64630caaf27e15b1bc0ecdfad6c3164da4b5d840
[linux-2.6-microblaze.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         return rq;
336 }
337
338 static struct request *blk_mq_get_request(struct request_queue *q,
339                 struct bio *bio, unsigned int op,
340                 struct blk_mq_alloc_data *data)
341 {
342         struct elevator_queue *e = q->elevator;
343         struct request *rq;
344         unsigned int tag;
345         bool put_ctx_on_error = false;
346
347         blk_queue_enter_live(q);
348         data->q = q;
349         if (likely(!data->ctx)) {
350                 data->ctx = blk_mq_get_ctx(q);
351                 put_ctx_on_error = true;
352         }
353         if (likely(!data->hctx))
354                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
355         if (op & REQ_NOWAIT)
356                 data->flags |= BLK_MQ_REQ_NOWAIT;
357
358         if (e) {
359                 data->flags |= BLK_MQ_REQ_INTERNAL;
360
361                 /*
362                  * Flush requests are special and go directly to the
363                  * dispatch list. Don't include reserved tags in the
364                  * limiting, as it isn't useful.
365                  */
366                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
367                     !(data->flags & BLK_MQ_REQ_RESERVED))
368                         e->type->ops.mq.limit_depth(op, data);
369         }
370
371         tag = blk_mq_get_tag(data);
372         if (tag == BLK_MQ_TAG_FAIL) {
373                 if (put_ctx_on_error) {
374                         blk_mq_put_ctx(data->ctx);
375                         data->ctx = NULL;
376                 }
377                 blk_queue_exit(q);
378                 return NULL;
379         }
380
381         rq = blk_mq_rq_ctx_init(data, tag, op);
382         if (!op_is_flush(op)) {
383                 rq->elv.icq = NULL;
384                 if (e && e->type->ops.mq.prepare_request) {
385                         if (e->type->icq_cache && rq_ioc(bio))
386                                 blk_mq_sched_assign_ioc(rq, bio);
387
388                         e->type->ops.mq.prepare_request(rq, bio);
389                         rq->rq_flags |= RQF_ELVPRIV;
390                 }
391         }
392         data->hctx->queued++;
393         return rq;
394 }
395
396 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
397                 blk_mq_req_flags_t flags)
398 {
399         struct blk_mq_alloc_data alloc_data = { .flags = flags };
400         struct request *rq;
401         int ret;
402
403         ret = blk_queue_enter(q, flags);
404         if (ret)
405                 return ERR_PTR(ret);
406
407         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
408         blk_queue_exit(q);
409
410         if (!rq)
411                 return ERR_PTR(-EWOULDBLOCK);
412
413         blk_mq_put_ctx(alloc_data.ctx);
414
415         rq->__data_len = 0;
416         rq->__sector = (sector_t) -1;
417         rq->bio = rq->biotail = NULL;
418         return rq;
419 }
420 EXPORT_SYMBOL(blk_mq_alloc_request);
421
422 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
424 {
425         struct blk_mq_alloc_data alloc_data = { .flags = flags };
426         struct request *rq;
427         unsigned int cpu;
428         int ret;
429
430         /*
431          * If the tag allocator sleeps we could get an allocation for a
432          * different hardware context.  No need to complicate the low level
433          * allocator for this for the rare use case of a command tied to
434          * a specific queue.
435          */
436         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
437                 return ERR_PTR(-EINVAL);
438
439         if (hctx_idx >= q->nr_hw_queues)
440                 return ERR_PTR(-EIO);
441
442         ret = blk_queue_enter(q, flags);
443         if (ret)
444                 return ERR_PTR(ret);
445
446         /*
447          * Check if the hardware context is actually mapped to anything.
448          * If not tell the caller that it should skip this queue.
449          */
450         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
451         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
452                 blk_queue_exit(q);
453                 return ERR_PTR(-EXDEV);
454         }
455         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
456         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
457
458         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
459         blk_queue_exit(q);
460
461         if (!rq)
462                 return ERR_PTR(-EWOULDBLOCK);
463
464         return rq;
465 }
466 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
467
468 void blk_mq_free_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471         struct elevator_queue *e = q->elevator;
472         struct blk_mq_ctx *ctx = rq->mq_ctx;
473         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474         const int sched_tag = rq->internal_tag;
475
476         if (rq->rq_flags & RQF_ELVPRIV) {
477                 if (e && e->type->ops.mq.finish_request)
478                         e->type->ops.mq.finish_request(rq);
479                 if (rq->elv.icq) {
480                         put_io_context(rq->elv.icq->ioc);
481                         rq->elv.icq = NULL;
482                 }
483         }
484
485         ctx->rq_completed[rq_is_sync(rq)]++;
486         if (rq->rq_flags & RQF_MQ_INFLIGHT)
487                 atomic_dec(&hctx->nr_active);
488
489         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
490                 laptop_io_completion(q->backing_dev_info);
491
492         wbt_done(q->rq_wb, rq);
493
494         if (blk_rq_rl(rq))
495                 blk_put_rl(blk_rq_rl(rq));
496
497         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
498         if (rq->tag != -1)
499                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
500         if (sched_tag != -1)
501                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505 EXPORT_SYMBOL_GPL(blk_mq_free_request);
506
507 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
508 {
509         u64 now = ktime_get_ns();
510
511         if (rq->rq_flags & RQF_STATS) {
512                 blk_mq_poll_stats_start(rq->q);
513                 blk_stat_add(rq, now);
514         }
515
516         blk_account_io_done(rq, now);
517
518         if (rq->end_io) {
519                 wbt_done(rq->q->rq_wb, rq);
520                 rq->end_io(rq, error);
521         } else {
522                 if (unlikely(blk_bidi_rq(rq)))
523                         blk_mq_free_request(rq->next_rq);
524                 blk_mq_free_request(rq);
525         }
526 }
527 EXPORT_SYMBOL(__blk_mq_end_request);
528
529 void blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
532                 BUG();
533         __blk_mq_end_request(rq, error);
534 }
535 EXPORT_SYMBOL(blk_mq_end_request);
536
537 static void __blk_mq_complete_request_remote(void *data)
538 {
539         struct request *rq = data;
540
541         rq->q->softirq_done_fn(rq);
542 }
543
544 static void __blk_mq_complete_request(struct request *rq)
545 {
546         struct blk_mq_ctx *ctx = rq->mq_ctx;
547         bool shared = false;
548         int cpu;
549
550         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
551         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
552
553         if (rq->internal_tag != -1)
554                 blk_mq_sched_completed_request(rq);
555
556         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
557                 rq->q->softirq_done_fn(rq);
558                 return;
559         }
560
561         cpu = get_cpu();
562         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
563                 shared = cpus_share_cache(cpu, ctx->cpu);
564
565         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
566                 rq->csd.func = __blk_mq_complete_request_remote;
567                 rq->csd.info = rq;
568                 rq->csd.flags = 0;
569                 smp_call_function_single_async(ctx->cpu, &rq->csd);
570         } else {
571                 rq->q->softirq_done_fn(rq);
572         }
573         put_cpu();
574 }
575
576 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
577         __releases(hctx->srcu)
578 {
579         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
580                 rcu_read_unlock();
581         else
582                 srcu_read_unlock(hctx->srcu, srcu_idx);
583 }
584
585 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
586         __acquires(hctx->srcu)
587 {
588         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
589                 /* shut up gcc false positive */
590                 *srcu_idx = 0;
591                 rcu_read_lock();
592         } else
593                 *srcu_idx = srcu_read_lock(hctx->srcu);
594 }
595
596 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
597 {
598         unsigned long flags;
599
600         /*
601          * blk_mq_rq_aborted_gstate() is used from the completion path and
602          * can thus be called from irq context.  u64_stats_fetch in the
603          * middle of update on the same CPU leads to lockup.  Disable irq
604          * while updating.
605          */
606         local_irq_save(flags);
607         u64_stats_update_begin(&rq->aborted_gstate_sync);
608         rq->aborted_gstate = gstate;
609         u64_stats_update_end(&rq->aborted_gstate_sync);
610         local_irq_restore(flags);
611 }
612
613 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
614 {
615         unsigned int start;
616         u64 aborted_gstate;
617
618         do {
619                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
620                 aborted_gstate = rq->aborted_gstate;
621         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
622
623         return aborted_gstate;
624 }
625
626 /**
627  * blk_mq_complete_request - end I/O on a request
628  * @rq:         the request being processed
629  *
630  * Description:
631  *      Ends all I/O on a request. It does not handle partial completions.
632  *      The actual completion happens out-of-order, through a IPI handler.
633  **/
634 void blk_mq_complete_request(struct request *rq)
635 {
636         struct request_queue *q = rq->q;
637         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
638         int srcu_idx;
639
640         if (unlikely(blk_should_fake_timeout(q)))
641                 return;
642
643         /*
644          * If @rq->aborted_gstate equals the current instance, timeout is
645          * claiming @rq and we lost.  This is synchronized through
646          * hctx_lock().  See blk_mq_timeout_work() for details.
647          *
648          * Completion path never blocks and we can directly use RCU here
649          * instead of hctx_lock() which can be either RCU or SRCU.
650          * However, that would complicate paths which want to synchronize
651          * against us.  Let stay in sync with the issue path so that
652          * hctx_lock() covers both issue and completion paths.
653          */
654         hctx_lock(hctx, &srcu_idx);
655         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
656                 __blk_mq_complete_request(rq);
657         hctx_unlock(hctx, srcu_idx);
658 }
659 EXPORT_SYMBOL(blk_mq_complete_request);
660
661 int blk_mq_request_started(struct request *rq)
662 {
663         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
664 }
665 EXPORT_SYMBOL_GPL(blk_mq_request_started);
666
667 void blk_mq_start_request(struct request *rq)
668 {
669         struct request_queue *q = rq->q;
670
671         blk_mq_sched_started_request(rq);
672
673         trace_block_rq_issue(q, rq);
674
675         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
676                 rq->io_start_time_ns = ktime_get_ns();
677 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
678                 rq->throtl_size = blk_rq_sectors(rq);
679 #endif
680                 rq->rq_flags |= RQF_STATS;
681                 wbt_issue(q->rq_wb, rq);
682         }
683
684         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
685
686         /*
687          * Mark @rq in-flight which also advances the generation number,
688          * and register for timeout.  Protect with a seqcount to allow the
689          * timeout path to read both @rq->gstate and @rq->deadline
690          * coherently.
691          *
692          * This is the only place where a request is marked in-flight.  If
693          * the timeout path reads an in-flight @rq->gstate, the
694          * @rq->deadline it reads together under @rq->gstate_seq is
695          * guaranteed to be the matching one.
696          */
697         preempt_disable();
698         write_seqcount_begin(&rq->gstate_seq);
699
700         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
701         blk_add_timer(rq);
702
703         write_seqcount_end(&rq->gstate_seq);
704         preempt_enable();
705
706         if (q->dma_drain_size && blk_rq_bytes(rq)) {
707                 /*
708                  * Make sure space for the drain appears.  We know we can do
709                  * this because max_hw_segments has been adjusted to be one
710                  * fewer than the device can handle.
711                  */
712                 rq->nr_phys_segments++;
713         }
714 }
715 EXPORT_SYMBOL(blk_mq_start_request);
716
717 /*
718  * When we reach here because queue is busy, it's safe to change the state
719  * to IDLE without checking @rq->aborted_gstate because we should still be
720  * holding the RCU read lock and thus protected against timeout.
721  */
722 static void __blk_mq_requeue_request(struct request *rq)
723 {
724         struct request_queue *q = rq->q;
725
726         blk_mq_put_driver_tag(rq);
727
728         trace_block_rq_requeue(q, rq);
729         wbt_requeue(q->rq_wb, rq);
730
731         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
732                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
733                 if (q->dma_drain_size && blk_rq_bytes(rq))
734                         rq->nr_phys_segments--;
735         }
736 }
737
738 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
739 {
740         __blk_mq_requeue_request(rq);
741
742         /* this request will be re-inserted to io scheduler queue */
743         blk_mq_sched_requeue_request(rq);
744
745         BUG_ON(blk_queued_rq(rq));
746         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
747 }
748 EXPORT_SYMBOL(blk_mq_requeue_request);
749
750 static void blk_mq_requeue_work(struct work_struct *work)
751 {
752         struct request_queue *q =
753                 container_of(work, struct request_queue, requeue_work.work);
754         LIST_HEAD(rq_list);
755         struct request *rq, *next;
756
757         spin_lock_irq(&q->requeue_lock);
758         list_splice_init(&q->requeue_list, &rq_list);
759         spin_unlock_irq(&q->requeue_lock);
760
761         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
762                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
763                         continue;
764
765                 rq->rq_flags &= ~RQF_SOFTBARRIER;
766                 list_del_init(&rq->queuelist);
767                 blk_mq_sched_insert_request(rq, true, false, false);
768         }
769
770         while (!list_empty(&rq_list)) {
771                 rq = list_entry(rq_list.next, struct request, queuelist);
772                 list_del_init(&rq->queuelist);
773                 blk_mq_sched_insert_request(rq, false, false, false);
774         }
775
776         blk_mq_run_hw_queues(q, false);
777 }
778
779 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
780                                 bool kick_requeue_list)
781 {
782         struct request_queue *q = rq->q;
783         unsigned long flags;
784
785         /*
786          * We abuse this flag that is otherwise used by the I/O scheduler to
787          * request head insertion from the workqueue.
788          */
789         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
790
791         spin_lock_irqsave(&q->requeue_lock, flags);
792         if (at_head) {
793                 rq->rq_flags |= RQF_SOFTBARRIER;
794                 list_add(&rq->queuelist, &q->requeue_list);
795         } else {
796                 list_add_tail(&rq->queuelist, &q->requeue_list);
797         }
798         spin_unlock_irqrestore(&q->requeue_lock, flags);
799
800         if (kick_requeue_list)
801                 blk_mq_kick_requeue_list(q);
802 }
803 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
804
805 void blk_mq_kick_requeue_list(struct request_queue *q)
806 {
807         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
808 }
809 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
810
811 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
812                                     unsigned long msecs)
813 {
814         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
815                                     msecs_to_jiffies(msecs));
816 }
817 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
818
819 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
820 {
821         if (tag < tags->nr_tags) {
822                 prefetch(tags->rqs[tag]);
823                 return tags->rqs[tag];
824         }
825
826         return NULL;
827 }
828 EXPORT_SYMBOL(blk_mq_tag_to_rq);
829
830 struct blk_mq_timeout_data {
831         unsigned long next;
832         unsigned int next_set;
833         unsigned int nr_expired;
834 };
835
836 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
837 {
838         const struct blk_mq_ops *ops = req->q->mq_ops;
839         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
840
841         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
842
843         if (ops->timeout)
844                 ret = ops->timeout(req, reserved);
845
846         switch (ret) {
847         case BLK_EH_HANDLED:
848                 __blk_mq_complete_request(req);
849                 break;
850         case BLK_EH_RESET_TIMER:
851                 /*
852                  * As nothing prevents from completion happening while
853                  * ->aborted_gstate is set, this may lead to ignored
854                  * completions and further spurious timeouts.
855                  */
856                 blk_mq_rq_update_aborted_gstate(req, 0);
857                 blk_add_timer(req);
858                 break;
859         case BLK_EH_NOT_HANDLED:
860                 break;
861         default:
862                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
863                 break;
864         }
865 }
866
867 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
868                 struct request *rq, void *priv, bool reserved)
869 {
870         struct blk_mq_timeout_data *data = priv;
871         unsigned long gstate, deadline;
872         int start;
873
874         might_sleep();
875
876         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
877                 return;
878
879         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
880         while (true) {
881                 start = read_seqcount_begin(&rq->gstate_seq);
882                 gstate = READ_ONCE(rq->gstate);
883                 deadline = blk_rq_deadline(rq);
884                 if (!read_seqcount_retry(&rq->gstate_seq, start))
885                         break;
886                 cond_resched();
887         }
888
889         /* if in-flight && overdue, mark for abortion */
890         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
891             time_after_eq(jiffies, deadline)) {
892                 blk_mq_rq_update_aborted_gstate(rq, gstate);
893                 data->nr_expired++;
894                 hctx->nr_expired++;
895         } else if (!data->next_set || time_after(data->next, deadline)) {
896                 data->next = deadline;
897                 data->next_set = 1;
898         }
899 }
900
901 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
902                 struct request *rq, void *priv, bool reserved)
903 {
904         /*
905          * We marked @rq->aborted_gstate and waited for RCU.  If there were
906          * completions that we lost to, they would have finished and
907          * updated @rq->gstate by now; otherwise, the completion path is
908          * now guaranteed to see @rq->aborted_gstate and yield.  If
909          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
910          */
911         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
912             READ_ONCE(rq->gstate) == rq->aborted_gstate)
913                 blk_mq_rq_timed_out(rq, reserved);
914 }
915
916 static void blk_mq_timeout_work(struct work_struct *work)
917 {
918         struct request_queue *q =
919                 container_of(work, struct request_queue, timeout_work);
920         struct blk_mq_timeout_data data = {
921                 .next           = 0,
922                 .next_set       = 0,
923                 .nr_expired     = 0,
924         };
925         struct blk_mq_hw_ctx *hctx;
926         int i;
927
928         /* A deadlock might occur if a request is stuck requiring a
929          * timeout at the same time a queue freeze is waiting
930          * completion, since the timeout code would not be able to
931          * acquire the queue reference here.
932          *
933          * That's why we don't use blk_queue_enter here; instead, we use
934          * percpu_ref_tryget directly, because we need to be able to
935          * obtain a reference even in the short window between the queue
936          * starting to freeze, by dropping the first reference in
937          * blk_freeze_queue_start, and the moment the last request is
938          * consumed, marked by the instant q_usage_counter reaches
939          * zero.
940          */
941         if (!percpu_ref_tryget(&q->q_usage_counter))
942                 return;
943
944         /* scan for the expired ones and set their ->aborted_gstate */
945         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
946
947         if (data.nr_expired) {
948                 bool has_rcu = false;
949
950                 /*
951                  * Wait till everyone sees ->aborted_gstate.  The
952                  * sequential waits for SRCUs aren't ideal.  If this ever
953                  * becomes a problem, we can add per-hw_ctx rcu_head and
954                  * wait in parallel.
955                  */
956                 queue_for_each_hw_ctx(q, hctx, i) {
957                         if (!hctx->nr_expired)
958                                 continue;
959
960                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
961                                 has_rcu = true;
962                         else
963                                 synchronize_srcu(hctx->srcu);
964
965                         hctx->nr_expired = 0;
966                 }
967                 if (has_rcu)
968                         synchronize_rcu();
969
970                 /* terminate the ones we won */
971                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
972         }
973
974         if (data.next_set) {
975                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
976                 mod_timer(&q->timeout, data.next);
977         } else {
978                 /*
979                  * Request timeouts are handled as a forward rolling timer. If
980                  * we end up here it means that no requests are pending and
981                  * also that no request has been pending for a while. Mark
982                  * each hctx as idle.
983                  */
984                 queue_for_each_hw_ctx(q, hctx, i) {
985                         /* the hctx may be unmapped, so check it here */
986                         if (blk_mq_hw_queue_mapped(hctx))
987                                 blk_mq_tag_idle(hctx);
988                 }
989         }
990         blk_queue_exit(q);
991 }
992
993 struct flush_busy_ctx_data {
994         struct blk_mq_hw_ctx *hctx;
995         struct list_head *list;
996 };
997
998 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
999 {
1000         struct flush_busy_ctx_data *flush_data = data;
1001         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1002         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003
1004         spin_lock(&ctx->lock);
1005         list_splice_tail_init(&ctx->rq_list, flush_data->list);
1006         sbitmap_clear_bit(sb, bitnr);
1007         spin_unlock(&ctx->lock);
1008         return true;
1009 }
1010
1011 /*
1012  * Process software queues that have been marked busy, splicing them
1013  * to the for-dispatch
1014  */
1015 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1016 {
1017         struct flush_busy_ctx_data data = {
1018                 .hctx = hctx,
1019                 .list = list,
1020         };
1021
1022         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1023 }
1024 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1025
1026 struct dispatch_rq_data {
1027         struct blk_mq_hw_ctx *hctx;
1028         struct request *rq;
1029 };
1030
1031 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1032                 void *data)
1033 {
1034         struct dispatch_rq_data *dispatch_data = data;
1035         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1036         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1037
1038         spin_lock(&ctx->lock);
1039         if (unlikely(!list_empty(&ctx->rq_list))) {
1040                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1041                 list_del_init(&dispatch_data->rq->queuelist);
1042                 if (list_empty(&ctx->rq_list))
1043                         sbitmap_clear_bit(sb, bitnr);
1044         }
1045         spin_unlock(&ctx->lock);
1046
1047         return !dispatch_data->rq;
1048 }
1049
1050 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1051                                         struct blk_mq_ctx *start)
1052 {
1053         unsigned off = start ? start->index_hw : 0;
1054         struct dispatch_rq_data data = {
1055                 .hctx = hctx,
1056                 .rq   = NULL,
1057         };
1058
1059         __sbitmap_for_each_set(&hctx->ctx_map, off,
1060                                dispatch_rq_from_ctx, &data);
1061
1062         return data.rq;
1063 }
1064
1065 static inline unsigned int queued_to_index(unsigned int queued)
1066 {
1067         if (!queued)
1068                 return 0;
1069
1070         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1071 }
1072
1073 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1074                            bool wait)
1075 {
1076         struct blk_mq_alloc_data data = {
1077                 .q = rq->q,
1078                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1079                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1080         };
1081
1082         might_sleep_if(wait);
1083
1084         if (rq->tag != -1)
1085                 goto done;
1086
1087         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1088                 data.flags |= BLK_MQ_REQ_RESERVED;
1089
1090         rq->tag = blk_mq_get_tag(&data);
1091         if (rq->tag >= 0) {
1092                 if (blk_mq_tag_busy(data.hctx)) {
1093                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1094                         atomic_inc(&data.hctx->nr_active);
1095                 }
1096                 data.hctx->tags->rqs[rq->tag] = rq;
1097         }
1098
1099 done:
1100         if (hctx)
1101                 *hctx = data.hctx;
1102         return rq->tag != -1;
1103 }
1104
1105 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1106                                 int flags, void *key)
1107 {
1108         struct blk_mq_hw_ctx *hctx;
1109
1110         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1111
1112         list_del_init(&wait->entry);
1113         blk_mq_run_hw_queue(hctx, true);
1114         return 1;
1115 }
1116
1117 /*
1118  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1119  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1120  * restart. For both cases, take care to check the condition again after
1121  * marking us as waiting.
1122  */
1123 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1124                                  struct request *rq)
1125 {
1126         struct blk_mq_hw_ctx *this_hctx = *hctx;
1127         struct sbq_wait_state *ws;
1128         wait_queue_entry_t *wait;
1129         bool ret;
1130
1131         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1132                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1133                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1134
1135                 /*
1136                  * It's possible that a tag was freed in the window between the
1137                  * allocation failure and adding the hardware queue to the wait
1138                  * queue.
1139                  *
1140                  * Don't clear RESTART here, someone else could have set it.
1141                  * At most this will cost an extra queue run.
1142                  */
1143                 return blk_mq_get_driver_tag(rq, hctx, false);
1144         }
1145
1146         wait = &this_hctx->dispatch_wait;
1147         if (!list_empty_careful(&wait->entry))
1148                 return false;
1149
1150         spin_lock(&this_hctx->lock);
1151         if (!list_empty(&wait->entry)) {
1152                 spin_unlock(&this_hctx->lock);
1153                 return false;
1154         }
1155
1156         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1157         add_wait_queue(&ws->wait, wait);
1158
1159         /*
1160          * It's possible that a tag was freed in the window between the
1161          * allocation failure and adding the hardware queue to the wait
1162          * queue.
1163          */
1164         ret = blk_mq_get_driver_tag(rq, hctx, false);
1165         if (!ret) {
1166                 spin_unlock(&this_hctx->lock);
1167                 return false;
1168         }
1169
1170         /*
1171          * We got a tag, remove ourselves from the wait queue to ensure
1172          * someone else gets the wakeup.
1173          */
1174         spin_lock_irq(&ws->wait.lock);
1175         list_del_init(&wait->entry);
1176         spin_unlock_irq(&ws->wait.lock);
1177         spin_unlock(&this_hctx->lock);
1178
1179         return true;
1180 }
1181
1182 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1183
1184 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1185                              bool got_budget)
1186 {
1187         struct blk_mq_hw_ctx *hctx;
1188         struct request *rq, *nxt;
1189         bool no_tag = false;
1190         int errors, queued;
1191         blk_status_t ret = BLK_STS_OK;
1192
1193         if (list_empty(list))
1194                 return false;
1195
1196         WARN_ON(!list_is_singular(list) && got_budget);
1197
1198         /*
1199          * Now process all the entries, sending them to the driver.
1200          */
1201         errors = queued = 0;
1202         do {
1203                 struct blk_mq_queue_data bd;
1204
1205                 rq = list_first_entry(list, struct request, queuelist);
1206
1207                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1208                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1209                         break;
1210
1211                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1212                         /*
1213                          * The initial allocation attempt failed, so we need to
1214                          * rerun the hardware queue when a tag is freed. The
1215                          * waitqueue takes care of that. If the queue is run
1216                          * before we add this entry back on the dispatch list,
1217                          * we'll re-run it below.
1218                          */
1219                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1220                                 blk_mq_put_dispatch_budget(hctx);
1221                                 /*
1222                                  * For non-shared tags, the RESTART check
1223                                  * will suffice.
1224                                  */
1225                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1226                                         no_tag = true;
1227                                 break;
1228                         }
1229                 }
1230
1231                 list_del_init(&rq->queuelist);
1232
1233                 bd.rq = rq;
1234
1235                 /*
1236                  * Flag last if we have no more requests, or if we have more
1237                  * but can't assign a driver tag to it.
1238                  */
1239                 if (list_empty(list))
1240                         bd.last = true;
1241                 else {
1242                         nxt = list_first_entry(list, struct request, queuelist);
1243                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1244                 }
1245
1246                 ret = q->mq_ops->queue_rq(hctx, &bd);
1247                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1248                         /*
1249                          * If an I/O scheduler has been configured and we got a
1250                          * driver tag for the next request already, free it
1251                          * again.
1252                          */
1253                         if (!list_empty(list)) {
1254                                 nxt = list_first_entry(list, struct request, queuelist);
1255                                 blk_mq_put_driver_tag(nxt);
1256                         }
1257                         list_add(&rq->queuelist, list);
1258                         __blk_mq_requeue_request(rq);
1259                         break;
1260                 }
1261
1262                 if (unlikely(ret != BLK_STS_OK)) {
1263                         errors++;
1264                         blk_mq_end_request(rq, BLK_STS_IOERR);
1265                         continue;
1266                 }
1267
1268                 queued++;
1269         } while (!list_empty(list));
1270
1271         hctx->dispatched[queued_to_index(queued)]++;
1272
1273         /*
1274          * Any items that need requeuing? Stuff them into hctx->dispatch,
1275          * that is where we will continue on next queue run.
1276          */
1277         if (!list_empty(list)) {
1278                 bool needs_restart;
1279
1280                 spin_lock(&hctx->lock);
1281                 list_splice_init(list, &hctx->dispatch);
1282                 spin_unlock(&hctx->lock);
1283
1284                 /*
1285                  * If SCHED_RESTART was set by the caller of this function and
1286                  * it is no longer set that means that it was cleared by another
1287                  * thread and hence that a queue rerun is needed.
1288                  *
1289                  * If 'no_tag' is set, that means that we failed getting
1290                  * a driver tag with an I/O scheduler attached. If our dispatch
1291                  * waitqueue is no longer active, ensure that we run the queue
1292                  * AFTER adding our entries back to the list.
1293                  *
1294                  * If no I/O scheduler has been configured it is possible that
1295                  * the hardware queue got stopped and restarted before requests
1296                  * were pushed back onto the dispatch list. Rerun the queue to
1297                  * avoid starvation. Notes:
1298                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1299                  *   been stopped before rerunning a queue.
1300                  * - Some but not all block drivers stop a queue before
1301                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1302                  *   and dm-rq.
1303                  *
1304                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1305                  * bit is set, run queue after a delay to avoid IO stalls
1306                  * that could otherwise occur if the queue is idle.
1307                  */
1308                 needs_restart = blk_mq_sched_needs_restart(hctx);
1309                 if (!needs_restart ||
1310                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1311                         blk_mq_run_hw_queue(hctx, true);
1312                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1313                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1314         }
1315
1316         return (queued + errors) != 0;
1317 }
1318
1319 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1320 {
1321         int srcu_idx;
1322
1323         /*
1324          * We should be running this queue from one of the CPUs that
1325          * are mapped to it.
1326          *
1327          * There are at least two related races now between setting
1328          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1329          * __blk_mq_run_hw_queue():
1330          *
1331          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1332          *   but later it becomes online, then this warning is harmless
1333          *   at all
1334          *
1335          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1336          *   but later it becomes offline, then the warning can't be
1337          *   triggered, and we depend on blk-mq timeout handler to
1338          *   handle dispatched requests to this hctx
1339          */
1340         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1341                 cpu_online(hctx->next_cpu)) {
1342                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1343                         raw_smp_processor_id(),
1344                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1345                 dump_stack();
1346         }
1347
1348         /*
1349          * We can't run the queue inline with ints disabled. Ensure that
1350          * we catch bad users of this early.
1351          */
1352         WARN_ON_ONCE(in_interrupt());
1353
1354         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1355
1356         hctx_lock(hctx, &srcu_idx);
1357         blk_mq_sched_dispatch_requests(hctx);
1358         hctx_unlock(hctx, srcu_idx);
1359 }
1360
1361 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1362 {
1363         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1364
1365         if (cpu >= nr_cpu_ids)
1366                 cpu = cpumask_first(hctx->cpumask);
1367         return cpu;
1368 }
1369
1370 /*
1371  * It'd be great if the workqueue API had a way to pass
1372  * in a mask and had some smarts for more clever placement.
1373  * For now we just round-robin here, switching for every
1374  * BLK_MQ_CPU_WORK_BATCH queued items.
1375  */
1376 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378         bool tried = false;
1379         int next_cpu = hctx->next_cpu;
1380
1381         if (hctx->queue->nr_hw_queues == 1)
1382                 return WORK_CPU_UNBOUND;
1383
1384         if (--hctx->next_cpu_batch <= 0) {
1385 select_cpu:
1386                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1387                                 cpu_online_mask);
1388                 if (next_cpu >= nr_cpu_ids)
1389                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1390                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1391         }
1392
1393         /*
1394          * Do unbound schedule if we can't find a online CPU for this hctx,
1395          * and it should only happen in the path of handling CPU DEAD.
1396          */
1397         if (!cpu_online(next_cpu)) {
1398                 if (!tried) {
1399                         tried = true;
1400                         goto select_cpu;
1401                 }
1402
1403                 /*
1404                  * Make sure to re-select CPU next time once after CPUs
1405                  * in hctx->cpumask become online again.
1406                  */
1407                 hctx->next_cpu = next_cpu;
1408                 hctx->next_cpu_batch = 1;
1409                 return WORK_CPU_UNBOUND;
1410         }
1411
1412         hctx->next_cpu = next_cpu;
1413         return next_cpu;
1414 }
1415
1416 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1417                                         unsigned long msecs)
1418 {
1419         if (unlikely(blk_mq_hctx_stopped(hctx)))
1420                 return;
1421
1422         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1423                 int cpu = get_cpu();
1424                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1425                         __blk_mq_run_hw_queue(hctx);
1426                         put_cpu();
1427                         return;
1428                 }
1429
1430                 put_cpu();
1431         }
1432
1433         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1434                                     msecs_to_jiffies(msecs));
1435 }
1436
1437 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1438 {
1439         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1440 }
1441 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1442
1443 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1444 {
1445         int srcu_idx;
1446         bool need_run;
1447
1448         /*
1449          * When queue is quiesced, we may be switching io scheduler, or
1450          * updating nr_hw_queues, or other things, and we can't run queue
1451          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1452          *
1453          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1454          * quiesced.
1455          */
1456         hctx_lock(hctx, &srcu_idx);
1457         need_run = !blk_queue_quiesced(hctx->queue) &&
1458                 blk_mq_hctx_has_pending(hctx);
1459         hctx_unlock(hctx, srcu_idx);
1460
1461         if (need_run) {
1462                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1463                 return true;
1464         }
1465
1466         return false;
1467 }
1468 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1469
1470 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1471 {
1472         struct blk_mq_hw_ctx *hctx;
1473         int i;
1474
1475         queue_for_each_hw_ctx(q, hctx, i) {
1476                 if (blk_mq_hctx_stopped(hctx))
1477                         continue;
1478
1479                 blk_mq_run_hw_queue(hctx, async);
1480         }
1481 }
1482 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1483
1484 /**
1485  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1486  * @q: request queue.
1487  *
1488  * The caller is responsible for serializing this function against
1489  * blk_mq_{start,stop}_hw_queue().
1490  */
1491 bool blk_mq_queue_stopped(struct request_queue *q)
1492 {
1493         struct blk_mq_hw_ctx *hctx;
1494         int i;
1495
1496         queue_for_each_hw_ctx(q, hctx, i)
1497                 if (blk_mq_hctx_stopped(hctx))
1498                         return true;
1499
1500         return false;
1501 }
1502 EXPORT_SYMBOL(blk_mq_queue_stopped);
1503
1504 /*
1505  * This function is often used for pausing .queue_rq() by driver when
1506  * there isn't enough resource or some conditions aren't satisfied, and
1507  * BLK_STS_RESOURCE is usually returned.
1508  *
1509  * We do not guarantee that dispatch can be drained or blocked
1510  * after blk_mq_stop_hw_queue() returns. Please use
1511  * blk_mq_quiesce_queue() for that requirement.
1512  */
1513 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1514 {
1515         cancel_delayed_work(&hctx->run_work);
1516
1517         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1518 }
1519 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1520
1521 /*
1522  * This function is often used for pausing .queue_rq() by driver when
1523  * there isn't enough resource or some conditions aren't satisfied, and
1524  * BLK_STS_RESOURCE is usually returned.
1525  *
1526  * We do not guarantee that dispatch can be drained or blocked
1527  * after blk_mq_stop_hw_queues() returns. Please use
1528  * blk_mq_quiesce_queue() for that requirement.
1529  */
1530 void blk_mq_stop_hw_queues(struct request_queue *q)
1531 {
1532         struct blk_mq_hw_ctx *hctx;
1533         int i;
1534
1535         queue_for_each_hw_ctx(q, hctx, i)
1536                 blk_mq_stop_hw_queue(hctx);
1537 }
1538 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1539
1540 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1541 {
1542         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1543
1544         blk_mq_run_hw_queue(hctx, false);
1545 }
1546 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1547
1548 void blk_mq_start_hw_queues(struct request_queue *q)
1549 {
1550         struct blk_mq_hw_ctx *hctx;
1551         int i;
1552
1553         queue_for_each_hw_ctx(q, hctx, i)
1554                 blk_mq_start_hw_queue(hctx);
1555 }
1556 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1557
1558 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1559 {
1560         if (!blk_mq_hctx_stopped(hctx))
1561                 return;
1562
1563         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564         blk_mq_run_hw_queue(hctx, async);
1565 }
1566 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1567
1568 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1569 {
1570         struct blk_mq_hw_ctx *hctx;
1571         int i;
1572
1573         queue_for_each_hw_ctx(q, hctx, i)
1574                 blk_mq_start_stopped_hw_queue(hctx, async);
1575 }
1576 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1577
1578 static void blk_mq_run_work_fn(struct work_struct *work)
1579 {
1580         struct blk_mq_hw_ctx *hctx;
1581
1582         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1583
1584         /*
1585          * If we are stopped, don't run the queue.
1586          */
1587         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1588                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589
1590         __blk_mq_run_hw_queue(hctx);
1591 }
1592
1593 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1594                                             struct request *rq,
1595                                             bool at_head)
1596 {
1597         struct blk_mq_ctx *ctx = rq->mq_ctx;
1598
1599         lockdep_assert_held(&ctx->lock);
1600
1601         trace_block_rq_insert(hctx->queue, rq);
1602
1603         if (at_head)
1604                 list_add(&rq->queuelist, &ctx->rq_list);
1605         else
1606                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1607 }
1608
1609 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1610                              bool at_head)
1611 {
1612         struct blk_mq_ctx *ctx = rq->mq_ctx;
1613
1614         lockdep_assert_held(&ctx->lock);
1615
1616         __blk_mq_insert_req_list(hctx, rq, at_head);
1617         blk_mq_hctx_mark_pending(hctx, ctx);
1618 }
1619
1620 /*
1621  * Should only be used carefully, when the caller knows we want to
1622  * bypass a potential IO scheduler on the target device.
1623  */
1624 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1625 {
1626         struct blk_mq_ctx *ctx = rq->mq_ctx;
1627         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1628
1629         spin_lock(&hctx->lock);
1630         list_add_tail(&rq->queuelist, &hctx->dispatch);
1631         spin_unlock(&hctx->lock);
1632
1633         if (run_queue)
1634                 blk_mq_run_hw_queue(hctx, false);
1635 }
1636
1637 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1638                             struct list_head *list)
1639
1640 {
1641         /*
1642          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1643          * offline now
1644          */
1645         spin_lock(&ctx->lock);
1646         while (!list_empty(list)) {
1647                 struct request *rq;
1648
1649                 rq = list_first_entry(list, struct request, queuelist);
1650                 BUG_ON(rq->mq_ctx != ctx);
1651                 list_del_init(&rq->queuelist);
1652                 __blk_mq_insert_req_list(hctx, rq, false);
1653         }
1654         blk_mq_hctx_mark_pending(hctx, ctx);
1655         spin_unlock(&ctx->lock);
1656 }
1657
1658 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1659 {
1660         struct request *rqa = container_of(a, struct request, queuelist);
1661         struct request *rqb = container_of(b, struct request, queuelist);
1662
1663         return !(rqa->mq_ctx < rqb->mq_ctx ||
1664                  (rqa->mq_ctx == rqb->mq_ctx &&
1665                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1666 }
1667
1668 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1669 {
1670         struct blk_mq_ctx *this_ctx;
1671         struct request_queue *this_q;
1672         struct request *rq;
1673         LIST_HEAD(list);
1674         LIST_HEAD(ctx_list);
1675         unsigned int depth;
1676
1677         list_splice_init(&plug->mq_list, &list);
1678
1679         list_sort(NULL, &list, plug_ctx_cmp);
1680
1681         this_q = NULL;
1682         this_ctx = NULL;
1683         depth = 0;
1684
1685         while (!list_empty(&list)) {
1686                 rq = list_entry_rq(list.next);
1687                 list_del_init(&rq->queuelist);
1688                 BUG_ON(!rq->q);
1689                 if (rq->mq_ctx != this_ctx) {
1690                         if (this_ctx) {
1691                                 trace_block_unplug(this_q, depth, from_schedule);
1692                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1693                                                                 &ctx_list,
1694                                                                 from_schedule);
1695                         }
1696
1697                         this_ctx = rq->mq_ctx;
1698                         this_q = rq->q;
1699                         depth = 0;
1700                 }
1701
1702                 depth++;
1703                 list_add_tail(&rq->queuelist, &ctx_list);
1704         }
1705
1706         /*
1707          * If 'this_ctx' is set, we know we have entries to complete
1708          * on 'ctx_list'. Do those.
1709          */
1710         if (this_ctx) {
1711                 trace_block_unplug(this_q, depth, from_schedule);
1712                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1713                                                 from_schedule);
1714         }
1715 }
1716
1717 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1718 {
1719         blk_init_request_from_bio(rq, bio);
1720
1721         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1722
1723         blk_account_io_start(rq, true);
1724 }
1725
1726 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1727                                    struct blk_mq_ctx *ctx,
1728                                    struct request *rq)
1729 {
1730         spin_lock(&ctx->lock);
1731         __blk_mq_insert_request(hctx, rq, false);
1732         spin_unlock(&ctx->lock);
1733 }
1734
1735 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1736 {
1737         if (rq->tag != -1)
1738                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1739
1740         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1741 }
1742
1743 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1744                                             struct request *rq,
1745                                             blk_qc_t *cookie)
1746 {
1747         struct request_queue *q = rq->q;
1748         struct blk_mq_queue_data bd = {
1749                 .rq = rq,
1750                 .last = true,
1751         };
1752         blk_qc_t new_cookie;
1753         blk_status_t ret;
1754
1755         new_cookie = request_to_qc_t(hctx, rq);
1756
1757         /*
1758          * For OK queue, we are done. For error, caller may kill it.
1759          * Any other error (busy), just add it to our list as we
1760          * previously would have done.
1761          */
1762         ret = q->mq_ops->queue_rq(hctx, &bd);
1763         switch (ret) {
1764         case BLK_STS_OK:
1765                 *cookie = new_cookie;
1766                 break;
1767         case BLK_STS_RESOURCE:
1768         case BLK_STS_DEV_RESOURCE:
1769                 __blk_mq_requeue_request(rq);
1770                 break;
1771         default:
1772                 *cookie = BLK_QC_T_NONE;
1773                 break;
1774         }
1775
1776         return ret;
1777 }
1778
1779 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1780                                                 struct request *rq,
1781                                                 blk_qc_t *cookie,
1782                                                 bool bypass_insert)
1783 {
1784         struct request_queue *q = rq->q;
1785         bool run_queue = true;
1786
1787         /*
1788          * RCU or SRCU read lock is needed before checking quiesced flag.
1789          *
1790          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1791          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1792          * and avoid driver to try to dispatch again.
1793          */
1794         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1795                 run_queue = false;
1796                 bypass_insert = false;
1797                 goto insert;
1798         }
1799
1800         if (q->elevator && !bypass_insert)
1801                 goto insert;
1802
1803         if (!blk_mq_get_dispatch_budget(hctx))
1804                 goto insert;
1805
1806         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1807                 blk_mq_put_dispatch_budget(hctx);
1808                 goto insert;
1809         }
1810
1811         return __blk_mq_issue_directly(hctx, rq, cookie);
1812 insert:
1813         if (bypass_insert)
1814                 return BLK_STS_RESOURCE;
1815
1816         blk_mq_sched_insert_request(rq, false, run_queue, false);
1817         return BLK_STS_OK;
1818 }
1819
1820 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1821                 struct request *rq, blk_qc_t *cookie)
1822 {
1823         blk_status_t ret;
1824         int srcu_idx;
1825
1826         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1827
1828         hctx_lock(hctx, &srcu_idx);
1829
1830         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1831         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1832                 blk_mq_sched_insert_request(rq, false, true, false);
1833         else if (ret != BLK_STS_OK)
1834                 blk_mq_end_request(rq, ret);
1835
1836         hctx_unlock(hctx, srcu_idx);
1837 }
1838
1839 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1840 {
1841         blk_status_t ret;
1842         int srcu_idx;
1843         blk_qc_t unused_cookie;
1844         struct blk_mq_ctx *ctx = rq->mq_ctx;
1845         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1846
1847         hctx_lock(hctx, &srcu_idx);
1848         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1849         hctx_unlock(hctx, srcu_idx);
1850
1851         return ret;
1852 }
1853
1854 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1855 {
1856         const int is_sync = op_is_sync(bio->bi_opf);
1857         const int is_flush_fua = op_is_flush(bio->bi_opf);
1858         struct blk_mq_alloc_data data = { .flags = 0 };
1859         struct request *rq;
1860         unsigned int request_count = 0;
1861         struct blk_plug *plug;
1862         struct request *same_queue_rq = NULL;
1863         blk_qc_t cookie;
1864         unsigned int wb_acct;
1865
1866         blk_queue_bounce(q, &bio);
1867
1868         blk_queue_split(q, &bio);
1869
1870         if (!bio_integrity_prep(bio))
1871                 return BLK_QC_T_NONE;
1872
1873         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1874             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1875                 return BLK_QC_T_NONE;
1876
1877         if (blk_mq_sched_bio_merge(q, bio))
1878                 return BLK_QC_T_NONE;
1879
1880         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1881
1882         trace_block_getrq(q, bio, bio->bi_opf);
1883
1884         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1885         if (unlikely(!rq)) {
1886                 __wbt_done(q->rq_wb, wb_acct);
1887                 if (bio->bi_opf & REQ_NOWAIT)
1888                         bio_wouldblock_error(bio);
1889                 return BLK_QC_T_NONE;
1890         }
1891
1892         wbt_track(rq, wb_acct);
1893
1894         cookie = request_to_qc_t(data.hctx, rq);
1895
1896         plug = current->plug;
1897         if (unlikely(is_flush_fua)) {
1898                 blk_mq_put_ctx(data.ctx);
1899                 blk_mq_bio_to_request(rq, bio);
1900
1901                 /* bypass scheduler for flush rq */
1902                 blk_insert_flush(rq);
1903                 blk_mq_run_hw_queue(data.hctx, true);
1904         } else if (plug && q->nr_hw_queues == 1) {
1905                 struct request *last = NULL;
1906
1907                 blk_mq_put_ctx(data.ctx);
1908                 blk_mq_bio_to_request(rq, bio);
1909
1910                 /*
1911                  * @request_count may become stale because of schedule
1912                  * out, so check the list again.
1913                  */
1914                 if (list_empty(&plug->mq_list))
1915                         request_count = 0;
1916                 else if (blk_queue_nomerges(q))
1917                         request_count = blk_plug_queued_count(q);
1918
1919                 if (!request_count)
1920                         trace_block_plug(q);
1921                 else
1922                         last = list_entry_rq(plug->mq_list.prev);
1923
1924                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1925                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1926                         blk_flush_plug_list(plug, false);
1927                         trace_block_plug(q);
1928                 }
1929
1930                 list_add_tail(&rq->queuelist, &plug->mq_list);
1931         } else if (plug && !blk_queue_nomerges(q)) {
1932                 blk_mq_bio_to_request(rq, bio);
1933
1934                 /*
1935                  * We do limited plugging. If the bio can be merged, do that.
1936                  * Otherwise the existing request in the plug list will be
1937                  * issued. So the plug list will have one request at most
1938                  * The plug list might get flushed before this. If that happens,
1939                  * the plug list is empty, and same_queue_rq is invalid.
1940                  */
1941                 if (list_empty(&plug->mq_list))
1942                         same_queue_rq = NULL;
1943                 if (same_queue_rq)
1944                         list_del_init(&same_queue_rq->queuelist);
1945                 list_add_tail(&rq->queuelist, &plug->mq_list);
1946
1947                 blk_mq_put_ctx(data.ctx);
1948
1949                 if (same_queue_rq) {
1950                         data.hctx = blk_mq_map_queue(q,
1951                                         same_queue_rq->mq_ctx->cpu);
1952                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1953                                         &cookie);
1954                 }
1955         } else if (q->nr_hw_queues > 1 && is_sync) {
1956                 blk_mq_put_ctx(data.ctx);
1957                 blk_mq_bio_to_request(rq, bio);
1958                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1959         } else if (q->elevator) {
1960                 blk_mq_put_ctx(data.ctx);
1961                 blk_mq_bio_to_request(rq, bio);
1962                 blk_mq_sched_insert_request(rq, false, true, true);
1963         } else {
1964                 blk_mq_put_ctx(data.ctx);
1965                 blk_mq_bio_to_request(rq, bio);
1966                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1967                 blk_mq_run_hw_queue(data.hctx, true);
1968         }
1969
1970         return cookie;
1971 }
1972
1973 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1974                      unsigned int hctx_idx)
1975 {
1976         struct page *page;
1977
1978         if (tags->rqs && set->ops->exit_request) {
1979                 int i;
1980
1981                 for (i = 0; i < tags->nr_tags; i++) {
1982                         struct request *rq = tags->static_rqs[i];
1983
1984                         if (!rq)
1985                                 continue;
1986                         set->ops->exit_request(set, rq, hctx_idx);
1987                         tags->static_rqs[i] = NULL;
1988                 }
1989         }
1990
1991         while (!list_empty(&tags->page_list)) {
1992                 page = list_first_entry(&tags->page_list, struct page, lru);
1993                 list_del_init(&page->lru);
1994                 /*
1995                  * Remove kmemleak object previously allocated in
1996                  * blk_mq_init_rq_map().
1997                  */
1998                 kmemleak_free(page_address(page));
1999                 __free_pages(page, page->private);
2000         }
2001 }
2002
2003 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2004 {
2005         kfree(tags->rqs);
2006         tags->rqs = NULL;
2007         kfree(tags->static_rqs);
2008         tags->static_rqs = NULL;
2009
2010         blk_mq_free_tags(tags);
2011 }
2012
2013 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2014                                         unsigned int hctx_idx,
2015                                         unsigned int nr_tags,
2016                                         unsigned int reserved_tags)
2017 {
2018         struct blk_mq_tags *tags;
2019         int node;
2020
2021         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2022         if (node == NUMA_NO_NODE)
2023                 node = set->numa_node;
2024
2025         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2026                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2027         if (!tags)
2028                 return NULL;
2029
2030         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2031                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2032                                  node);
2033         if (!tags->rqs) {
2034                 blk_mq_free_tags(tags);
2035                 return NULL;
2036         }
2037
2038         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2039                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2040                                  node);
2041         if (!tags->static_rqs) {
2042                 kfree(tags->rqs);
2043                 blk_mq_free_tags(tags);
2044                 return NULL;
2045         }
2046
2047         return tags;
2048 }
2049
2050 static size_t order_to_size(unsigned int order)
2051 {
2052         return (size_t)PAGE_SIZE << order;
2053 }
2054
2055 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2056                                unsigned int hctx_idx, int node)
2057 {
2058         int ret;
2059
2060         if (set->ops->init_request) {
2061                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2062                 if (ret)
2063                         return ret;
2064         }
2065
2066         seqcount_init(&rq->gstate_seq);
2067         u64_stats_init(&rq->aborted_gstate_sync);
2068         /*
2069          * start gstate with gen 1 instead of 0, otherwise it will be equal
2070          * to aborted_gstate, and be identified timed out by
2071          * blk_mq_terminate_expired.
2072          */
2073         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2074
2075         return 0;
2076 }
2077
2078 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2079                      unsigned int hctx_idx, unsigned int depth)
2080 {
2081         unsigned int i, j, entries_per_page, max_order = 4;
2082         size_t rq_size, left;
2083         int node;
2084
2085         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2086         if (node == NUMA_NO_NODE)
2087                 node = set->numa_node;
2088
2089         INIT_LIST_HEAD(&tags->page_list);
2090
2091         /*
2092          * rq_size is the size of the request plus driver payload, rounded
2093          * to the cacheline size
2094          */
2095         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2096                                 cache_line_size());
2097         left = rq_size * depth;
2098
2099         for (i = 0; i < depth; ) {
2100                 int this_order = max_order;
2101                 struct page *page;
2102                 int to_do;
2103                 void *p;
2104
2105                 while (this_order && left < order_to_size(this_order - 1))
2106                         this_order--;
2107
2108                 do {
2109                         page = alloc_pages_node(node,
2110                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2111                                 this_order);
2112                         if (page)
2113                                 break;
2114                         if (!this_order--)
2115                                 break;
2116                         if (order_to_size(this_order) < rq_size)
2117                                 break;
2118                 } while (1);
2119
2120                 if (!page)
2121                         goto fail;
2122
2123                 page->private = this_order;
2124                 list_add_tail(&page->lru, &tags->page_list);
2125
2126                 p = page_address(page);
2127                 /*
2128                  * Allow kmemleak to scan these pages as they contain pointers
2129                  * to additional allocations like via ops->init_request().
2130                  */
2131                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2132                 entries_per_page = order_to_size(this_order) / rq_size;
2133                 to_do = min(entries_per_page, depth - i);
2134                 left -= to_do * rq_size;
2135                 for (j = 0; j < to_do; j++) {
2136                         struct request *rq = p;
2137
2138                         tags->static_rqs[i] = rq;
2139                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2140                                 tags->static_rqs[i] = NULL;
2141                                 goto fail;
2142                         }
2143
2144                         p += rq_size;
2145                         i++;
2146                 }
2147         }
2148         return 0;
2149
2150 fail:
2151         blk_mq_free_rqs(set, tags, hctx_idx);
2152         return -ENOMEM;
2153 }
2154
2155 /*
2156  * 'cpu' is going away. splice any existing rq_list entries from this
2157  * software queue to the hw queue dispatch list, and ensure that it
2158  * gets run.
2159  */
2160 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2161 {
2162         struct blk_mq_hw_ctx *hctx;
2163         struct blk_mq_ctx *ctx;
2164         LIST_HEAD(tmp);
2165
2166         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2167         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2168
2169         spin_lock(&ctx->lock);
2170         if (!list_empty(&ctx->rq_list)) {
2171                 list_splice_init(&ctx->rq_list, &tmp);
2172                 blk_mq_hctx_clear_pending(hctx, ctx);
2173         }
2174         spin_unlock(&ctx->lock);
2175
2176         if (list_empty(&tmp))
2177                 return 0;
2178
2179         spin_lock(&hctx->lock);
2180         list_splice_tail_init(&tmp, &hctx->dispatch);
2181         spin_unlock(&hctx->lock);
2182
2183         blk_mq_run_hw_queue(hctx, true);
2184         return 0;
2185 }
2186
2187 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2188 {
2189         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2190                                             &hctx->cpuhp_dead);
2191 }
2192
2193 /* hctx->ctxs will be freed in queue's release handler */
2194 static void blk_mq_exit_hctx(struct request_queue *q,
2195                 struct blk_mq_tag_set *set,
2196                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2197 {
2198         blk_mq_debugfs_unregister_hctx(hctx);
2199
2200         if (blk_mq_hw_queue_mapped(hctx))
2201                 blk_mq_tag_idle(hctx);
2202
2203         if (set->ops->exit_request)
2204                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2205
2206         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2207
2208         if (set->ops->exit_hctx)
2209                 set->ops->exit_hctx(hctx, hctx_idx);
2210
2211         if (hctx->flags & BLK_MQ_F_BLOCKING)
2212                 cleanup_srcu_struct(hctx->srcu);
2213
2214         blk_mq_remove_cpuhp(hctx);
2215         blk_free_flush_queue(hctx->fq);
2216         sbitmap_free(&hctx->ctx_map);
2217 }
2218
2219 static void blk_mq_exit_hw_queues(struct request_queue *q,
2220                 struct blk_mq_tag_set *set, int nr_queue)
2221 {
2222         struct blk_mq_hw_ctx *hctx;
2223         unsigned int i;
2224
2225         queue_for_each_hw_ctx(q, hctx, i) {
2226                 if (i == nr_queue)
2227                         break;
2228                 blk_mq_exit_hctx(q, set, hctx, i);
2229         }
2230 }
2231
2232 static int blk_mq_init_hctx(struct request_queue *q,
2233                 struct blk_mq_tag_set *set,
2234                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2235 {
2236         int node;
2237
2238         node = hctx->numa_node;
2239         if (node == NUMA_NO_NODE)
2240                 node = hctx->numa_node = set->numa_node;
2241
2242         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2243         spin_lock_init(&hctx->lock);
2244         INIT_LIST_HEAD(&hctx->dispatch);
2245         hctx->queue = q;
2246         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2247
2248         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2249
2250         hctx->tags = set->tags[hctx_idx];
2251
2252         /*
2253          * Allocate space for all possible cpus to avoid allocation at
2254          * runtime
2255          */
2256         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2257                                         GFP_KERNEL, node);
2258         if (!hctx->ctxs)
2259                 goto unregister_cpu_notifier;
2260
2261         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2262                               node))
2263                 goto free_ctxs;
2264
2265         hctx->nr_ctx = 0;
2266
2267         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2268         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2269
2270         if (set->ops->init_hctx &&
2271             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2272                 goto free_bitmap;
2273
2274         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2275                 goto exit_hctx;
2276
2277         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2278         if (!hctx->fq)
2279                 goto sched_exit_hctx;
2280
2281         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2282                 goto free_fq;
2283
2284         if (hctx->flags & BLK_MQ_F_BLOCKING)
2285                 init_srcu_struct(hctx->srcu);
2286
2287         blk_mq_debugfs_register_hctx(q, hctx);
2288
2289         return 0;
2290
2291  free_fq:
2292         kfree(hctx->fq);
2293  sched_exit_hctx:
2294         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2295  exit_hctx:
2296         if (set->ops->exit_hctx)
2297                 set->ops->exit_hctx(hctx, hctx_idx);
2298  free_bitmap:
2299         sbitmap_free(&hctx->ctx_map);
2300  free_ctxs:
2301         kfree(hctx->ctxs);
2302  unregister_cpu_notifier:
2303         blk_mq_remove_cpuhp(hctx);
2304         return -1;
2305 }
2306
2307 static void blk_mq_init_cpu_queues(struct request_queue *q,
2308                                    unsigned int nr_hw_queues)
2309 {
2310         unsigned int i;
2311
2312         for_each_possible_cpu(i) {
2313                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2314                 struct blk_mq_hw_ctx *hctx;
2315
2316                 __ctx->cpu = i;
2317                 spin_lock_init(&__ctx->lock);
2318                 INIT_LIST_HEAD(&__ctx->rq_list);
2319                 __ctx->queue = q;
2320
2321                 /*
2322                  * Set local node, IFF we have more than one hw queue. If
2323                  * not, we remain on the home node of the device
2324                  */
2325                 hctx = blk_mq_map_queue(q, i);
2326                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2327                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2328         }
2329 }
2330
2331 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2332 {
2333         int ret = 0;
2334
2335         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2336                                         set->queue_depth, set->reserved_tags);
2337         if (!set->tags[hctx_idx])
2338                 return false;
2339
2340         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2341                                 set->queue_depth);
2342         if (!ret)
2343                 return true;
2344
2345         blk_mq_free_rq_map(set->tags[hctx_idx]);
2346         set->tags[hctx_idx] = NULL;
2347         return false;
2348 }
2349
2350 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2351                                          unsigned int hctx_idx)
2352 {
2353         if (set->tags[hctx_idx]) {
2354                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2355                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2356                 set->tags[hctx_idx] = NULL;
2357         }
2358 }
2359
2360 static void blk_mq_map_swqueue(struct request_queue *q)
2361 {
2362         unsigned int i, hctx_idx;
2363         struct blk_mq_hw_ctx *hctx;
2364         struct blk_mq_ctx *ctx;
2365         struct blk_mq_tag_set *set = q->tag_set;
2366
2367         /*
2368          * Avoid others reading imcomplete hctx->cpumask through sysfs
2369          */
2370         mutex_lock(&q->sysfs_lock);
2371
2372         queue_for_each_hw_ctx(q, hctx, i) {
2373                 cpumask_clear(hctx->cpumask);
2374                 hctx->nr_ctx = 0;
2375         }
2376
2377         /*
2378          * Map software to hardware queues.
2379          *
2380          * If the cpu isn't present, the cpu is mapped to first hctx.
2381          */
2382         for_each_possible_cpu(i) {
2383                 hctx_idx = q->mq_map[i];
2384                 /* unmapped hw queue can be remapped after CPU topo changed */
2385                 if (!set->tags[hctx_idx] &&
2386                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2387                         /*
2388                          * If tags initialization fail for some hctx,
2389                          * that hctx won't be brought online.  In this
2390                          * case, remap the current ctx to hctx[0] which
2391                          * is guaranteed to always have tags allocated
2392                          */
2393                         q->mq_map[i] = 0;
2394                 }
2395
2396                 ctx = per_cpu_ptr(q->queue_ctx, i);
2397                 hctx = blk_mq_map_queue(q, i);
2398
2399                 cpumask_set_cpu(i, hctx->cpumask);
2400                 ctx->index_hw = hctx->nr_ctx;
2401                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2402         }
2403
2404         mutex_unlock(&q->sysfs_lock);
2405
2406         queue_for_each_hw_ctx(q, hctx, i) {
2407                 /*
2408                  * If no software queues are mapped to this hardware queue,
2409                  * disable it and free the request entries.
2410                  */
2411                 if (!hctx->nr_ctx) {
2412                         /* Never unmap queue 0.  We need it as a
2413                          * fallback in case of a new remap fails
2414                          * allocation
2415                          */
2416                         if (i && set->tags[i])
2417                                 blk_mq_free_map_and_requests(set, i);
2418
2419                         hctx->tags = NULL;
2420                         continue;
2421                 }
2422
2423                 hctx->tags = set->tags[i];
2424                 WARN_ON(!hctx->tags);
2425
2426                 /*
2427                  * Set the map size to the number of mapped software queues.
2428                  * This is more accurate and more efficient than looping
2429                  * over all possibly mapped software queues.
2430                  */
2431                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2432
2433                 /*
2434                  * Initialize batch roundrobin counts
2435                  */
2436                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2437                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2438         }
2439 }
2440
2441 /*
2442  * Caller needs to ensure that we're either frozen/quiesced, or that
2443  * the queue isn't live yet.
2444  */
2445 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2446 {
2447         struct blk_mq_hw_ctx *hctx;
2448         int i;
2449
2450         queue_for_each_hw_ctx(q, hctx, i) {
2451                 if (shared) {
2452                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2453                                 atomic_inc(&q->shared_hctx_restart);
2454                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2455                 } else {
2456                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457                                 atomic_dec(&q->shared_hctx_restart);
2458                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2459                 }
2460         }
2461 }
2462
2463 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2464                                         bool shared)
2465 {
2466         struct request_queue *q;
2467
2468         lockdep_assert_held(&set->tag_list_lock);
2469
2470         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2471                 blk_mq_freeze_queue(q);
2472                 queue_set_hctx_shared(q, shared);
2473                 blk_mq_unfreeze_queue(q);
2474         }
2475 }
2476
2477 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2478 {
2479         struct blk_mq_tag_set *set = q->tag_set;
2480
2481         mutex_lock(&set->tag_list_lock);
2482         list_del_rcu(&q->tag_set_list);
2483         INIT_LIST_HEAD(&q->tag_set_list);
2484         if (list_is_singular(&set->tag_list)) {
2485                 /* just transitioned to unshared */
2486                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2487                 /* update existing queue */
2488                 blk_mq_update_tag_set_depth(set, false);
2489         }
2490         mutex_unlock(&set->tag_list_lock);
2491
2492         synchronize_rcu();
2493 }
2494
2495 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2496                                      struct request_queue *q)
2497 {
2498         q->tag_set = set;
2499
2500         mutex_lock(&set->tag_list_lock);
2501
2502         /*
2503          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2504          */
2505         if (!list_empty(&set->tag_list) &&
2506             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2507                 set->flags |= BLK_MQ_F_TAG_SHARED;
2508                 /* update existing queue */
2509                 blk_mq_update_tag_set_depth(set, true);
2510         }
2511         if (set->flags & BLK_MQ_F_TAG_SHARED)
2512                 queue_set_hctx_shared(q, true);
2513         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2514
2515         mutex_unlock(&set->tag_list_lock);
2516 }
2517
2518 /*
2519  * It is the actual release handler for mq, but we do it from
2520  * request queue's release handler for avoiding use-after-free
2521  * and headache because q->mq_kobj shouldn't have been introduced,
2522  * but we can't group ctx/kctx kobj without it.
2523  */
2524 void blk_mq_release(struct request_queue *q)
2525 {
2526         struct blk_mq_hw_ctx *hctx;
2527         unsigned int i;
2528
2529         /* hctx kobj stays in hctx */
2530         queue_for_each_hw_ctx(q, hctx, i) {
2531                 if (!hctx)
2532                         continue;
2533                 kobject_put(&hctx->kobj);
2534         }
2535
2536         q->mq_map = NULL;
2537
2538         kfree(q->queue_hw_ctx);
2539
2540         /*
2541          * release .mq_kobj and sw queue's kobject now because
2542          * both share lifetime with request queue.
2543          */
2544         blk_mq_sysfs_deinit(q);
2545
2546         free_percpu(q->queue_ctx);
2547 }
2548
2549 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2550 {
2551         struct request_queue *uninit_q, *q;
2552
2553         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2554         if (!uninit_q)
2555                 return ERR_PTR(-ENOMEM);
2556
2557         q = blk_mq_init_allocated_queue(set, uninit_q);
2558         if (IS_ERR(q))
2559                 blk_cleanup_queue(uninit_q);
2560
2561         return q;
2562 }
2563 EXPORT_SYMBOL(blk_mq_init_queue);
2564
2565 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2566 {
2567         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2568
2569         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2570                            __alignof__(struct blk_mq_hw_ctx)) !=
2571                      sizeof(struct blk_mq_hw_ctx));
2572
2573         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2574                 hw_ctx_size += sizeof(struct srcu_struct);
2575
2576         return hw_ctx_size;
2577 }
2578
2579 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2580                                                 struct request_queue *q)
2581 {
2582         int i, j;
2583         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2584
2585         blk_mq_sysfs_unregister(q);
2586
2587         /* protect against switching io scheduler  */
2588         mutex_lock(&q->sysfs_lock);
2589         for (i = 0; i < set->nr_hw_queues; i++) {
2590                 int node;
2591
2592                 if (hctxs[i])
2593                         continue;
2594
2595                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2596                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2597                                         GFP_KERNEL, node);
2598                 if (!hctxs[i])
2599                         break;
2600
2601                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2602                                                 node)) {
2603                         kfree(hctxs[i]);
2604                         hctxs[i] = NULL;
2605                         break;
2606                 }
2607
2608                 atomic_set(&hctxs[i]->nr_active, 0);
2609                 hctxs[i]->numa_node = node;
2610                 hctxs[i]->queue_num = i;
2611
2612                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2613                         free_cpumask_var(hctxs[i]->cpumask);
2614                         kfree(hctxs[i]);
2615                         hctxs[i] = NULL;
2616                         break;
2617                 }
2618                 blk_mq_hctx_kobj_init(hctxs[i]);
2619         }
2620         for (j = i; j < q->nr_hw_queues; j++) {
2621                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2622
2623                 if (hctx) {
2624                         if (hctx->tags)
2625                                 blk_mq_free_map_and_requests(set, j);
2626                         blk_mq_exit_hctx(q, set, hctx, j);
2627                         kobject_put(&hctx->kobj);
2628                         hctxs[j] = NULL;
2629
2630                 }
2631         }
2632         q->nr_hw_queues = i;
2633         mutex_unlock(&q->sysfs_lock);
2634         blk_mq_sysfs_register(q);
2635 }
2636
2637 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2638                                                   struct request_queue *q)
2639 {
2640         /* mark the queue as mq asap */
2641         q->mq_ops = set->ops;
2642
2643         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2644                                              blk_mq_poll_stats_bkt,
2645                                              BLK_MQ_POLL_STATS_BKTS, q);
2646         if (!q->poll_cb)
2647                 goto err_exit;
2648
2649         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2650         if (!q->queue_ctx)
2651                 goto err_exit;
2652
2653         /* init q->mq_kobj and sw queues' kobjects */
2654         blk_mq_sysfs_init(q);
2655
2656         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2657                                                 GFP_KERNEL, set->numa_node);
2658         if (!q->queue_hw_ctx)
2659                 goto err_percpu;
2660
2661         q->mq_map = set->mq_map;
2662
2663         blk_mq_realloc_hw_ctxs(set, q);
2664         if (!q->nr_hw_queues)
2665                 goto err_hctxs;
2666
2667         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2668         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2669
2670         q->nr_queues = nr_cpu_ids;
2671
2672         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2673
2674         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2675                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2676
2677         q->sg_reserved_size = INT_MAX;
2678
2679         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2680         INIT_LIST_HEAD(&q->requeue_list);
2681         spin_lock_init(&q->requeue_lock);
2682
2683         blk_queue_make_request(q, blk_mq_make_request);
2684         if (q->mq_ops->poll)
2685                 q->poll_fn = blk_mq_poll;
2686
2687         /*
2688          * Do this after blk_queue_make_request() overrides it...
2689          */
2690         q->nr_requests = set->queue_depth;
2691
2692         /*
2693          * Default to classic polling
2694          */
2695         q->poll_nsec = -1;
2696
2697         if (set->ops->complete)
2698                 blk_queue_softirq_done(q, set->ops->complete);
2699
2700         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2701         blk_mq_add_queue_tag_set(set, q);
2702         blk_mq_map_swqueue(q);
2703
2704         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2705                 int ret;
2706
2707                 ret = blk_mq_sched_init(q);
2708                 if (ret)
2709                         return ERR_PTR(ret);
2710         }
2711
2712         return q;
2713
2714 err_hctxs:
2715         kfree(q->queue_hw_ctx);
2716 err_percpu:
2717         free_percpu(q->queue_ctx);
2718 err_exit:
2719         q->mq_ops = NULL;
2720         return ERR_PTR(-ENOMEM);
2721 }
2722 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2723
2724 void blk_mq_free_queue(struct request_queue *q)
2725 {
2726         struct blk_mq_tag_set   *set = q->tag_set;
2727
2728         blk_mq_del_queue_tag_set(q);
2729         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2730 }
2731
2732 /* Basically redo blk_mq_init_queue with queue frozen */
2733 static void blk_mq_queue_reinit(struct request_queue *q)
2734 {
2735         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2736
2737         blk_mq_debugfs_unregister_hctxs(q);
2738         blk_mq_sysfs_unregister(q);
2739
2740         /*
2741          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2742          * we should change hctx numa_node according to the new topology (this
2743          * involves freeing and re-allocating memory, worth doing?)
2744          */
2745         blk_mq_map_swqueue(q);
2746
2747         blk_mq_sysfs_register(q);
2748         blk_mq_debugfs_register_hctxs(q);
2749 }
2750
2751 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2752 {
2753         int i;
2754
2755         for (i = 0; i < set->nr_hw_queues; i++)
2756                 if (!__blk_mq_alloc_rq_map(set, i))
2757                         goto out_unwind;
2758
2759         return 0;
2760
2761 out_unwind:
2762         while (--i >= 0)
2763                 blk_mq_free_rq_map(set->tags[i]);
2764
2765         return -ENOMEM;
2766 }
2767
2768 /*
2769  * Allocate the request maps associated with this tag_set. Note that this
2770  * may reduce the depth asked for, if memory is tight. set->queue_depth
2771  * will be updated to reflect the allocated depth.
2772  */
2773 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2774 {
2775         unsigned int depth;
2776         int err;
2777
2778         depth = set->queue_depth;
2779         do {
2780                 err = __blk_mq_alloc_rq_maps(set);
2781                 if (!err)
2782                         break;
2783
2784                 set->queue_depth >>= 1;
2785                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2786                         err = -ENOMEM;
2787                         break;
2788                 }
2789         } while (set->queue_depth);
2790
2791         if (!set->queue_depth || err) {
2792                 pr_err("blk-mq: failed to allocate request map\n");
2793                 return -ENOMEM;
2794         }
2795
2796         if (depth != set->queue_depth)
2797                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2798                                                 depth, set->queue_depth);
2799
2800         return 0;
2801 }
2802
2803 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2804 {
2805         if (set->ops->map_queues) {
2806                 int cpu;
2807                 /*
2808                  * transport .map_queues is usually done in the following
2809                  * way:
2810                  *
2811                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2812                  *      mask = get_cpu_mask(queue)
2813                  *      for_each_cpu(cpu, mask)
2814                  *              set->mq_map[cpu] = queue;
2815                  * }
2816                  *
2817                  * When we need to remap, the table has to be cleared for
2818                  * killing stale mapping since one CPU may not be mapped
2819                  * to any hw queue.
2820                  */
2821                 for_each_possible_cpu(cpu)
2822                         set->mq_map[cpu] = 0;
2823
2824                 return set->ops->map_queues(set);
2825         } else
2826                 return blk_mq_map_queues(set);
2827 }
2828
2829 /*
2830  * Alloc a tag set to be associated with one or more request queues.
2831  * May fail with EINVAL for various error conditions. May adjust the
2832  * requested depth down, if if it too large. In that case, the set
2833  * value will be stored in set->queue_depth.
2834  */
2835 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2836 {
2837         int ret;
2838
2839         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2840
2841         if (!set->nr_hw_queues)
2842                 return -EINVAL;
2843         if (!set->queue_depth)
2844                 return -EINVAL;
2845         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2846                 return -EINVAL;
2847
2848         if (!set->ops->queue_rq)
2849                 return -EINVAL;
2850
2851         if (!set->ops->get_budget ^ !set->ops->put_budget)
2852                 return -EINVAL;
2853
2854         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2855                 pr_info("blk-mq: reduced tag depth to %u\n",
2856                         BLK_MQ_MAX_DEPTH);
2857                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2858         }
2859
2860         /*
2861          * If a crashdump is active, then we are potentially in a very
2862          * memory constrained environment. Limit us to 1 queue and
2863          * 64 tags to prevent using too much memory.
2864          */
2865         if (is_kdump_kernel()) {
2866                 set->nr_hw_queues = 1;
2867                 set->queue_depth = min(64U, set->queue_depth);
2868         }
2869         /*
2870          * There is no use for more h/w queues than cpus.
2871          */
2872         if (set->nr_hw_queues > nr_cpu_ids)
2873                 set->nr_hw_queues = nr_cpu_ids;
2874
2875         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2876                                  GFP_KERNEL, set->numa_node);
2877         if (!set->tags)
2878                 return -ENOMEM;
2879
2880         ret = -ENOMEM;
2881         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2882                         GFP_KERNEL, set->numa_node);
2883         if (!set->mq_map)
2884                 goto out_free_tags;
2885
2886         ret = blk_mq_update_queue_map(set);
2887         if (ret)
2888                 goto out_free_mq_map;
2889
2890         ret = blk_mq_alloc_rq_maps(set);
2891         if (ret)
2892                 goto out_free_mq_map;
2893
2894         mutex_init(&set->tag_list_lock);
2895         INIT_LIST_HEAD(&set->tag_list);
2896
2897         return 0;
2898
2899 out_free_mq_map:
2900         kfree(set->mq_map);
2901         set->mq_map = NULL;
2902 out_free_tags:
2903         kfree(set->tags);
2904         set->tags = NULL;
2905         return ret;
2906 }
2907 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2908
2909 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2910 {
2911         int i;
2912
2913         for (i = 0; i < nr_cpu_ids; i++)
2914                 blk_mq_free_map_and_requests(set, i);
2915
2916         kfree(set->mq_map);
2917         set->mq_map = NULL;
2918
2919         kfree(set->tags);
2920         set->tags = NULL;
2921 }
2922 EXPORT_SYMBOL(blk_mq_free_tag_set);
2923
2924 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2925 {
2926         struct blk_mq_tag_set *set = q->tag_set;
2927         struct blk_mq_hw_ctx *hctx;
2928         int i, ret;
2929
2930         if (!set)
2931                 return -EINVAL;
2932
2933         blk_mq_freeze_queue(q);
2934         blk_mq_quiesce_queue(q);
2935
2936         ret = 0;
2937         queue_for_each_hw_ctx(q, hctx, i) {
2938                 if (!hctx->tags)
2939                         continue;
2940                 /*
2941                  * If we're using an MQ scheduler, just update the scheduler
2942                  * queue depth. This is similar to what the old code would do.
2943                  */
2944                 if (!hctx->sched_tags) {
2945                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2946                                                         false);
2947                 } else {
2948                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2949                                                         nr, true);
2950                 }
2951                 if (ret)
2952                         break;
2953         }
2954
2955         if (!ret)
2956                 q->nr_requests = nr;
2957
2958         blk_mq_unquiesce_queue(q);
2959         blk_mq_unfreeze_queue(q);
2960
2961         return ret;
2962 }
2963
2964 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2965                                                         int nr_hw_queues)
2966 {
2967         struct request_queue *q;
2968
2969         lockdep_assert_held(&set->tag_list_lock);
2970
2971         if (nr_hw_queues > nr_cpu_ids)
2972                 nr_hw_queues = nr_cpu_ids;
2973         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2974                 return;
2975
2976         list_for_each_entry(q, &set->tag_list, tag_set_list)
2977                 blk_mq_freeze_queue(q);
2978
2979         set->nr_hw_queues = nr_hw_queues;
2980         blk_mq_update_queue_map(set);
2981         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2982                 blk_mq_realloc_hw_ctxs(set, q);
2983                 blk_mq_queue_reinit(q);
2984         }
2985
2986         list_for_each_entry(q, &set->tag_list, tag_set_list)
2987                 blk_mq_unfreeze_queue(q);
2988 }
2989
2990 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2991 {
2992         mutex_lock(&set->tag_list_lock);
2993         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2994         mutex_unlock(&set->tag_list_lock);
2995 }
2996 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2997
2998 /* Enable polling stats and return whether they were already enabled. */
2999 static bool blk_poll_stats_enable(struct request_queue *q)
3000 {
3001         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3002             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3003                 return true;
3004         blk_stat_add_callback(q, q->poll_cb);
3005         return false;
3006 }
3007
3008 static void blk_mq_poll_stats_start(struct request_queue *q)
3009 {
3010         /*
3011          * We don't arm the callback if polling stats are not enabled or the
3012          * callback is already active.
3013          */
3014         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3015             blk_stat_is_active(q->poll_cb))
3016                 return;
3017
3018         blk_stat_activate_msecs(q->poll_cb, 100);
3019 }
3020
3021 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3022 {
3023         struct request_queue *q = cb->data;
3024         int bucket;
3025
3026         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3027                 if (cb->stat[bucket].nr_samples)
3028                         q->poll_stat[bucket] = cb->stat[bucket];
3029         }
3030 }
3031
3032 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3033                                        struct blk_mq_hw_ctx *hctx,
3034                                        struct request *rq)
3035 {
3036         unsigned long ret = 0;
3037         int bucket;
3038
3039         /*
3040          * If stats collection isn't on, don't sleep but turn it on for
3041          * future users
3042          */
3043         if (!blk_poll_stats_enable(q))
3044                 return 0;
3045
3046         /*
3047          * As an optimistic guess, use half of the mean service time
3048          * for this type of request. We can (and should) make this smarter.
3049          * For instance, if the completion latencies are tight, we can
3050          * get closer than just half the mean. This is especially
3051          * important on devices where the completion latencies are longer
3052          * than ~10 usec. We do use the stats for the relevant IO size
3053          * if available which does lead to better estimates.
3054          */
3055         bucket = blk_mq_poll_stats_bkt(rq);
3056         if (bucket < 0)
3057                 return ret;
3058
3059         if (q->poll_stat[bucket].nr_samples)
3060                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3061
3062         return ret;
3063 }
3064
3065 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3066                                      struct blk_mq_hw_ctx *hctx,
3067                                      struct request *rq)
3068 {
3069         struct hrtimer_sleeper hs;
3070         enum hrtimer_mode mode;
3071         unsigned int nsecs;
3072         ktime_t kt;
3073
3074         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3075                 return false;
3076
3077         /*
3078          * poll_nsec can be:
3079          *
3080          * -1:  don't ever hybrid sleep
3081          *  0:  use half of prev avg
3082          * >0:  use this specific value
3083          */
3084         if (q->poll_nsec == -1)
3085                 return false;
3086         else if (q->poll_nsec > 0)
3087                 nsecs = q->poll_nsec;
3088         else
3089                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3090
3091         if (!nsecs)
3092                 return false;
3093
3094         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3095
3096         /*
3097          * This will be replaced with the stats tracking code, using
3098          * 'avg_completion_time / 2' as the pre-sleep target.
3099          */
3100         kt = nsecs;
3101
3102         mode = HRTIMER_MODE_REL;
3103         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3104         hrtimer_set_expires(&hs.timer, kt);
3105
3106         hrtimer_init_sleeper(&hs, current);
3107         do {
3108                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3109                         break;
3110                 set_current_state(TASK_UNINTERRUPTIBLE);
3111                 hrtimer_start_expires(&hs.timer, mode);
3112                 if (hs.task)
3113                         io_schedule();
3114                 hrtimer_cancel(&hs.timer);
3115                 mode = HRTIMER_MODE_ABS;
3116         } while (hs.task && !signal_pending(current));
3117
3118         __set_current_state(TASK_RUNNING);
3119         destroy_hrtimer_on_stack(&hs.timer);
3120         return true;
3121 }
3122
3123 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3124 {
3125         struct request_queue *q = hctx->queue;
3126         long state;
3127
3128         /*
3129          * If we sleep, have the caller restart the poll loop to reset
3130          * the state. Like for the other success return cases, the
3131          * caller is responsible for checking if the IO completed. If
3132          * the IO isn't complete, we'll get called again and will go
3133          * straight to the busy poll loop.
3134          */
3135         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3136                 return true;
3137
3138         hctx->poll_considered++;
3139
3140         state = current->state;
3141         while (!need_resched()) {
3142                 int ret;
3143
3144                 hctx->poll_invoked++;
3145
3146                 ret = q->mq_ops->poll(hctx, rq->tag);
3147                 if (ret > 0) {
3148                         hctx->poll_success++;
3149                         set_current_state(TASK_RUNNING);
3150                         return true;
3151                 }
3152
3153                 if (signal_pending_state(state, current))
3154                         set_current_state(TASK_RUNNING);
3155
3156                 if (current->state == TASK_RUNNING)
3157                         return true;
3158                 if (ret < 0)
3159                         break;
3160                 cpu_relax();
3161         }
3162
3163         __set_current_state(TASK_RUNNING);
3164         return false;
3165 }
3166
3167 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3168 {
3169         struct blk_mq_hw_ctx *hctx;
3170         struct request *rq;
3171
3172         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3173                 return false;
3174
3175         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3176         if (!blk_qc_t_is_internal(cookie))
3177                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3178         else {
3179                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3180                 /*
3181                  * With scheduling, if the request has completed, we'll
3182                  * get a NULL return here, as we clear the sched tag when
3183                  * that happens. The request still remains valid, like always,
3184                  * so we should be safe with just the NULL check.
3185                  */
3186                 if (!rq)
3187                         return false;
3188         }
3189
3190         return __blk_mq_poll(hctx, rq);
3191 }
3192
3193 static int __init blk_mq_init(void)
3194 {
3195         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3196                                 blk_mq_hctx_notify_dead);
3197         return 0;
3198 }
3199 subsys_initcall(blk_mq_init);