block: remove the per-bio/request write hint
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78                 blk_qc_t qc)
79 {
80         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82         if (qc & BLK_QC_T_INTERNAL)
83                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84         return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90                 (rq->tag != -1 ?
91                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93
94 /*
95  * Check if any of the ctx, dispatch list or elevator
96  * have pending work in this hardware queue.
97  */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100         return !list_empty_careful(&hctx->dispatch) ||
101                 sbitmap_any_bit_set(&hctx->ctx_map) ||
102                         blk_mq_sched_has_work(hctx);
103 }
104
105 /*
106  * Mark this ctx as having pending work in this hardware queue
107  */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109                                      struct blk_mq_ctx *ctx)
110 {
111         const int bit = ctx->index_hw[hctx->type];
112
113         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114                 sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118                                       struct blk_mq_ctx *ctx)
119 {
120         const int bit = ctx->index_hw[hctx->type];
121
122         sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124
125 struct mq_inflight {
126         struct block_device *part;
127         unsigned int inflight[2];
128 };
129
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131                                   bool reserved)
132 {
133         struct mq_inflight *mi = priv;
134
135         if ((!mi->part->bd_partno || rq->part == mi->part) &&
136             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137                 mi->inflight[rq_data_dir(rq)]++;
138
139         return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143                 struct block_device *part)
144 {
145         struct mq_inflight mi = { .part = part };
146
147         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149         return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153                 unsigned int inflight[2])
154 {
155         struct mq_inflight mi = { .part = part };
156
157         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158         inflight[0] = mi.inflight[0];
159         inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164         mutex_lock(&q->mq_freeze_lock);
165         if (++q->mq_freeze_depth == 1) {
166                 percpu_ref_kill(&q->q_usage_counter);
167                 mutex_unlock(&q->mq_freeze_lock);
168                 if (queue_is_mq(q))
169                         blk_mq_run_hw_queues(q, false);
170         } else {
171                 mutex_unlock(&q->mq_freeze_lock);
172         }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183                                      unsigned long timeout)
184 {
185         return wait_event_timeout(q->mq_freeze_wq,
186                                         percpu_ref_is_zero(&q->q_usage_counter),
187                                         timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197         /*
198          * In the !blk_mq case we are only calling this to kill the
199          * q_usage_counter, otherwise this increases the freeze depth
200          * and waits for it to return to zero.  For this reason there is
201          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202          * exported to drivers as the only user for unfreeze is blk_mq.
203          */
204         blk_freeze_queue_start(q);
205         blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210         /*
211          * ...just an alias to keep freeze and unfreeze actions balanced
212          * in the blk_mq_* namespace
213          */
214         blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220         mutex_lock(&q->mq_freeze_lock);
221         if (force_atomic)
222                 q->q_usage_counter.data->force_atomic = true;
223         q->mq_freeze_depth--;
224         WARN_ON_ONCE(q->mq_freeze_depth < 0);
225         if (!q->mq_freeze_depth) {
226                 percpu_ref_resurrect(&q->q_usage_counter);
227                 wake_up_all(&q->mq_freeze_wq);
228         }
229         mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234         __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&q->queue_lock, flags);
247         if (!q->quiesce_depth++)
248                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249         spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262         if (blk_queue_has_srcu(q))
263                 synchronize_srcu(q->srcu);
264         else
265                 synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269 /**
270  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271  * @q: request queue.
272  *
273  * Note: this function does not prevent that the struct request end_io()
274  * callback function is invoked. Once this function is returned, we make
275  * sure no dispatch can happen until the queue is unquiesced via
276  * blk_mq_unquiesce_queue().
277  */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280         blk_mq_quiesce_queue_nowait(q);
281         blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
285 /*
286  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287  * @q: request queue.
288  *
289  * This function recovers queue into the state before quiescing
290  * which is done by blk_mq_quiesce_queue.
291  */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294         unsigned long flags;
295         bool run_queue = false;
296
297         spin_lock_irqsave(&q->queue_lock, flags);
298         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299                 ;
300         } else if (!--q->quiesce_depth) {
301                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302                 run_queue = true;
303         }
304         spin_unlock_irqrestore(&q->queue_lock, flags);
305
306         /* dispatch requests which are inserted during quiescing */
307         if (run_queue)
308                 blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314         struct blk_mq_hw_ctx *hctx;
315         unsigned int i;
316
317         queue_for_each_hw_ctx(q, hctx, i)
318                 if (blk_mq_hw_queue_mapped(hctx))
319                         blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324         memset(rq, 0, sizeof(*rq));
325
326         INIT_LIST_HEAD(&rq->queuelist);
327         rq->q = q;
328         rq->__sector = (sector_t) -1;
329         INIT_HLIST_NODE(&rq->hash);
330         RB_CLEAR_NODE(&rq->rb_node);
331         rq->tag = BLK_MQ_NO_TAG;
332         rq->internal_tag = BLK_MQ_NO_TAG;
333         rq->start_time_ns = ktime_get_ns();
334         rq->part = NULL;
335         blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342         struct blk_mq_ctx *ctx = data->ctx;
343         struct blk_mq_hw_ctx *hctx = data->hctx;
344         struct request_queue *q = data->q;
345         struct request *rq = tags->static_rqs[tag];
346
347         rq->q = q;
348         rq->mq_ctx = ctx;
349         rq->mq_hctx = hctx;
350         rq->cmd_flags = data->cmd_flags;
351
352         if (data->flags & BLK_MQ_REQ_PM)
353                 data->rq_flags |= RQF_PM;
354         if (blk_queue_io_stat(q))
355                 data->rq_flags |= RQF_IO_STAT;
356         rq->rq_flags = data->rq_flags;
357
358         if (!(data->rq_flags & RQF_ELV)) {
359                 rq->tag = tag;
360                 rq->internal_tag = BLK_MQ_NO_TAG;
361         } else {
362                 rq->tag = BLK_MQ_NO_TAG;
363                 rq->internal_tag = tag;
364         }
365         rq->timeout = 0;
366
367         if (blk_mq_need_time_stamp(rq))
368                 rq->start_time_ns = ktime_get_ns();
369         else
370                 rq->start_time_ns = 0;
371         rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373         rq->alloc_time_ns = alloc_time_ns;
374 #endif
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_ELV) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (!op_is_flush(data->cmd_flags) &&
397                     e->type->ops.prepare_request) {
398                         e->type->ops.prepare_request(rq);
399                         rq->rq_flags |= RQF_ELVPRIV;
400                 }
401         }
402
403         return rq;
404 }
405
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408                 u64 alloc_time_ns)
409 {
410         unsigned int tag, tag_offset;
411         struct blk_mq_tags *tags;
412         struct request *rq;
413         unsigned long tag_mask;
414         int i, nr = 0;
415
416         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417         if (unlikely(!tag_mask))
418                 return NULL;
419
420         tags = blk_mq_tags_from_data(data);
421         for (i = 0; tag_mask; i++) {
422                 if (!(tag_mask & (1UL << i)))
423                         continue;
424                 tag = tag_offset + i;
425                 prefetch(tags->static_rqs[tag]);
426                 tag_mask &= ~(1UL << i);
427                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428                 rq_list_add(data->cached_rq, rq);
429                 nr++;
430         }
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 struct elevator_queue *e = q->elevator;
454
455                 data->rq_flags |= RQF_ELV;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list. Don't include reserved tags in the
460                  * limiting, as it isn't useful.
461                  */
462                 if (!op_is_flush(data->cmd_flags) &&
463                     !blk_op_is_passthrough(data->cmd_flags) &&
464                     e->type->ops.limit_depth &&
465                     !(data->flags & BLK_MQ_REQ_RESERVED))
466                         e->type->ops.limit_depth(data->cmd_flags, data);
467         }
468
469 retry:
470         data->ctx = blk_mq_get_ctx(q);
471         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472         if (!(data->rq_flags & RQF_ELV))
473                 blk_mq_tag_busy(data->hctx);
474
475         /*
476          * Try batched alloc if we want more than 1 tag.
477          */
478         if (data->nr_tags > 1) {
479                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480                 if (rq)
481                         return rq;
482                 data->nr_tags = 1;
483         }
484
485         /*
486          * Waiting allocations only fail because of an inactive hctx.  In that
487          * case just retry the hctx assignment and tag allocation as CPU hotplug
488          * should have migrated us to an online CPU by now.
489          */
490         tag = blk_mq_get_tag(data);
491         if (tag == BLK_MQ_NO_TAG) {
492                 if (data->flags & BLK_MQ_REQ_NOWAIT)
493                         return NULL;
494                 /*
495                  * Give up the CPU and sleep for a random short time to
496                  * ensure that thread using a realtime scheduling class
497                  * are migrated off the CPU, and thus off the hctx that
498                  * is going away.
499                  */
500                 msleep(3);
501                 goto retry;
502         }
503
504         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505                                         alloc_time_ns);
506 }
507
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509                 blk_mq_req_flags_t flags)
510 {
511         struct blk_mq_alloc_data data = {
512                 .q              = q,
513                 .flags          = flags,
514                 .cmd_flags      = op,
515                 .nr_tags        = 1,
516         };
517         struct request *rq;
518         int ret;
519
520         ret = blk_queue_enter(q, flags);
521         if (ret)
522                 return ERR_PTR(ret);
523
524         rq = __blk_mq_alloc_requests(&data);
525         if (!rq)
526                 goto out_queue_exit;
527         rq->__data_len = 0;
528         rq->__sector = (sector_t) -1;
529         rq->bio = rq->biotail = NULL;
530         return rq;
531 out_queue_exit:
532         blk_queue_exit(q);
533         return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540         struct blk_mq_alloc_data data = {
541                 .q              = q,
542                 .flags          = flags,
543                 .cmd_flags      = op,
544                 .nr_tags        = 1,
545         };
546         u64 alloc_time_ns = 0;
547         unsigned int cpu;
548         unsigned int tag;
549         int ret;
550
551         /* alloc_time includes depth and tag waits */
552         if (blk_queue_rq_alloc_time(q))
553                 alloc_time_ns = ktime_get_ns();
554
555         /*
556          * If the tag allocator sleeps we could get an allocation for a
557          * different hardware context.  No need to complicate the low level
558          * allocator for this for the rare use case of a command tied to
559          * a specific queue.
560          */
561         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562                 return ERR_PTR(-EINVAL);
563
564         if (hctx_idx >= q->nr_hw_queues)
565                 return ERR_PTR(-EIO);
566
567         ret = blk_queue_enter(q, flags);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         /*
572          * Check if the hardware context is actually mapped to anything.
573          * If not tell the caller that it should skip this queue.
574          */
575         ret = -EXDEV;
576         data.hctx = q->queue_hw_ctx[hctx_idx];
577         if (!blk_mq_hw_queue_mapped(data.hctx))
578                 goto out_queue_exit;
579         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580         data.ctx = __blk_mq_get_ctx(q, cpu);
581
582         if (!q->elevator)
583                 blk_mq_tag_busy(data.hctx);
584         else
585                 data.rq_flags |= RQF_ELV;
586
587         ret = -EWOULDBLOCK;
588         tag = blk_mq_get_tag(&data);
589         if (tag == BLK_MQ_NO_TAG)
590                 goto out_queue_exit;
591         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592                                         alloc_time_ns);
593
594 out_queue_exit:
595         blk_queue_exit(q);
596         return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
600 static void __blk_mq_free_request(struct request *rq)
601 {
602         struct request_queue *q = rq->q;
603         struct blk_mq_ctx *ctx = rq->mq_ctx;
604         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605         const int sched_tag = rq->internal_tag;
606
607         blk_crypto_free_request(rq);
608         blk_pm_mark_last_busy(rq);
609         rq->mq_hctx = NULL;
610         if (rq->tag != BLK_MQ_NO_TAG)
611                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612         if (sched_tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614         blk_mq_sched_restart(hctx);
615         blk_queue_exit(q);
616 }
617
618 void blk_mq_free_request(struct request *rq)
619 {
620         struct request_queue *q = rq->q;
621         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622
623         if ((rq->rq_flags & RQF_ELVPRIV) &&
624             q->elevator->type->ops.finish_request)
625                 q->elevator->type->ops.finish_request(rq);
626
627         if (rq->rq_flags & RQF_MQ_INFLIGHT)
628                 __blk_mq_dec_active_requests(hctx);
629
630         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631                 laptop_io_completion(q->disk->bdi);
632
633         rq_qos_done(q, rq);
634
635         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636         if (req_ref_put_and_test(rq))
637                 __blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643         struct request *rq;
644
645         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646                 blk_mq_free_request(rq);
647 }
648
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652                 rq->q->disk ? rq->q->disk->disk_name : "?",
653                 (unsigned long long) rq->cmd_flags);
654
655         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
656                (unsigned long long)blk_rq_pos(rq),
657                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
659                rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664                           unsigned int nbytes, blk_status_t error)
665 {
666         if (unlikely(error)) {
667                 bio->bi_status = error;
668         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669                 /*
670                  * Partial zone append completions cannot be supported as the
671                  * BIO fragments may end up not being written sequentially.
672                  */
673                 if (bio->bi_iter.bi_size != nbytes)
674                         bio->bi_status = BLK_STS_IOERR;
675                 else
676                         bio->bi_iter.bi_sector = rq->__sector;
677         }
678
679         bio_advance(bio, nbytes);
680
681         if (unlikely(rq->rq_flags & RQF_QUIET))
682                 bio_set_flag(bio, BIO_QUIET);
683         /* don't actually finish bio if it's part of flush sequence */
684         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685                 bio_endio(bio);
686 }
687
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690         if (req->part && blk_do_io_stat(req)) {
691                 const int sgrp = op_stat_group(req_op(req));
692
693                 part_stat_lock();
694                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695                 part_stat_unlock();
696         }
697 }
698
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701         printk_ratelimited(KERN_ERR
702                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703                 "phys_seg %u prio class %u\n",
704                 blk_status_to_str(status),
705                 req->q->disk ? req->q->disk->disk_name : "?",
706                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707                 req->cmd_flags & ~REQ_OP_MASK,
708                 req->nr_phys_segments,
709                 IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711
712 /*
713  * Fully end IO on a request. Does not support partial completions, or
714  * errors.
715  */
716 static void blk_complete_request(struct request *req)
717 {
718         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719         int total_bytes = blk_rq_bytes(req);
720         struct bio *bio = req->bio;
721
722         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724         if (!bio)
725                 return;
726
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729                 req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731
732         blk_account_io_completion(req, total_bytes);
733
734         do {
735                 struct bio *next = bio->bi_next;
736
737                 /* Completion has already been traced */
738                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739
740                 if (req_op(req) == REQ_OP_ZONE_APPEND)
741                         bio->bi_iter.bi_sector = req->__sector;
742
743                 if (!is_flush)
744                         bio_endio(bio);
745                 bio = next;
746         } while (bio);
747
748         /*
749          * Reset counters so that the request stacking driver
750          * can find how many bytes remain in the request
751          * later.
752          */
753         req->bio = NULL;
754         req->__data_len = 0;
755 }
756
757 /**
758  * blk_update_request - Complete multiple bytes without completing the request
759  * @req:      the request being processed
760  * @error:    block status code
761  * @nr_bytes: number of bytes to complete for @req
762  *
763  * Description:
764  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
765  *     the request structure even if @req doesn't have leftover.
766  *     If @req has leftover, sets it up for the next range of segments.
767  *
768  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
769  *     %false return from this function.
770  *
771  * Note:
772  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
773  *      except in the consistency check at the end of this function.
774  *
775  * Return:
776  *     %false - this request doesn't have any more data
777  *     %true  - this request has more data
778  **/
779 bool blk_update_request(struct request *req, blk_status_t error,
780                 unsigned int nr_bytes)
781 {
782         int total_bytes;
783
784         trace_block_rq_complete(req, error, nr_bytes);
785
786         if (!req->bio)
787                 return false;
788
789 #ifdef CONFIG_BLK_DEV_INTEGRITY
790         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
791             error == BLK_STS_OK)
792                 req->q->integrity.profile->complete_fn(req, nr_bytes);
793 #endif
794
795         if (unlikely(error && !blk_rq_is_passthrough(req) &&
796                      !(req->rq_flags & RQF_QUIET))) {
797                 blk_print_req_error(req, error);
798                 trace_block_rq_error(req, error, nr_bytes);
799         }
800
801         blk_account_io_completion(req, nr_bytes);
802
803         total_bytes = 0;
804         while (req->bio) {
805                 struct bio *bio = req->bio;
806                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
807
808                 if (bio_bytes == bio->bi_iter.bi_size)
809                         req->bio = bio->bi_next;
810
811                 /* Completion has already been traced */
812                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
813                 req_bio_endio(req, bio, bio_bytes, error);
814
815                 total_bytes += bio_bytes;
816                 nr_bytes -= bio_bytes;
817
818                 if (!nr_bytes)
819                         break;
820         }
821
822         /*
823          * completely done
824          */
825         if (!req->bio) {
826                 /*
827                  * Reset counters so that the request stacking driver
828                  * can find how many bytes remain in the request
829                  * later.
830                  */
831                 req->__data_len = 0;
832                 return false;
833         }
834
835         req->__data_len -= total_bytes;
836
837         /* update sector only for requests with clear definition of sector */
838         if (!blk_rq_is_passthrough(req))
839                 req->__sector += total_bytes >> 9;
840
841         /* mixed attributes always follow the first bio */
842         if (req->rq_flags & RQF_MIXED_MERGE) {
843                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
844                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
845         }
846
847         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
848                 /*
849                  * If total number of sectors is less than the first segment
850                  * size, something has gone terribly wrong.
851                  */
852                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
853                         blk_dump_rq_flags(req, "request botched");
854                         req->__data_len = blk_rq_cur_bytes(req);
855                 }
856
857                 /* recalculate the number of segments */
858                 req->nr_phys_segments = blk_recalc_rq_segments(req);
859         }
860
861         return true;
862 }
863 EXPORT_SYMBOL_GPL(blk_update_request);
864
865 static void __blk_account_io_done(struct request *req, u64 now)
866 {
867         const int sgrp = op_stat_group(req_op(req));
868
869         part_stat_lock();
870         update_io_ticks(req->part, jiffies, true);
871         part_stat_inc(req->part, ios[sgrp]);
872         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
873         part_stat_unlock();
874 }
875
876 static inline void blk_account_io_done(struct request *req, u64 now)
877 {
878         /*
879          * Account IO completion.  flush_rq isn't accounted as a
880          * normal IO on queueing nor completion.  Accounting the
881          * containing request is enough.
882          */
883         if (blk_do_io_stat(req) && req->part &&
884             !(req->rq_flags & RQF_FLUSH_SEQ))
885                 __blk_account_io_done(req, now);
886 }
887
888 static void __blk_account_io_start(struct request *rq)
889 {
890         /* passthrough requests can hold bios that do not have ->bi_bdev set */
891         if (rq->bio && rq->bio->bi_bdev)
892                 rq->part = rq->bio->bi_bdev;
893         else if (rq->q->disk)
894                 rq->part = rq->q->disk->part0;
895
896         part_stat_lock();
897         update_io_ticks(rq->part, jiffies, false);
898         part_stat_unlock();
899 }
900
901 static inline void blk_account_io_start(struct request *req)
902 {
903         if (blk_do_io_stat(req))
904                 __blk_account_io_start(req);
905 }
906
907 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
908 {
909         if (rq->rq_flags & RQF_STATS) {
910                 blk_mq_poll_stats_start(rq->q);
911                 blk_stat_add(rq, now);
912         }
913
914         blk_mq_sched_completed_request(rq, now);
915         blk_account_io_done(rq, now);
916 }
917
918 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
919 {
920         if (blk_mq_need_time_stamp(rq))
921                 __blk_mq_end_request_acct(rq, ktime_get_ns());
922
923         if (rq->end_io) {
924                 rq_qos_done(rq->q, rq);
925                 rq->end_io(rq, error);
926         } else {
927                 blk_mq_free_request(rq);
928         }
929 }
930 EXPORT_SYMBOL(__blk_mq_end_request);
931
932 void blk_mq_end_request(struct request *rq, blk_status_t error)
933 {
934         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
935                 BUG();
936         __blk_mq_end_request(rq, error);
937 }
938 EXPORT_SYMBOL(blk_mq_end_request);
939
940 #define TAG_COMP_BATCH          32
941
942 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
943                                           int *tag_array, int nr_tags)
944 {
945         struct request_queue *q = hctx->queue;
946
947         /*
948          * All requests should have been marked as RQF_MQ_INFLIGHT, so
949          * update hctx->nr_active in batch
950          */
951         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
952                 __blk_mq_sub_active_requests(hctx, nr_tags);
953
954         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
955         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
956 }
957
958 void blk_mq_end_request_batch(struct io_comp_batch *iob)
959 {
960         int tags[TAG_COMP_BATCH], nr_tags = 0;
961         struct blk_mq_hw_ctx *cur_hctx = NULL;
962         struct request *rq;
963         u64 now = 0;
964
965         if (iob->need_ts)
966                 now = ktime_get_ns();
967
968         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
969                 prefetch(rq->bio);
970                 prefetch(rq->rq_next);
971
972                 blk_complete_request(rq);
973                 if (iob->need_ts)
974                         __blk_mq_end_request_acct(rq, now);
975
976                 rq_qos_done(rq->q, rq);
977
978                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
979                 if (!req_ref_put_and_test(rq))
980                         continue;
981
982                 blk_crypto_free_request(rq);
983                 blk_pm_mark_last_busy(rq);
984
985                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
986                         if (cur_hctx)
987                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
988                         nr_tags = 0;
989                         cur_hctx = rq->mq_hctx;
990                 }
991                 tags[nr_tags++] = rq->tag;
992         }
993
994         if (nr_tags)
995                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
996 }
997 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
998
999 static void blk_complete_reqs(struct llist_head *list)
1000 {
1001         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1002         struct request *rq, *next;
1003
1004         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1005                 rq->q->mq_ops->complete(rq);
1006 }
1007
1008 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1009 {
1010         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1011 }
1012
1013 static int blk_softirq_cpu_dead(unsigned int cpu)
1014 {
1015         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1016         return 0;
1017 }
1018
1019 static void __blk_mq_complete_request_remote(void *data)
1020 {
1021         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1022 }
1023
1024 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1025 {
1026         int cpu = raw_smp_processor_id();
1027
1028         if (!IS_ENABLED(CONFIG_SMP) ||
1029             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1030                 return false;
1031         /*
1032          * With force threaded interrupts enabled, raising softirq from an SMP
1033          * function call will always result in waking the ksoftirqd thread.
1034          * This is probably worse than completing the request on a different
1035          * cache domain.
1036          */
1037         if (force_irqthreads())
1038                 return false;
1039
1040         /* same CPU or cache domain?  Complete locally */
1041         if (cpu == rq->mq_ctx->cpu ||
1042             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1043              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1044                 return false;
1045
1046         /* don't try to IPI to an offline CPU */
1047         return cpu_online(rq->mq_ctx->cpu);
1048 }
1049
1050 static void blk_mq_complete_send_ipi(struct request *rq)
1051 {
1052         struct llist_head *list;
1053         unsigned int cpu;
1054
1055         cpu = rq->mq_ctx->cpu;
1056         list = &per_cpu(blk_cpu_done, cpu);
1057         if (llist_add(&rq->ipi_list, list)) {
1058                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1059                 smp_call_function_single_async(cpu, &rq->csd);
1060         }
1061 }
1062
1063 static void blk_mq_raise_softirq(struct request *rq)
1064 {
1065         struct llist_head *list;
1066
1067         preempt_disable();
1068         list = this_cpu_ptr(&blk_cpu_done);
1069         if (llist_add(&rq->ipi_list, list))
1070                 raise_softirq(BLOCK_SOFTIRQ);
1071         preempt_enable();
1072 }
1073
1074 bool blk_mq_complete_request_remote(struct request *rq)
1075 {
1076         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1077
1078         /*
1079          * For a polled request, always complete locallly, it's pointless
1080          * to redirect the completion.
1081          */
1082         if (rq->cmd_flags & REQ_POLLED)
1083                 return false;
1084
1085         if (blk_mq_complete_need_ipi(rq)) {
1086                 blk_mq_complete_send_ipi(rq);
1087                 return true;
1088         }
1089
1090         if (rq->q->nr_hw_queues == 1) {
1091                 blk_mq_raise_softirq(rq);
1092                 return true;
1093         }
1094         return false;
1095 }
1096 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1097
1098 /**
1099  * blk_mq_complete_request - end I/O on a request
1100  * @rq:         the request being processed
1101  *
1102  * Description:
1103  *      Complete a request by scheduling the ->complete_rq operation.
1104  **/
1105 void blk_mq_complete_request(struct request *rq)
1106 {
1107         if (!blk_mq_complete_request_remote(rq))
1108                 rq->q->mq_ops->complete(rq);
1109 }
1110 EXPORT_SYMBOL(blk_mq_complete_request);
1111
1112 /**
1113  * blk_mq_start_request - Start processing a request
1114  * @rq: Pointer to request to be started
1115  *
1116  * Function used by device drivers to notify the block layer that a request
1117  * is going to be processed now, so blk layer can do proper initializations
1118  * such as starting the timeout timer.
1119  */
1120 void blk_mq_start_request(struct request *rq)
1121 {
1122         struct request_queue *q = rq->q;
1123
1124         trace_block_rq_issue(rq);
1125
1126         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1127                 u64 start_time;
1128 #ifdef CONFIG_BLK_CGROUP
1129                 if (rq->bio)
1130                         start_time = bio_issue_time(&rq->bio->bi_issue);
1131                 else
1132 #endif
1133                         start_time = ktime_get_ns();
1134                 rq->io_start_time_ns = start_time;
1135                 rq->stats_sectors = blk_rq_sectors(rq);
1136                 rq->rq_flags |= RQF_STATS;
1137                 rq_qos_issue(q, rq);
1138         }
1139
1140         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1141
1142         blk_add_timer(rq);
1143         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1144
1145 #ifdef CONFIG_BLK_DEV_INTEGRITY
1146         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1147                 q->integrity.profile->prepare_fn(rq);
1148 #endif
1149         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1150                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1151 }
1152 EXPORT_SYMBOL(blk_mq_start_request);
1153
1154 /**
1155  * blk_end_sync_rq - executes a completion event on a request
1156  * @rq: request to complete
1157  * @error: end I/O status of the request
1158  */
1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1160 {
1161         struct completion *waiting = rq->end_io_data;
1162
1163         rq->end_io_data = (void *)(uintptr_t)error;
1164
1165         /*
1166          * complete last, if this is a stack request the process (and thus
1167          * the rq pointer) could be invalid right after this complete()
1168          */
1169         complete(waiting);
1170 }
1171
1172 /**
1173  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1174  * @rq:         request to insert
1175  * @at_head:    insert request at head or tail of queue
1176  * @done:       I/O completion handler
1177  *
1178  * Description:
1179  *    Insert a fully prepared request at the back of the I/O scheduler queue
1180  *    for execution.  Don't wait for completion.
1181  *
1182  * Note:
1183  *    This function will invoke @done directly if the queue is dead.
1184  */
1185 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1186 {
1187         WARN_ON(irqs_disabled());
1188         WARN_ON(!blk_rq_is_passthrough(rq));
1189
1190         rq->end_io = done;
1191
1192         blk_account_io_start(rq);
1193
1194         /*
1195          * don't check dying flag for MQ because the request won't
1196          * be reused after dying flag is set
1197          */
1198         blk_mq_sched_insert_request(rq, at_head, true, false);
1199 }
1200 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1201
1202 static bool blk_rq_is_poll(struct request *rq)
1203 {
1204         if (!rq->mq_hctx)
1205                 return false;
1206         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1207                 return false;
1208         if (WARN_ON_ONCE(!rq->bio))
1209                 return false;
1210         return true;
1211 }
1212
1213 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1214 {
1215         do {
1216                 bio_poll(rq->bio, NULL, 0);
1217                 cond_resched();
1218         } while (!completion_done(wait));
1219 }
1220
1221 /**
1222  * blk_execute_rq - insert a request into queue for execution
1223  * @rq:         request to insert
1224  * @at_head:    insert request at head or tail of queue
1225  *
1226  * Description:
1227  *    Insert a fully prepared request at the back of the I/O scheduler queue
1228  *    for execution and wait for completion.
1229  * Return: The blk_status_t result provided to blk_mq_end_request().
1230  */
1231 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1232 {
1233         DECLARE_COMPLETION_ONSTACK(wait);
1234         unsigned long hang_check;
1235
1236         rq->end_io_data = &wait;
1237         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1238
1239         /* Prevent hang_check timer from firing at us during very long I/O */
1240         hang_check = sysctl_hung_task_timeout_secs;
1241
1242         if (blk_rq_is_poll(rq))
1243                 blk_rq_poll_completion(rq, &wait);
1244         else if (hang_check)
1245                 while (!wait_for_completion_io_timeout(&wait,
1246                                 hang_check * (HZ/2)))
1247                         ;
1248         else
1249                 wait_for_completion_io(&wait);
1250
1251         return (blk_status_t)(uintptr_t)rq->end_io_data;
1252 }
1253 EXPORT_SYMBOL(blk_execute_rq);
1254
1255 static void __blk_mq_requeue_request(struct request *rq)
1256 {
1257         struct request_queue *q = rq->q;
1258
1259         blk_mq_put_driver_tag(rq);
1260
1261         trace_block_rq_requeue(rq);
1262         rq_qos_requeue(q, rq);
1263
1264         if (blk_mq_request_started(rq)) {
1265                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1266                 rq->rq_flags &= ~RQF_TIMED_OUT;
1267         }
1268 }
1269
1270 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1271 {
1272         __blk_mq_requeue_request(rq);
1273
1274         /* this request will be re-inserted to io scheduler queue */
1275         blk_mq_sched_requeue_request(rq);
1276
1277         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1278 }
1279 EXPORT_SYMBOL(blk_mq_requeue_request);
1280
1281 static void blk_mq_requeue_work(struct work_struct *work)
1282 {
1283         struct request_queue *q =
1284                 container_of(work, struct request_queue, requeue_work.work);
1285         LIST_HEAD(rq_list);
1286         struct request *rq, *next;
1287
1288         spin_lock_irq(&q->requeue_lock);
1289         list_splice_init(&q->requeue_list, &rq_list);
1290         spin_unlock_irq(&q->requeue_lock);
1291
1292         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1293                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1294                         continue;
1295
1296                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1297                 list_del_init(&rq->queuelist);
1298                 /*
1299                  * If RQF_DONTPREP, rq has contained some driver specific
1300                  * data, so insert it to hctx dispatch list to avoid any
1301                  * merge.
1302                  */
1303                 if (rq->rq_flags & RQF_DONTPREP)
1304                         blk_mq_request_bypass_insert(rq, false, false);
1305                 else
1306                         blk_mq_sched_insert_request(rq, true, false, false);
1307         }
1308
1309         while (!list_empty(&rq_list)) {
1310                 rq = list_entry(rq_list.next, struct request, queuelist);
1311                 list_del_init(&rq->queuelist);
1312                 blk_mq_sched_insert_request(rq, false, false, false);
1313         }
1314
1315         blk_mq_run_hw_queues(q, false);
1316 }
1317
1318 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1319                                 bool kick_requeue_list)
1320 {
1321         struct request_queue *q = rq->q;
1322         unsigned long flags;
1323
1324         /*
1325          * We abuse this flag that is otherwise used by the I/O scheduler to
1326          * request head insertion from the workqueue.
1327          */
1328         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1329
1330         spin_lock_irqsave(&q->requeue_lock, flags);
1331         if (at_head) {
1332                 rq->rq_flags |= RQF_SOFTBARRIER;
1333                 list_add(&rq->queuelist, &q->requeue_list);
1334         } else {
1335                 list_add_tail(&rq->queuelist, &q->requeue_list);
1336         }
1337         spin_unlock_irqrestore(&q->requeue_lock, flags);
1338
1339         if (kick_requeue_list)
1340                 blk_mq_kick_requeue_list(q);
1341 }
1342
1343 void blk_mq_kick_requeue_list(struct request_queue *q)
1344 {
1345         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1346 }
1347 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1348
1349 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1350                                     unsigned long msecs)
1351 {
1352         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1353                                     msecs_to_jiffies(msecs));
1354 }
1355 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1356
1357 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1358                                bool reserved)
1359 {
1360         /*
1361          * If we find a request that isn't idle we know the queue is busy
1362          * as it's checked in the iter.
1363          * Return false to stop the iteration.
1364          */
1365         if (blk_mq_request_started(rq)) {
1366                 bool *busy = priv;
1367
1368                 *busy = true;
1369                 return false;
1370         }
1371
1372         return true;
1373 }
1374
1375 bool blk_mq_queue_inflight(struct request_queue *q)
1376 {
1377         bool busy = false;
1378
1379         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1380         return busy;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1383
1384 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1385 {
1386         req->rq_flags |= RQF_TIMED_OUT;
1387         if (req->q->mq_ops->timeout) {
1388                 enum blk_eh_timer_return ret;
1389
1390                 ret = req->q->mq_ops->timeout(req, reserved);
1391                 if (ret == BLK_EH_DONE)
1392                         return;
1393                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1394         }
1395
1396         blk_add_timer(req);
1397 }
1398
1399 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1400 {
1401         unsigned long deadline;
1402
1403         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1404                 return false;
1405         if (rq->rq_flags & RQF_TIMED_OUT)
1406                 return false;
1407
1408         deadline = READ_ONCE(rq->deadline);
1409         if (time_after_eq(jiffies, deadline))
1410                 return true;
1411
1412         if (*next == 0)
1413                 *next = deadline;
1414         else if (time_after(*next, deadline))
1415                 *next = deadline;
1416         return false;
1417 }
1418
1419 void blk_mq_put_rq_ref(struct request *rq)
1420 {
1421         if (is_flush_rq(rq))
1422                 rq->end_io(rq, 0);
1423         else if (req_ref_put_and_test(rq))
1424                 __blk_mq_free_request(rq);
1425 }
1426
1427 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1428 {
1429         unsigned long *next = priv;
1430
1431         /*
1432          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1433          * be reallocated underneath the timeout handler's processing, then
1434          * the expire check is reliable. If the request is not expired, then
1435          * it was completed and reallocated as a new request after returning
1436          * from blk_mq_check_expired().
1437          */
1438         if (blk_mq_req_expired(rq, next))
1439                 blk_mq_rq_timed_out(rq, reserved);
1440         return true;
1441 }
1442
1443 static void blk_mq_timeout_work(struct work_struct *work)
1444 {
1445         struct request_queue *q =
1446                 container_of(work, struct request_queue, timeout_work);
1447         unsigned long next = 0;
1448         struct blk_mq_hw_ctx *hctx;
1449         int i;
1450
1451         /* A deadlock might occur if a request is stuck requiring a
1452          * timeout at the same time a queue freeze is waiting
1453          * completion, since the timeout code would not be able to
1454          * acquire the queue reference here.
1455          *
1456          * That's why we don't use blk_queue_enter here; instead, we use
1457          * percpu_ref_tryget directly, because we need to be able to
1458          * obtain a reference even in the short window between the queue
1459          * starting to freeze, by dropping the first reference in
1460          * blk_freeze_queue_start, and the moment the last request is
1461          * consumed, marked by the instant q_usage_counter reaches
1462          * zero.
1463          */
1464         if (!percpu_ref_tryget(&q->q_usage_counter))
1465                 return;
1466
1467         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1468
1469         if (next != 0) {
1470                 mod_timer(&q->timeout, next);
1471         } else {
1472                 /*
1473                  * Request timeouts are handled as a forward rolling timer. If
1474                  * we end up here it means that no requests are pending and
1475                  * also that no request has been pending for a while. Mark
1476                  * each hctx as idle.
1477                  */
1478                 queue_for_each_hw_ctx(q, hctx, i) {
1479                         /* the hctx may be unmapped, so check it here */
1480                         if (blk_mq_hw_queue_mapped(hctx))
1481                                 blk_mq_tag_idle(hctx);
1482                 }
1483         }
1484         blk_queue_exit(q);
1485 }
1486
1487 struct flush_busy_ctx_data {
1488         struct blk_mq_hw_ctx *hctx;
1489         struct list_head *list;
1490 };
1491
1492 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1493 {
1494         struct flush_busy_ctx_data *flush_data = data;
1495         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1496         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1497         enum hctx_type type = hctx->type;
1498
1499         spin_lock(&ctx->lock);
1500         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1501         sbitmap_clear_bit(sb, bitnr);
1502         spin_unlock(&ctx->lock);
1503         return true;
1504 }
1505
1506 /*
1507  * Process software queues that have been marked busy, splicing them
1508  * to the for-dispatch
1509  */
1510 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1511 {
1512         struct flush_busy_ctx_data data = {
1513                 .hctx = hctx,
1514                 .list = list,
1515         };
1516
1517         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1518 }
1519 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1520
1521 struct dispatch_rq_data {
1522         struct blk_mq_hw_ctx *hctx;
1523         struct request *rq;
1524 };
1525
1526 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1527                 void *data)
1528 {
1529         struct dispatch_rq_data *dispatch_data = data;
1530         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1531         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1532         enum hctx_type type = hctx->type;
1533
1534         spin_lock(&ctx->lock);
1535         if (!list_empty(&ctx->rq_lists[type])) {
1536                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1537                 list_del_init(&dispatch_data->rq->queuelist);
1538                 if (list_empty(&ctx->rq_lists[type]))
1539                         sbitmap_clear_bit(sb, bitnr);
1540         }
1541         spin_unlock(&ctx->lock);
1542
1543         return !dispatch_data->rq;
1544 }
1545
1546 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1547                                         struct blk_mq_ctx *start)
1548 {
1549         unsigned off = start ? start->index_hw[hctx->type] : 0;
1550         struct dispatch_rq_data data = {
1551                 .hctx = hctx,
1552                 .rq   = NULL,
1553         };
1554
1555         __sbitmap_for_each_set(&hctx->ctx_map, off,
1556                                dispatch_rq_from_ctx, &data);
1557
1558         return data.rq;
1559 }
1560
1561 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1562 {
1563         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1564         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1565         int tag;
1566
1567         blk_mq_tag_busy(rq->mq_hctx);
1568
1569         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1570                 bt = &rq->mq_hctx->tags->breserved_tags;
1571                 tag_offset = 0;
1572         } else {
1573                 if (!hctx_may_queue(rq->mq_hctx, bt))
1574                         return false;
1575         }
1576
1577         tag = __sbitmap_queue_get(bt);
1578         if (tag == BLK_MQ_NO_TAG)
1579                 return false;
1580
1581         rq->tag = tag + tag_offset;
1582         return true;
1583 }
1584
1585 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1586 {
1587         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1588                 return false;
1589
1590         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1591                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1592                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1593                 __blk_mq_inc_active_requests(hctx);
1594         }
1595         hctx->tags->rqs[rq->tag] = rq;
1596         return true;
1597 }
1598
1599 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1600                                 int flags, void *key)
1601 {
1602         struct blk_mq_hw_ctx *hctx;
1603
1604         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1605
1606         spin_lock(&hctx->dispatch_wait_lock);
1607         if (!list_empty(&wait->entry)) {
1608                 struct sbitmap_queue *sbq;
1609
1610                 list_del_init(&wait->entry);
1611                 sbq = &hctx->tags->bitmap_tags;
1612                 atomic_dec(&sbq->ws_active);
1613         }
1614         spin_unlock(&hctx->dispatch_wait_lock);
1615
1616         blk_mq_run_hw_queue(hctx, true);
1617         return 1;
1618 }
1619
1620 /*
1621  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1622  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1623  * restart. For both cases, take care to check the condition again after
1624  * marking us as waiting.
1625  */
1626 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1627                                  struct request *rq)
1628 {
1629         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1630         struct wait_queue_head *wq;
1631         wait_queue_entry_t *wait;
1632         bool ret;
1633
1634         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1635                 blk_mq_sched_mark_restart_hctx(hctx);
1636
1637                 /*
1638                  * It's possible that a tag was freed in the window between the
1639                  * allocation failure and adding the hardware queue to the wait
1640                  * queue.
1641                  *
1642                  * Don't clear RESTART here, someone else could have set it.
1643                  * At most this will cost an extra queue run.
1644                  */
1645                 return blk_mq_get_driver_tag(rq);
1646         }
1647
1648         wait = &hctx->dispatch_wait;
1649         if (!list_empty_careful(&wait->entry))
1650                 return false;
1651
1652         wq = &bt_wait_ptr(sbq, hctx)->wait;
1653
1654         spin_lock_irq(&wq->lock);
1655         spin_lock(&hctx->dispatch_wait_lock);
1656         if (!list_empty(&wait->entry)) {
1657                 spin_unlock(&hctx->dispatch_wait_lock);
1658                 spin_unlock_irq(&wq->lock);
1659                 return false;
1660         }
1661
1662         atomic_inc(&sbq->ws_active);
1663         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1664         __add_wait_queue(wq, wait);
1665
1666         /*
1667          * It's possible that a tag was freed in the window between the
1668          * allocation failure and adding the hardware queue to the wait
1669          * queue.
1670          */
1671         ret = blk_mq_get_driver_tag(rq);
1672         if (!ret) {
1673                 spin_unlock(&hctx->dispatch_wait_lock);
1674                 spin_unlock_irq(&wq->lock);
1675                 return false;
1676         }
1677
1678         /*
1679          * We got a tag, remove ourselves from the wait queue to ensure
1680          * someone else gets the wakeup.
1681          */
1682         list_del_init(&wait->entry);
1683         atomic_dec(&sbq->ws_active);
1684         spin_unlock(&hctx->dispatch_wait_lock);
1685         spin_unlock_irq(&wq->lock);
1686
1687         return true;
1688 }
1689
1690 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1691 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1692 /*
1693  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1694  * - EWMA is one simple way to compute running average value
1695  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1696  * - take 4 as factor for avoiding to get too small(0) result, and this
1697  *   factor doesn't matter because EWMA decreases exponentially
1698  */
1699 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1700 {
1701         unsigned int ewma;
1702
1703         ewma = hctx->dispatch_busy;
1704
1705         if (!ewma && !busy)
1706                 return;
1707
1708         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1709         if (busy)
1710                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1711         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1712
1713         hctx->dispatch_busy = ewma;
1714 }
1715
1716 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1717
1718 static void blk_mq_handle_dev_resource(struct request *rq,
1719                                        struct list_head *list)
1720 {
1721         struct request *next =
1722                 list_first_entry_or_null(list, struct request, queuelist);
1723
1724         /*
1725          * If an I/O scheduler has been configured and we got a driver tag for
1726          * the next request already, free it.
1727          */
1728         if (next)
1729                 blk_mq_put_driver_tag(next);
1730
1731         list_add(&rq->queuelist, list);
1732         __blk_mq_requeue_request(rq);
1733 }
1734
1735 static void blk_mq_handle_zone_resource(struct request *rq,
1736                                         struct list_head *zone_list)
1737 {
1738         /*
1739          * If we end up here it is because we cannot dispatch a request to a
1740          * specific zone due to LLD level zone-write locking or other zone
1741          * related resource not being available. In this case, set the request
1742          * aside in zone_list for retrying it later.
1743          */
1744         list_add(&rq->queuelist, zone_list);
1745         __blk_mq_requeue_request(rq);
1746 }
1747
1748 enum prep_dispatch {
1749         PREP_DISPATCH_OK,
1750         PREP_DISPATCH_NO_TAG,
1751         PREP_DISPATCH_NO_BUDGET,
1752 };
1753
1754 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1755                                                   bool need_budget)
1756 {
1757         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1758         int budget_token = -1;
1759
1760         if (need_budget) {
1761                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1762                 if (budget_token < 0) {
1763                         blk_mq_put_driver_tag(rq);
1764                         return PREP_DISPATCH_NO_BUDGET;
1765                 }
1766                 blk_mq_set_rq_budget_token(rq, budget_token);
1767         }
1768
1769         if (!blk_mq_get_driver_tag(rq)) {
1770                 /*
1771                  * The initial allocation attempt failed, so we need to
1772                  * rerun the hardware queue when a tag is freed. The
1773                  * waitqueue takes care of that. If the queue is run
1774                  * before we add this entry back on the dispatch list,
1775                  * we'll re-run it below.
1776                  */
1777                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1778                         /*
1779                          * All budgets not got from this function will be put
1780                          * together during handling partial dispatch
1781                          */
1782                         if (need_budget)
1783                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1784                         return PREP_DISPATCH_NO_TAG;
1785                 }
1786         }
1787
1788         return PREP_DISPATCH_OK;
1789 }
1790
1791 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1792 static void blk_mq_release_budgets(struct request_queue *q,
1793                 struct list_head *list)
1794 {
1795         struct request *rq;
1796
1797         list_for_each_entry(rq, list, queuelist) {
1798                 int budget_token = blk_mq_get_rq_budget_token(rq);
1799
1800                 if (budget_token >= 0)
1801                         blk_mq_put_dispatch_budget(q, budget_token);
1802         }
1803 }
1804
1805 /*
1806  * Returns true if we did some work AND can potentially do more.
1807  */
1808 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1809                              unsigned int nr_budgets)
1810 {
1811         enum prep_dispatch prep;
1812         struct request_queue *q = hctx->queue;
1813         struct request *rq, *nxt;
1814         int errors, queued;
1815         blk_status_t ret = BLK_STS_OK;
1816         LIST_HEAD(zone_list);
1817         bool needs_resource = false;
1818
1819         if (list_empty(list))
1820                 return false;
1821
1822         /*
1823          * Now process all the entries, sending them to the driver.
1824          */
1825         errors = queued = 0;
1826         do {
1827                 struct blk_mq_queue_data bd;
1828
1829                 rq = list_first_entry(list, struct request, queuelist);
1830
1831                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1832                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1833                 if (prep != PREP_DISPATCH_OK)
1834                         break;
1835
1836                 list_del_init(&rq->queuelist);
1837
1838                 bd.rq = rq;
1839
1840                 /*
1841                  * Flag last if we have no more requests, or if we have more
1842                  * but can't assign a driver tag to it.
1843                  */
1844                 if (list_empty(list))
1845                         bd.last = true;
1846                 else {
1847                         nxt = list_first_entry(list, struct request, queuelist);
1848                         bd.last = !blk_mq_get_driver_tag(nxt);
1849                 }
1850
1851                 /*
1852                  * once the request is queued to lld, no need to cover the
1853                  * budget any more
1854                  */
1855                 if (nr_budgets)
1856                         nr_budgets--;
1857                 ret = q->mq_ops->queue_rq(hctx, &bd);
1858                 switch (ret) {
1859                 case BLK_STS_OK:
1860                         queued++;
1861                         break;
1862                 case BLK_STS_RESOURCE:
1863                         needs_resource = true;
1864                         fallthrough;
1865                 case BLK_STS_DEV_RESOURCE:
1866                         blk_mq_handle_dev_resource(rq, list);
1867                         goto out;
1868                 case BLK_STS_ZONE_RESOURCE:
1869                         /*
1870                          * Move the request to zone_list and keep going through
1871                          * the dispatch list to find more requests the drive can
1872                          * accept.
1873                          */
1874                         blk_mq_handle_zone_resource(rq, &zone_list);
1875                         needs_resource = true;
1876                         break;
1877                 default:
1878                         errors++;
1879                         blk_mq_end_request(rq, ret);
1880                 }
1881         } while (!list_empty(list));
1882 out:
1883         if (!list_empty(&zone_list))
1884                 list_splice_tail_init(&zone_list, list);
1885
1886         /* If we didn't flush the entire list, we could have told the driver
1887          * there was more coming, but that turned out to be a lie.
1888          */
1889         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1890                 q->mq_ops->commit_rqs(hctx);
1891         /*
1892          * Any items that need requeuing? Stuff them into hctx->dispatch,
1893          * that is where we will continue on next queue run.
1894          */
1895         if (!list_empty(list)) {
1896                 bool needs_restart;
1897                 /* For non-shared tags, the RESTART check will suffice */
1898                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1899                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1900
1901                 if (nr_budgets)
1902                         blk_mq_release_budgets(q, list);
1903
1904                 spin_lock(&hctx->lock);
1905                 list_splice_tail_init(list, &hctx->dispatch);
1906                 spin_unlock(&hctx->lock);
1907
1908                 /*
1909                  * Order adding requests to hctx->dispatch and checking
1910                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1911                  * in blk_mq_sched_restart(). Avoid restart code path to
1912                  * miss the new added requests to hctx->dispatch, meantime
1913                  * SCHED_RESTART is observed here.
1914                  */
1915                 smp_mb();
1916
1917                 /*
1918                  * If SCHED_RESTART was set by the caller of this function and
1919                  * it is no longer set that means that it was cleared by another
1920                  * thread and hence that a queue rerun is needed.
1921                  *
1922                  * If 'no_tag' is set, that means that we failed getting
1923                  * a driver tag with an I/O scheduler attached. If our dispatch
1924                  * waitqueue is no longer active, ensure that we run the queue
1925                  * AFTER adding our entries back to the list.
1926                  *
1927                  * If no I/O scheduler has been configured it is possible that
1928                  * the hardware queue got stopped and restarted before requests
1929                  * were pushed back onto the dispatch list. Rerun the queue to
1930                  * avoid starvation. Notes:
1931                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1932                  *   been stopped before rerunning a queue.
1933                  * - Some but not all block drivers stop a queue before
1934                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1935                  *   and dm-rq.
1936                  *
1937                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1938                  * bit is set, run queue after a delay to avoid IO stalls
1939                  * that could otherwise occur if the queue is idle.  We'll do
1940                  * similar if we couldn't get budget or couldn't lock a zone
1941                  * and SCHED_RESTART is set.
1942                  */
1943                 needs_restart = blk_mq_sched_needs_restart(hctx);
1944                 if (prep == PREP_DISPATCH_NO_BUDGET)
1945                         needs_resource = true;
1946                 if (!needs_restart ||
1947                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1948                         blk_mq_run_hw_queue(hctx, true);
1949                 else if (needs_restart && needs_resource)
1950                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1951
1952                 blk_mq_update_dispatch_busy(hctx, true);
1953                 return false;
1954         } else
1955                 blk_mq_update_dispatch_busy(hctx, false);
1956
1957         return (queued + errors) != 0;
1958 }
1959
1960 /**
1961  * __blk_mq_run_hw_queue - Run a hardware queue.
1962  * @hctx: Pointer to the hardware queue to run.
1963  *
1964  * Send pending requests to the hardware.
1965  */
1966 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1967 {
1968         /*
1969          * We can't run the queue inline with ints disabled. Ensure that
1970          * we catch bad users of this early.
1971          */
1972         WARN_ON_ONCE(in_interrupt());
1973
1974         blk_mq_run_dispatch_ops(hctx->queue,
1975                         blk_mq_sched_dispatch_requests(hctx));
1976 }
1977
1978 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1979 {
1980         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1981
1982         if (cpu >= nr_cpu_ids)
1983                 cpu = cpumask_first(hctx->cpumask);
1984         return cpu;
1985 }
1986
1987 /*
1988  * It'd be great if the workqueue API had a way to pass
1989  * in a mask and had some smarts for more clever placement.
1990  * For now we just round-robin here, switching for every
1991  * BLK_MQ_CPU_WORK_BATCH queued items.
1992  */
1993 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1994 {
1995         bool tried = false;
1996         int next_cpu = hctx->next_cpu;
1997
1998         if (hctx->queue->nr_hw_queues == 1)
1999                 return WORK_CPU_UNBOUND;
2000
2001         if (--hctx->next_cpu_batch <= 0) {
2002 select_cpu:
2003                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2004                                 cpu_online_mask);
2005                 if (next_cpu >= nr_cpu_ids)
2006                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2007                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2008         }
2009
2010         /*
2011          * Do unbound schedule if we can't find a online CPU for this hctx,
2012          * and it should only happen in the path of handling CPU DEAD.
2013          */
2014         if (!cpu_online(next_cpu)) {
2015                 if (!tried) {
2016                         tried = true;
2017                         goto select_cpu;
2018                 }
2019
2020                 /*
2021                  * Make sure to re-select CPU next time once after CPUs
2022                  * in hctx->cpumask become online again.
2023                  */
2024                 hctx->next_cpu = next_cpu;
2025                 hctx->next_cpu_batch = 1;
2026                 return WORK_CPU_UNBOUND;
2027         }
2028
2029         hctx->next_cpu = next_cpu;
2030         return next_cpu;
2031 }
2032
2033 /**
2034  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2035  * @hctx: Pointer to the hardware queue to run.
2036  * @async: If we want to run the queue asynchronously.
2037  * @msecs: Milliseconds of delay to wait before running the queue.
2038  *
2039  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2040  * with a delay of @msecs.
2041  */
2042 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2043                                         unsigned long msecs)
2044 {
2045         if (unlikely(blk_mq_hctx_stopped(hctx)))
2046                 return;
2047
2048         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2049                 int cpu = get_cpu();
2050                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2051                         __blk_mq_run_hw_queue(hctx);
2052                         put_cpu();
2053                         return;
2054                 }
2055
2056                 put_cpu();
2057         }
2058
2059         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2060                                     msecs_to_jiffies(msecs));
2061 }
2062
2063 /**
2064  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2065  * @hctx: Pointer to the hardware queue to run.
2066  * @msecs: Milliseconds of delay to wait before running the queue.
2067  *
2068  * Run a hardware queue asynchronously with a delay of @msecs.
2069  */
2070 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2071 {
2072         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2073 }
2074 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2075
2076 /**
2077  * blk_mq_run_hw_queue - Start to run a hardware queue.
2078  * @hctx: Pointer to the hardware queue to run.
2079  * @async: If we want to run the queue asynchronously.
2080  *
2081  * Check if the request queue is not in a quiesced state and if there are
2082  * pending requests to be sent. If this is true, run the queue to send requests
2083  * to hardware.
2084  */
2085 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087         bool need_run;
2088
2089         /*
2090          * When queue is quiesced, we may be switching io scheduler, or
2091          * updating nr_hw_queues, or other things, and we can't run queue
2092          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2093          *
2094          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2095          * quiesced.
2096          */
2097         __blk_mq_run_dispatch_ops(hctx->queue, false,
2098                 need_run = !blk_queue_quiesced(hctx->queue) &&
2099                 blk_mq_hctx_has_pending(hctx));
2100
2101         if (need_run)
2102                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2103 }
2104 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2105
2106 /*
2107  * Is the request queue handled by an IO scheduler that does not respect
2108  * hardware queues when dispatching?
2109  */
2110 static bool blk_mq_has_sqsched(struct request_queue *q)
2111 {
2112         struct elevator_queue *e = q->elevator;
2113
2114         if (e && e->type->ops.dispatch_request &&
2115             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2116                 return true;
2117         return false;
2118 }
2119
2120 /*
2121  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2122  * scheduler.
2123  */
2124 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2125 {
2126         struct blk_mq_hw_ctx *hctx;
2127
2128         /*
2129          * If the IO scheduler does not respect hardware queues when
2130          * dispatching, we just don't bother with multiple HW queues and
2131          * dispatch from hctx for the current CPU since running multiple queues
2132          * just causes lock contention inside the scheduler and pointless cache
2133          * bouncing.
2134          */
2135         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2136                                      raw_smp_processor_id());
2137         if (!blk_mq_hctx_stopped(hctx))
2138                 return hctx;
2139         return NULL;
2140 }
2141
2142 /**
2143  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2144  * @q: Pointer to the request queue to run.
2145  * @async: If we want to run the queue asynchronously.
2146  */
2147 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2148 {
2149         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2150         int i;
2151
2152         sq_hctx = NULL;
2153         if (blk_mq_has_sqsched(q))
2154                 sq_hctx = blk_mq_get_sq_hctx(q);
2155         queue_for_each_hw_ctx(q, hctx, i) {
2156                 if (blk_mq_hctx_stopped(hctx))
2157                         continue;
2158                 /*
2159                  * Dispatch from this hctx either if there's no hctx preferred
2160                  * by IO scheduler or if it has requests that bypass the
2161                  * scheduler.
2162                  */
2163                 if (!sq_hctx || sq_hctx == hctx ||
2164                     !list_empty_careful(&hctx->dispatch))
2165                         blk_mq_run_hw_queue(hctx, async);
2166         }
2167 }
2168 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2169
2170 /**
2171  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2172  * @q: Pointer to the request queue to run.
2173  * @msecs: Milliseconds of delay to wait before running the queues.
2174  */
2175 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2176 {
2177         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2178         int i;
2179
2180         sq_hctx = NULL;
2181         if (blk_mq_has_sqsched(q))
2182                 sq_hctx = blk_mq_get_sq_hctx(q);
2183         queue_for_each_hw_ctx(q, hctx, i) {
2184                 if (blk_mq_hctx_stopped(hctx))
2185                         continue;
2186                 /*
2187                  * If there is already a run_work pending, leave the
2188                  * pending delay untouched. Otherwise, a hctx can stall
2189                  * if another hctx is re-delaying the other's work
2190                  * before the work executes.
2191                  */
2192                 if (delayed_work_pending(&hctx->run_work))
2193                         continue;
2194                 /*
2195                  * Dispatch from this hctx either if there's no hctx preferred
2196                  * by IO scheduler or if it has requests that bypass the
2197                  * scheduler.
2198                  */
2199                 if (!sq_hctx || sq_hctx == hctx ||
2200                     !list_empty_careful(&hctx->dispatch))
2201                         blk_mq_delay_run_hw_queue(hctx, msecs);
2202         }
2203 }
2204 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2205
2206 /**
2207  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2208  * @q: request queue.
2209  *
2210  * The caller is responsible for serializing this function against
2211  * blk_mq_{start,stop}_hw_queue().
2212  */
2213 bool blk_mq_queue_stopped(struct request_queue *q)
2214 {
2215         struct blk_mq_hw_ctx *hctx;
2216         int i;
2217
2218         queue_for_each_hw_ctx(q, hctx, i)
2219                 if (blk_mq_hctx_stopped(hctx))
2220                         return true;
2221
2222         return false;
2223 }
2224 EXPORT_SYMBOL(blk_mq_queue_stopped);
2225
2226 /*
2227  * This function is often used for pausing .queue_rq() by driver when
2228  * there isn't enough resource or some conditions aren't satisfied, and
2229  * BLK_STS_RESOURCE is usually returned.
2230  *
2231  * We do not guarantee that dispatch can be drained or blocked
2232  * after blk_mq_stop_hw_queue() returns. Please use
2233  * blk_mq_quiesce_queue() for that requirement.
2234  */
2235 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2236 {
2237         cancel_delayed_work(&hctx->run_work);
2238
2239         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2240 }
2241 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2242
2243 /*
2244  * This function is often used for pausing .queue_rq() by driver when
2245  * there isn't enough resource or some conditions aren't satisfied, and
2246  * BLK_STS_RESOURCE is usually returned.
2247  *
2248  * We do not guarantee that dispatch can be drained or blocked
2249  * after blk_mq_stop_hw_queues() returns. Please use
2250  * blk_mq_quiesce_queue() for that requirement.
2251  */
2252 void blk_mq_stop_hw_queues(struct request_queue *q)
2253 {
2254         struct blk_mq_hw_ctx *hctx;
2255         int i;
2256
2257         queue_for_each_hw_ctx(q, hctx, i)
2258                 blk_mq_stop_hw_queue(hctx);
2259 }
2260 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2261
2262 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2263 {
2264         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2265
2266         blk_mq_run_hw_queue(hctx, false);
2267 }
2268 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2269
2270 void blk_mq_start_hw_queues(struct request_queue *q)
2271 {
2272         struct blk_mq_hw_ctx *hctx;
2273         int i;
2274
2275         queue_for_each_hw_ctx(q, hctx, i)
2276                 blk_mq_start_hw_queue(hctx);
2277 }
2278 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2279
2280 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2281 {
2282         if (!blk_mq_hctx_stopped(hctx))
2283                 return;
2284
2285         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2286         blk_mq_run_hw_queue(hctx, async);
2287 }
2288 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2289
2290 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2291 {
2292         struct blk_mq_hw_ctx *hctx;
2293         int i;
2294
2295         queue_for_each_hw_ctx(q, hctx, i)
2296                 blk_mq_start_stopped_hw_queue(hctx, async);
2297 }
2298 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2299
2300 static void blk_mq_run_work_fn(struct work_struct *work)
2301 {
2302         struct blk_mq_hw_ctx *hctx;
2303
2304         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2305
2306         /*
2307          * If we are stopped, don't run the queue.
2308          */
2309         if (blk_mq_hctx_stopped(hctx))
2310                 return;
2311
2312         __blk_mq_run_hw_queue(hctx);
2313 }
2314
2315 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2316                                             struct request *rq,
2317                                             bool at_head)
2318 {
2319         struct blk_mq_ctx *ctx = rq->mq_ctx;
2320         enum hctx_type type = hctx->type;
2321
2322         lockdep_assert_held(&ctx->lock);
2323
2324         trace_block_rq_insert(rq);
2325
2326         if (at_head)
2327                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2328         else
2329                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2330 }
2331
2332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2333                              bool at_head)
2334 {
2335         struct blk_mq_ctx *ctx = rq->mq_ctx;
2336
2337         lockdep_assert_held(&ctx->lock);
2338
2339         __blk_mq_insert_req_list(hctx, rq, at_head);
2340         blk_mq_hctx_mark_pending(hctx, ctx);
2341 }
2342
2343 /**
2344  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2345  * @rq: Pointer to request to be inserted.
2346  * @at_head: true if the request should be inserted at the head of the list.
2347  * @run_queue: If we should run the hardware queue after inserting the request.
2348  *
2349  * Should only be used carefully, when the caller knows we want to
2350  * bypass a potential IO scheduler on the target device.
2351  */
2352 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2353                                   bool run_queue)
2354 {
2355         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2356
2357         spin_lock(&hctx->lock);
2358         if (at_head)
2359                 list_add(&rq->queuelist, &hctx->dispatch);
2360         else
2361                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2362         spin_unlock(&hctx->lock);
2363
2364         if (run_queue)
2365                 blk_mq_run_hw_queue(hctx, false);
2366 }
2367
2368 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2369                             struct list_head *list)
2370
2371 {
2372         struct request *rq;
2373         enum hctx_type type = hctx->type;
2374
2375         /*
2376          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2377          * offline now
2378          */
2379         list_for_each_entry(rq, list, queuelist) {
2380                 BUG_ON(rq->mq_ctx != ctx);
2381                 trace_block_rq_insert(rq);
2382         }
2383
2384         spin_lock(&ctx->lock);
2385         list_splice_tail_init(list, &ctx->rq_lists[type]);
2386         blk_mq_hctx_mark_pending(hctx, ctx);
2387         spin_unlock(&ctx->lock);
2388 }
2389
2390 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2391                               bool from_schedule)
2392 {
2393         if (hctx->queue->mq_ops->commit_rqs) {
2394                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2395                 hctx->queue->mq_ops->commit_rqs(hctx);
2396         }
2397         *queued = 0;
2398 }
2399
2400 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2401                 unsigned int nr_segs)
2402 {
2403         int err;
2404
2405         if (bio->bi_opf & REQ_RAHEAD)
2406                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2407
2408         rq->__sector = bio->bi_iter.bi_sector;
2409         blk_rq_bio_prep(rq, bio, nr_segs);
2410
2411         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2412         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2413         WARN_ON_ONCE(err);
2414
2415         blk_account_io_start(rq);
2416 }
2417
2418 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2419                                             struct request *rq, bool last)
2420 {
2421         struct request_queue *q = rq->q;
2422         struct blk_mq_queue_data bd = {
2423                 .rq = rq,
2424                 .last = last,
2425         };
2426         blk_status_t ret;
2427
2428         /*
2429          * For OK queue, we are done. For error, caller may kill it.
2430          * Any other error (busy), just add it to our list as we
2431          * previously would have done.
2432          */
2433         ret = q->mq_ops->queue_rq(hctx, &bd);
2434         switch (ret) {
2435         case BLK_STS_OK:
2436                 blk_mq_update_dispatch_busy(hctx, false);
2437                 break;
2438         case BLK_STS_RESOURCE:
2439         case BLK_STS_DEV_RESOURCE:
2440                 blk_mq_update_dispatch_busy(hctx, true);
2441                 __blk_mq_requeue_request(rq);
2442                 break;
2443         default:
2444                 blk_mq_update_dispatch_busy(hctx, false);
2445                 break;
2446         }
2447
2448         return ret;
2449 }
2450
2451 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2452                                                 struct request *rq,
2453                                                 bool bypass_insert, bool last)
2454 {
2455         struct request_queue *q = rq->q;
2456         bool run_queue = true;
2457         int budget_token;
2458
2459         /*
2460          * RCU or SRCU read lock is needed before checking quiesced flag.
2461          *
2462          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2463          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2464          * and avoid driver to try to dispatch again.
2465          */
2466         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2467                 run_queue = false;
2468                 bypass_insert = false;
2469                 goto insert;
2470         }
2471
2472         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2473                 goto insert;
2474
2475         budget_token = blk_mq_get_dispatch_budget(q);
2476         if (budget_token < 0)
2477                 goto insert;
2478
2479         blk_mq_set_rq_budget_token(rq, budget_token);
2480
2481         if (!blk_mq_get_driver_tag(rq)) {
2482                 blk_mq_put_dispatch_budget(q, budget_token);
2483                 goto insert;
2484         }
2485
2486         return __blk_mq_issue_directly(hctx, rq, last);
2487 insert:
2488         if (bypass_insert)
2489                 return BLK_STS_RESOURCE;
2490
2491         blk_mq_sched_insert_request(rq, false, run_queue, false);
2492
2493         return BLK_STS_OK;
2494 }
2495
2496 /**
2497  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2498  * @hctx: Pointer of the associated hardware queue.
2499  * @rq: Pointer to request to be sent.
2500  *
2501  * If the device has enough resources to accept a new request now, send the
2502  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2503  * we can try send it another time in the future. Requests inserted at this
2504  * queue have higher priority.
2505  */
2506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2507                 struct request *rq)
2508 {
2509         blk_status_t ret =
2510                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2511
2512         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2513                 blk_mq_request_bypass_insert(rq, false, true);
2514         else if (ret != BLK_STS_OK)
2515                 blk_mq_end_request(rq, ret);
2516 }
2517
2518 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2519 {
2520         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2521 }
2522
2523 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2524 {
2525         struct blk_mq_hw_ctx *hctx = NULL;
2526         struct request *rq;
2527         int queued = 0;
2528         int errors = 0;
2529
2530         while ((rq = rq_list_pop(&plug->mq_list))) {
2531                 bool last = rq_list_empty(plug->mq_list);
2532                 blk_status_t ret;
2533
2534                 if (hctx != rq->mq_hctx) {
2535                         if (hctx)
2536                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2537                         hctx = rq->mq_hctx;
2538                 }
2539
2540                 ret = blk_mq_request_issue_directly(rq, last);
2541                 switch (ret) {
2542                 case BLK_STS_OK:
2543                         queued++;
2544                         break;
2545                 case BLK_STS_RESOURCE:
2546                 case BLK_STS_DEV_RESOURCE:
2547                         blk_mq_request_bypass_insert(rq, false, last);
2548                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2549                         return;
2550                 default:
2551                         blk_mq_end_request(rq, ret);
2552                         errors++;
2553                         break;
2554                 }
2555         }
2556
2557         /*
2558          * If we didn't flush the entire list, we could have told the driver
2559          * there was more coming, but that turned out to be a lie.
2560          */
2561         if (errors)
2562                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2563 }
2564
2565 static void __blk_mq_flush_plug_list(struct request_queue *q,
2566                                      struct blk_plug *plug)
2567 {
2568         if (blk_queue_quiesced(q))
2569                 return;
2570         q->mq_ops->queue_rqs(&plug->mq_list);
2571 }
2572
2573 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2574 {
2575         struct blk_mq_hw_ctx *this_hctx;
2576         struct blk_mq_ctx *this_ctx;
2577         struct request *rq;
2578         unsigned int depth;
2579         LIST_HEAD(list);
2580
2581         if (rq_list_empty(plug->mq_list))
2582                 return;
2583         plug->rq_count = 0;
2584
2585         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2586                 struct request_queue *q;
2587
2588                 rq = rq_list_peek(&plug->mq_list);
2589                 q = rq->q;
2590
2591                 /*
2592                  * Peek first request and see if we have a ->queue_rqs() hook.
2593                  * If we do, we can dispatch the whole plug list in one go. We
2594                  * already know at this point that all requests belong to the
2595                  * same queue, caller must ensure that's the case.
2596                  *
2597                  * Since we pass off the full list to the driver at this point,
2598                  * we do not increment the active request count for the queue.
2599                  * Bypass shared tags for now because of that.
2600                  */
2601                 if (q->mq_ops->queue_rqs &&
2602                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2603                         blk_mq_run_dispatch_ops(q,
2604                                 __blk_mq_flush_plug_list(q, plug));
2605                         if (rq_list_empty(plug->mq_list))
2606                                 return;
2607                 }
2608
2609                 blk_mq_run_dispatch_ops(q,
2610                                 blk_mq_plug_issue_direct(plug, false));
2611                 if (rq_list_empty(plug->mq_list))
2612                         return;
2613         }
2614
2615         this_hctx = NULL;
2616         this_ctx = NULL;
2617         depth = 0;
2618         do {
2619                 rq = rq_list_pop(&plug->mq_list);
2620
2621                 if (!this_hctx) {
2622                         this_hctx = rq->mq_hctx;
2623                         this_ctx = rq->mq_ctx;
2624                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2625                         trace_block_unplug(this_hctx->queue, depth,
2626                                                 !from_schedule);
2627                         blk_mq_sched_insert_requests(this_hctx, this_ctx,
2628                                                 &list, from_schedule);
2629                         depth = 0;
2630                         this_hctx = rq->mq_hctx;
2631                         this_ctx = rq->mq_ctx;
2632
2633                 }
2634
2635                 list_add(&rq->queuelist, &list);
2636                 depth++;
2637         } while (!rq_list_empty(plug->mq_list));
2638
2639         if (!list_empty(&list)) {
2640                 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2641                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2642                                                 from_schedule);
2643         }
2644 }
2645
2646 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2647                 struct list_head *list)
2648 {
2649         int queued = 0;
2650         int errors = 0;
2651
2652         while (!list_empty(list)) {
2653                 blk_status_t ret;
2654                 struct request *rq = list_first_entry(list, struct request,
2655                                 queuelist);
2656
2657                 list_del_init(&rq->queuelist);
2658                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2659                 if (ret != BLK_STS_OK) {
2660                         if (ret == BLK_STS_RESOURCE ||
2661                                         ret == BLK_STS_DEV_RESOURCE) {
2662                                 blk_mq_request_bypass_insert(rq, false,
2663                                                         list_empty(list));
2664                                 break;
2665                         }
2666                         blk_mq_end_request(rq, ret);
2667                         errors++;
2668                 } else
2669                         queued++;
2670         }
2671
2672         /*
2673          * If we didn't flush the entire list, we could have told
2674          * the driver there was more coming, but that turned out to
2675          * be a lie.
2676          */
2677         if ((!list_empty(list) || errors) &&
2678              hctx->queue->mq_ops->commit_rqs && queued)
2679                 hctx->queue->mq_ops->commit_rqs(hctx);
2680 }
2681
2682 /*
2683  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2684  * queues. This is important for md arrays to benefit from merging
2685  * requests.
2686  */
2687 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2688 {
2689         if (plug->multiple_queues)
2690                 return BLK_MAX_REQUEST_COUNT * 2;
2691         return BLK_MAX_REQUEST_COUNT;
2692 }
2693
2694 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2695 {
2696         struct request *last = rq_list_peek(&plug->mq_list);
2697
2698         if (!plug->rq_count) {
2699                 trace_block_plug(rq->q);
2700         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2701                    (!blk_queue_nomerges(rq->q) &&
2702                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2703                 blk_mq_flush_plug_list(plug, false);
2704                 trace_block_plug(rq->q);
2705         }
2706
2707         if (!plug->multiple_queues && last && last->q != rq->q)
2708                 plug->multiple_queues = true;
2709         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2710                 plug->has_elevator = true;
2711         rq->rq_next = NULL;
2712         rq_list_add(&plug->mq_list, rq);
2713         plug->rq_count++;
2714 }
2715
2716 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2717                                      struct bio *bio, unsigned int nr_segs)
2718 {
2719         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2720                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2721                         return true;
2722                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2723                         return true;
2724         }
2725         return false;
2726 }
2727
2728 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2729                                                struct blk_plug *plug,
2730                                                struct bio *bio)
2731 {
2732         struct blk_mq_alloc_data data = {
2733                 .q              = q,
2734                 .nr_tags        = 1,
2735                 .cmd_flags      = bio->bi_opf,
2736         };
2737         struct request *rq;
2738
2739         if (unlikely(bio_queue_enter(bio)))
2740                 return NULL;
2741
2742         if (plug) {
2743                 data.nr_tags = plug->nr_ios;
2744                 plug->nr_ios = 1;
2745                 data.cached_rq = &plug->cached_rq;
2746         }
2747
2748         rq = __blk_mq_alloc_requests(&data);
2749         if (rq)
2750                 return rq;
2751         rq_qos_cleanup(q, bio);
2752         if (bio->bi_opf & REQ_NOWAIT)
2753                 bio_wouldblock_error(bio);
2754         blk_queue_exit(q);
2755         return NULL;
2756 }
2757
2758 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2759                 struct blk_plug *plug, struct bio *bio)
2760 {
2761         struct request *rq;
2762
2763         if (!plug)
2764                 return NULL;
2765         rq = rq_list_peek(&plug->cached_rq);
2766         if (!rq || rq->q != q)
2767                 return NULL;
2768
2769         if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2770                 return NULL;
2771         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2772                 return NULL;
2773
2774         rq->cmd_flags = bio->bi_opf;
2775         plug->cached_rq = rq_list_next(rq);
2776         INIT_LIST_HEAD(&rq->queuelist);
2777         return rq;
2778 }
2779
2780 /**
2781  * blk_mq_submit_bio - Create and send a request to block device.
2782  * @bio: Bio pointer.
2783  *
2784  * Builds up a request structure from @q and @bio and send to the device. The
2785  * request may not be queued directly to hardware if:
2786  * * This request can be merged with another one
2787  * * We want to place request at plug queue for possible future merging
2788  * * There is an IO scheduler active at this queue
2789  *
2790  * It will not queue the request if there is an error with the bio, or at the
2791  * request creation.
2792  */
2793 void blk_mq_submit_bio(struct bio *bio)
2794 {
2795         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2796         struct blk_plug *plug = blk_mq_plug(q, bio);
2797         const int is_sync = op_is_sync(bio->bi_opf);
2798         struct request *rq;
2799         unsigned int nr_segs = 1;
2800         blk_status_t ret;
2801
2802         blk_queue_bounce(q, &bio);
2803         if (blk_may_split(q, bio))
2804                 __blk_queue_split(q, &bio, &nr_segs);
2805
2806         if (!bio_integrity_prep(bio))
2807                 return;
2808
2809         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2810                 return;
2811
2812         rq_qos_throttle(q, bio);
2813
2814         rq = blk_mq_get_cached_request(q, plug, bio);
2815         if (!rq) {
2816                 rq = blk_mq_get_new_requests(q, plug, bio);
2817                 if (unlikely(!rq))
2818                         return;
2819         }
2820
2821         trace_block_getrq(bio);
2822
2823         rq_qos_track(q, rq, bio);
2824
2825         blk_mq_bio_to_request(rq, bio, nr_segs);
2826
2827         ret = blk_crypto_init_request(rq);
2828         if (ret != BLK_STS_OK) {
2829                 bio->bi_status = ret;
2830                 bio_endio(bio);
2831                 blk_mq_free_request(rq);
2832                 return;
2833         }
2834
2835         if (op_is_flush(bio->bi_opf)) {
2836                 blk_insert_flush(rq);
2837                 return;
2838         }
2839
2840         if (plug)
2841                 blk_add_rq_to_plug(plug, rq);
2842         else if ((rq->rq_flags & RQF_ELV) ||
2843                  (rq->mq_hctx->dispatch_busy &&
2844                   (q->nr_hw_queues == 1 || !is_sync)))
2845                 blk_mq_sched_insert_request(rq, false, true, true);
2846         else
2847                 blk_mq_run_dispatch_ops(rq->q,
2848                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2849 }
2850
2851 #ifdef CONFIG_BLK_MQ_STACKING
2852 /**
2853  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2854  * @rq: the request being queued
2855  */
2856 blk_status_t blk_insert_cloned_request(struct request *rq)
2857 {
2858         struct request_queue *q = rq->q;
2859         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2860         blk_status_t ret;
2861
2862         if (blk_rq_sectors(rq) > max_sectors) {
2863                 /*
2864                  * SCSI device does not have a good way to return if
2865                  * Write Same/Zero is actually supported. If a device rejects
2866                  * a non-read/write command (discard, write same,etc.) the
2867                  * low-level device driver will set the relevant queue limit to
2868                  * 0 to prevent blk-lib from issuing more of the offending
2869                  * operations. Commands queued prior to the queue limit being
2870                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2871                  * errors being propagated to upper layers.
2872                  */
2873                 if (max_sectors == 0)
2874                         return BLK_STS_NOTSUPP;
2875
2876                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2877                         __func__, blk_rq_sectors(rq), max_sectors);
2878                 return BLK_STS_IOERR;
2879         }
2880
2881         /*
2882          * The queue settings related to segment counting may differ from the
2883          * original queue.
2884          */
2885         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2886         if (rq->nr_phys_segments > queue_max_segments(q)) {
2887                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2888                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2889                 return BLK_STS_IOERR;
2890         }
2891
2892         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2893                 return BLK_STS_IOERR;
2894
2895         if (blk_crypto_insert_cloned_request(rq))
2896                 return BLK_STS_IOERR;
2897
2898         blk_account_io_start(rq);
2899
2900         /*
2901          * Since we have a scheduler attached on the top device,
2902          * bypass a potential scheduler on the bottom device for
2903          * insert.
2904          */
2905         blk_mq_run_dispatch_ops(q,
2906                         ret = blk_mq_request_issue_directly(rq, true));
2907         if (ret)
2908                 blk_account_io_done(rq, ktime_get_ns());
2909         return ret;
2910 }
2911 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2912
2913 /**
2914  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2915  * @rq: the clone request to be cleaned up
2916  *
2917  * Description:
2918  *     Free all bios in @rq for a cloned request.
2919  */
2920 void blk_rq_unprep_clone(struct request *rq)
2921 {
2922         struct bio *bio;
2923
2924         while ((bio = rq->bio) != NULL) {
2925                 rq->bio = bio->bi_next;
2926
2927                 bio_put(bio);
2928         }
2929 }
2930 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2931
2932 /**
2933  * blk_rq_prep_clone - Helper function to setup clone request
2934  * @rq: the request to be setup
2935  * @rq_src: original request to be cloned
2936  * @bs: bio_set that bios for clone are allocated from
2937  * @gfp_mask: memory allocation mask for bio
2938  * @bio_ctr: setup function to be called for each clone bio.
2939  *           Returns %0 for success, non %0 for failure.
2940  * @data: private data to be passed to @bio_ctr
2941  *
2942  * Description:
2943  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2944  *     Also, pages which the original bios are pointing to are not copied
2945  *     and the cloned bios just point same pages.
2946  *     So cloned bios must be completed before original bios, which means
2947  *     the caller must complete @rq before @rq_src.
2948  */
2949 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2950                       struct bio_set *bs, gfp_t gfp_mask,
2951                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2952                       void *data)
2953 {
2954         struct bio *bio, *bio_src;
2955
2956         if (!bs)
2957                 bs = &fs_bio_set;
2958
2959         __rq_for_each_bio(bio_src, rq_src) {
2960                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2961                                       bs);
2962                 if (!bio)
2963                         goto free_and_out;
2964
2965                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2966                         goto free_and_out;
2967
2968                 if (rq->bio) {
2969                         rq->biotail->bi_next = bio;
2970                         rq->biotail = bio;
2971                 } else {
2972                         rq->bio = rq->biotail = bio;
2973                 }
2974                 bio = NULL;
2975         }
2976
2977         /* Copy attributes of the original request to the clone request. */
2978         rq->__sector = blk_rq_pos(rq_src);
2979         rq->__data_len = blk_rq_bytes(rq_src);
2980         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2981                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2982                 rq->special_vec = rq_src->special_vec;
2983         }
2984         rq->nr_phys_segments = rq_src->nr_phys_segments;
2985         rq->ioprio = rq_src->ioprio;
2986
2987         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2988                 goto free_and_out;
2989
2990         return 0;
2991
2992 free_and_out:
2993         if (bio)
2994                 bio_put(bio);
2995         blk_rq_unprep_clone(rq);
2996
2997         return -ENOMEM;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3000 #endif /* CONFIG_BLK_MQ_STACKING */
3001
3002 /*
3003  * Steal bios from a request and add them to a bio list.
3004  * The request must not have been partially completed before.
3005  */
3006 void blk_steal_bios(struct bio_list *list, struct request *rq)
3007 {
3008         if (rq->bio) {
3009                 if (list->tail)
3010                         list->tail->bi_next = rq->bio;
3011                 else
3012                         list->head = rq->bio;
3013                 list->tail = rq->biotail;
3014
3015                 rq->bio = NULL;
3016                 rq->biotail = NULL;
3017         }
3018
3019         rq->__data_len = 0;
3020 }
3021 EXPORT_SYMBOL_GPL(blk_steal_bios);
3022
3023 static size_t order_to_size(unsigned int order)
3024 {
3025         return (size_t)PAGE_SIZE << order;
3026 }
3027
3028 /* called before freeing request pool in @tags */
3029 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3030                                     struct blk_mq_tags *tags)
3031 {
3032         struct page *page;
3033         unsigned long flags;
3034
3035         /* There is no need to clear a driver tags own mapping */
3036         if (drv_tags == tags)
3037                 return;
3038
3039         list_for_each_entry(page, &tags->page_list, lru) {
3040                 unsigned long start = (unsigned long)page_address(page);
3041                 unsigned long end = start + order_to_size(page->private);
3042                 int i;
3043
3044                 for (i = 0; i < drv_tags->nr_tags; i++) {
3045                         struct request *rq = drv_tags->rqs[i];
3046                         unsigned long rq_addr = (unsigned long)rq;
3047
3048                         if (rq_addr >= start && rq_addr < end) {
3049                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3050                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3051                         }
3052                 }
3053         }
3054
3055         /*
3056          * Wait until all pending iteration is done.
3057          *
3058          * Request reference is cleared and it is guaranteed to be observed
3059          * after the ->lock is released.
3060          */
3061         spin_lock_irqsave(&drv_tags->lock, flags);
3062         spin_unlock_irqrestore(&drv_tags->lock, flags);
3063 }
3064
3065 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3066                      unsigned int hctx_idx)
3067 {
3068         struct blk_mq_tags *drv_tags;
3069         struct page *page;
3070
3071         if (blk_mq_is_shared_tags(set->flags))
3072                 drv_tags = set->shared_tags;
3073         else
3074                 drv_tags = set->tags[hctx_idx];
3075
3076         if (tags->static_rqs && set->ops->exit_request) {
3077                 int i;
3078
3079                 for (i = 0; i < tags->nr_tags; i++) {
3080                         struct request *rq = tags->static_rqs[i];
3081
3082                         if (!rq)
3083                                 continue;
3084                         set->ops->exit_request(set, rq, hctx_idx);
3085                         tags->static_rqs[i] = NULL;
3086                 }
3087         }
3088
3089         blk_mq_clear_rq_mapping(drv_tags, tags);
3090
3091         while (!list_empty(&tags->page_list)) {
3092                 page = list_first_entry(&tags->page_list, struct page, lru);
3093                 list_del_init(&page->lru);
3094                 /*
3095                  * Remove kmemleak object previously allocated in
3096                  * blk_mq_alloc_rqs().
3097                  */
3098                 kmemleak_free(page_address(page));
3099                 __free_pages(page, page->private);
3100         }
3101 }
3102
3103 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3104 {
3105         kfree(tags->rqs);
3106         tags->rqs = NULL;
3107         kfree(tags->static_rqs);
3108         tags->static_rqs = NULL;
3109
3110         blk_mq_free_tags(tags);
3111 }
3112
3113 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3114                                                unsigned int hctx_idx,
3115                                                unsigned int nr_tags,
3116                                                unsigned int reserved_tags)
3117 {
3118         struct blk_mq_tags *tags;
3119         int node;
3120
3121         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3122         if (node == NUMA_NO_NODE)
3123                 node = set->numa_node;
3124
3125         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3126                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3127         if (!tags)
3128                 return NULL;
3129
3130         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3131                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3132                                  node);
3133         if (!tags->rqs) {
3134                 blk_mq_free_tags(tags);
3135                 return NULL;
3136         }
3137
3138         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3139                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3140                                         node);
3141         if (!tags->static_rqs) {
3142                 kfree(tags->rqs);
3143                 blk_mq_free_tags(tags);
3144                 return NULL;
3145         }
3146
3147         return tags;
3148 }
3149
3150 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3151                                unsigned int hctx_idx, int node)
3152 {
3153         int ret;
3154
3155         if (set->ops->init_request) {
3156                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3157                 if (ret)
3158                         return ret;
3159         }
3160
3161         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3162         return 0;
3163 }
3164
3165 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3166                             struct blk_mq_tags *tags,
3167                             unsigned int hctx_idx, unsigned int depth)
3168 {
3169         unsigned int i, j, entries_per_page, max_order = 4;
3170         size_t rq_size, left;
3171         int node;
3172
3173         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3174         if (node == NUMA_NO_NODE)
3175                 node = set->numa_node;
3176
3177         INIT_LIST_HEAD(&tags->page_list);
3178
3179         /*
3180          * rq_size is the size of the request plus driver payload, rounded
3181          * to the cacheline size
3182          */
3183         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3184                                 cache_line_size());
3185         left = rq_size * depth;
3186
3187         for (i = 0; i < depth; ) {
3188                 int this_order = max_order;
3189                 struct page *page;
3190                 int to_do;
3191                 void *p;
3192
3193                 while (this_order && left < order_to_size(this_order - 1))
3194                         this_order--;
3195
3196                 do {
3197                         page = alloc_pages_node(node,
3198                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3199                                 this_order);
3200                         if (page)
3201                                 break;
3202                         if (!this_order--)
3203                                 break;
3204                         if (order_to_size(this_order) < rq_size)
3205                                 break;
3206                 } while (1);
3207
3208                 if (!page)
3209                         goto fail;
3210
3211                 page->private = this_order;
3212                 list_add_tail(&page->lru, &tags->page_list);
3213
3214                 p = page_address(page);
3215                 /*
3216                  * Allow kmemleak to scan these pages as they contain pointers
3217                  * to additional allocations like via ops->init_request().
3218                  */
3219                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3220                 entries_per_page = order_to_size(this_order) / rq_size;
3221                 to_do = min(entries_per_page, depth - i);
3222                 left -= to_do * rq_size;
3223                 for (j = 0; j < to_do; j++) {
3224                         struct request *rq = p;
3225
3226                         tags->static_rqs[i] = rq;
3227                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3228                                 tags->static_rqs[i] = NULL;
3229                                 goto fail;
3230                         }
3231
3232                         p += rq_size;
3233                         i++;
3234                 }
3235         }
3236         return 0;
3237
3238 fail:
3239         blk_mq_free_rqs(set, tags, hctx_idx);
3240         return -ENOMEM;
3241 }
3242
3243 struct rq_iter_data {
3244         struct blk_mq_hw_ctx *hctx;
3245         bool has_rq;
3246 };
3247
3248 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3249 {
3250         struct rq_iter_data *iter_data = data;
3251
3252         if (rq->mq_hctx != iter_data->hctx)
3253                 return true;
3254         iter_data->has_rq = true;
3255         return false;
3256 }
3257
3258 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3259 {
3260         struct blk_mq_tags *tags = hctx->sched_tags ?
3261                         hctx->sched_tags : hctx->tags;
3262         struct rq_iter_data data = {
3263                 .hctx   = hctx,
3264         };
3265
3266         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3267         return data.has_rq;
3268 }
3269
3270 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3271                 struct blk_mq_hw_ctx *hctx)
3272 {
3273         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3274                 return false;
3275         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3276                 return false;
3277         return true;
3278 }
3279
3280 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3281 {
3282         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3283                         struct blk_mq_hw_ctx, cpuhp_online);
3284
3285         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3286             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3287                 return 0;
3288
3289         /*
3290          * Prevent new request from being allocated on the current hctx.
3291          *
3292          * The smp_mb__after_atomic() Pairs with the implied barrier in
3293          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3294          * seen once we return from the tag allocator.
3295          */
3296         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3297         smp_mb__after_atomic();
3298
3299         /*
3300          * Try to grab a reference to the queue and wait for any outstanding
3301          * requests.  If we could not grab a reference the queue has been
3302          * frozen and there are no requests.
3303          */
3304         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3305                 while (blk_mq_hctx_has_requests(hctx))
3306                         msleep(5);
3307                 percpu_ref_put(&hctx->queue->q_usage_counter);
3308         }
3309
3310         return 0;
3311 }
3312
3313 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3314 {
3315         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3316                         struct blk_mq_hw_ctx, cpuhp_online);
3317
3318         if (cpumask_test_cpu(cpu, hctx->cpumask))
3319                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3320         return 0;
3321 }
3322
3323 /*
3324  * 'cpu' is going away. splice any existing rq_list entries from this
3325  * software queue to the hw queue dispatch list, and ensure that it
3326  * gets run.
3327  */
3328 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3329 {
3330         struct blk_mq_hw_ctx *hctx;
3331         struct blk_mq_ctx *ctx;
3332         LIST_HEAD(tmp);
3333         enum hctx_type type;
3334
3335         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3336         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3337                 return 0;
3338
3339         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3340         type = hctx->type;
3341
3342         spin_lock(&ctx->lock);
3343         if (!list_empty(&ctx->rq_lists[type])) {
3344                 list_splice_init(&ctx->rq_lists[type], &tmp);
3345                 blk_mq_hctx_clear_pending(hctx, ctx);
3346         }
3347         spin_unlock(&ctx->lock);
3348
3349         if (list_empty(&tmp))
3350                 return 0;
3351
3352         spin_lock(&hctx->lock);
3353         list_splice_tail_init(&tmp, &hctx->dispatch);
3354         spin_unlock(&hctx->lock);
3355
3356         blk_mq_run_hw_queue(hctx, true);
3357         return 0;
3358 }
3359
3360 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3361 {
3362         if (!(hctx->flags & BLK_MQ_F_STACKING))
3363                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3364                                                     &hctx->cpuhp_online);
3365         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3366                                             &hctx->cpuhp_dead);
3367 }
3368
3369 /*
3370  * Before freeing hw queue, clearing the flush request reference in
3371  * tags->rqs[] for avoiding potential UAF.
3372  */
3373 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3374                 unsigned int queue_depth, struct request *flush_rq)
3375 {
3376         int i;
3377         unsigned long flags;
3378
3379         /* The hw queue may not be mapped yet */
3380         if (!tags)
3381                 return;
3382
3383         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3384
3385         for (i = 0; i < queue_depth; i++)
3386                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3387
3388         /*
3389          * Wait until all pending iteration is done.
3390          *
3391          * Request reference is cleared and it is guaranteed to be observed
3392          * after the ->lock is released.
3393          */
3394         spin_lock_irqsave(&tags->lock, flags);
3395         spin_unlock_irqrestore(&tags->lock, flags);
3396 }
3397
3398 /* hctx->ctxs will be freed in queue's release handler */
3399 static void blk_mq_exit_hctx(struct request_queue *q,
3400                 struct blk_mq_tag_set *set,
3401                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3402 {
3403         struct request *flush_rq = hctx->fq->flush_rq;
3404
3405         if (blk_mq_hw_queue_mapped(hctx))
3406                 blk_mq_tag_idle(hctx);
3407
3408         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3409                         set->queue_depth, flush_rq);
3410         if (set->ops->exit_request)
3411                 set->ops->exit_request(set, flush_rq, hctx_idx);
3412
3413         if (set->ops->exit_hctx)
3414                 set->ops->exit_hctx(hctx, hctx_idx);
3415
3416         blk_mq_remove_cpuhp(hctx);
3417
3418         spin_lock(&q->unused_hctx_lock);
3419         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3420         spin_unlock(&q->unused_hctx_lock);
3421 }
3422
3423 static void blk_mq_exit_hw_queues(struct request_queue *q,
3424                 struct blk_mq_tag_set *set, int nr_queue)
3425 {
3426         struct blk_mq_hw_ctx *hctx;
3427         unsigned int i;
3428
3429         queue_for_each_hw_ctx(q, hctx, i) {
3430                 if (i == nr_queue)
3431                         break;
3432                 blk_mq_debugfs_unregister_hctx(hctx);
3433                 blk_mq_exit_hctx(q, set, hctx, i);
3434         }
3435 }
3436
3437 static int blk_mq_init_hctx(struct request_queue *q,
3438                 struct blk_mq_tag_set *set,
3439                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3440 {
3441         hctx->queue_num = hctx_idx;
3442
3443         if (!(hctx->flags & BLK_MQ_F_STACKING))
3444                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3445                                 &hctx->cpuhp_online);
3446         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3447
3448         hctx->tags = set->tags[hctx_idx];
3449
3450         if (set->ops->init_hctx &&
3451             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3452                 goto unregister_cpu_notifier;
3453
3454         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3455                                 hctx->numa_node))
3456                 goto exit_hctx;
3457         return 0;
3458
3459  exit_hctx:
3460         if (set->ops->exit_hctx)
3461                 set->ops->exit_hctx(hctx, hctx_idx);
3462  unregister_cpu_notifier:
3463         blk_mq_remove_cpuhp(hctx);
3464         return -1;
3465 }
3466
3467 static struct blk_mq_hw_ctx *
3468 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3469                 int node)
3470 {
3471         struct blk_mq_hw_ctx *hctx;
3472         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3473
3474         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3475         if (!hctx)
3476                 goto fail_alloc_hctx;
3477
3478         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3479                 goto free_hctx;
3480
3481         atomic_set(&hctx->nr_active, 0);
3482         if (node == NUMA_NO_NODE)
3483                 node = set->numa_node;
3484         hctx->numa_node = node;
3485
3486         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3487         spin_lock_init(&hctx->lock);
3488         INIT_LIST_HEAD(&hctx->dispatch);
3489         hctx->queue = q;
3490         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3491
3492         INIT_LIST_HEAD(&hctx->hctx_list);
3493
3494         /*
3495          * Allocate space for all possible cpus to avoid allocation at
3496          * runtime
3497          */
3498         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3499                         gfp, node);
3500         if (!hctx->ctxs)
3501                 goto free_cpumask;
3502
3503         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3504                                 gfp, node, false, false))
3505                 goto free_ctxs;
3506         hctx->nr_ctx = 0;
3507
3508         spin_lock_init(&hctx->dispatch_wait_lock);
3509         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3510         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3511
3512         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3513         if (!hctx->fq)
3514                 goto free_bitmap;
3515
3516         blk_mq_hctx_kobj_init(hctx);
3517
3518         return hctx;
3519
3520  free_bitmap:
3521         sbitmap_free(&hctx->ctx_map);
3522  free_ctxs:
3523         kfree(hctx->ctxs);
3524  free_cpumask:
3525         free_cpumask_var(hctx->cpumask);
3526  free_hctx:
3527         kfree(hctx);
3528  fail_alloc_hctx:
3529         return NULL;
3530 }
3531
3532 static void blk_mq_init_cpu_queues(struct request_queue *q,
3533                                    unsigned int nr_hw_queues)
3534 {
3535         struct blk_mq_tag_set *set = q->tag_set;
3536         unsigned int i, j;
3537
3538         for_each_possible_cpu(i) {
3539                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3540                 struct blk_mq_hw_ctx *hctx;
3541                 int k;
3542
3543                 __ctx->cpu = i;
3544                 spin_lock_init(&__ctx->lock);
3545                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3546                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3547
3548                 __ctx->queue = q;
3549
3550                 /*
3551                  * Set local node, IFF we have more than one hw queue. If
3552                  * not, we remain on the home node of the device
3553                  */
3554                 for (j = 0; j < set->nr_maps; j++) {
3555                         hctx = blk_mq_map_queue_type(q, j, i);
3556                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3557                                 hctx->numa_node = cpu_to_node(i);
3558                 }
3559         }
3560 }
3561
3562 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3563                                              unsigned int hctx_idx,
3564                                              unsigned int depth)
3565 {
3566         struct blk_mq_tags *tags;
3567         int ret;
3568
3569         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3570         if (!tags)
3571                 return NULL;
3572
3573         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3574         if (ret) {
3575                 blk_mq_free_rq_map(tags);
3576                 return NULL;
3577         }
3578
3579         return tags;
3580 }
3581
3582 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3583                                        int hctx_idx)
3584 {
3585         if (blk_mq_is_shared_tags(set->flags)) {
3586                 set->tags[hctx_idx] = set->shared_tags;
3587
3588                 return true;
3589         }
3590
3591         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3592                                                        set->queue_depth);
3593
3594         return set->tags[hctx_idx];
3595 }
3596
3597 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3598                              struct blk_mq_tags *tags,
3599                              unsigned int hctx_idx)
3600 {
3601         if (tags) {
3602                 blk_mq_free_rqs(set, tags, hctx_idx);
3603                 blk_mq_free_rq_map(tags);
3604         }
3605 }
3606
3607 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3608                                       unsigned int hctx_idx)
3609 {
3610         if (!blk_mq_is_shared_tags(set->flags))
3611                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3612
3613         set->tags[hctx_idx] = NULL;
3614 }
3615
3616 static void blk_mq_map_swqueue(struct request_queue *q)
3617 {
3618         unsigned int i, j, hctx_idx;
3619         struct blk_mq_hw_ctx *hctx;
3620         struct blk_mq_ctx *ctx;
3621         struct blk_mq_tag_set *set = q->tag_set;
3622
3623         queue_for_each_hw_ctx(q, hctx, i) {
3624                 cpumask_clear(hctx->cpumask);
3625                 hctx->nr_ctx = 0;
3626                 hctx->dispatch_from = NULL;
3627         }
3628
3629         /*
3630          * Map software to hardware queues.
3631          *
3632          * If the cpu isn't present, the cpu is mapped to first hctx.
3633          */
3634         for_each_possible_cpu(i) {
3635
3636                 ctx = per_cpu_ptr(q->queue_ctx, i);
3637                 for (j = 0; j < set->nr_maps; j++) {
3638                         if (!set->map[j].nr_queues) {
3639                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3640                                                 HCTX_TYPE_DEFAULT, i);
3641                                 continue;
3642                         }
3643                         hctx_idx = set->map[j].mq_map[i];
3644                         /* unmapped hw queue can be remapped after CPU topo changed */
3645                         if (!set->tags[hctx_idx] &&
3646                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3647                                 /*
3648                                  * If tags initialization fail for some hctx,
3649                                  * that hctx won't be brought online.  In this
3650                                  * case, remap the current ctx to hctx[0] which
3651                                  * is guaranteed to always have tags allocated
3652                                  */
3653                                 set->map[j].mq_map[i] = 0;
3654                         }
3655
3656                         hctx = blk_mq_map_queue_type(q, j, i);
3657                         ctx->hctxs[j] = hctx;
3658                         /*
3659                          * If the CPU is already set in the mask, then we've
3660                          * mapped this one already. This can happen if
3661                          * devices share queues across queue maps.
3662                          */
3663                         if (cpumask_test_cpu(i, hctx->cpumask))
3664                                 continue;
3665
3666                         cpumask_set_cpu(i, hctx->cpumask);
3667                         hctx->type = j;
3668                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3669                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3670
3671                         /*
3672                          * If the nr_ctx type overflows, we have exceeded the
3673                          * amount of sw queues we can support.
3674                          */
3675                         BUG_ON(!hctx->nr_ctx);
3676                 }
3677
3678                 for (; j < HCTX_MAX_TYPES; j++)
3679                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3680                                         HCTX_TYPE_DEFAULT, i);
3681         }
3682
3683         queue_for_each_hw_ctx(q, hctx, i) {
3684                 /*
3685                  * If no software queues are mapped to this hardware queue,
3686                  * disable it and free the request entries.
3687                  */
3688                 if (!hctx->nr_ctx) {
3689                         /* Never unmap queue 0.  We need it as a
3690                          * fallback in case of a new remap fails
3691                          * allocation
3692                          */
3693                         if (i)
3694                                 __blk_mq_free_map_and_rqs(set, i);
3695
3696                         hctx->tags = NULL;
3697                         continue;
3698                 }
3699
3700                 hctx->tags = set->tags[i];
3701                 WARN_ON(!hctx->tags);
3702
3703                 /*
3704                  * Set the map size to the number of mapped software queues.
3705                  * This is more accurate and more efficient than looping
3706                  * over all possibly mapped software queues.
3707                  */
3708                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3709
3710                 /*
3711                  * Initialize batch roundrobin counts
3712                  */
3713                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3714                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3715         }
3716 }
3717
3718 /*
3719  * Caller needs to ensure that we're either frozen/quiesced, or that
3720  * the queue isn't live yet.
3721  */
3722 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3723 {
3724         struct blk_mq_hw_ctx *hctx;
3725         int i;
3726
3727         queue_for_each_hw_ctx(q, hctx, i) {
3728                 if (shared) {
3729                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3730                 } else {
3731                         blk_mq_tag_idle(hctx);
3732                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3733                 }
3734         }
3735 }
3736
3737 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3738                                          bool shared)
3739 {
3740         struct request_queue *q;
3741
3742         lockdep_assert_held(&set->tag_list_lock);
3743
3744         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3745                 blk_mq_freeze_queue(q);
3746                 queue_set_hctx_shared(q, shared);
3747                 blk_mq_unfreeze_queue(q);
3748         }
3749 }
3750
3751 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3752 {
3753         struct blk_mq_tag_set *set = q->tag_set;
3754
3755         mutex_lock(&set->tag_list_lock);
3756         list_del(&q->tag_set_list);
3757         if (list_is_singular(&set->tag_list)) {
3758                 /* just transitioned to unshared */
3759                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3760                 /* update existing queue */
3761                 blk_mq_update_tag_set_shared(set, false);
3762         }
3763         mutex_unlock(&set->tag_list_lock);
3764         INIT_LIST_HEAD(&q->tag_set_list);
3765 }
3766
3767 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3768                                      struct request_queue *q)
3769 {
3770         mutex_lock(&set->tag_list_lock);
3771
3772         /*
3773          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3774          */
3775         if (!list_empty(&set->tag_list) &&
3776             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3777                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3778                 /* update existing queue */
3779                 blk_mq_update_tag_set_shared(set, true);
3780         }
3781         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3782                 queue_set_hctx_shared(q, true);
3783         list_add_tail(&q->tag_set_list, &set->tag_list);
3784
3785         mutex_unlock(&set->tag_list_lock);
3786 }
3787
3788 /* All allocations will be freed in release handler of q->mq_kobj */
3789 static int blk_mq_alloc_ctxs(struct request_queue *q)
3790 {
3791         struct blk_mq_ctxs *ctxs;
3792         int cpu;
3793
3794         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3795         if (!ctxs)
3796                 return -ENOMEM;
3797
3798         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3799         if (!ctxs->queue_ctx)
3800                 goto fail;
3801
3802         for_each_possible_cpu(cpu) {
3803                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3804                 ctx->ctxs = ctxs;
3805         }
3806
3807         q->mq_kobj = &ctxs->kobj;
3808         q->queue_ctx = ctxs->queue_ctx;
3809
3810         return 0;
3811  fail:
3812         kfree(ctxs);
3813         return -ENOMEM;
3814 }
3815
3816 /*
3817  * It is the actual release handler for mq, but we do it from
3818  * request queue's release handler for avoiding use-after-free
3819  * and headache because q->mq_kobj shouldn't have been introduced,
3820  * but we can't group ctx/kctx kobj without it.
3821  */
3822 void blk_mq_release(struct request_queue *q)
3823 {
3824         struct blk_mq_hw_ctx *hctx, *next;
3825         int i;
3826
3827         queue_for_each_hw_ctx(q, hctx, i)
3828                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3829
3830         /* all hctx are in .unused_hctx_list now */
3831         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3832                 list_del_init(&hctx->hctx_list);
3833                 kobject_put(&hctx->kobj);
3834         }
3835
3836         kfree(q->queue_hw_ctx);
3837
3838         /*
3839          * release .mq_kobj and sw queue's kobject now because
3840          * both share lifetime with request queue.
3841          */
3842         blk_mq_sysfs_deinit(q);
3843 }
3844
3845 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3846                 void *queuedata)
3847 {
3848         struct request_queue *q;
3849         int ret;
3850
3851         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3852         if (!q)
3853                 return ERR_PTR(-ENOMEM);
3854         q->queuedata = queuedata;
3855         ret = blk_mq_init_allocated_queue(set, q);
3856         if (ret) {
3857                 blk_cleanup_queue(q);
3858                 return ERR_PTR(ret);
3859         }
3860         return q;
3861 }
3862
3863 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3864 {
3865         return blk_mq_init_queue_data(set, NULL);
3866 }
3867 EXPORT_SYMBOL(blk_mq_init_queue);
3868
3869 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3870                 struct lock_class_key *lkclass)
3871 {
3872         struct request_queue *q;
3873         struct gendisk *disk;
3874
3875         q = blk_mq_init_queue_data(set, queuedata);
3876         if (IS_ERR(q))
3877                 return ERR_CAST(q);
3878
3879         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3880         if (!disk) {
3881                 blk_cleanup_queue(q);
3882                 return ERR_PTR(-ENOMEM);
3883         }
3884         return disk;
3885 }
3886 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3887
3888 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3889                 struct blk_mq_tag_set *set, struct request_queue *q,
3890                 int hctx_idx, int node)
3891 {
3892         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3893
3894         /* reuse dead hctx first */
3895         spin_lock(&q->unused_hctx_lock);
3896         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3897                 if (tmp->numa_node == node) {
3898                         hctx = tmp;
3899                         break;
3900                 }
3901         }
3902         if (hctx)
3903                 list_del_init(&hctx->hctx_list);
3904         spin_unlock(&q->unused_hctx_lock);
3905
3906         if (!hctx)
3907                 hctx = blk_mq_alloc_hctx(q, set, node);
3908         if (!hctx)
3909                 goto fail;
3910
3911         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3912                 goto free_hctx;
3913
3914         return hctx;
3915
3916  free_hctx:
3917         kobject_put(&hctx->kobj);
3918  fail:
3919         return NULL;
3920 }
3921
3922 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3923                                                 struct request_queue *q)
3924 {
3925         int i, j, end;
3926         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3927
3928         if (q->nr_hw_queues < set->nr_hw_queues) {
3929                 struct blk_mq_hw_ctx **new_hctxs;
3930
3931                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3932                                        sizeof(*new_hctxs), GFP_KERNEL,
3933                                        set->numa_node);
3934                 if (!new_hctxs)
3935                         return;
3936                 if (hctxs)
3937                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3938                                sizeof(*hctxs));
3939                 q->queue_hw_ctx = new_hctxs;
3940                 kfree(hctxs);
3941                 hctxs = new_hctxs;
3942         }
3943
3944         /* protect against switching io scheduler  */
3945         mutex_lock(&q->sysfs_lock);
3946         for (i = 0; i < set->nr_hw_queues; i++) {
3947                 int node;
3948                 struct blk_mq_hw_ctx *hctx;
3949
3950                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3951                 /*
3952                  * If the hw queue has been mapped to another numa node,
3953                  * we need to realloc the hctx. If allocation fails, fallback
3954                  * to use the previous one.
3955                  */
3956                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3957                         continue;
3958
3959                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3960                 if (hctx) {
3961                         if (hctxs[i])
3962                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3963                         hctxs[i] = hctx;
3964                 } else {
3965                         if (hctxs[i])
3966                                 pr_warn("Allocate new hctx on node %d fails,\
3967                                                 fallback to previous one on node %d\n",
3968                                                 node, hctxs[i]->numa_node);
3969                         else
3970                                 break;
3971                 }
3972         }
3973         /*
3974          * Increasing nr_hw_queues fails. Free the newly allocated
3975          * hctxs and keep the previous q->nr_hw_queues.
3976          */
3977         if (i != set->nr_hw_queues) {
3978                 j = q->nr_hw_queues;
3979                 end = i;
3980         } else {
3981                 j = i;
3982                 end = q->nr_hw_queues;
3983                 q->nr_hw_queues = set->nr_hw_queues;
3984         }
3985
3986         for (; j < end; j++) {
3987                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3988
3989                 if (hctx) {
3990                         blk_mq_exit_hctx(q, set, hctx, j);
3991                         hctxs[j] = NULL;
3992                 }
3993         }
3994         mutex_unlock(&q->sysfs_lock);
3995 }
3996
3997 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3998                 struct request_queue *q)
3999 {
4000         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4001                         !!(set->flags & BLK_MQ_F_BLOCKING));
4002
4003         /* mark the queue as mq asap */
4004         q->mq_ops = set->ops;
4005
4006         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4007                                              blk_mq_poll_stats_bkt,
4008                                              BLK_MQ_POLL_STATS_BKTS, q);
4009         if (!q->poll_cb)
4010                 goto err_exit;
4011
4012         if (blk_mq_alloc_ctxs(q))
4013                 goto err_poll;
4014
4015         /* init q->mq_kobj and sw queues' kobjects */
4016         blk_mq_sysfs_init(q);
4017
4018         INIT_LIST_HEAD(&q->unused_hctx_list);
4019         spin_lock_init(&q->unused_hctx_lock);
4020
4021         blk_mq_realloc_hw_ctxs(set, q);
4022         if (!q->nr_hw_queues)
4023                 goto err_hctxs;
4024
4025         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4026         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4027
4028         q->tag_set = set;
4029
4030         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4031         if (set->nr_maps > HCTX_TYPE_POLL &&
4032             set->map[HCTX_TYPE_POLL].nr_queues)
4033                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4034
4035         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4036         INIT_LIST_HEAD(&q->requeue_list);
4037         spin_lock_init(&q->requeue_lock);
4038
4039         q->nr_requests = set->queue_depth;
4040
4041         /*
4042          * Default to classic polling
4043          */
4044         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4045
4046         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4047         blk_mq_add_queue_tag_set(set, q);
4048         blk_mq_map_swqueue(q);
4049         return 0;
4050
4051 err_hctxs:
4052         kfree(q->queue_hw_ctx);
4053         q->nr_hw_queues = 0;
4054         blk_mq_sysfs_deinit(q);
4055 err_poll:
4056         blk_stat_free_callback(q->poll_cb);
4057         q->poll_cb = NULL;
4058 err_exit:
4059         q->mq_ops = NULL;
4060         return -ENOMEM;
4061 }
4062 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4063
4064 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4065 void blk_mq_exit_queue(struct request_queue *q)
4066 {
4067         struct blk_mq_tag_set *set = q->tag_set;
4068
4069         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4070         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4071         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4072         blk_mq_del_queue_tag_set(q);
4073 }
4074
4075 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4076 {
4077         int i;
4078
4079         if (blk_mq_is_shared_tags(set->flags)) {
4080                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4081                                                 BLK_MQ_NO_HCTX_IDX,
4082                                                 set->queue_depth);
4083                 if (!set->shared_tags)
4084                         return -ENOMEM;
4085         }
4086
4087         for (i = 0; i < set->nr_hw_queues; i++) {
4088                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4089                         goto out_unwind;
4090                 cond_resched();
4091         }
4092
4093         return 0;
4094
4095 out_unwind:
4096         while (--i >= 0)
4097                 __blk_mq_free_map_and_rqs(set, i);
4098
4099         if (blk_mq_is_shared_tags(set->flags)) {
4100                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4101                                         BLK_MQ_NO_HCTX_IDX);
4102         }
4103
4104         return -ENOMEM;
4105 }
4106
4107 /*
4108  * Allocate the request maps associated with this tag_set. Note that this
4109  * may reduce the depth asked for, if memory is tight. set->queue_depth
4110  * will be updated to reflect the allocated depth.
4111  */
4112 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4113 {
4114         unsigned int depth;
4115         int err;
4116
4117         depth = set->queue_depth;
4118         do {
4119                 err = __blk_mq_alloc_rq_maps(set);
4120                 if (!err)
4121                         break;
4122
4123                 set->queue_depth >>= 1;
4124                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4125                         err = -ENOMEM;
4126                         break;
4127                 }
4128         } while (set->queue_depth);
4129
4130         if (!set->queue_depth || err) {
4131                 pr_err("blk-mq: failed to allocate request map\n");
4132                 return -ENOMEM;
4133         }
4134
4135         if (depth != set->queue_depth)
4136                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4137                                                 depth, set->queue_depth);
4138
4139         return 0;
4140 }
4141
4142 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4143 {
4144         /*
4145          * blk_mq_map_queues() and multiple .map_queues() implementations
4146          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4147          * number of hardware queues.
4148          */
4149         if (set->nr_maps == 1)
4150                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4151
4152         if (set->ops->map_queues && !is_kdump_kernel()) {
4153                 int i;
4154
4155                 /*
4156                  * transport .map_queues is usually done in the following
4157                  * way:
4158                  *
4159                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4160                  *      mask = get_cpu_mask(queue)
4161                  *      for_each_cpu(cpu, mask)
4162                  *              set->map[x].mq_map[cpu] = queue;
4163                  * }
4164                  *
4165                  * When we need to remap, the table has to be cleared for
4166                  * killing stale mapping since one CPU may not be mapped
4167                  * to any hw queue.
4168                  */
4169                 for (i = 0; i < set->nr_maps; i++)
4170                         blk_mq_clear_mq_map(&set->map[i]);
4171
4172                 return set->ops->map_queues(set);
4173         } else {
4174                 BUG_ON(set->nr_maps > 1);
4175                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4176         }
4177 }
4178
4179 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4180                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4181 {
4182         struct blk_mq_tags **new_tags;
4183
4184         if (cur_nr_hw_queues >= new_nr_hw_queues)
4185                 return 0;
4186
4187         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4188                                 GFP_KERNEL, set->numa_node);
4189         if (!new_tags)
4190                 return -ENOMEM;
4191
4192         if (set->tags)
4193                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4194                        sizeof(*set->tags));
4195         kfree(set->tags);
4196         set->tags = new_tags;
4197         set->nr_hw_queues = new_nr_hw_queues;
4198
4199         return 0;
4200 }
4201
4202 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4203                                 int new_nr_hw_queues)
4204 {
4205         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4206 }
4207
4208 /*
4209  * Alloc a tag set to be associated with one or more request queues.
4210  * May fail with EINVAL for various error conditions. May adjust the
4211  * requested depth down, if it's too large. In that case, the set
4212  * value will be stored in set->queue_depth.
4213  */
4214 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4215 {
4216         int i, ret;
4217
4218         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4219
4220         if (!set->nr_hw_queues)
4221                 return -EINVAL;
4222         if (!set->queue_depth)
4223                 return -EINVAL;
4224         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4225                 return -EINVAL;
4226
4227         if (!set->ops->queue_rq)
4228                 return -EINVAL;
4229
4230         if (!set->ops->get_budget ^ !set->ops->put_budget)
4231                 return -EINVAL;
4232
4233         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4234                 pr_info("blk-mq: reduced tag depth to %u\n",
4235                         BLK_MQ_MAX_DEPTH);
4236                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4237         }
4238
4239         if (!set->nr_maps)
4240                 set->nr_maps = 1;
4241         else if (set->nr_maps > HCTX_MAX_TYPES)
4242                 return -EINVAL;
4243
4244         /*
4245          * If a crashdump is active, then we are potentially in a very
4246          * memory constrained environment. Limit us to 1 queue and
4247          * 64 tags to prevent using too much memory.
4248          */
4249         if (is_kdump_kernel()) {
4250                 set->nr_hw_queues = 1;
4251                 set->nr_maps = 1;
4252                 set->queue_depth = min(64U, set->queue_depth);
4253         }
4254         /*
4255          * There is no use for more h/w queues than cpus if we just have
4256          * a single map
4257          */
4258         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4259                 set->nr_hw_queues = nr_cpu_ids;
4260
4261         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4262                 return -ENOMEM;
4263
4264         ret = -ENOMEM;
4265         for (i = 0; i < set->nr_maps; i++) {
4266                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4267                                                   sizeof(set->map[i].mq_map[0]),
4268                                                   GFP_KERNEL, set->numa_node);
4269                 if (!set->map[i].mq_map)
4270                         goto out_free_mq_map;
4271                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4272         }
4273
4274         ret = blk_mq_update_queue_map(set);
4275         if (ret)
4276                 goto out_free_mq_map;
4277
4278         ret = blk_mq_alloc_set_map_and_rqs(set);
4279         if (ret)
4280                 goto out_free_mq_map;
4281
4282         mutex_init(&set->tag_list_lock);
4283         INIT_LIST_HEAD(&set->tag_list);
4284
4285         return 0;
4286
4287 out_free_mq_map:
4288         for (i = 0; i < set->nr_maps; i++) {
4289                 kfree(set->map[i].mq_map);
4290                 set->map[i].mq_map = NULL;
4291         }
4292         kfree(set->tags);
4293         set->tags = NULL;
4294         return ret;
4295 }
4296 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4297
4298 /* allocate and initialize a tagset for a simple single-queue device */
4299 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4300                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4301                 unsigned int set_flags)
4302 {
4303         memset(set, 0, sizeof(*set));
4304         set->ops = ops;
4305         set->nr_hw_queues = 1;
4306         set->nr_maps = 1;
4307         set->queue_depth = queue_depth;
4308         set->numa_node = NUMA_NO_NODE;
4309         set->flags = set_flags;
4310         return blk_mq_alloc_tag_set(set);
4311 }
4312 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4313
4314 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4315 {
4316         int i, j;
4317
4318         for (i = 0; i < set->nr_hw_queues; i++)
4319                 __blk_mq_free_map_and_rqs(set, i);
4320
4321         if (blk_mq_is_shared_tags(set->flags)) {
4322                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4323                                         BLK_MQ_NO_HCTX_IDX);
4324         }
4325
4326         for (j = 0; j < set->nr_maps; j++) {
4327                 kfree(set->map[j].mq_map);
4328                 set->map[j].mq_map = NULL;
4329         }
4330
4331         kfree(set->tags);
4332         set->tags = NULL;
4333 }
4334 EXPORT_SYMBOL(blk_mq_free_tag_set);
4335
4336 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4337 {
4338         struct blk_mq_tag_set *set = q->tag_set;
4339         struct blk_mq_hw_ctx *hctx;
4340         int i, ret;
4341
4342         if (!set)
4343                 return -EINVAL;
4344
4345         if (q->nr_requests == nr)
4346                 return 0;
4347
4348         blk_mq_freeze_queue(q);
4349         blk_mq_quiesce_queue(q);
4350
4351         ret = 0;
4352         queue_for_each_hw_ctx(q, hctx, i) {
4353                 if (!hctx->tags)
4354                         continue;
4355                 /*
4356                  * If we're using an MQ scheduler, just update the scheduler
4357                  * queue depth. This is similar to what the old code would do.
4358                  */
4359                 if (hctx->sched_tags) {
4360                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4361                                                       nr, true);
4362                 } else {
4363                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4364                                                       false);
4365                 }
4366                 if (ret)
4367                         break;
4368                 if (q->elevator && q->elevator->type->ops.depth_updated)
4369                         q->elevator->type->ops.depth_updated(hctx);
4370         }
4371         if (!ret) {
4372                 q->nr_requests = nr;
4373                 if (blk_mq_is_shared_tags(set->flags)) {
4374                         if (q->elevator)
4375                                 blk_mq_tag_update_sched_shared_tags(q);
4376                         else
4377                                 blk_mq_tag_resize_shared_tags(set, nr);
4378                 }
4379         }
4380
4381         blk_mq_unquiesce_queue(q);
4382         blk_mq_unfreeze_queue(q);
4383
4384         return ret;
4385 }
4386
4387 /*
4388  * request_queue and elevator_type pair.
4389  * It is just used by __blk_mq_update_nr_hw_queues to cache
4390  * the elevator_type associated with a request_queue.
4391  */
4392 struct blk_mq_qe_pair {
4393         struct list_head node;
4394         struct request_queue *q;
4395         struct elevator_type *type;
4396 };
4397
4398 /*
4399  * Cache the elevator_type in qe pair list and switch the
4400  * io scheduler to 'none'
4401  */
4402 static bool blk_mq_elv_switch_none(struct list_head *head,
4403                 struct request_queue *q)
4404 {
4405         struct blk_mq_qe_pair *qe;
4406
4407         if (!q->elevator)
4408                 return true;
4409
4410         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4411         if (!qe)
4412                 return false;
4413
4414         INIT_LIST_HEAD(&qe->node);
4415         qe->q = q;
4416         qe->type = q->elevator->type;
4417         list_add(&qe->node, head);
4418
4419         mutex_lock(&q->sysfs_lock);
4420         /*
4421          * After elevator_switch_mq, the previous elevator_queue will be
4422          * released by elevator_release. The reference of the io scheduler
4423          * module get by elevator_get will also be put. So we need to get
4424          * a reference of the io scheduler module here to prevent it to be
4425          * removed.
4426          */
4427         __module_get(qe->type->elevator_owner);
4428         elevator_switch_mq(q, NULL);
4429         mutex_unlock(&q->sysfs_lock);
4430
4431         return true;
4432 }
4433
4434 static void blk_mq_elv_switch_back(struct list_head *head,
4435                 struct request_queue *q)
4436 {
4437         struct blk_mq_qe_pair *qe;
4438         struct elevator_type *t = NULL;
4439
4440         list_for_each_entry(qe, head, node)
4441                 if (qe->q == q) {
4442                         t = qe->type;
4443                         break;
4444                 }
4445
4446         if (!t)
4447                 return;
4448
4449         list_del(&qe->node);
4450         kfree(qe);
4451
4452         mutex_lock(&q->sysfs_lock);
4453         elevator_switch_mq(q, t);
4454         mutex_unlock(&q->sysfs_lock);
4455 }
4456
4457 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4458                                                         int nr_hw_queues)
4459 {
4460         struct request_queue *q;
4461         LIST_HEAD(head);
4462         int prev_nr_hw_queues;
4463
4464         lockdep_assert_held(&set->tag_list_lock);
4465
4466         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4467                 nr_hw_queues = nr_cpu_ids;
4468         if (nr_hw_queues < 1)
4469                 return;
4470         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4471                 return;
4472
4473         list_for_each_entry(q, &set->tag_list, tag_set_list)
4474                 blk_mq_freeze_queue(q);
4475         /*
4476          * Switch IO scheduler to 'none', cleaning up the data associated
4477          * with the previous scheduler. We will switch back once we are done
4478          * updating the new sw to hw queue mappings.
4479          */
4480         list_for_each_entry(q, &set->tag_list, tag_set_list)
4481                 if (!blk_mq_elv_switch_none(&head, q))
4482                         goto switch_back;
4483
4484         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4485                 blk_mq_debugfs_unregister_hctxs(q);
4486                 blk_mq_sysfs_unregister(q);
4487         }
4488
4489         prev_nr_hw_queues = set->nr_hw_queues;
4490         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4491             0)
4492                 goto reregister;
4493
4494         set->nr_hw_queues = nr_hw_queues;
4495 fallback:
4496         blk_mq_update_queue_map(set);
4497         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4498                 blk_mq_realloc_hw_ctxs(set, q);
4499                 if (q->nr_hw_queues != set->nr_hw_queues) {
4500                         int i = prev_nr_hw_queues;
4501
4502                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4503                                         nr_hw_queues, prev_nr_hw_queues);
4504                         for (; i < set->nr_hw_queues; i++)
4505                                 __blk_mq_free_map_and_rqs(set, i);
4506
4507                         set->nr_hw_queues = prev_nr_hw_queues;
4508                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4509                         goto fallback;
4510                 }
4511                 blk_mq_map_swqueue(q);
4512         }
4513
4514 reregister:
4515         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4516                 blk_mq_sysfs_register(q);
4517                 blk_mq_debugfs_register_hctxs(q);
4518         }
4519
4520 switch_back:
4521         list_for_each_entry(q, &set->tag_list, tag_set_list)
4522                 blk_mq_elv_switch_back(&head, q);
4523
4524         list_for_each_entry(q, &set->tag_list, tag_set_list)
4525                 blk_mq_unfreeze_queue(q);
4526 }
4527
4528 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4529 {
4530         mutex_lock(&set->tag_list_lock);
4531         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4532         mutex_unlock(&set->tag_list_lock);
4533 }
4534 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4535
4536 /* Enable polling stats and return whether they were already enabled. */
4537 static bool blk_poll_stats_enable(struct request_queue *q)
4538 {
4539         if (q->poll_stat)
4540                 return true;
4541
4542         return blk_stats_alloc_enable(q);
4543 }
4544
4545 static void blk_mq_poll_stats_start(struct request_queue *q)
4546 {
4547         /*
4548          * We don't arm the callback if polling stats are not enabled or the
4549          * callback is already active.
4550          */
4551         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4552                 return;
4553
4554         blk_stat_activate_msecs(q->poll_cb, 100);
4555 }
4556
4557 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4558 {
4559         struct request_queue *q = cb->data;
4560         int bucket;
4561
4562         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4563                 if (cb->stat[bucket].nr_samples)
4564                         q->poll_stat[bucket] = cb->stat[bucket];
4565         }
4566 }
4567
4568 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4569                                        struct request *rq)
4570 {
4571         unsigned long ret = 0;
4572         int bucket;
4573
4574         /*
4575          * If stats collection isn't on, don't sleep but turn it on for
4576          * future users
4577          */
4578         if (!blk_poll_stats_enable(q))
4579                 return 0;
4580
4581         /*
4582          * As an optimistic guess, use half of the mean service time
4583          * for this type of request. We can (and should) make this smarter.
4584          * For instance, if the completion latencies are tight, we can
4585          * get closer than just half the mean. This is especially
4586          * important on devices where the completion latencies are longer
4587          * than ~10 usec. We do use the stats for the relevant IO size
4588          * if available which does lead to better estimates.
4589          */
4590         bucket = blk_mq_poll_stats_bkt(rq);
4591         if (bucket < 0)
4592                 return ret;
4593
4594         if (q->poll_stat[bucket].nr_samples)
4595                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4596
4597         return ret;
4598 }
4599
4600 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4601 {
4602         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4603         struct request *rq = blk_qc_to_rq(hctx, qc);
4604         struct hrtimer_sleeper hs;
4605         enum hrtimer_mode mode;
4606         unsigned int nsecs;
4607         ktime_t kt;
4608
4609         /*
4610          * If a request has completed on queue that uses an I/O scheduler, we
4611          * won't get back a request from blk_qc_to_rq.
4612          */
4613         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4614                 return false;
4615
4616         /*
4617          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4618          *
4619          *  0:  use half of prev avg
4620          * >0:  use this specific value
4621          */
4622         if (q->poll_nsec > 0)
4623                 nsecs = q->poll_nsec;
4624         else
4625                 nsecs = blk_mq_poll_nsecs(q, rq);
4626
4627         if (!nsecs)
4628                 return false;
4629
4630         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4631
4632         /*
4633          * This will be replaced with the stats tracking code, using
4634          * 'avg_completion_time / 2' as the pre-sleep target.
4635          */
4636         kt = nsecs;
4637
4638         mode = HRTIMER_MODE_REL;
4639         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4640         hrtimer_set_expires(&hs.timer, kt);
4641
4642         do {
4643                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4644                         break;
4645                 set_current_state(TASK_UNINTERRUPTIBLE);
4646                 hrtimer_sleeper_start_expires(&hs, mode);
4647                 if (hs.task)
4648                         io_schedule();
4649                 hrtimer_cancel(&hs.timer);
4650                 mode = HRTIMER_MODE_ABS;
4651         } while (hs.task && !signal_pending(current));
4652
4653         __set_current_state(TASK_RUNNING);
4654         destroy_hrtimer_on_stack(&hs.timer);
4655
4656         /*
4657          * If we sleep, have the caller restart the poll loop to reset the
4658          * state.  Like for the other success return cases, the caller is
4659          * responsible for checking if the IO completed.  If the IO isn't
4660          * complete, we'll get called again and will go straight to the busy
4661          * poll loop.
4662          */
4663         return true;
4664 }
4665
4666 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4667                                struct io_comp_batch *iob, unsigned int flags)
4668 {
4669         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4670         long state = get_current_state();
4671         int ret;
4672
4673         do {
4674                 ret = q->mq_ops->poll(hctx, iob);
4675                 if (ret > 0) {
4676                         __set_current_state(TASK_RUNNING);
4677                         return ret;
4678                 }
4679
4680                 if (signal_pending_state(state, current))
4681                         __set_current_state(TASK_RUNNING);
4682                 if (task_is_running(current))
4683                         return 1;
4684
4685                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4686                         break;
4687                 cpu_relax();
4688         } while (!need_resched());
4689
4690         __set_current_state(TASK_RUNNING);
4691         return 0;
4692 }
4693
4694 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4695                 unsigned int flags)
4696 {
4697         if (!(flags & BLK_POLL_NOSLEEP) &&
4698             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4699                 if (blk_mq_poll_hybrid(q, cookie))
4700                         return 1;
4701         }
4702         return blk_mq_poll_classic(q, cookie, iob, flags);
4703 }
4704
4705 unsigned int blk_mq_rq_cpu(struct request *rq)
4706 {
4707         return rq->mq_ctx->cpu;
4708 }
4709 EXPORT_SYMBOL(blk_mq_rq_cpu);
4710
4711 void blk_mq_cancel_work_sync(struct request_queue *q)
4712 {
4713         if (queue_is_mq(q)) {
4714                 struct blk_mq_hw_ctx *hctx;
4715                 int i;
4716
4717                 cancel_delayed_work_sync(&q->requeue_work);
4718
4719                 queue_for_each_hw_ctx(q, hctx, i)
4720                         cancel_delayed_work_sync(&hctx->run_work);
4721         }
4722 }
4723
4724 static int __init blk_mq_init(void)
4725 {
4726         int i;
4727
4728         for_each_possible_cpu(i)
4729                 init_llist_head(&per_cpu(blk_cpu_done, i));
4730         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4731
4732         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4733                                   "block/softirq:dead", NULL,
4734                                   blk_softirq_cpu_dead);
4735         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4736                                 blk_mq_hctx_notify_dead);
4737         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4738                                 blk_mq_hctx_notify_online,
4739                                 blk_mq_hctx_notify_offline);
4740         return 0;
4741 }
4742 subsys_initcall(blk_mq_init);