
455
456                 data->rq_flags |= RQF_ELV;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list. Don't include reserved tags in the
461                  * limiting, as it isn't useful.
462                  */
463                 if (!op_is_flush(data->cmd_flags) &&
464                     !blk_op_is_passthrough(data->cmd_flags) &&
465                     e->type->ops.limit_depth &&
466                     !(data->flags & BLK_MQ_REQ_RESERVED))
467                         e->type->ops.limit_depth(data->cmd_flags, data);
468         }
469
470 retry:
471         data->ctx = blk_mq_get_ctx(q);
472         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473         if (!(data->rq_flags & RQF_ELV))
474                 blk_mq_tag_busy(data->hctx);
475
476         /*
477          * Try batched alloc if we want more than 1 tag.
478          */
479         if (data->nr_tags > 1) {
480                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481                 if (rq)
482                         return rq;
483                 data->nr_tags = 1;
484         }
485
486         /*
487          * Waiting allocations only fail because of an inactive hctx.  In that
488          * case just retry the hctx assignment and tag allocation as CPU hotplug
489          * should have migrated us to an online CPU by now.
490          */
491         tag = blk_mq_get_tag(data);
492         if (tag == BLK_MQ_NO_TAG) {
493                 if (data->flags & BLK_MQ_REQ_NOWAIT)
494                         return NULL;
495                 /*
496                  * Give up the CPU and sleep for a random short time to
497                  * ensure that thread using a realtime scheduling class
498                  * are migrated off the CPU, and thus off the hctx that
499                  * is going away.
500                  */
501                 msleep(3);
502                 goto retry;
503         }
504
505         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506                                         alloc_time_ns);
507 }
508
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510                 blk_mq_req_flags_t flags)
511 {
512         struct blk_mq_alloc_data data = {
513                 .q              = q,
514                 .flags          = flags,
515                 .cmd_flags      = op,
516                 .nr_tags        = 1,
517         };
518         struct request *rq;
519         int ret;
520
521         ret = blk_queue_enter(q, flags);
522         if (ret)
523                 return ERR_PTR(ret);
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (!rq)
527                 goto out_queue_exit;
528         rq->__data_len = 0;
529         rq->__sector = (sector_t) -1;
530         rq->bio = rq->biotail = NULL;
531         return rq;
532 out_queue_exit:
533         blk_queue_exit(q);
534         return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541         struct blk_mq_alloc_data data = {
542                 .q              = q,
543                 .flags          = flags,
544                 .cmd_flags      = op,
545                 .nr_tags        = 1,
546         };
547         u64 alloc_time_ns = 0;
548         unsigned int cpu;
549         unsigned int tag;
550         int ret;
551
552         /* alloc_time includes depth and tag waits */
553         if (blk_queue_rq_alloc_time(q))
554                 alloc_time_ns = ktime_get_ns();
555
556         /*
557          * If the tag allocator sleeps we could get an allocation for a
558          * different hardware context.  No need to complicate the low level
559          * allocator for this for the rare use case of a command tied to
560          * a specific queue.
561          */
562         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563                 return ERR_PTR(-EINVAL);
564
565         if (hctx_idx >= q->nr_hw_queues)
566                 return ERR_PTR(-EIO);
567
568         ret = blk_queue_enter(q, flags);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         /*
573          * Check if the hardware context is actually mapped to anything.
574          * If not tell the caller that it should skip this queue.
575          */
576         ret = -EXDEV;
577         data.hctx = xa_load(&q->hctx_table, hctx_idx);
578         if (!blk_mq_hw_queue_mapped(data.hctx))
579                 goto out_queue_exit;
580         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581         data.ctx = __blk_mq_get_ctx(q, cpu);
582
583         if (!q->elevator)
584                 blk_mq_tag_busy(data.hctx);
585         else
586                 data.rq_flags |= RQF_ELV;
587
588         ret = -EWOULDBLOCK;
589         tag = blk_mq_get_tag(&data);
590         if (tag == BLK_MQ_NO_TAG)
591                 goto out_queue_exit;
592         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593                                         alloc_time_ns);
594
595 out_queue_exit:
596         blk_queue_exit(q);
597         return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
601 static void __blk_mq_free_request(struct request *rq)
602 {
603         struct request_queue *q = rq->q;
604         struct blk_mq_ctx *ctx = rq->mq_ctx;
605         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606         const int sched_tag = rq->internal_tag;
607
608         blk_crypto_free_request(rq);
609         blk_pm_mark_last_busy(rq);
610         rq->mq_hctx = NULL;
611         if (rq->tag != BLK_MQ_NO_TAG)
612                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613         if (sched_tag != BLK_MQ_NO_TAG)
614                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615         blk_mq_sched_restart(hctx);
616         blk_queue_exit(q);
617 }
618
619 void blk_mq_free_request(struct request *rq)
620 {
621         struct request_queue *q = rq->q;
622         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623
624         if ((rq->rq_flags & RQF_ELVPRIV) &&
625             q->elevator->type->ops.finish_request)
626                 q->elevator->type->ops.finish_request(rq);
627
628         if (rq->rq_flags & RQF_MQ_INFLIGHT)
629                 __blk_mq_dec_active_requests(hctx);
630
631         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632                 laptop_io_completion(q->disk->bdi);
633
634         rq_qos_done(q, rq);
635
636         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637         if (req_ref_put_and_test(rq))
638                 __blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644         struct request *rq;
645
646         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647                 blk_mq_free_request(rq);
648 }
649
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653                 rq->q->disk ? rq->q->disk->disk_name : "?",
654                 (unsigned long long) rq->cmd_flags);
655
656         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657                (unsigned long long)blk_rq_pos(rq),
658                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660                rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665                           unsigned int nbytes, blk_status_t error)
666 {
667         if (unlikely(error)) {
668                 bio->bi_status = error;
669         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670                 /*
671                  * Partial zone append completions cannot be supported as the
672                  * BIO fragments may end up not being written sequentially.
673                  */
674                 if (bio->bi_iter.bi_size != nbytes)
675                         bio->bi_status = BLK_STS_IOERR;
676                 else
677                         bio->bi_iter.bi_sector = rq->__sector;
678         }
679
680         bio_advance(bio, nbytes);
681
682         if (unlikely(rq->rq_flags & RQF_QUIET))
683                 bio_set_flag(bio, BIO_QUIET);
684         /* don't actually finish bio if it's part of flush sequence */
685         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686                 bio_endio(bio);
687 }
688
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691         if (req->part && blk_do_io_stat(req)) {
692                 const int sgrp = op_stat_group(req_op(req));
693
694                 part_stat_lock();
695                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696                 part_stat_unlock();
697         }
698 }
699
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702         printk_ratelimited(KERN_ERR
703                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704                 "phys_seg %u prio class %u\n",
705                 blk_status_to_str(status),
706                 req->q->disk ? req->q->disk->disk_name : "?",
707                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708                 req->cmd_flags & ~REQ_OP_MASK,
709                 req->nr_phys_segments,
710                 IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720         int total_bytes = blk_rq_bytes(req);
721         struct bio *bio = req->bio;
722
723         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725         if (!bio)
726                 return;
727
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730                 req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732
733         blk_account_io_completion(req, total_bytes);
734
735         do {
736                 struct bio *next = bio->bi_next;
737
738                 /* Completion has already been traced */
739                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740
741                 if (req_op(req) == REQ_OP_ZONE_APPEND)
742                         bio->bi_iter.bi_sector = req->__sector;
743
744                 if (!is_flush)
745                         bio_endio(bio);
746                 bio = next;
747         } while (bio);
748
749         /*
750          * Reset counters so that the request stacking driver
751          * can find how many bytes remain in the request
752          * later.
753          */
754         req->bio = NULL;
755         req->__data_len = 0;
756 }
757
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781                 unsigned int nr_bytes)
782 {
783         int total_bytes;
784
785         trace_block_rq_complete(req, error, nr_bytes);
786
787         if (!req->bio)
788                 return false;
789
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792             error == BLK_STS_OK)
793                 req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795
796         if (unlikely(error && !blk_rq_is_passthrough(req) &&
797                      !(req->rq_flags & RQF_QUIET)) &&
798                      !test_bit(GD_DEAD, &req->q->disk->state)) {
799                 blk_print_req_error(req, error);
800                 trace_block_rq_error(req, error, nr_bytes);
801         }
802
803         blk_account_io_completion(req, nr_bytes);
804
805         total_bytes = 0;
806         while (req->bio) {
807                 struct bio *bio = req->bio;
808                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809
810                 if (bio_bytes == bio->bi_iter.bi_size)
811                         req->bio = bio->bi_next;
812
813                 /* Completion has already been traced */
814                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815                 req_bio_endio(req, bio, bio_bytes, error);
816
817                 total_bytes += bio_bytes;
818                 nr_bytes -= bio_bytes;
819
820                 if (!nr_bytes)
821                         break;
822         }
823
824         /*
825          * completely done
826          */
827         if (!req->bio) {
828                 /*
829                  * Reset counters so that the request stacking driver
830                  * can find how many bytes remain in the request
831                  * later.
832                  */
833                 req->__data_len = 0;
834                 return false;
835         }
836
837         req->__data_len -= total_bytes;
838
839         /* update sector only for requests with clear definition of sector */
840         if (!blk_rq_is_passthrough(req))
841                 req->__sector += total_bytes >> 9;
842
843         /* mixed attributes always follow the first bio */
844         if (req->rq_flags & RQF_MIXED_MERGE) {
845                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
846                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847         }
848
849         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850                 /*
851                  * If total number of sectors is less than the first segment
852                  * size, something has gone terribly wrong.
853                  */
854                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855                         blk_dump_rq_flags(req, "request botched");
856                         req->__data_len = blk_rq_cur_bytes(req);
857                 }
858
859                 /* recalculate the number of segments */
860                 req->nr_phys_segments = blk_recalc_rq_segments(req);
861         }
862
863         return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869         const int sgrp = op_stat_group(req_op(req));
870
871         part_stat_lock();
872         update_io_ticks(req->part, jiffies, true);
873         part_stat_inc(req->part, ios[sgrp]);
874         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875         part_stat_unlock();
876 }
877
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880         /*
881          * Account IO completion.  flush_rq isn't accounted as a
882          * normal IO on queueing nor completion.  Accounting the
883          * containing request is enough.
884          */
885         if (blk_do_io_stat(req) && req->part &&
886             !(req->rq_flags & RQF_FLUSH_SEQ))
887                 __blk_account_io_done(req, now);
888 }
889
890 static void __blk_account_io_start(struct request *rq)
891 {
892         /*
893          * All non-passthrough requests are created from a bio with one
894          * exception: when a flush command that is part of a flush sequence
895          * generated by the state machine in blk-flush.c is cloned onto the
896          * lower device by dm-multipath we can get here without a bio.
897          */
898         if (rq->bio)
899                 rq->part = rq->bio->bi_bdev;
900         else
901                 rq->part = rq->q->disk->part0;
902
903         part_stat_lock();
904         update_io_ticks(rq->part, jiffies, false);
905         part_stat_unlock();
906 }
907
908 static inline void blk_account_io_start(struct request *req)
909 {
910         if (blk_do_io_stat(req))
911                 __blk_account_io_start(req);
912 }
913
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916         if (rq->rq_flags & RQF_STATS) {
917                 blk_mq_poll_stats_start(rq->q);
918                 blk_stat_add(rq, now);
919         }
920
921         blk_mq_sched_completed_request(rq, now);
922         blk_account_io_done(rq, now);
923 }
924
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927         if (blk_mq_need_time_stamp(rq))
928                 __blk_mq_end_request_acct(rq, ktime_get_ns());
929
930         if (rq->end_io) {
931                 rq_qos_done(rq->q, rq);
932                 rq->end_io(rq, error);
933         } else {
934                 blk_mq_free_request(rq);
935         }
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942                 BUG();
943         __blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946
947 #define TAG_COMP_BATCH          32
948
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950                                           int *tag_array, int nr_tags)
951 {
952         struct request_queue *q = hctx->queue;
953
954         /*
955          * All requests should have been marked as RQF_MQ_INFLIGHT, so
956          * update hctx->nr_active in batch
957          */
958         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959                 __blk_mq_sub_active_requests(hctx, nr_tags);
960
961         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967         int tags[TAG_COMP_BATCH], nr_tags = 0;
968         struct blk_mq_hw_ctx *cur_hctx = NULL;
969         struct request *rq;
970         u64 now = 0;
971
972         if (iob->need_ts)
973                 now = ktime_get_ns();
974
975         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976                 prefetch(rq->bio);
977                 prefetch(rq->rq_next);
978
979                 blk_complete_request(rq);
980                 if (iob->need_ts)
981                         __blk_mq_end_request_acct(rq, now);
982
983                 rq_qos_done(rq->q, rq);
984
985                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986                 if (!req_ref_put_and_test(rq))
987                         continue;
988
989                 blk_crypto_free_request(rq);
990                 blk_pm_mark_last_busy(rq);
991
992                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993                         if (cur_hctx)
994                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995                         nr_tags = 0;
996                         cur_hctx = rq->mq_hctx;
997                 }
998                 tags[nr_tags++] = rq->tag;
999         }
1000
1001         if (nr_tags)
1002                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009         struct request *rq, *next;
1010
1011         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012                 rq->q->mq_ops->complete(rq);
1013 }
1014
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023         return 0;
1024 }
1025
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033         int cpu = raw_smp_processor_id();
1034
1035         if (!IS_ENABLED(CONFIG_SMP) ||
1036             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037                 return false;
1038         /*
1039          * With force threaded interrupts enabled, raising softirq from an SMP
1040          * function call will always result in waking the ksoftirqd thread.
1041          * This is probably worse than completing the request on a different
1042          * cache domain.
1043          */
1044         if (force_irqthreads())
1045                 return false;
1046
1047         /* same CPU or cache domain?  Complete locally */
1048         if (cpu == rq->mq_ctx->cpu ||
1049             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051                 return false;
1052
1053         /* don't try to IPI to an offline CPU */
1054         return cpu_online(rq->mq_ctx->cpu);
1055 }
1056
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059         struct llist_head *list;
1060         unsigned int cpu;
1061
1062         cpu = rq->mq_ctx->cpu;
1063         list = &per_cpu(blk_cpu_done, cpu);
1064         if (llist_add(&rq->ipi_list, list)) {
1065                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066                 smp_call_function_single_async(cpu, &rq->csd);
1067         }
1068 }
1069
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072         struct llist_head *list;
1073
1074         preempt_disable();
1075         list = this_cpu_ptr(&blk_cpu_done);
1076         if (llist_add(&rq->ipi_list, list))
1077                 raise_softirq(BLOCK_SOFTIRQ);
1078         preempt_enable();
1079 }
1080
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084
1085         /*
1086          * For a polled request, always complete locallly, it's pointless
1087          * to redirect the completion.
1088          */
1089         if (rq->cmd_flags & REQ_POLLED)
1090                 return false;
1091
1092         if (blk_mq_complete_need_ipi(rq)) {
1093                 blk_mq_complete_send_ipi(rq);
1094                 return true;
1095         }
1096
1097         if (rq->q->nr_hw_queues == 1) {
1098                 blk_mq_raise_softirq(rq);
1099                 return true;
1100         }
1101         return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:         the request being processed
1108  *
1109  * Description:
1110  *      Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114         if (!blk_mq_complete_request_remote(rq))
1115                 rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129         struct request_queue *q = rq->q;
1130
1131         trace_block_rq_issue(rq);
1132
1133         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134                 rq->io_start_time_ns = ktime_get_ns();
1135                 rq->stats_sectors = blk_rq_sectors(rq);
1136                 rq->rq_flags |= RQF_STATS;
1137                 rq_qos_issue(q, rq);
1138         }
1139
1140         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1141
1142         blk_add_timer(rq);
1143         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1144
1145 #ifdef CONFIG_BLK_DEV_INTEGRITY
1146         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1147                 q->integrity.profile->prepare_fn(rq);
1148 #endif
1149         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1150                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1151 }
1152 EXPORT_SYMBOL(blk_mq_start_request);
1153
1154 /**
1155  * blk_end_sync_rq - executes a completion event on a request
1156  * @rq: request to complete
1157  * @error: end I/O status of the request
1158  */
1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1160 {
1161         struct completion *waiting = rq->end_io_data;
1162
1163         rq->end_io_data = (void *)(uintptr_t)error;
1164
1165         /*
1166          * complete last, if this is a stack request the process (and thus
1167          * the rq pointer) could be invalid right after this complete()
1168          */
1169         complete(waiting);
1170 }
1171
1172 /**
1173  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1174  * @rq:         request to insert
1175  * @at_head:    insert request at head or tail of queue
1176  * @done:       I/O completion handler
1177  *
1178  * Description:
1179  *    Insert a fully prepared request at the back of the I/O scheduler queue
1180  *    for execution.  Don't wait for completion.
1181  *
1182  * Note:
1183  *    This function will invoke @done directly if the queue is dead.
1184  */
1185 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1186 {
1187         WARN_ON(irqs_disabled());
1188         WARN_ON(!blk_rq_is_passthrough(rq));
1189
1190         rq->end_io = done;
1191
1192         blk_account_io_start(rq);
1193
1194         /*
1195          * don't check dying flag for MQ because the request won't
1196          * be reused after dying flag is set
1197          */
1198         blk_mq_sched_insert_request(rq, at_head, true, false);
1199 }
1200 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1201
1202 static bool blk_rq_is_poll(struct request *rq)
1203 {
1204         if (!rq->mq_hctx)
1205                 return false;
1206         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1207                 return false;
1208         if (WARN_ON_ONCE(!rq->bio))
1209                 return false;
1210         return true;
1211 }
1212
1213 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1214 {
1215         do {
1216                 bio_poll(rq->bio, NULL, 0);
1217                 cond_resched();
1218         } while (!completion_done(wait));
1219 }
1220
1221 /**
1222  * blk_execute_rq - insert a request into queue for execution
1223  * @rq:         request to insert
1224  * @at_head:    insert request at head or tail of queue
1225  *
1226  * Description:
1227  *    Insert a fully prepared request at the back of the I/O scheduler queue
1228  *    for execution and wait for completion.
1229  * Return: The blk_status_t result provided to blk_mq_end_request().
1230  */
1231 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1232 {
1233         DECLARE_COMPLETION_ONSTACK(wait);
1234         unsigned long hang_check;
1235
1236         rq->end_io_data = &wait;
1237         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1238
1239         /* Prevent hang_check timer from firing at us during very long I/O */
1240         hang_check = sysctl_hung_task_timeout_secs;
1241
1242         if (blk_rq_is_poll(rq))
1243                 blk_rq_poll_completion(rq, &wait);
1244         else if (hang_check)
1245                 while (!wait_for_completion_io_timeout(&wait,
1246                                 hang_check * (HZ/2)))
1247                         ;
1248         else
1249                 wait_for_completion_io(&wait);
1250
1251         return (blk_status_t)(uintptr_t)rq->end_io_data;
1252 }
1253 EXPORT_SYMBOL(blk_execute_rq);
1254
1255 static void __blk_mq_requeue_request(struct request *rq)
1256 {
1257         struct request_queue *q = rq->q;
1258
1259         blk_mq_put_driver_tag(rq);
1260
1261         trace_block_rq_requeue(rq);
1262         rq_qos_requeue(q, rq);
1263
1264         if (blk_mq_request_started(rq)) {
1265                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1266                 rq->rq_flags &= ~RQF_TIMED_OUT;
1267         }
1268 }
1269
1270 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1271 {
1272         __blk_mq_requeue_request(rq);
1273
1274         /* this request will be re-inserted to io scheduler queue */
1275         blk_mq_sched_requeue_request(rq);
1276
1277         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1278 }
1279 EXPORT_SYMBOL(blk_mq_requeue_request);
1280
1281 static void blk_mq_requeue_work(struct work_struct *work)
1282 {
1283         struct request_queue *q =
1284                 container_of(work, struct request_queue, requeue_work.work);
1285         LIST_HEAD(rq_list);
1286         struct request *rq, *next;
1287
1288         spin_lock_irq(&q->requeue_lock);
1289         list_splice_init(&q->requeue_list, &rq_list);
1290         spin_unlock_irq(&q->requeue_lock);
1291
1292         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1293                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1294                         continue;
1295
1296                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1297                 list_del_init(&rq->queuelist);
1298                 /*
1299                  * If RQF_DONTPREP, rq has contained some driver specific
1300                  * data, so insert it to hctx dispatch list to avoid any
1301                  * merge.
1302                  */
1303                 if (rq->rq_flags & RQF_DONTPREP)
1304                         blk_mq_request_bypass_insert(rq, false, false);
1305                 else
1306                         blk_mq_sched_insert_request(rq, true, false, false);
1307         }
1308
1309         while (!list_empty(&rq_list)) {
1310                 rq = list_entry(rq_list.next, struct request, queuelist);
1311                 list_del_init(&rq->queuelist);
1312                 blk_mq_sched_insert_request(rq, false, false, false);
1313         }
1314
1315         blk_mq_run_hw_queues(q, false);
1316 }
1317
1318 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1319                                 bool kick_requeue_list)
1320 {
1321         struct request_queue *q = rq->q;
1322         unsigned long flags;
1323
1324         /*
1325          * We abuse this flag that is otherwise used by the I/O scheduler to
1326          * request head insertion from the workqueue.
1327          */
1328         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1329
1330         spin_lock_irqsave(&q->requeue_lock, flags);
1331         if (at_head) {
1332                 rq->rq_flags |= RQF_SOFTBARRIER;
1333                 list_add(&rq->queuelist, &q->requeue_list);
1334         } else {
1335                 list_add_tail(&rq->queuelist, &q->requeue_list);
1336         }
1337         spin_unlock_irqrestore(&q->requeue_lock, flags);
1338
1339         if (kick_requeue_list)
1340                 blk_mq_kick_requeue_list(q);
1341 }
1342
1343 void blk_mq_kick_requeue_list(struct request_queue *q)
1344 {
1345         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1346 }
1347 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1348
1349 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1350                                     unsigned long msecs)
1351 {
1352         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1353                                     msecs_to_jiffies(msecs));
1354 }
1355 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1356
1357 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1358                                bool reserved)
1359 {
1360         /*
1361          * If we find a request that isn't idle we know the queue is busy
1362          * as it's checked in the iter.
1363          * Return false to stop the iteration.
1364          */
1365         if (blk_mq_request_started(rq)) {
1366                 bool *busy = priv;
1367
1368                 *busy = true;
1369                 return false;
1370         }
1371
1372         return true;
1373 }
1374
1375 bool blk_mq_queue_inflight(struct request_queue *q)
1376 {
1377         bool busy = false;
1378
1379         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1380         return busy;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1383
1384 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1385 {
1386         req->rq_flags |= RQF_TIMED_OUT;
1387         if (req->q->mq_ops->timeout) {
1388                 enum blk_eh_timer_return ret;
1389
1390                 ret = req->q->mq_ops->timeout(req, reserved);
1391                 if (ret == BLK_EH_DONE)
1392                         return;
1393                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1394         }
1395
1396         blk_add_timer(req);
1397 }
1398
1399 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1400 {
1401         unsigned long deadline;
1402
1403         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1404                 return false;
1405         if (rq->rq_flags & RQF_TIMED_OUT)
1406                 return false;
1407
1408         deadline = READ_ONCE(rq->deadline);
1409         if (time_after_eq(jiffies, deadline))
1410                 return true;
1411
1412         if (*next == 0)
1413                 *next = deadline;
1414         else if (time_after(*next, deadline))
1415                 *next = deadline;
1416         return false;
1417 }
1418
1419 void blk_mq_put_rq_ref(struct request *rq)
1420 {
1421         if (is_flush_rq(rq))
1422                 rq->end_io(rq, 0);
1423         else if (req_ref_put_and_test(rq))
1424                 __blk_mq_free_request(rq);
1425 }
1426
1427 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1428 {
1429         unsigned long *next = priv;
1430
1431         /*
1432          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1433          * be reallocated underneath the timeout handler's processing, then
1434          * the expire check is reliable. If the request is not expired, then
1435          * it was completed and reallocated as a new request after returning
1436          * from blk_mq_check_expired().
1437          */
1438         if (blk_mq_req_expired(rq, next))
1439                 blk_mq_rq_timed_out(rq, reserved);
1440         return true;
1441 }
1442
1443 static void blk_mq_timeout_work(struct work_struct *work)
1444 {
1445         struct request_queue *q =
1446                 container_of(work, struct request_queue, timeout_work);
1447         unsigned long next = 0;
1448         struct blk_mq_hw_ctx *hctx;
1449         unsigned long i;
1450
1451         /* A deadlock might occur if a request is stuck requiring a
1452          * timeout at the same time a queue freeze is waiting
1453          * completion, since the timeout code would not be able to
1454          * acquire the queue reference here.
1455          *
1456          * That's why we don't use blk_queue_enter here; instead, we use
1457          * percpu_ref_tryget directly, because we need to be able to
1458          * obtain a reference even in the short window between the queue
1459          * starting to freeze, by dropping the first reference in
1460          * blk_freeze_queue_start, and the moment the last request is
1461          * consumed, marked by the instant q_usage_counter reaches
1462          * zero.
1463          */
1464         if (!percpu_ref_tryget(&q->q_usage_counter))
1465                 return;
1466
1467         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1468
1469         if (next != 0) {
1470                 mod_timer(&q->timeout, next);
1471         } else {
1472                 /*
1473                  * Request timeouts are handled as a forward rolling timer. If
1474                  * we end up here it means that no requests are pending and
1475                  * also that no request has been pending for a while. Mark
1476                  * each hctx as idle.
1477                  */
1478                 queue_for_each_hw_ctx(q, hctx, i) {
1479                         /* the hctx may be unmapped, so check it here */
1480                         if (blk_mq_hw_queue_mapped(hctx))
1481                                 blk_mq_tag_idle(hctx);
1482                 }
1483         }
1484         blk_queue_exit(q);
1485 }
1486
1487 struct flush_busy_ctx_data {
1488         struct blk_mq_hw_ctx *hctx;
1489         struct list_head *list;
1490 };
1491
1492 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1493 {
1494         struct flush_busy_ctx_data *flush_data = data;
1495         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1496         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1497         enum hctx_type type = hctx->type;
1498
1499         spin_lock(&ctx->lock);
1500         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1501         sbitmap_clear_bit(sb, bitnr);
1502         spin_unlock(&ctx->lock);
1503         return true;
1504 }
1505
1506 /*
1507  * Process software queues that have been marked busy, splicing them
1508  * to the for-dispatch
1509  */
1510 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1511 {
1512         struct flush_busy_ctx_data data = {
1513                 .hctx = hctx,
1514                 .list = list,
1515         };
1516
1517         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1518 }
1519 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1520
1521 struct dispatch_rq_data {
1522         struct blk_mq_hw_ctx *hctx;
1523         struct request *rq;
1524 };
1525
1526 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1527                 void *data)
1528 {
1529         struct dispatch_rq_data *dispatch_data = data;
1530         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1531         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1532         enum hctx_type type = hctx->type;
1533
1534         spin_lock(&ctx->lock);
1535         if (!list_empty(&ctx->rq_lists[type])) {
1536                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1537                 list_del_init(&dispatch_data->rq->queuelist);
1538                 if (list_empty(&ctx->rq_lists[type]))
1539                         sbitmap_clear_bit(sb, bitnr);
1540         }
1541         spin_unlock(&ctx->lock);
1542
1543         return !dispatch_data->rq;
1544 }
1545
1546 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1547                                         struct blk_mq_ctx *start)
1548 {
1549         unsigned off = start ? start->index_hw[hctx->type] : 0;
1550         struct dispatch_rq_data data = {
1551                 .hctx = hctx,
1552                 .rq   = NULL,
1553         };
1554
1555         __sbitmap_for_each_set(&hctx->ctx_map, off,
1556                                dispatch_rq_from_ctx, &data);
1557
1558         return data.rq;
1559 }
1560
1561 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1562 {
1563         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1564         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1565         int tag;
1566
1567         blk_mq_tag_busy(rq->mq_hctx);
1568
1569         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1570                 bt = &rq->mq_hctx->tags->breserved_tags;
1571                 tag_offset = 0;
1572         } else {
1573                 if (!hctx_may_queue(rq->mq_hctx, bt))
1574                         return false;
1575         }
1576
1577         tag = __sbitmap_queue_get(bt);
1578         if (tag == BLK_MQ_NO_TAG)
1579                 return false;
1580
1581         rq->tag = tag + tag_offset;
1582         return true;
1583 }
1584
1585 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1586 {
1587         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1588                 return false;
1589
1590         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1591                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1592                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1593                 __blk_mq_inc_active_requests(hctx);
1594         }
1595         hctx->tags->rqs[rq->tag] = rq;
1596         return true;
1597 }
1598
1599 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1600                                 int flags, void *key)
1601 {
1602         struct blk_mq_hw_ctx *hctx;
1603
1604         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1605
1606         spin_lock(&hctx->dispatch_wait_lock);
1607         if (!list_empty(&wait->entry)) {
1608                 struct sbitmap_queue *sbq;
1609
1610                 list_del_init(&wait->entry);
1611                 sbq = &hctx->tags->bitmap_tags;
1612                 atomic_dec(&sbq->ws_active);
1613         }
1614         spin_unlock(&hctx->dispatch_wait_lock);
1615
1616         blk_mq_run_hw_queue(hctx, true);
1617         return 1;
1618 }
1619
1620 /*
1621  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1622  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1623  * restart. For both cases, take care to check the condition again after
1624  * marking us as waiting.
1625  */
1626 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1627                                  struct request *rq)
1628 {
1629         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1630         struct wait_queue_head *wq;
1631         wait_queue_entry_t *wait;
1632         bool ret;
1633
1634         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1635                 blk_mq_sched_mark_restart_hctx(hctx);
1636
1637                 /*
1638                  * It's possible that a tag was freed in the window between the
1639                  * allocation failure and adding the hardware queue to the wait
1640                  * queue.
1641                  *
1642                  * Don't clear RESTART here, someone else could have set it.
1643                  * At most this will cost an extra queue run.
1644                  */
1645                 return blk_mq_get_driver_tag(rq);
1646         }
1647
1648         wait = &hctx->dispatch_wait;
1649         if (!list_empty_careful(&wait->entry))
1650                 return false;
1651
1652         wq = &bt_wait_ptr(sbq, hctx)->wait;
1653
1654         spin_lock_irq(&wq->lock);
1655         spin_lock(&hctx->dispatch_wait_lock);
1656         if (!list_empty(&wait->entry)) {
1657                 spin_unlock(&hctx->dispatch_wait_lock);
1658                 spin_unlock_irq(&wq->lock);
1659                 return false;
1660         }
1661
1662         atomic_inc(&sbq->ws_active);
1663         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1664         __add_wait_queue(wq, wait);
1665
1666         /*
1667          * It's possible that a tag was freed in the window between the
1668          * allocation failure and adding the hardware queue to the wait
1669          * queue.
1670          */
1671         ret = blk_mq_get_driver_tag(rq);
1672         if (!ret) {
1673                 spin_unlock(&hctx->dispatch_wait_lock);
1674                 spin_unlock_irq(&wq->lock);
1675                 return false;
1676         }
1677
1678         /*
1679          * We got a tag, remove ourselves from the wait queue to ensure
1680          * someone else gets the wakeup.
1681          */
1682         list_del_init(&wait->entry);
1683         atomic_dec(&sbq->ws_active);
1684         spin_unlock(&hctx->dispatch_wait_lock);
1685         spin_unlock_irq(&wq->lock);
1686
1687         return true;
1688 }
1689
1690 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1691 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1692 /*
1693  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1694  * - EWMA is one simple way to compute running average value
1695  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1696  * - take 4 as factor for avoiding to get too small(0) result, and this
1697  *   factor doesn't matter because EWMA decreases exponentially
1698  */
1699 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1700 {
1701         unsigned int ewma;
1702
1703         ewma = hctx->dispatch_busy;
1704
1705         if (!ewma && !busy)
1706                 return;
1707
1708         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1709         if (busy)
1710                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1711         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1712
1713         hctx->dispatch_busy = ewma;
1714 }
1715
1716 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1717
1718 static void blk_mq_handle_dev_resource(struct request *rq,
1719                                        struct list_head *list)
1720 {
1721         struct request *next =
1722                 list_first_entry_or_null(list, struct request, queuelist);
1723
1724         /*
1725          * If an I/O scheduler has been configured and we got a driver tag for
1726          * the next request already, free it.
1727          */
1728         if (next)
1729                 blk_mq_put_driver_tag(next);
1730
1731         list_add(&rq->queuelist, list);
1732         __blk_mq_requeue_request(rq);
1733 }
1734
1735 static void blk_mq_handle_zone_resource(struct request *rq,
1736                                         struct list_head *zone_list)
1737 {
1738         /*
1739          * If we end up here it is because we cannot dispatch a request to a
1740          * specific zone due to LLD level zone-write locking or other zone
1741          * related resource not being available. In this case, set the request
1742          * aside in zone_list for retrying it later.
1743          */
1744         list_add(&rq->queuelist, zone_list);
1745         __blk_mq_requeue_request(rq);
1746 }
1747
1748 enum prep_dispatch {
1749         PREP_DISPATCH_OK,
1750         PREP_DISPATCH_NO_TAG,
1751         PREP_DISPATCH_NO_BUDGET,
1752 };
1753
1754 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1755                                                   bool need_budget)
1756 {
1757         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1758         int budget_token = -1;
1759
1760         if (need_budget) {
1761                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1762                 if (budget_token < 0) {
1763                         blk_mq_put_driver_tag(rq);
1764                         return PREP_DISPATCH_NO_BUDGET;
1765                 }
1766                 blk_mq_set_rq_budget_token(rq, budget_token);
1767         }
1768
1769         if (!blk_mq_get_driver_tag(rq)) {
1770                 /*
1771                  * The initial allocation attempt failed, so we need to
1772                  * rerun the hardware queue when a tag is freed. The
1773                  * waitqueue takes care of that. If the queue is run
1774                  * before we add this entry back on the dispatch list,
1775                  * we'll re-run it below.
1776                  */
1777                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1778                         /*
1779                          * All budgets not got from this function will be put
1780                          * together during handling partial dispatch
1781                          */
1782                         if (need_budget)
1783                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1784                         return PREP_DISPATCH_NO_TAG;
1785                 }
1786         }
1787
1788         return PREP_DISPATCH_OK;
1789 }
1790
1791 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1792 static void blk_mq_release_budgets(struct request_queue *q,
1793                 struct list_head *list)
1794 {
1795         struct request *rq;
1796
1797         list_for_each_entry(rq, list, queuelist) {
1798                 int budget_token = blk_mq_get_rq_budget_token(rq);
1799
1800                 if (budget_token >= 0)
1801                         blk_mq_put_dispatch_budget(q, budget_token);
1802         }
1803 }
1804
1805 /*
1806  * Returns true if we did some work AND can potentially do more.
1807  */
1808 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1809                              unsigned int nr_budgets)
1810 {
1811         enum prep_dispatch prep;
1812         struct request_queue *q = hctx->queue;
1813         struct request *rq, *nxt;
1814         int errors, queued;
1815         blk_status_t ret = BLK_STS_OK;
1816         LIST_HEAD(zone_list);
1817         bool needs_resource = false;
1818
1819         if (list_empty(list))
1820                 return false;
1821
1822         /*
1823          * Now process all the entries, sending them to the driver.
1824          */
1825         errors = queued = 0;
1826         do {
1827                 struct blk_mq_queue_data bd;
1828
1829                 rq = list_first_entry(list, struct request, queuelist);
1830
1831                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1832                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1833                 if (prep != PREP_DISPATCH_OK)
1834                         break;
1835
1836                 list_del_init(&rq->queuelist);
1837
1838                 bd.rq = rq;
1839
1840                 /*
1841                  * Flag last if we have no more requests, or if we have more
1842                  * but can't assign a driver tag to it.
1843                  */
1844                 if (list_empty(list))
1845                         bd.last = true;
1846                 else {
1847                         nxt = list_first_entry(list, struct request, queuelist);
1848                         bd.last = !blk_mq_get_driver_tag(nxt);
1849                 }
1850
1851                 /*
1852                  * once the request is queued to lld, no need to cover the
1853                  * budget any more
1854                  */
1855                 if (nr_budgets)
1856                         nr_budgets--;
1857                 ret = q->mq_ops->queue_rq(hctx, &bd);
1858                 switch (ret) {
1859                 case BLK_STS_OK:
1860                         queued++;
1861                         break;
1862                 case BLK_STS_RESOURCE:
1863                         needs_resource = true;
1864                         fallthrough;
1865                 case BLK_STS_DEV_RESOURCE:
1866                         blk_mq_handle_dev_resource(rq, list);
1867                         goto out;
1868                 case BLK_STS_ZONE_RESOURCE:
1869                         /*
1870                          * Move the request to zone_list and keep going through
1871                          * the dispatch list to find more requests the drive can
1872                          * accept.
1873                          */
1874                         blk_mq_handle_zone_resource(rq, &zone_list);
1875                         needs_resource = true;
1876                         break;
1877                 default:
1878                         errors++;
1879                         blk_mq_end_request(rq, ret);
1880                 }
1881         } while (!list_empty(list));
1882 out:
1883         if (!list_empty(&zone_list))
1884                 list_splice_tail_init(&zone_list, list);
1885
1886         /* If we didn't flush the entire list, we could have told the driver
1887          * there was more coming, but that turned out to be a lie.
1888          */
1889         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1890                 q->mq_ops->commit_rqs(hctx);
1891         /*
1892          * Any items that need requeuing? Stuff them into hctx->dispatch,
1893          * that is where we will continue on next queue run.
1894          */
1895         if (!list_empty(list)) {
1896                 bool needs_restart;
1897                 /* For non-shared tags, the RESTART check will suffice */
1898                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1899                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1900
1901                 if (nr_budgets)
1902                         blk_mq_release_budgets(q, list);
1903
1904                 spin_lock(&hctx->lock);
1905                 list_splice_tail_init(list, &hctx->dispatch);
1906                 spin_unlock(&hctx->lock);
1907
1908                 /*
1909                  * Order adding requests to hctx->dispatch and checking
1910                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1911                  * in blk_mq_sched_restart(). Avoid restart code path to
1912                  * miss the new added requests to hctx->dispatch, meantime
1913                  * SCHED_RESTART is observed here.
1914                  */
1915                 smp_mb();
1916
1917                 /*
1918                  * If SCHED_RESTART was set by the caller of this function and
1919                  * it is no longer set that means that it was cleared by another
1920                  * thread and hence that a queue rerun is needed.
1921                  *
1922                  * If 'no_tag' is set, that means that we failed getting
1923                  * a driver tag with an I/O scheduler attached. If our dispatch
1924                  * waitqueue is no longer active, ensure that we run the queue
1925                  * AFTER adding our entries back to the list.
1926                  *
1927                  * If no I/O scheduler has been configured it is possible that
1928                  * the hardware queue got stopped and restarted before requests
1929                  * were pushed back onto the dispatch list. Rerun the queue to
1930                  * avoid starvation. Notes:
1931                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1932                  *   been stopped before rerunning a queue.
1933                  * - Some but not all block drivers stop a queue before
1934                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1935                  *   and dm-rq.
1936                  *
1937                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1938                  * bit is set, run queue after a delay to avoid IO stalls
1939                  * that could otherwise occur if the queue is idle.  We'll do
1940                  * similar if we couldn't get budget or couldn't lock a zone
1941                  * and SCHED_RESTART is set.
1942                  */
1943                 needs_restart = blk_mq_sched_needs_restart(hctx);
1944                 if (prep == PREP_DISPATCH_NO_BUDGET)
1945                         needs_resource = true;
1946                 if (!needs_restart ||
1947                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1948                         blk_mq_run_hw_queue(hctx, true);
1949                 else if (needs_restart && needs_resource)
1950                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1951
1952                 blk_mq_update_dispatch_busy(hctx, true);
1953                 return false;
1954         } else
1955                 blk_mq_update_dispatch_busy(hctx, false);
1956
1957         return (queued + errors) != 0;
1958 }
1959
1960 /**
1961  * __blk_mq_run_hw_queue - Run a hardware queue.
1962  * @hctx: Pointer to the hardware queue to run.
1963  *
1964  * Send pending requests to the hardware.
1965  */
1966 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1967 {
1968         /*
1969          * We can't run the queue inline with ints disabled. Ensure that
1970          * we catch bad users of this early.
1971          */
1972         WARN_ON_ONCE(in_interrupt());
1973
1974         blk_mq_run_dispatch_ops(hctx->queue,
1975                         blk_mq_sched_dispatch_requests(hctx));
1976 }
1977
1978 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1979 {
1980         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1981
1982         if (cpu >= nr_cpu_ids)
1983                 cpu = cpumask_first(hctx->cpumask);
1984         return cpu;
1985 }
1986
1987 /*
1988  * It'd be great if the workqueue API had a way to pass
1989  * in a mask and had some smarts for more clever placement.
1990  * For now we just round-robin here, switching for every
1991  * BLK_MQ_CPU_WORK_BATCH queued items.
1992  */
1993 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1994 {
1995         bool tried = false;
1996         int next_cpu = hctx->next_cpu;
1997
1998         if (hctx->queue->nr_hw_queues == 1)
1999                 return WORK_CPU_UNBOUND;
2000
2001         if (--hctx->next_cpu_batch <= 0) {
2002 select_cpu:
2003                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2004                                 cpu_online_mask);
2005                 if (next_cpu >= nr_cpu_ids)
2006                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2007                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2008         }
2009
2010         /*
2011          * Do unbound schedule if we can't find a online CPU for this hctx,
2012          * and it should only happen in the path of handling CPU DEAD.
2013          */
2014         if (!cpu_online(next_cpu)) {
2015                 if (!tried) {
2016                         tried = true;
2017                         goto select_cpu;
2018                 }
2019
2020                 /*
2021                  * Make sure to re-select CPU next time once after CPUs
2022                  * in hctx->cpumask become online again.
2023                  */
2024                 hctx->next_cpu = next_cpu;
2025                 hctx->next_cpu_batch = 1;
2026                 return WORK_CPU_UNBOUND;
2027         }
2028
2029         hctx->next_cpu = next_cpu;
2030         return next_cpu;
2031 }
2032
2033 /**
2034  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2035  * @hctx: Pointer to the hardware queue to run.
2036  * @async: If we want to run the queue asynchronously.
2037  * @msecs: Milliseconds of delay to wait before running the queue.
2038  *
2039  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2040  * with a delay of @msecs.
2041  */
2042 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2043                                         unsigned long msecs)
2044 {
2045         if (unlikely(blk_mq_hctx_stopped(hctx)))
2046                 return;
2047
2048         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2049                 int cpu = get_cpu();
2050                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2051                         __blk_mq_run_hw_queue(hctx);
2052                         put_cpu();
2053                         return;
2054                 }
2055
2056                 put_cpu();
2057         }
2058
2059         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2060                                     msecs_to_jiffies(msecs));
2061 }
2062
2063 /**
2064  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2065  * @hctx: Pointer to the hardware queue to run.
2066  * @msecs: Milliseconds of delay to wait before running the queue.
2067  *
2068  * Run a hardware queue asynchronously with a delay of @msecs.
2069  */
2070 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2071 {
2072         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2073 }
2074 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2075
2076 /**
2077  * blk_mq_run_hw_queue - Start to run a hardware queue.
2078  * @hctx: Pointer to the hardware queue to run.
2079  * @async: If we want to run the queue asynchronously.
2080  *
2081  * Check if the request queue is not in a quiesced state and if there are
2082  * pending requests to be sent. If this is true, run the queue to send requests
2083  * to hardware.
2084  */
2085 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087         bool need_run;
2088
2089         /*
2090          * When queue is quiesced, we may be switching io scheduler, or
2091          * updating nr_hw_queues, or other things, and we can't run queue
2092          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2093          *
2094          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2095          * quiesced.
2096          */
2097         __blk_mq_run_dispatch_ops(hctx->queue, false,
2098                 need_run = !blk_queue_quiesced(hctx->queue) &&
2099                 blk_mq_hctx_has_pending(hctx));
2100
2101         if (need_run)
2102                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2103 }
2104 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2105
2106 /*
2107  * Is the request queue handled by an IO scheduler that does not respect
2108  * hardware queues when dispatching?
2109  */
2110 static bool blk_mq_has_sqsched(struct request_queue *q)
2111 {
2112         struct elevator_queue *e = q->elevator;
2113
2114         if (e && e->type->ops.dispatch_request &&
2115             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2116                 return true;
2117         return false;
2118 }
2119
2120 /*
2121  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2122  * scheduler.
2123  */
2124 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2125 {
2126         struct blk_mq_hw_ctx *hctx;
2127
2128         /*
2129          * If the IO scheduler does not respect hardware queues when
2130          * dispatching, we just don't bother with multiple HW queues and
2131          * dispatch from hctx for the current CPU since running multiple queues
2132          * just causes lock contention inside the scheduler and pointless cache
2133          * bouncing.
2134          */
2135         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2136                                      raw_smp_processor_id());
2137         if (!blk_mq_hctx_stopped(hctx))
2138                 return hctx;
2139         return NULL;
2140 }
2141
2142 /**
2143  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2144  * @q: Pointer to the request queue to run.
2145  * @async: If we want to run the queue asynchronously.
2146  */
2147 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2148 {
2149         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2150         unsigned long i;
2151
2152         sq_hctx = NULL;
2153         if (blk_mq_has_sqsched(q))
2154                 sq_hctx = blk_mq_get_sq_hctx(q);
2155         queue_for_each_hw_ctx(q, hctx, i) {
2156                 if (blk_mq_hctx_stopped(hctx))
2157                         continue;
2158                 /*
2159                  * Dispatch from this hctx either if there's no hctx preferred
2160                  * by IO scheduler or if it has requests that bypass the
2161                  * scheduler.
2162                  */
2163                 if (!sq_hctx || sq_hctx == hctx ||
2164                     !list_empty_careful(&hctx->dispatch))
2165                         blk_mq_run_hw_queue(hctx, async);
2166         }
2167 }
2168 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2169
2170 /**
2171  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2172  * @q: Pointer to the request queue to run.
2173  * @msecs: Milliseconds of delay to wait before running the queues.
2174  */
2175 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2176 {
2177         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2178         unsigned long i;
2179
2180         sq_hctx = NULL;
2181         if (blk_mq_has_sqsched(q))
2182                 sq_hctx = blk_mq_get_sq_hctx(q);
2183         queue_for_each_hw_ctx(q, hctx, i) {
2184                 if (blk_mq_hctx_stopped(hctx))
2185                         continue;
2186                 /*
2187                  * If there is already a run_work pending, leave the
2188                  * pending delay untouched. Otherwise, a hctx can stall
2189                  * if another hctx is re-delaying the other's work
2190                  * before the work executes.
2191                  */
2192                 if (delayed_work_pending(&hctx->run_work))
2193                         continue;
2194                 /*
2195                  * Dispatch from this hctx either if there's no hctx preferred
2196                  * by IO scheduler or if it has requests that bypass the
2197                  * scheduler.
2198                  */
2199                 if (!sq_hctx || sq_hctx == hctx ||
2200                     !list_empty_careful(&hctx->dispatch))
2201                         blk_mq_delay_run_hw_queue(hctx, msecs);
2202         }
2203 }
2204 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2205
2206 /**
2207  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2208  * @q: request queue.
2209  *
2210  * The caller is responsible for serializing this function against
2211  * blk_mq_{start,stop}_hw_queue().
2212  */
2213 bool blk_mq_queue_stopped(struct request_queue *q)
2214 {
2215         struct blk_mq_hw_ctx *hctx;
2216         unsigned long i;
2217
2218         queue_for_each_hw_ctx(q, hctx, i)
2219                 if (blk_mq_hctx_stopped(hctx))
2220                         return true;
2221
2222         return false;
2223 }
2224 EXPORT_SYMBOL(blk_mq_queue_stopped);
2225
2226 /*
2227  * This function is often used for pausing .queue_rq() by driver when
2228  * there isn't enough resource or some conditions aren't satisfied, and
2229  * BLK_STS_RESOURCE is usually returned.
2230  *
2231  * We do not guarantee that dispatch can be drained or blocked
2232  * after blk_mq_stop_hw_queue() returns. Please use
2233  * blk_mq_quiesce_queue() for that requirement.
2234  */
2235 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2236 {
2237         cancel_delayed_work(&hctx->run_work);
2238
2239         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2240 }
2241 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2242
2243 /*
2244  * This function is often used for pausing .queue_rq() by driver when
2245  * there isn't enough resource or some conditions aren't satisfied, and
2246  * BLK_STS_RESOURCE is usually returned.
2247  *
2248  * We do not guarantee that dispatch can be drained or blocked
2249  * after blk_mq_stop_hw_queues() returns. Please use
2250  * blk_mq_quiesce_queue() for that requirement.
2251  */
2252 void blk_mq_stop_hw_queues(struct request_queue *q)
2253 {
2254         struct blk_mq_hw_ctx *hctx;
2255         unsigned long i;
2256
2257         queue_for_each_hw_ctx(q, hctx, i)
2258                 blk_mq_stop_hw_queue(hctx);
2259 }
2260 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2261
2262 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2263 {
2264         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2265
2266         blk_mq_run_hw_queue(hctx, false);
2267 }
2268 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2269
2270 void blk_mq_start_hw_queues(struct request_queue *q)
2271 {
2272         struct blk_mq_hw_ctx *hctx;
2273         unsigned long i;
2274
2275         queue_for_each_hw_ctx(q, hctx, i)
2276                 blk_mq_start_hw_queue(hctx);
2277 }
2278 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2279
2280 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2281 {
2282         if (!blk_mq_hctx_stopped(hctx))
2283                 return;
2284
2285         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2286         blk_mq_run_hw_queue(hctx, async);
2287 }
2288 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2289
2290 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2291 {
2292         struct blk_mq_hw_ctx *hctx;
2293         unsigned long i;
2294
2295         queue_for_each_hw_ctx(q, hctx, i)
2296                 blk_mq_start_stopped_hw_queue(hctx, async);
2297 }
2298 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2299
2300 static void blk_mq_run_work_fn(struct work_struct *work)
2301 {
2302         struct blk_mq_hw_ctx *hctx;
2303
2304         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2305
2306         /*
2307          * If we are stopped, don't run the queue.
2308          */
2309         if (blk_mq_hctx_stopped(hctx))
2310                 return;
2311
2312         __blk_mq_run_hw_queue(hctx);
2313 }
2314
2315 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2316                                             struct request *rq,
2317                                             bool at_head)
2318 {
2319         struct blk_mq_ctx *ctx = rq->mq_ctx;
2320         enum hctx_type type = hctx->type;
2321
2322         lockdep_assert_held(&ctx->lock);
2323
2324         trace_block_rq_insert(rq);
2325
2326         if (at_head)
2327                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2328         else
2329                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2330 }
2331
2332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2333                              bool at_head)
2334 {
2335         struct blk_mq_ctx *ctx = rq->mq_ctx;
2336
2337         lockdep_assert_held(&ctx->lock);
2338
2339         __blk_mq_insert_req_list(hctx, rq, at_head);
2340         blk_mq_hctx_mark_pending(hctx, ctx);
2341 }
2342
2343 /**
2344  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2345  * @rq: Pointer to request to be inserted.
2346  * @at_head: true if the request should be inserted at the head of the list.
2347  * @run_queue: If we should run the hardware queue after inserting the request.
2348  *
2349  * Should only be used carefully, when the caller knows we want to
2350  * bypass a potential IO scheduler on the target device.
2351  */
2352 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2353                                   bool run_queue)
2354 {
2355         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2356
2357         spin_lock(&hctx->lock);
2358         if (at_head)
2359                 list_add(&rq->queuelist, &hctx->dispatch);
2360         else
2361                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2362         spin_unlock(&hctx->lock);
2363
2364         if (run_queue)
2365                 blk_mq_run_hw_queue(hctx, false);
2366 }
2367
2368 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2369                             struct list_head *list)
2370
2371 {
2372         struct request *rq;
2373         enum hctx_type type = hctx->type;
2374
2375         /*
2376          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2377          * offline now
2378          */
2379         list_for_each_entry(rq, list, queuelist) {
2380                 BUG_ON(rq->mq_ctx != ctx);
2381                 trace_block_rq_insert(rq);
2382         }
2383
2384         spin_lock(&ctx->lock);
2385         list_splice_tail_init(list, &ctx->rq_lists[type]);
2386         blk_mq_hctx_mark_pending(hctx, ctx);
2387         spin_unlock(&ctx->lock);
2388 }
2389
2390 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2391                               bool from_schedule)
2392 {
2393         if (hctx->queue->mq_ops->commit_rqs) {
2394                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2395                 hctx->queue->mq_ops->commit_rqs(hctx);
2396         }
2397         *queued = 0;
2398 }
2399
2400 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2401                 unsigned int nr_segs)
2402 {
2403         int err;
2404
2405         if (bio->bi_opf & REQ_RAHEAD)
2406                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2407
2408         rq->__sector = bio->bi_iter.bi_sector;
2409         blk_rq_bio_prep(rq, bio, nr_segs);
2410
2411         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2412         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2413         WARN_ON_ONCE(err);
2414
2415         blk_account_io_start(rq);
2416 }
2417
2418 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2419                                             struct request *rq, bool last)
2420 {
2421         struct request_queue *q = rq->q;
2422         struct blk_mq_queue_data bd = {
2423                 .rq = rq,
2424                 .last = last,
2425         };
2426         blk_status_t ret;
2427
2428         /*
2429          * For OK queue, we are done. For error, caller may kill it.
2430          * Any other error (busy), just add it to our list as we
2431          * previously would have done.
2432          */
2433         ret = q->mq_ops->queue_rq(hctx, &bd);
2434         switch (ret) {
2435         case BLK_STS_OK:
2436                 blk_mq_update_dispatch_busy(hctx, false);
2437                 break;
2438         case BLK_STS_RESOURCE:
2439         case BLK_STS_DEV_RESOURCE:
2440                 blk_mq_update_dispatch_busy(hctx, true);
2441                 __blk_mq_requeue_request(rq);
2442                 break;
2443         default:
2444                 blk_mq_update_dispatch_busy(hctx, false);
2445                 break;
2446         }
2447
2448         return ret;
2449 }
2450
2451 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2452                                                 struct request *rq,
2453                                                 bool bypass_insert, bool last)
2454 {
2455         struct request_queue *q = rq->q;
2456         bool run_queue = true;
2457         int budget_token;
2458
2459         /*
2460          * RCU or SRCU read lock is needed before checking quiesced flag.
2461          *
2462          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2463          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2464          * and avoid driver to try to dispatch again.
2465          */
2466         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2467                 run_queue = false;
2468                 bypass_insert = false;
2469                 goto insert;
2470         }
2471
2472         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2473                 goto insert;
2474
2475         budget_token = blk_mq_get_dispatch_budget(q);
2476         if (budget_token < 0)
2477                 goto insert;
2478
2479         blk_mq_set_rq_budget_token(rq, budget_token);
2480
2481         if (!blk_mq_get_driver_tag(rq)) {
2482                 blk_mq_put_dispatch_budget(q, budget_token);
2483                 goto insert;
2484         }
2485
2486         return __blk_mq_issue_directly(hctx, rq, last);
2487 insert:
2488         if (bypass_insert)
2489                 return BLK_STS_RESOURCE;
2490
2491         blk_mq_sched_insert_request(rq, false, run_queue, false);
2492
2493         return BLK_STS_OK;
2494 }
2495
2496 /**
2497  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2498  * @hctx: Pointer of the associated hardware queue.
2499  * @rq: Pointer to request to be sent.
2500  *
2501  * If the device has enough resources to accept a new request now, send the
2502  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2503  * we can try send it another time in the future. Requests inserted at this
2504  * queue have higher priority.
2505  */
2506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2507                 struct request *rq)
2508 {
2509         blk_status_t ret =
2510                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2511
2512         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2513                 blk_mq_request_bypass_insert(rq, false, true);
2514         else if (ret != BLK_STS_OK)
2515                 blk_mq_end_request(rq, ret);
2516 }
2517
2518 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2519 {
2520         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2521 }
2522
2523 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2524 {
2525         struct blk_mq_hw_ctx *hctx = NULL;
2526         struct request *rq;
2527         int queued = 0;
2528         int errors = 0;
2529
2530         while ((rq = rq_list_pop(&plug->mq_list))) {
2531                 bool last = rq_list_empty(plug->mq_list);
2532                 blk_status_t ret;
2533
2534                 if (hctx != rq->mq_hctx) {
2535                         if (hctx)
2536                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2537                         hctx = rq->mq_hctx;
2538                 }
2539
2540                 ret = blk_mq_request_issue_directly(rq, last);
2541                 switch (ret) {
2542                 case BLK_STS_OK:
2543                         queued++;
2544                         break;
2545                 case BLK_STS_RESOURCE:
2546                 case BLK_STS_DEV_RESOURCE:
2547                         blk_mq_request_bypass_insert(rq, false, last);
2548                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2549                         return;
2550                 default:
2551                         blk_mq_end_request(rq, ret);
2552                         errors++;
2553                         break;
2554                 }
2555         }
2556
2557         /*
2558          * If we didn't flush the entire list, we could have told the driver
2559          * there was more coming, but that turned out to be a lie.
2560          */
2561         if (errors)
2562                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2563 }
2564
2565 static void __blk_mq_flush_plug_list(struct request_queue *q,
2566                                      struct blk_plug *plug)
2567 {
2568         if (blk_queue_quiesced(q))
2569                 return;
2570         q->mq_ops->queue_rqs(&plug->mq_list);
2571 }
2572
2573 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2574 {
2575         struct blk_mq_hw_ctx *this_hctx = NULL;
2576         struct blk_mq_ctx *this_ctx = NULL;
2577         struct request *requeue_list = NULL;
2578         unsigned int depth = 0;
2579         LIST_HEAD(list);
2580
2581         do {
2582                 struct request *rq = rq_list_pop(&plug->mq_list);
2583
2584                 if (!this_hctx) {
2585                         this_hctx = rq->mq_hctx;
2586                         this_ctx = rq->mq_ctx;
2587                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2588                         rq_list_add(&requeue_list, rq);
2589                         continue;
2590                 }
2591                 list_add_tail(&rq->queuelist, &list);
2592                 depth++;
2593         } while (!rq_list_empty(plug->mq_list));
2594
2595         plug->mq_list = requeue_list;
2596         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2597         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2598 }
2599
2600 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2601 {
2602         struct request *rq;
2603
2604         if (rq_list_empty(plug->mq_list))
2605                 return;
2606         plug->rq_count = 0;
2607
2608         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2609                 struct request_queue *q;
2610
2611                 rq = rq_list_peek(&plug->mq_list);
2612                 q = rq->q;
2613
2614                 /*
2615                  * Peek first request and see if we have a ->queue_rqs() hook.
2616                  * If we do, we can dispatch the whole plug list in one go. We
2617                  * already know at this point that all requests belong to the
2618                  * same queue, caller must ensure that's the case.
2619                  *
2620                  * Since we pass off the full list to the driver at this point,
2621                  * we do not increment the active request count for the queue.
2622                  * Bypass shared tags for now because of that.
2623                  */
2624                 if (q->mq_ops->queue_rqs &&
2625                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2626                         blk_mq_run_dispatch_ops(q,
2627                                 __blk_mq_flush_plug_list(q, plug));
2628                         if (rq_list_empty(plug->mq_list))
2629                                 return;
2630                 }
2631
2632                 blk_mq_run_dispatch_ops(q,
2633                                 blk_mq_plug_issue_direct(plug, false));
2634                 if (rq_list_empty(plug->mq_list))
2635                         return;
2636         }
2637
2638         do {
2639                 blk_mq_dispatch_plug_list(plug, from_schedule);
2640         } while (!rq_list_empty(plug->mq_list));
2641 }
2642
2643 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2644                 struct list_head *list)
2645 {
2646         int queued = 0;
2647         int errors = 0;
2648
2649         while (!list_empty(list)) {
2650                 blk_status_t ret;
2651                 struct request *rq = list_first_entry(list, struct request,
2652                                 queuelist);
2653
2654                 list_del_init(&rq->queuelist);
2655                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2656                 if (ret != BLK_STS_OK) {
2657                         if (ret == BLK_STS_RESOURCE ||
2658                                         ret == BLK_STS_DEV_RESOURCE) {
2659                                 blk_mq_request_bypass_insert(rq, false,
2660                                                         list_empty(list));
2661                                 break;
2662                         }
2663                         blk_mq_end_request(rq, ret);
2664                         errors++;
2665                 } else
2666                         queued++;
2667         }
2668
2669         /*
2670          * If we didn't flush the entire list, we could have told
2671          * the driver there was more coming, but that turned out to
2672          * be a lie.
2673          */
2674         if ((!list_empty(list) || errors) &&
2675              hctx->queue->mq_ops->commit_rqs && queued)
2676                 hctx->queue->mq_ops->commit_rqs(hctx);
2677 }
2678
2679 /*
2680  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2681  * queues. This is important for md arrays to benefit from merging
2682  * requests.
2683  */
2684 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2685 {
2686         if (plug->multiple_queues)
2687                 return BLK_MAX_REQUEST_COUNT * 2;
2688         return BLK_MAX_REQUEST_COUNT;
2689 }
2690
2691 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2692 {
2693         struct request *last = rq_list_peek(&plug->mq_list);
2694
2695         if (!plug->rq_count) {
2696                 trace_block_plug(rq->q);
2697         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2698                    (!blk_queue_nomerges(rq->q) &&
2699                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2700                 blk_mq_flush_plug_list(plug, false);
2701                 trace_block_plug(rq->q);
2702         }
2703
2704         if (!plug->multiple_queues && last && last->q != rq->q)
2705                 plug->multiple_queues = true;
2706         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2707                 plug->has_elevator = true;
2708         rq->rq_next = NULL;
2709         rq_list_add(&plug->mq_list, rq);
2710         plug->rq_count++;
2711 }
2712
2713 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2714                                      struct bio *bio, unsigned int nr_segs)
2715 {
2716         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2717                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2718                         return true;
2719                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2720                         return true;
2721         }
2722         return false;
2723 }
2724
2725 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2726                                                struct blk_plug *plug,
2727                                                struct bio *bio,
2728                                                unsigned int nsegs)
2729 {
2730         struct blk_mq_alloc_data data = {
2731                 .q              = q,
2732                 .nr_tags        = 1,
2733                 .cmd_flags      = bio->bi_opf,
2734         };
2735         struct request *rq;
2736
2737         if (unlikely(bio_queue_enter(bio)))
2738                 return NULL;
2739
2740         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2741                 goto queue_exit;
2742
2743         rq_qos_throttle(q, bio);
2744
2745         if (plug) {
2746                 data.nr_tags = plug->nr_ios;
2747                 plug->nr_ios = 1;
2748                 data.cached_rq = &plug->cached_rq;
2749         }
2750
2751         rq = __blk_mq_alloc_requests(&data);
2752         if (rq)
2753                 return rq;
2754         rq_qos_cleanup(q, bio);
2755         if (bio->bi_opf & REQ_NOWAIT)
2756                 bio_wouldblock_error(bio);
2757 queue_exit:
2758         blk_queue_exit(q);
2759         return NULL;
2760 }
2761
2762 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2763                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2764 {
2765         struct request *rq;
2766
2767         if (!plug)
2768                 return NULL;
2769         rq = rq_list_peek(&plug->cached_rq);
2770         if (!rq || rq->q != q)
2771                 return NULL;
2772
2773         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2774                 *bio = NULL;
2775                 return NULL;
2776         }
2777
2778         rq_qos_throttle(q, *bio);
2779
2780         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2781                 return NULL;
2782         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2783                 return NULL;
2784
2785         rq->cmd_flags = (*bio)->bi_opf;
2786         plug->cached_rq = rq_list_next(rq);
2787         INIT_LIST_HEAD(&rq->queuelist);
2788         return rq;
2789 }
2790
2791 /**
2792  * blk_mq_submit_bio - Create and send a request to block device.
2793  * @bio: Bio pointer.
2794  *
2795  * Builds up a request structure from @q and @bio and send to the device. The
2796  * request may not be queued directly to hardware if:
2797  * * This request can be merged with another one
2798  * * We want to place request at plug queue for possible future merging
2799  * * There is an IO scheduler active at this queue
2800  *
2801  * It will not queue the request if there is an error with the bio, or at the
2802  * request creation.
2803  */
2804 void blk_mq_submit_bio(struct bio *bio)
2805 {
2806         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2807         struct blk_plug *plug = blk_mq_plug(q, bio);
2808         const int is_sync = op_is_sync(bio->bi_opf);
2809         struct request *rq;
2810         unsigned int nr_segs = 1;
2811         blk_status_t ret;
2812
2813         blk_queue_bounce(q, &bio);
2814         if (blk_may_split(q, bio))
2815                 __blk_queue_split(q, &bio, &nr_segs);
2816
2817         if (!bio_integrity_prep(bio))
2818                 return;
2819
2820         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2821         if (!rq) {
2822                 if (!bio)
2823                         return;
2824                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2825                 if (unlikely(!rq))
2826                         return;
2827         }
2828
2829         trace_block_getrq(bio);
2830
2831         rq_qos_track(q, rq, bio);
2832
2833         blk_mq_bio_to_request(rq, bio, nr_segs);
2834
2835         ret = blk_crypto_init_request(rq);
2836         if (ret != BLK_STS_OK) {
2837                 bio->bi_status = ret;
2838                 bio_endio(bio);
2839                 blk_mq_free_request(rq);
2840                 return;
2841         }
2842
2843         if (op_is_flush(bio->bi_opf)) {
2844                 blk_insert_flush(rq);
2845                 return;
2846         }
2847
2848         if (plug)
2849                 blk_add_rq_to_plug(plug, rq);
2850         else if ((rq->rq_flags & RQF_ELV) ||
2851                  (rq->mq_hctx->dispatch_busy &&
2852                   (q->nr_hw_queues == 1 || !is_sync)))
2853                 blk_mq_sched_insert_request(rq, false, true, true);
2854         else
2855                 blk_mq_run_dispatch_ops(rq->q,
2856                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2857 }
2858
2859 #ifdef CONFIG_BLK_MQ_STACKING
2860 /**
2861  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2862  * @rq: the request being queued
2863  */
2864 blk_status_t blk_insert_cloned_request(struct request *rq)
2865 {
2866         struct request_queue *q = rq->q;
2867         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2868         blk_status_t ret;
2869
2870         if (blk_rq_sectors(rq) > max_sectors) {
2871                 /*
2872                  * SCSI device does not have a good way to return if
2873                  * Write Same/Zero is actually supported. If a device rejects
2874                  * a non-read/write command (discard, write same,etc.) the
2875                  * low-level device driver will set the relevant queue limit to
2876                  * 0 to prevent blk-lib from issuing more of the offending
2877                  * operations. Commands queued prior to the queue limit being
2878                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2879                  * errors being propagated to upper layers.
2880                  */
2881                 if (max_sectors == 0)
2882                         return BLK_STS_NOTSUPP;
2883
2884                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2885                         __func__, blk_rq_sectors(rq), max_sectors);
2886                 return BLK_STS_IOERR;
2887         }
2888
2889         /*
2890          * The queue settings related to segment counting may differ from the
2891          * original queue.
2892          */
2893         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2894         if (rq->nr_phys_segments > queue_max_segments(q)) {
2895                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2896                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2897                 return BLK_STS_IOERR;
2898         }
2899
2900         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2901                 return BLK_STS_IOERR;
2902
2903         if (blk_crypto_insert_cloned_request(rq))
2904                 return BLK_STS_IOERR;
2905
2906         blk_account_io_start(rq);
2907
2908         /*
2909          * Since we have a scheduler attached on the top device,
2910          * bypass a potential scheduler on the bottom device for
2911          * insert.
2912          */
2913         blk_mq_run_dispatch_ops(q,
2914                         ret = blk_mq_request_issue_directly(rq, true));
2915         if (ret)
2916                 blk_account_io_done(rq, ktime_get_ns());
2917         return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2920
2921 /**
2922  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2923  * @rq: the clone request to be cleaned up
2924  *
2925  * Description:
2926  *     Free all bios in @rq for a cloned request.
2927  */
2928 void blk_rq_unprep_clone(struct request *rq)
2929 {
2930         struct bio *bio;
2931
2932         while ((bio = rq->bio) != NULL) {
2933                 rq->bio = bio->bi_next;
2934
2935                 bio_put(bio);
2936         }
2937 }
2938 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2939
2940 /**
2941  * blk_rq_prep_clone - Helper function to setup clone request
2942  * @rq: the request to be setup
2943  * @rq_src: original request to be cloned
2944  * @bs: bio_set that bios for clone are allocated from
2945  * @gfp_mask: memory allocation mask for bio
2946  * @bio_ctr: setup function to be called for each clone bio.
2947  *           Returns %0 for success, non %0 for failure.
2948  * @data: private data to be passed to @bio_ctr
2949  *
2950  * Description:
2951  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2952  *     Also, pages which the original bios are pointing to are not copied
2953  *     and the cloned bios just point same pages.
2954  *     So cloned bios must be completed before original bios, which means
2955  *     the caller must complete @rq before @rq_src.
2956  */
2957 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2958                       struct bio_set *bs, gfp_t gfp_mask,
2959                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2960                       void *data)
2961 {
2962         struct bio *bio, *bio_src;
2963
2964         if (!bs)
2965                 bs = &fs_bio_set;
2966
2967         __rq_for_each_bio(bio_src, rq_src) {
2968                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2969                                       bs);
2970                 if (!bio)
2971                         goto free_and_out;
2972
2973                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2974                         goto free_and_out;
2975
2976                 if (rq->bio) {
2977                         rq->biotail->bi_next = bio;
2978                         rq->biotail = bio;
2979                 } else {
2980                         rq->bio = rq->biotail = bio;
2981                 }
2982                 bio = NULL;
2983         }
2984
2985         /* Copy attributes of the original request to the clone request. */
2986         rq->__sector = blk_rq_pos(rq_src);
2987         rq->__data_len = blk_rq_bytes(rq_src);
2988         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2989                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2990                 rq->special_vec = rq_src->special_vec;
2991         }
2992         rq->nr_phys_segments = rq_src->nr_phys_segments;
2993         rq->ioprio = rq_src->ioprio;
2994
2995         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2996                 goto free_and_out;
2997
2998         return 0;
2999
3000 free_and_out:
3001         if (bio)
3002                 bio_put(bio);
3003         blk_rq_unprep_clone(rq);
3004
3005         return -ENOMEM;
3006 }
3007 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3008 #endif /* CONFIG_BLK_MQ_STACKING */
3009
3010 /*
3011  * Steal bios from a request and add them to a bio list.
3012  * The request must not have been partially completed before.
3013  */
3014 void blk_steal_bios(struct bio_list *list, struct request *rq)
3015 {
3016         if (rq->bio) {
3017                 if (list->tail)
3018                         list->tail->bi_next = rq->bio;
3019                 else
3020                         list->head = rq->bio;
3021                 list->tail = rq->biotail;
3022
3023                 rq->bio = NULL;
3024                 rq->biotail = NULL;
3025         }
3026
3027         rq->__data_len = 0;
3028 }
3029 EXPORT_SYMBOL_GPL(blk_steal_bios);
3030
3031 static size_t order_to_size(unsigned int order)
3032 {
3033         return (size_t)PAGE_SIZE << order;
3034 }
3035
3036 /* called before freeing request pool in @tags */
3037 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3038                                     struct blk_mq_tags *tags)
3039 {
3040         struct page *page;
3041         unsigned long flags;
3042
3043         /* There is no need to clear a driver tags own mapping */
3044         if (drv_tags == tags)
3045                 return;
3046
3047         list_for_each_entry(page, &tags->page_list, lru) {
3048                 unsigned long start = (unsigned long)page_address(page);
3049                 unsigned long end = start + order_to_size(page->private);
3050                 int i;
3051
3052                 for (i = 0; i < drv_tags->nr_tags; i++) {
3053                         struct request *rq = drv_tags->rqs[i];
3054                         unsigned long rq_addr = (unsigned long)rq;
3055
3056                         if (rq_addr >= start && rq_addr < end) {
3057                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3058                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3059                         }
3060                 }
3061         }
3062
3063         /*
3064          * Wait until all pending iteration is done.
3065          *
3066          * Request reference is cleared and it is guaranteed to be observed
3067          * after the ->lock is released.
3068          */
3069         spin_lock_irqsave(&drv_tags->lock, flags);
3070         spin_unlock_irqrestore(&drv_tags->lock, flags);
3071 }
3072
3073 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3074                      unsigned int hctx_idx)
3075 {
3076         struct blk_mq_tags *drv_tags;
3077         struct page *page;
3078
3079         if (list_empty(&tags->page_list))
3080                 return;
3081
3082         if (blk_mq_is_shared_tags(set->flags))
3083                 drv_tags = set->shared_tags;
3084         else
3085                 drv_tags = set->tags[hctx_idx];
3086
3087         if (tags->static_rqs && set->ops->exit_request) {
3088                 int i;
3089
3090                 for (i = 0; i < tags->nr_tags; i++) {
3091                         struct request *rq = tags->static_rqs[i];
3092
3093                         if (!rq)
3094                                 continue;
3095                         set->ops->exit_request(set, rq, hctx_idx);
3096                         tags->static_rqs[i] = NULL;
3097                 }
3098         }
3099
3100         blk_mq_clear_rq_mapping(drv_tags, tags);
3101
3102         while (!list_empty(&tags->page_list)) {
3103                 page = list_first_entry(&tags->page_list, struct page, lru);
3104                 list_del_init(&page->lru);
3105                 /*
3106                  * Remove kmemleak object previously allocated in
3107                  * blk_mq_alloc_rqs().
3108                  */
3109                 kmemleak_free(page_address(page));
3110                 __free_pages(page, page->private);
3111         }
3112 }
3113
3114 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3115 {
3116         kfree(tags->rqs);
3117         tags->rqs = NULL;
3118         kfree(tags->static_rqs);
3119         tags->static_rqs = NULL;
3120
3121         blk_mq_free_tags(tags);
3122 }
3123
3124 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3125                 unsigned int hctx_idx)
3126 {
3127         int i;
3128
3129         for (i = 0; i < set->nr_maps; i++) {
3130                 unsigned int start = set->map[i].queue_offset;
3131                 unsigned int end = start + set->map[i].nr_queues;
3132
3133                 if (hctx_idx >= start && hctx_idx < end)
3134                         break;
3135         }
3136
3137         if (i >= set->nr_maps)
3138                 i = HCTX_TYPE_DEFAULT;
3139
3140         return i;
3141 }
3142
3143 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3144                 unsigned int hctx_idx)
3145 {
3146         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3147
3148         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3149 }
3150
3151 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3152                                                unsigned int hctx_idx,
3153                                                unsigned int nr_tags,
3154                                                unsigned int reserved_tags)
3155 {
3156         int node = blk_mq_get_hctx_node(set, hctx_idx);
3157         struct blk_mq_tags *tags;
3158
3159         if (node == NUMA_NO_NODE)
3160                 node = set->numa_node;
3161
3162         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3163                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3164         if (!tags)
3165                 return NULL;
3166
3167         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3168                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3169                                  node);
3170         if (!tags->rqs) {
3171                 blk_mq_free_tags(tags);
3172                 return NULL;
3173         }
3174
3175         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3176                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3177                                         node);
3178         if (!tags->static_rqs) {
3179                 kfree(tags->rqs);
3180                 blk_mq_free_tags(tags);
3181                 return NULL;
3182         }
3183
3184         return tags;
3185 }
3186
3187 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3188                                unsigned int hctx_idx, int node)
3189 {
3190         int ret;
3191
3192         if (set->ops->init_request) {
3193                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3194                 if (ret)
3195                         return ret;
3196         }
3197
3198         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3199         return 0;
3200 }
3201
3202 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3203                             struct blk_mq_tags *tags,
3204                             unsigned int hctx_idx, unsigned int depth)
3205 {
3206         unsigned int i, j, entries_per_page, max_order = 4;
3207         int node = blk_mq_get_hctx_node(set, hctx_idx);
3208         size_t rq_size, left;
3209
3210         if (node == NUMA_NO_NODE)
3211                 node = set->numa_node;
3212
3213         INIT_LIST_HEAD(&tags->page_list);
3214
3215         /*
3216          * rq_size is the size of the request plus driver payload, rounded
3217          * to the cacheline size
3218          */
3219         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3220                                 cache_line_size());
3221         left = rq_size * depth;
3222
3223         for (i = 0; i < depth; ) {
3224                 int this_order = max_order;
3225                 struct page *page;
3226                 int to_do;
3227                 void *p;
3228
3229                 while (this_order && left < order_to_size(this_order - 1))
3230                         this_order--;
3231
3232                 do {
3233                         page = alloc_pages_node(node,
3234                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3235                                 this_order);
3236                         if (page)
3237                                 break;
3238                         if (!this_order--)
3239                                 break;
3240                         if (order_to_size(this_order) < rq_size)
3241                                 break;
3242                 } while (1);
3243
3244                 if (!page)
3245                         goto fail;
3246
3247                 page->private = this_order;
3248                 list_add_tail(&page->lru, &tags->page_list);
3249
3250                 p = page_address(page);
3251                 /*
3252                  * Allow kmemleak to scan these pages as they contain pointers
3253                  * to additional allocations like via ops->init_request().
3254                  */
3255                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3256                 entries_per_page = order_to_size(this_order) / rq_size;
3257                 to_do = min(entries_per_page, depth - i);
3258                 left -= to_do * rq_size;
3259                 for (j = 0; j < to_do; j++) {
3260                         struct request *rq = p;
3261
3262                         tags->static_rqs[i] = rq;
3263                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3264                                 tags->static_rqs[i] = NULL;
3265                                 goto fail;
3266                         }
3267
3268                         p += rq_size;
3269                         i++;
3270                 }
3271         }
3272         return 0;
3273
3274 fail:
3275         blk_mq_free_rqs(set, tags, hctx_idx);
3276         return -ENOMEM;
3277 }
3278
3279 struct rq_iter_data {
3280         struct blk_mq_hw_ctx *hctx;
3281         bool has_rq;
3282 };
3283
3284 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3285 {
3286         struct rq_iter_data *iter_data = data;
3287
3288         if (rq->mq_hctx != iter_data->hctx)
3289                 return true;
3290         iter_data->has_rq = true;
3291         return false;
3292 }
3293
3294 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3295 {
3296         struct blk_mq_tags *tags = hctx->sched_tags ?
3297                         hctx->sched_tags : hctx->tags;
3298         struct rq_iter_data data = {
3299                 .hctx   = hctx,
3300         };
3301
3302         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3303         return data.has_rq;
3304 }
3305
3306 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3307                 struct blk_mq_hw_ctx *hctx)
3308 {
3309         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3310                 return false;
3311         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3312                 return false;
3313         return true;
3314 }
3315
3316 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3317 {
3318         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3319                         struct blk_mq_hw_ctx, cpuhp_online);
3320
3321         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3322             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3323                 return 0;
3324
3325         /*
3326          * Prevent new request from being allocated on the current hctx.
3327          *
3328          * The smp_mb__after_atomic() Pairs with the implied barrier in
3329          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3330          * seen once we return from the tag allocator.
3331          */
3332         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3333         smp_mb__after_atomic();
3334
3335         /*
3336          * Try to grab a reference to the queue and wait for any outstanding
3337          * requests.  If we could not grab a reference the queue has been
3338          * frozen and there are no requests.
3339          */
3340         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3341                 while (blk_mq_hctx_has_requests(hctx))
3342                         msleep(5);
3343                 percpu_ref_put(&hctx->queue->q_usage_counter);
3344         }
3345
3346         return 0;
3347 }
3348
3349 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3350 {
3351         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3352                         struct blk_mq_hw_ctx, cpuhp_online);
3353
3354         if (cpumask_test_cpu(cpu, hctx->cpumask))
3355                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3356         return 0;
3357 }
3358
3359 /*
3360  * 'cpu' is going away. splice any existing rq_list entries from this
3361  * software queue to the hw queue dispatch list, and ensure that it
3362  * gets run.
3363  */
3364 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3365 {
3366         struct blk_mq_hw_ctx *hctx;
3367         struct blk_mq_ctx *ctx;
3368         LIST_HEAD(tmp);
3369         enum hctx_type type;
3370
3371         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3372         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3373                 return 0;
3374
3375         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3376         type = hctx->type;
3377
3378         spin_lock(&ctx->lock);
3379         if (!list_empty(&ctx->rq_lists[type])) {
3380                 list_splice_init(&ctx->rq_lists[type], &tmp);
3381                 blk_mq_hctx_clear_pending(hctx, ctx);
3382         }
3383         spin_unlock(&ctx->lock);
3384
3385         if (list_empty(&tmp))
3386                 return 0;
3387
3388         spin_lock(&hctx->lock);
3389         list_splice_tail_init(&tmp, &hctx->dispatch);
3390         spin_unlock(&hctx->lock);
3391
3392         blk_mq_run_hw_queue(hctx, true);
3393         return 0;
3394 }
3395
3396 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3397 {
3398         if (!(hctx->flags & BLK_MQ_F_STACKING))
3399                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3400                                                     &hctx->cpuhp_online);
3401         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3402                                             &hctx->cpuhp_dead);
3403 }
3404
3405 /*
3406  * Before freeing hw queue, clearing the flush request reference in
3407  * tags->rqs[] for avoiding potential UAF.
3408  */
3409 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3410                 unsigned int queue_depth, struct request *flush_rq)
3411 {
3412         int i;
3413         unsigned long flags;
3414
3415         /* The hw queue may not be mapped yet */
3416         if (!tags)
3417                 return;
3418
3419         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3420
3421         for (i = 0; i < queue_depth; i++)
3422                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3423
3424         /*
3425          * Wait until all pending iteration is done.
3426          *
3427          * Request reference is cleared and it is guaranteed to be observed
3428          * after the ->lock is released.
3429          */
3430         spin_lock_irqsave(&tags->lock, flags);
3431         spin_unlock_irqrestore(&tags->lock, flags);
3432 }
3433
3434 /* hctx->ctxs will be freed in queue's release handler */
3435 static void blk_mq_exit_hctx(struct request_queue *q,
3436                 struct blk_mq_tag_set *set,
3437                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3438 {
3439         struct request *flush_rq = hctx->fq->flush_rq;
3440
3441         if (blk_mq_hw_queue_mapped(hctx))
3442                 blk_mq_tag_idle(hctx);
3443
3444         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3445                         set->queue_depth, flush_rq);
3446         if (set->ops->exit_request)
3447                 set->ops->exit_request(set, flush_rq, hctx_idx);
3448
3449         if (set->ops->exit_hctx)
3450                 set->ops->exit_hctx(hctx, hctx_idx);
3451
3452         blk_mq_remove_cpuhp(hctx);
3453
3454         xa_erase(&q->hctx_table, hctx_idx);
3455
3456         spin_lock(&q->unused_hctx_lock);
3457         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3458         spin_unlock(&q->unused_hctx_lock);
3459 }
3460
3461 static void blk_mq_exit_hw_queues(struct request_queue *q,
3462                 struct blk_mq_tag_set *set, int nr_queue)
3463 {
3464         struct blk_mq_hw_ctx *hctx;
3465         unsigned long i;
3466
3467         queue_for_each_hw_ctx(q, hctx, i) {
3468                 if (i == nr_queue)
3469                         break;
3470                 blk_mq_exit_hctx(q, set, hctx, i);
3471         }
3472 }
3473
3474 static int blk_mq_init_hctx(struct request_queue *q,
3475                 struct blk_mq_tag_set *set,
3476                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3477 {
3478         hctx->queue_num = hctx_idx;
3479
3480         if (!(hctx->flags & BLK_MQ_F_STACKING))
3481                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3482                                 &hctx->cpuhp_online);
3483         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3484
3485         hctx->tags = set->tags[hctx_idx];
3486
3487         if (set->ops->init_hctx &&
3488             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3489                 goto unregister_cpu_notifier;
3490
3491         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3492                                 hctx->numa_node))
3493                 goto exit_hctx;
3494
3495         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3496                 goto exit_flush_rq;
3497
3498         return 0;
3499
3500  exit_flush_rq:
3501         if (set->ops->exit_request)
3502                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3503  exit_hctx:
3504         if (set->ops->exit_hctx)
3505                 set->ops->exit_hctx(hctx, hctx_idx);
3506  unregister_cpu_notifier:
3507         blk_mq_remove_cpuhp(hctx);
3508         return -1;
3509 }
3510
3511 static struct blk_mq_hw_ctx *
3512 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3513                 int node)
3514 {
3515         struct blk_mq_hw_ctx *hctx;
3516         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3517
3518         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3519         if (!hctx)
3520                 goto fail_alloc_hctx;
3521
3522         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3523                 goto free_hctx;
3524
3525         atomic_set(&hctx->nr_active, 0);
3526         if (node == NUMA_NO_NODE)
3527                 node = set->numa_node;
3528         hctx->numa_node = node;
3529
3530         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3531         spin_lock_init(&hctx->lock);
3532         INIT_LIST_HEAD(&hctx->dispatch);
3533         hctx->queue = q;
3534         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3535
3536         INIT_LIST_HEAD(&hctx->hctx_list);
3537
3538         /*
3539          * Allocate space for all possible cpus to avoid allocation at
3540          * runtime
3541          */
3542         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3543                         gfp, node);
3544         if (!hctx->ctxs)
3545                 goto free_cpumask;
3546
3547         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3548                                 gfp, node, false, false))
3549                 goto free_ctxs;
3550         hctx->nr_ctx = 0;
3551
3552         spin_lock_init(&hctx->dispatch_wait_lock);
3553         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3554         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3555
3556         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3557         if (!hctx->fq)
3558                 goto free_bitmap;
3559
3560         blk_mq_hctx_kobj_init(hctx);
3561
3562         return hctx;
3563
3564  free_bitmap:
3565         sbitmap_free(&hctx->ctx_map);
3566  free_ctxs:
3567         kfree(hctx->ctxs);
3568  free_cpumask:
3569         free_cpumask_var(hctx->cpumask);
3570  free_hctx:
3571         kfree(hctx);
3572  fail_alloc_hctx:
3573         return NULL;
3574 }
3575
3576 static void blk_mq_init_cpu_queues(struct request_queue *q,
3577                                    unsigned int nr_hw_queues)
3578 {
3579         struct blk_mq_tag_set *set = q->tag_set;
3580         unsigned int i, j;
3581
3582         for_each_possible_cpu(i) {
3583                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3584                 struct blk_mq_hw_ctx *hctx;
3585                 int k;
3586
3587                 __ctx->cpu = i;
3588                 spin_lock_init(&__ctx->lock);
3589                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3590                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3591
3592                 __ctx->queue = q;
3593
3594                 /*
3595                  * Set local node, IFF we have more than one hw queue. If
3596                  * not, we remain on the home node of the device
3597                  */
3598                 for (j = 0; j < set->nr_maps; j++) {
3599                         hctx = blk_mq_map_queue_type(q, j, i);
3600                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3601                                 hctx->numa_node = cpu_to_node(i);
3602                 }
3603         }
3604 }
3605
3606 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3607                                              unsigned int hctx_idx,
3608                                              unsigned int depth)
3609 {
3610         struct blk_mq_tags *tags;
3611         int ret;
3612
3613         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3614         if (!tags)
3615                 return NULL;
3616
3617         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3618         if (ret) {
3619                 blk_mq_free_rq_map(tags);
3620                 return NULL;
3621         }
3622
3623         return tags;
3624 }
3625
3626 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3627                                        int hctx_idx)
3628 {
3629         if (blk_mq_is_shared_tags(set->flags)) {
3630                 set->tags[hctx_idx] = set->shared_tags;
3631
3632                 return true;
3633         }
3634
3635         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3636                                                        set->queue_depth);
3637
3638         return set->tags[hctx_idx];
3639 }
3640
3641 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3642                              struct blk_mq_tags *tags,
3643                              unsigned int hctx_idx)
3644 {
3645         if (tags) {
3646                 blk_mq_free_rqs(set, tags, hctx_idx);
3647                 blk_mq_free_rq_map(tags);
3648         }
3649 }
3650
3651 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3652                                       unsigned int hctx_idx)
3653 {
3654         if (!blk_mq_is_shared_tags(set->flags))
3655                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3656
3657         set->tags[hctx_idx] = NULL;
3658 }
3659
3660 static void blk_mq_map_swqueue(struct request_queue *q)
3661 {
3662         unsigned int j, hctx_idx;
3663         unsigned long i;
3664         struct blk_mq_hw_ctx *hctx;
3665         struct blk_mq_ctx *ctx;
3666         struct blk_mq_tag_set *set = q->tag_set;
3667
3668         queue_for_each_hw_ctx(q, hctx, i) {
3669                 cpumask_clear(hctx->cpumask);
3670                 hctx->nr_ctx = 0;
3671                 hctx->dispatch_from = NULL;
3672         }
3673
3674         /*
3675          * Map software to hardware queues.
3676          *
3677          * If the cpu isn't present, the cpu is mapped to first hctx.
3678          */
3679         for_each_possible_cpu(i) {
3680
3681                 ctx = per_cpu_ptr(q->queue_ctx, i);
3682                 for (j = 0; j < set->nr_maps; j++) {
3683                         if (!set->map[j].nr_queues) {
3684                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3685                                                 HCTX_TYPE_DEFAULT, i);
3686                                 continue;
3687                         }
3688                         hctx_idx = set->map[j].mq_map[i];
3689                         /* unmapped hw queue can be remapped after CPU topo changed */
3690                         if (!set->tags[hctx_idx] &&
3691                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3692                                 /*
3693                                  * If tags initialization fail for some hctx,
3694                                  * that hctx won't be brought online.  In this
3695                                  * case, remap the current ctx to hctx[0] which
3696                                  * is guaranteed to always have tags allocated
3697                                  */
3698                                 set->map[j].mq_map[i] = 0;
3699                         }
3700
3701                         hctx = blk_mq_map_queue_type(q, j, i);
3702                         ctx->hctxs[j] = hctx;
3703                         /*
3704                          * If the CPU is already set in the mask, then we've
3705                          * mapped this one already. This can happen if
3706                          * devices share queues across queue maps.
3707                          */
3708                         if (cpumask_test_cpu(i, hctx->cpumask))
3709                                 continue;
3710
3711                         cpumask_set_cpu(i, hctx->cpumask);
3712                         hctx->type = j;
3713                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3714                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3715
3716                         /*
3717                          * If the nr_ctx type overflows, we have exceeded the
3718                          * amount of sw queues we can support.
3719                          */
3720                         BUG_ON(!hctx->nr_ctx);
3721                 }
3722
3723                 for (; j < HCTX_MAX_TYPES; j++)
3724                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3725                                         HCTX_TYPE_DEFAULT, i);
3726         }
3727
3728         queue_for_each_hw_ctx(q, hctx, i) {
3729                 /*
3730                  * If no software queues are mapped to this hardware queue,
3731                  * disable it and free the request entries.
3732                  */
3733                 if (!hctx->nr_ctx) {
3734                         /* Never unmap queue 0.  We need it as a
3735                          * fallback in case of a new remap fails
3736                          * allocation
3737                          */
3738                         if (i)
3739                                 __blk_mq_free_map_and_rqs(set, i);
3740
3741                         hctx->tags = NULL;
3742                         continue;
3743                 }
3744
3745                 hctx->tags = set->tags[i];
3746                 WARN_ON(!hctx->tags);
3747
3748                 /*
3749                  * Set the map size to the number of mapped software queues.
3750                  * This is more accurate and more efficient than looping
3751                  * over all possibly mapped software queues.
3752                  */
3753                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3754
3755                 /*
3756                  * Initialize batch roundrobin counts
3757                  */
3758                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3759                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3760         }
3761 }
3762
3763 /*
3764  * Caller needs to ensure that we're either frozen/quiesced, or that
3765  * the queue isn't live yet.
3766  */
3767 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3768 {
3769         struct blk_mq_hw_ctx *hctx;
3770         unsigned long i;
3771
3772         queue_for_each_hw_ctx(q, hctx, i) {
3773                 if (shared) {
3774                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3775                 } else {
3776                         blk_mq_tag_idle(hctx);
3777                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3778                 }
3779         }
3780 }
3781
3782 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3783                                          bool shared)
3784 {
3785         struct request_queue *q;
3786
3787         lockdep_assert_held(&set->tag_list_lock);
3788
3789         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3790                 blk_mq_freeze_queue(q);
3791                 queue_set_hctx_shared(q, shared);
3792                 blk_mq_unfreeze_queue(q);
3793         }
3794 }
3795
3796 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3797 {
3798         struct blk_mq_tag_set *set = q->tag_set;
3799
3800         mutex_lock(&set->tag_list_lock);
3801         list_del(&q->tag_set_list);
3802         if (list_is_singular(&set->tag_list)) {
3803                 /* just transitioned to unshared */
3804                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3805                 /* update existing queue */
3806                 blk_mq_update_tag_set_shared(set, false);
3807         }
3808         mutex_unlock(&set->tag_list_lock);
3809         INIT_LIST_HEAD(&q->tag_set_list);
3810 }
3811
3812 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3813                                      struct request_queue *q)
3814 {
3815         mutex_lock(&set->tag_list_lock);
3816
3817         /*
3818          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3819          */
3820         if (!list_empty(&set->tag_list) &&
3821             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3822                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3823                 /* update existing queue */
3824                 blk_mq_update_tag_set_shared(set, true);
3825         }
3826         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3827                 queue_set_hctx_shared(q, true);
3828         list_add_tail(&q->tag_set_list, &set->tag_list);
3829
3830         mutex_unlock(&set->tag_list_lock);
3831 }
3832
3833 /* All allocations will be freed in release handler of q->mq_kobj */
3834 static int blk_mq_alloc_ctxs(struct request_queue *q)
3835 {
3836         struct blk_mq_ctxs *ctxs;
3837         int cpu;
3838
3839         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3840         if (!ctxs)
3841                 return -ENOMEM;
3842
3843         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3844         if (!ctxs->queue_ctx)
3845                 goto fail;
3846
3847         for_each_possible_cpu(cpu) {
3848                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3849                 ctx->ctxs = ctxs;
3850         }
3851
3852         q->mq_kobj = &ctxs->kobj;
3853         q->queue_ctx = ctxs->queue_ctx;
3854
3855         return 0;
3856  fail:
3857         kfree(ctxs);
3858         return -ENOMEM;
3859 }
3860
3861 /*
3862  * It is the actual release handler for mq, but we do it from
3863  * request queue's release handler for avoiding use-after-free
3864  * and headache because q->mq_kobj shouldn't have been introduced,
3865  * but we can't group ctx/kctx kobj without it.
3866  */
3867 void blk_mq_release(struct request_queue *q)
3868 {
3869         struct blk_mq_hw_ctx *hctx, *next;
3870         unsigned long i;
3871
3872         queue_for_each_hw_ctx(q, hctx, i)
3873                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3874
3875         /* all hctx are in .unused_hctx_list now */
3876         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3877                 list_del_init(&hctx->hctx_list);
3878                 kobject_put(&hctx->kobj);
3879         }
3880
3881         xa_destroy(&q->hctx_table);
3882
3883         /*
3884          * release .mq_kobj and sw queue's kobject now because
3885          * both share lifetime with request queue.
3886          */
3887         blk_mq_sysfs_deinit(q);
3888 }
3889
3890 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3891                 void *queuedata)
3892 {
3893         struct request_queue *q;
3894         int ret;
3895
3896         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3897         if (!q)
3898                 return ERR_PTR(-ENOMEM);
3899         q->queuedata = queuedata;
3900         ret = blk_mq_init_allocated_queue(set, q);
3901         if (ret) {
3902                 blk_cleanup_queue(q);
3903                 return ERR_PTR(ret);
3904         }
3905         return q;
3906 }
3907
3908 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3909 {
3910         return blk_mq_init_queue_data(set, NULL);
3911 }
3912 EXPORT_SYMBOL(blk_mq_init_queue);
3913
3914 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3915                 struct lock_class_key *lkclass)
3916 {
3917         struct request_queue *q;
3918         struct gendisk *disk;
3919
3920         q = blk_mq_init_queue_data(set, queuedata);
3921         if (IS_ERR(q))
3922                 return ERR_CAST(q);
3923
3924         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3925         if (!disk) {
3926                 blk_cleanup_queue(q);
3927                 return ERR_PTR(-ENOMEM);
3928         }
3929         return disk;
3930 }
3931 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3932
3933 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3934                 struct blk_mq_tag_set *set, struct request_queue *q,
3935                 int hctx_idx, int node)
3936 {
3937         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3938
3939         /* reuse dead hctx first */
3940         spin_lock(&q->unused_hctx_lock);
3941         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3942                 if (tmp->numa_node == node) {
3943                         hctx = tmp;
3944                         break;
3945                 }
3946         }
3947         if (hctx)
3948                 list_del_init(&hctx->hctx_list);
3949         spin_unlock(&q->unused_hctx_lock);
3950
3951         if (!hctx)
3952                 hctx = blk_mq_alloc_hctx(q, set, node);
3953         if (!hctx)
3954                 goto fail;
3955
3956         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3957                 goto free_hctx;
3958
3959         return hctx;
3960
3961  free_hctx:
3962         kobject_put(&hctx->kobj);
3963  fail:
3964         return NULL;
3965 }
3966
3967 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3968                                                 struct request_queue *q)
3969 {
3970         struct blk_mq_hw_ctx *hctx;
3971         unsigned long i, j;
3972
3973         /* protect against switching io scheduler  */
3974         mutex_lock(&q->sysfs_lock);
3975         for (i = 0; i < set->nr_hw_queues; i++) {
3976                 int old_node;
3977                 int node = blk_mq_get_hctx_node(set, i);
3978                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3979
3980                 if (old_hctx) {
3981                         old_node = old_hctx->numa_node;
3982                         blk_mq_exit_hctx(q, set, old_hctx, i);
3983                 }
3984
3985                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3986                         if (!old_hctx)
3987                                 break;
3988                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3989                                         node, old_node);
3990                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3991                         WARN_ON_ONCE(!hctx);
3992                 }
3993         }
3994         /*
3995          * Increasing nr_hw_queues fails. Free the newly allocated
3996          * hctxs and keep the previous q->nr_hw_queues.
3997          */
3998         if (i != set->nr_hw_queues) {
3999                 j = q->nr_hw_queues;
4000         } else {
4001                 j = i;
4002                 q->nr_hw_queues = set->nr_hw_queues;
4003         }
4004
4005         xa_for_each_start(&q->hctx_table, j, hctx, j)
4006                 blk_mq_exit_hctx(q, set, hctx, j);
4007         mutex_unlock(&q->sysfs_lock);
4008 }
4009
4010 static void blk_mq_update_poll_flag(struct request_queue *q)
4011 {
4012         struct blk_mq_tag_set *set = q->tag_set;
4013
4014         if (set->nr_maps > HCTX_TYPE_POLL &&
4015             set->map[HCTX_TYPE_POLL].nr_queues)
4016                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4017         else
4018                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4019 }
4020
4021 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4022                 struct request_queue *q)
4023 {
4024         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4025                         !!(set->flags & BLK_MQ_F_BLOCKING));
4026
4027         /* mark the queue as mq asap */
4028         q->mq_ops = set->ops;
4029
4030         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4031                                              blk_mq_poll_stats_bkt,
4032                                              BLK_MQ_POLL_STATS_BKTS, q);
4033         if (!q->poll_cb)
4034                 goto err_exit;
4035
4036         if (blk_mq_alloc_ctxs(q))
4037                 goto err_poll;
4038
4039         /* init q->mq_kobj and sw queues' kobjects */
4040         blk_mq_sysfs_init(q);
4041
4042         INIT_LIST_HEAD(&q->unused_hctx_list);
4043         spin_lock_init(&q->unused_hctx_lock);
4044
4045         xa_init(&q->hctx_table);
4046
4047         blk_mq_realloc_hw_ctxs(set, q);
4048         if (!q->nr_hw_queues)
4049                 goto err_hctxs;
4050
4051         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4052         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4053
4054         q->tag_set = set;
4055
4056         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4057         blk_mq_update_poll_flag(q);
4058
4059         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4060         INIT_LIST_HEAD(&q->requeue_list);
4061         spin_lock_init(&q->requeue_lock);
4062
4063         q->nr_requests = set->queue_depth;
4064
4065         /*
4066          * Default to classic polling
4067          */
4068         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4069
4070         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4071         blk_mq_add_queue_tag_set(set, q);
4072         blk_mq_map_swqueue(q);
4073         return 0;
4074
4075 err_hctxs:
4076         xa_destroy(&q->hctx_table);
4077         q->nr_hw_queues = 0;
4078         blk_mq_sysfs_deinit(q);
4079 err_poll:
4080         blk_stat_free_callback(q->poll_cb);
4081         q->poll_cb = NULL;
4082 err_exit:
4083         q->mq_ops = NULL;
4084         return -ENOMEM;
4085 }
4086 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4087
4088 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4089 void blk_mq_exit_queue(struct request_queue *q)
4090 {
4091         struct blk_mq_tag_set *set = q->tag_set;
4092
4093         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4094         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4095         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4096         blk_mq_del_queue_tag_set(q);
4097 }
4098
4099 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4100 {
4101         int i;
4102
4103         if (blk_mq_is_shared_tags(set->flags)) {
4104                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4105                                                 BLK_MQ_NO_HCTX_IDX,
4106                                                 set->queue_depth);
4107                 if (!set->shared_tags)
4108                         return -ENOMEM;
4109         }
4110
4111         for (i = 0; i < set->nr_hw_queues; i++) {
4112                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4113                         goto out_unwind;
4114                 cond_resched();
4115         }
4116
4117         return 0;
4118
4119 out_unwind:
4120         while (--i >= 0)
4121                 __blk_mq_free_map_and_rqs(set, i);
4122
4123         if (blk_mq_is_shared_tags(set->flags)) {
4124                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4125                                         BLK_MQ_NO_HCTX_IDX);
4126         }
4127
4128         return -ENOMEM;
4129 }
4130
4131 /*
4132  * Allocate the request maps associated with this tag_set. Note that this
4133  * may reduce the depth asked for, if memory is tight. set->queue_depth
4134  * will be updated to reflect the allocated depth.
4135  */
4136 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4137 {
4138         unsigned int depth;
4139         int err;
4140
4141         depth = set->queue_depth;
4142         do {
4143                 err = __blk_mq_alloc_rq_maps(set);
4144                 if (!err)
4145                         break;
4146
4147                 set->queue_depth >>= 1;
4148                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4149                         err = -ENOMEM;
4150                         break;
4151                 }
4152         } while (set->queue_depth);
4153
4154         if (!set->queue_depth || err) {
4155                 pr_err("blk-mq: failed to allocate request map\n");
4156                 return -ENOMEM;
4157         }
4158
4159         if (depth != set->queue_depth)
4160                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4161                                                 depth, set->queue_depth);
4162
4163         return 0;
4164 }
4165
4166 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4167 {
4168         /*
4169          * blk_mq_map_queues() and multiple .map_queues() implementations
4170          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4171          * number of hardware queues.
4172          */
4173         if (set->nr_maps == 1)
4174                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4175
4176         if (set->ops->map_queues && !is_kdump_kernel()) {
4177                 int i;
4178
4179                 /*
4180                  * transport .map_queues is usually done in the following
4181                  * way:
4182                  *
4183                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4184                  *      mask = get_cpu_mask(queue)
4185                  *      for_each_cpu(cpu, mask)
4186                  *              set->map[x].mq_map[cpu] = queue;
4187                  * }
4188                  *
4189                  * When we need to remap, the table has to be cleared for
4190                  * killing stale mapping since one CPU may not be mapped
4191                  * to any hw queue.
4192                  */
4193                 for (i = 0; i < set->nr_maps; i++)
4194                         blk_mq_clear_mq_map(&set->map[i]);
4195
4196                 return set->ops->map_queues(set);
4197         } else {
4198                 BUG_ON(set->nr_maps > 1);
4199                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4200         }
4201 }
4202
4203 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4204                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4205 {
4206         struct blk_mq_tags **new_tags;
4207
4208         if (cur_nr_hw_queues >= new_nr_hw_queues)
4209                 return 0;
4210
4211         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4212                                 GFP_KERNEL, set->numa_node);
4213         if (!new_tags)
4214                 return -ENOMEM;
4215
4216         if (set->tags)
4217                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4218                        sizeof(*set->tags));
4219         kfree(set->tags);
4220         set->tags = new_tags;
4221         set->nr_hw_queues = new_nr_hw_queues;
4222
4223         return 0;
4224 }
4225
4226 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4227                                 int new_nr_hw_queues)
4228 {
4229         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4230 }
4231
4232 /*
4233  * Alloc a tag set to be associated with one or more request queues.
4234  * May fail with EINVAL for various error conditions. May adjust the
4235  * requested depth down, if it's too large. In that case, the set
4236  * value will be stored in set->queue_depth.
4237  */
4238 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4239 {
4240         int i, ret;
4241
4242         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4243
4244         if (!set->nr_hw_queues)
4245                 return -EINVAL;
4246         if (!set->queue_depth)
4247                 return -EINVAL;
4248         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4249                 return -EINVAL;
4250
4251         if (!set->ops->queue_rq)
4252                 return -EINVAL;
4253
4254         if (!set->ops->get_budget ^ !set->ops->put_budget)
4255                 return -EINVAL;
4256
4257         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4258                 pr_info("blk-mq: reduced tag depth to %u\n",
4259                         BLK_MQ_MAX_DEPTH);
4260                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4261         }
4262
4263         if (!set->nr_maps)
4264                 set->nr_maps = 1;
4265         else if (set->nr_maps > HCTX_MAX_TYPES)
4266                 return -EINVAL;
4267
4268         /*
4269          * If a crashdump is active, then we are potentially in a very
4270          * memory constrained environment. Limit us to 1 queue and
4271          * 64 tags to prevent using too much memory.
4272          */
4273         if (is_kdump_kernel()) {
4274                 set->nr_hw_queues = 1;
4275                 set->nr_maps = 1;
4276                 set->queue_depth = min(64U, set->queue_depth);
4277         }
4278         /*
4279          * There is no use for more h/w queues than cpus if we just have
4280          * a single map
4281          */
4282         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4283                 set->nr_hw_queues = nr_cpu_ids;
4284
4285         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4286                 return -ENOMEM;
4287
4288         ret = -ENOMEM;
4289         for (i = 0; i < set->nr_maps; i++) {
4290                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4291                                                   sizeof(set->map[i].mq_map[0]),
4292                                                   GFP_KERNEL, set->numa_node);
4293                 if (!set->map[i].mq_map)
4294                         goto out_free_mq_map;
4295                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4296         }
4297
4298         ret = blk_mq_update_queue_map(set);
4299         if (ret)
4300                 goto out_free_mq_map;
4301
4302         ret = blk_mq_alloc_set_map_and_rqs(set);
4303         if (ret)
4304                 goto out_free_mq_map;
4305
4306         mutex_init(&set->tag_list_lock);
4307         INIT_LIST_HEAD(&set->tag_list);
4308
4309         return 0;
4310
4311 out_free_mq_map:
4312         for (i = 0; i < set->nr_maps; i++) {
4313                 kfree(set->map[i].mq_map);
4314                 set->map[i].mq_map = NULL;
4315         }
4316         kfree(set->tags);
4317         set->tags = NULL;
4318         return ret;
4319 }
4320 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4321
4322 /* allocate and initialize a tagset for a simple single-queue device */
4323 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4324                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4325                 unsigned int set_flags)
4326 {
4327         memset(set, 0, sizeof(*set));
4328         set->ops = ops;
4329         set->nr_hw_queues = 1;
4330         set->nr_maps = 1;
4331         set->queue_depth = queue_depth;
4332         set->numa_node = NUMA_NO_NODE;
4333         set->flags = set_flags;
4334         return blk_mq_alloc_tag_set(set);
4335 }
4336 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4337
4338 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4339 {
4340         int i, j;
4341
4342         for (i = 0; i < set->nr_hw_queues; i++)
4343                 __blk_mq_free_map_and_rqs(set, i);
4344
4345         if (blk_mq_is_shared_tags(set->flags)) {
4346                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4347                                         BLK_MQ_NO_HCTX_IDX);
4348         }
4349
4350         for (j = 0; j < set->nr_maps; j++) {
4351                 kfree(set->map[j].mq_map);
4352                 set->map[j].mq_map = NULL;
4353         }
4354
4355         kfree(set->tags);
4356         set->tags = NULL;
4357 }
4358 EXPORT_SYMBOL(blk_mq_free_tag_set);
4359
4360 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4361 {
4362         struct blk_mq_tag_set *set = q->tag_set;
4363         struct blk_mq_hw_ctx *hctx;
4364         int ret;
4365         unsigned long i;
4366
4367         if (!set)
4368                 return -EINVAL;
4369
4370         if (q->nr_requests == nr)
4371                 return 0;
4372
4373         blk_mq_freeze_queue(q);
4374         blk_mq_quiesce_queue(q);
4375
4376         ret = 0;
4377         queue_for_each_hw_ctx(q, hctx, i) {
4378                 if (!hctx->tags)
4379                         continue;
4380                 /*
4381                  * If we're using an MQ scheduler, just update the scheduler
4382                  * queue depth. This is similar to what the old code would do.
4383                  */
4384                 if (hctx->sched_tags) {
4385                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4386                                                       nr, true);
4387                 } else {
4388                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4389                                                       false);
4390                 }
4391                 if (ret)
4392                         break;
4393                 if (q->elevator && q->elevator->type->ops.depth_updated)
4394                         q->elevator->type->ops.depth_updated(hctx);
4395         }
4396         if (!ret) {
4397                 q->nr_requests = nr;
4398                 if (blk_mq_is_shared_tags(set->flags)) {
4399                         if (q->elevator)
4400                                 blk_mq_tag_update_sched_shared_tags(q);
4401                         else
4402                                 blk_mq_tag_resize_shared_tags(set, nr);
4403                 }
4404         }
4405
4406         blk_mq_unquiesce_queue(q);
4407         blk_mq_unfreeze_queue(q);
4408
4409         return ret;
4410 }
4411
4412 /*
4413  * request_queue and elevator_type pair.
4414  * It is just used by __blk_mq_update_nr_hw_queues to cache
4415  * the elevator_type associated with a request_queue.
4416  */
4417 struct blk_mq_qe_pair {
4418         struct list_head node;
4419         struct request_queue *q;
4420         struct elevator_type *type;
4421 };
4422
4423 /*
4424  * Cache the elevator_type in qe pair list and switch the
4425  * io scheduler to 'none'
4426  */
4427 static bool blk_mq_elv_switch_none(struct list_head *head,
4428                 struct request_queue *q)
4429 {
4430         struct blk_mq_qe_pair *qe;
4431
4432         if (!q->elevator)
4433                 return true;
4434
4435         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4436         if (!qe)
4437                 return false;
4438
4439         INIT_LIST_HEAD(&qe->node);
4440         qe->q = q;
4441         qe->type = q->elevator->type;
4442         list_add(&qe->node, head);
4443
4444         mutex_lock(&q->sysfs_lock);
4445         /*
4446          * After elevator_switch_mq, the previous elevator_queue will be
4447          * released by elevator_release. The reference of the io scheduler
4448          * module get by elevator_get will also be put. So we need to get
4449          * a reference of the io scheduler module here to prevent it to be
4450          * removed.
4451          */
4452         __module_get(qe->type->elevator_owner);
4453         elevator_switch_mq(q, NULL);
4454         mutex_unlock(&q->sysfs_lock);
4455
4456         return true;
4457 }
4458
4459 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4460                                                 struct request_queue *q)
4461 {
4462         struct blk_mq_qe_pair *qe;
4463
4464         list_for_each_entry(qe, head, node)
4465                 if (qe->q == q)
4466                         return qe;
4467
4468         return NULL;
4469 }
4470
4471 static void blk_mq_elv_switch_back(struct list_head *head,
4472                                   struct request_queue *q)
4473 {
4474         struct blk_mq_qe_pair *qe;
4475         struct elevator_type *t;
4476
4477         qe = blk_lookup_qe_pair(head, q);
4478         if (!qe)
4479                 return;
4480         t = qe->type;
4481         list_del(&qe->node);
4482         kfree(qe);
4483
4484         mutex_lock(&q->sysfs_lock);
4485         elevator_switch_mq(q, t);
4486         mutex_unlock(&q->sysfs_lock);
4487 }
4488
4489 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4490                                                         int nr_hw_queues)
4491 {
4492         struct request_queue *q;
4493         LIST_HEAD(head);
4494         int prev_nr_hw_queues;
4495
4496         lockdep_assert_held(&set->tag_list_lock);
4497
4498         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4499                 nr_hw_queues = nr_cpu_ids;
4500         if (nr_hw_queues < 1)
4501                 return;
4502         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4503                 return;
4504
4505         list_for_each_entry(q, &set->tag_list, tag_set_list)
4506                 blk_mq_freeze_queue(q);
4507         /*
4508          * Switch IO scheduler to 'none', cleaning up the data associated
4509          * with the previous scheduler. We will switch back once we are done
4510          * updating the new sw to hw queue mappings.
4511          */
4512         list_for_each_entry(q, &set->tag_list, tag_set_list)
4513                 if (!blk_mq_elv_switch_none(&head, q))
4514                         goto switch_back;
4515
4516         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4517                 blk_mq_debugfs_unregister_hctxs(q);
4518                 blk_mq_sysfs_unregister(q);
4519         }
4520
4521         prev_nr_hw_queues = set->nr_hw_queues;
4522         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4523             0)
4524                 goto reregister;
4525
4526         set->nr_hw_queues = nr_hw_queues;
4527 fallback:
4528         blk_mq_update_queue_map(set);
4529         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4530                 blk_mq_realloc_hw_ctxs(set, q);
4531                 blk_mq_update_poll_flag(q);
4532                 if (q->nr_hw_queues != set->nr_hw_queues) {
4533                         int i = prev_nr_hw_queues;
4534
4535                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4536                                         nr_hw_queues, prev_nr_hw_queues);
4537                         for (; i < set->nr_hw_queues; i++)
4538                                 __blk_mq_free_map_and_rqs(set, i);
4539
4540                         set->nr_hw_queues = prev_nr_hw_queues;
4541                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4542                         goto fallback;
4543                 }
4544                 blk_mq_map_swqueue(q);
4545         }
4546
4547 reregister:
4548         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4549                 blk_mq_sysfs_register(q);
4550                 blk_mq_debugfs_register_hctxs(q);
4551         }
4552
4553 switch_back:
4554         list_for_each_entry(q, &set->tag_list, tag_set_list)
4555                 blk_mq_elv_switch_back(&head, q);
4556
4557         list_for_each_entry(q, &set->tag_list, tag_set_list)
4558                 blk_mq_unfreeze_queue(q);
4559 }
4560
4561 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4562 {
4563         mutex_lock(&set->tag_list_lock);
4564         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4565         mutex_unlock(&set->tag_list_lock);
4566 }
4567 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4568
4569 /* Enable polling stats and return whether they were already enabled. */
4570 static bool blk_poll_stats_enable(struct request_queue *q)
4571 {
4572         if (q->poll_stat)
4573                 return true;
4574
4575         return blk_stats_alloc_enable(q);
4576 }
4577
4578 static void blk_mq_poll_stats_start(struct request_queue *q)
4579 {
4580         /*
4581          * We don't arm the callback if polling stats are not enabled or the
4582          * callback is already active.
4583          */
4584         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4585                 return;
4586
4587         blk_stat_activate_msecs(q->poll_cb, 100);
4588 }
4589
4590 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4591 {
4592         struct request_queue *q = cb->data;
4593         int bucket;
4594
4595         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4596                 if (cb->stat[bucket].nr_samples)
4597                         q->poll_stat[bucket] = cb->stat[bucket];
4598         }
4599 }
4600
4601 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4602                                        struct request *rq)
4603 {
4604         unsigned long ret = 0;
4605         int bucket;
4606
4607         /*
4608          * If stats collection isn't on, don't sleep but turn it on for
4609          * future users
4610          */
4611         if (!blk_poll_stats_enable(q))
4612                 return 0;
4613
4614         /*
4615          * As an optimistic guess, use half of the mean service time
4616          * for this type of request. We can (and should) make this smarter.
4617          * For instance, if the completion latencies are tight, we can
4618          * get closer than just half the mean. This is especially
4619          * important on devices where the completion latencies are longer
4620          * than ~10 usec. We do use the stats for the relevant IO size
4621          * if available which does lead to better estimates.
4622          */
4623         bucket = blk_mq_poll_stats_bkt(rq);
4624         if (bucket < 0)
4625                 return ret;
4626
4627         if (q->poll_stat[bucket].nr_samples)
4628                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4629
4630         return ret;
4631 }
4632
4633 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4634 {
4635         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4636         struct request *rq = blk_qc_to_rq(hctx, qc);
4637         struct hrtimer_sleeper hs;
4638         enum hrtimer_mode mode;
4639         unsigned int nsecs;
4640         ktime_t kt;
4641
4642         /*
4643          * If a request has completed on queue that uses an I/O scheduler, we
4644          * won't get back a request from blk_qc_to_rq.
4645          */
4646         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4647                 return false;
4648
4649         /*
4650          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4651          *
4652          *  0:  use half of prev avg
4653          * >0:  use this specific value
4654          */
4655         if (q->poll_nsec > 0)
4656                 nsecs = q->poll_nsec;
4657         else
4658                 nsecs = blk_mq_poll_nsecs(q, rq);
4659
4660         if (!nsecs)
4661                 return false;
4662
4663         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4664
4665         /*
4666          * This will be replaced with the stats tracking code, using
4667          * 'avg_completion_time / 2' as the pre-sleep target.
4668          */
4669         kt = nsecs;
4670
4671         mode = HRTIMER_MODE_REL;
4672         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4673         hrtimer_set_expires(&hs.timer, kt);
4674
4675         do {
4676                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4677                         break;
4678                 set_current_state(TASK_UNINTERRUPTIBLE);
4679                 hrtimer_sleeper_start_expires(&hs, mode);
4680                 if (hs.task)
4681                         io_schedule();
4682                 hrtimer_cancel(&hs.timer);
4683                 mode = HRTIMER_MODE_ABS;
4684         } while (hs.task && !signal_pending(current));
4685
4686         __set_current_state(TASK_RUNNING);
4687         destroy_hrtimer_on_stack(&hs.timer);
4688
4689         /*
4690          * If we sleep, have the caller restart the poll loop to reset the
4691          * state.  Like for the other success return cases, the caller is
4692          * responsible for checking if the IO completed.  If the IO isn't
4693          * complete, we'll get called again and will go straight to the busy
4694          * poll loop.
4695          */
4696         return true;
4697 }
4698
4699 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4700                                struct io_comp_batch *iob, unsigned int flags)
4701 {
4702         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4703         long state = get_current_state();
4704         int ret;
4705
4706         do {
4707                 ret = q->mq_ops->poll(hctx, iob);
4708                 if (ret > 0) {
4709                         __set_current_state(TASK_RUNNING);
4710                         return ret;
4711                 }
4712
4713                 if (signal_pending_state(state, current))
4714                         __set_current_state(TASK_RUNNING);
4715                 if (task_is_running(current))
4716                         return 1;
4717
4718                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4719                         break;
4720                 cpu_relax();
4721         } while (!need_resched());
4722
4723         __set_current_state(TASK_RUNNING);
4724         return 0;
4725 }
4726
4727 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4728                 unsigned int flags)
4729 {
4730         if (!(flags & BLK_POLL_NOSLEEP) &&
4731             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4732                 if (blk_mq_poll_hybrid(q, cookie))
4733                         return 1;
4734         }
4735         return blk_mq_poll_classic(q, cookie, iob, flags);
4736 }
4737
4738 unsigned int blk_mq_rq_cpu(struct request *rq)
4739 {
4740         return rq->mq_ctx->cpu;
4741 }
4742 EXPORT_SYMBOL(blk_mq_rq_cpu);
4743
4744 void blk_mq_cancel_work_sync(struct request_queue *q)
4745 {
4746         if (queue_is_mq(q)) {
4747                 struct blk_mq_hw_ctx *hctx;
4748                 unsigned long i;
4749
4750                 cancel_delayed_work_sync(&q->requeue_work);
4751
4752                 queue_for_each_hw_ctx(q, hctx, i)
4753                         cancel_delayed_work_sync(&hctx->run_work);
4754         }
4755 }
4756
4757 static int __init blk_mq_init(void)
4758 {
4759         int i;
4760
4761         for_each_possible_cpu(i)
4762                 init_llist_head(&per_cpu(blk_cpu_done, i));
4763         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4764
4765         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4766                                   "block/softirq:dead", NULL,
4767                                   blk_softirq_cpu_dead);
4768         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4769                                 blk_mq_hctx_notify_dead);
4770         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4771                                 blk_mq_hctx_notify_online,
4772                                 blk_mq_hctx_notify_offline);
4773         return 0;
4774 }
4775 subsys_initcall(blk_mq_init);