nvme-multipath: support io stats on the mpath device
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266         if (set->flags & BLK_MQ_F_BLOCKING)
267                 synchronize_srcu(set->srcu);
268         else
269                 synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284         blk_mq_quiesce_queue_nowait(q);
285         /* nothing to wait for non-mq queues */
286         if (queue_is_mq(q))
287                 blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300         unsigned long flags;
301         bool run_queue = false;
302
303         spin_lock_irqsave(&q->queue_lock, flags);
304         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305                 ;
306         } else if (!--q->quiesce_depth) {
307                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308                 run_queue = true;
309         }
310         spin_unlock_irqrestore(&q->queue_lock, flags);
311
312         /* dispatch requests which are inserted during quiescing */
313         if (run_queue)
314                 blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320         struct request_queue *q;
321
322         mutex_lock(&set->tag_list_lock);
323         list_for_each_entry(q, &set->tag_list, tag_set_list) {
324                 if (!blk_queue_skip_tagset_quiesce(q))
325                         blk_mq_quiesce_queue_nowait(q);
326         }
327         blk_mq_wait_quiesce_done(set);
328         mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334         struct request_queue *q;
335
336         mutex_lock(&set->tag_list_lock);
337         list_for_each_entry(q, &set->tag_list, tag_set_list) {
338                 if (!blk_queue_skip_tagset_quiesce(q))
339                         blk_mq_unquiesce_queue(q);
340         }
341         mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347         struct blk_mq_hw_ctx *hctx;
348         unsigned long i;
349
350         queue_for_each_hw_ctx(q, hctx, i)
351                 if (blk_mq_hw_queue_mapped(hctx))
352                         blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357         memset(rq, 0, sizeof(*rq));
358
359         INIT_LIST_HEAD(&rq->queuelist);
360         rq->q = q;
361         rq->__sector = (sector_t) -1;
362         INIT_HLIST_NODE(&rq->hash);
363         RB_CLEAR_NODE(&rq->rb_node);
364         rq->tag = BLK_MQ_NO_TAG;
365         rq->internal_tag = BLK_MQ_NO_TAG;
366         rq->start_time_ns = ktime_get_ns();
367         rq->part = NULL;
368         blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375         struct blk_mq_ctx *ctx = data->ctx;
376         struct blk_mq_hw_ctx *hctx = data->hctx;
377         struct request_queue *q = data->q;
378         struct request *rq = tags->static_rqs[tag];
379
380         rq->q = q;
381         rq->mq_ctx = ctx;
382         rq->mq_hctx = hctx;
383         rq->cmd_flags = data->cmd_flags;
384
385         if (data->flags & BLK_MQ_REQ_PM)
386                 data->rq_flags |= RQF_PM;
387         if (blk_queue_io_stat(q))
388                 data->rq_flags |= RQF_IO_STAT;
389         rq->rq_flags = data->rq_flags;
390
391         if (!(data->rq_flags & RQF_ELV)) {
392                 rq->tag = tag;
393                 rq->internal_tag = BLK_MQ_NO_TAG;
394         } else {
395                 rq->tag = BLK_MQ_NO_TAG;
396                 rq->internal_tag = tag;
397         }
398         rq->timeout = 0;
399
400         if (blk_mq_need_time_stamp(rq))
401                 rq->start_time_ns = ktime_get_ns();
402         else
403                 rq->start_time_ns = 0;
404         rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406         rq->alloc_time_ns = alloc_time_ns;
407 #endif
408         rq->io_start_time_ns = 0;
409         rq->stats_sectors = 0;
410         rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412         rq->nr_integrity_segments = 0;
413 #endif
414         rq->end_io = NULL;
415         rq->end_io_data = NULL;
416
417         blk_crypto_rq_set_defaults(rq);
418         INIT_LIST_HEAD(&rq->queuelist);
419         /* tag was already set */
420         WRITE_ONCE(rq->deadline, 0);
421         req_ref_set(rq, 1);
422
423         if (rq->rq_flags & RQF_ELV) {
424                 struct elevator_queue *e = data->q->elevator;
425
426                 INIT_HLIST_NODE(&rq->hash);
427                 RB_CLEAR_NODE(&rq->rb_node);
428
429                 if (!op_is_flush(data->cmd_flags) &&
430                     e->type->ops.prepare_request) {
431                         e->type->ops.prepare_request(rq);
432                         rq->rq_flags |= RQF_ELVPRIV;
433                 }
434         }
435
436         return rq;
437 }
438
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441                 u64 alloc_time_ns)
442 {
443         unsigned int tag, tag_offset;
444         struct blk_mq_tags *tags;
445         struct request *rq;
446         unsigned long tag_mask;
447         int i, nr = 0;
448
449         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450         if (unlikely(!tag_mask))
451                 return NULL;
452
453         tags = blk_mq_tags_from_data(data);
454         for (i = 0; tag_mask; i++) {
455                 if (!(tag_mask & (1UL << i)))
456                         continue;
457                 tag = tag_offset + i;
458                 prefetch(tags->static_rqs[tag]);
459                 tag_mask &= ~(1UL << i);
460                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461                 rq_list_add(data->cached_rq, rq);
462                 nr++;
463         }
464         /* caller already holds a reference, add for remainder */
465         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466         data->nr_tags -= nr;
467
468         return rq_list_pop(data->cached_rq);
469 }
470
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473         struct request_queue *q = data->q;
474         u64 alloc_time_ns = 0;
475         struct request *rq;
476         unsigned int tag;
477
478         /* alloc_time includes depth and tag waits */
479         if (blk_queue_rq_alloc_time(q))
480                 alloc_time_ns = ktime_get_ns();
481
482         if (data->cmd_flags & REQ_NOWAIT)
483                 data->flags |= BLK_MQ_REQ_NOWAIT;
484
485         if (q->elevator) {
486                 struct elevator_queue *e = q->elevator;
487
488                 data->rq_flags |= RQF_ELV;
489
490                 /*
491                  * Flush/passthrough requests are special and go directly to the
492                  * dispatch list. Don't include reserved tags in the
493                  * limiting, as it isn't useful.
494                  */
495                 if (!op_is_flush(data->cmd_flags) &&
496                     !blk_op_is_passthrough(data->cmd_flags) &&
497                     e->type->ops.limit_depth &&
498                     !(data->flags & BLK_MQ_REQ_RESERVED))
499                         e->type->ops.limit_depth(data->cmd_flags, data);
500         }
501
502 retry:
503         data->ctx = blk_mq_get_ctx(q);
504         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505         if (!(data->rq_flags & RQF_ELV))
506                 blk_mq_tag_busy(data->hctx);
507
508         if (data->flags & BLK_MQ_REQ_RESERVED)
509                 data->rq_flags |= RQF_RESV;
510
511         /*
512          * Try batched alloc if we want more than 1 tag.
513          */
514         if (data->nr_tags > 1) {
515                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516                 if (rq)
517                         return rq;
518                 data->nr_tags = 1;
519         }
520
521         /*
522          * Waiting allocations only fail because of an inactive hctx.  In that
523          * case just retry the hctx assignment and tag allocation as CPU hotplug
524          * should have migrated us to an online CPU by now.
525          */
526         tag = blk_mq_get_tag(data);
527         if (tag == BLK_MQ_NO_TAG) {
528                 if (data->flags & BLK_MQ_REQ_NOWAIT)
529                         return NULL;
530                 /*
531                  * Give up the CPU and sleep for a random short time to
532                  * ensure that thread using a realtime scheduling class
533                  * are migrated off the CPU, and thus off the hctx that
534                  * is going away.
535                  */
536                 msleep(3);
537                 goto retry;
538         }
539
540         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541                                         alloc_time_ns);
542 }
543
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545                                             struct blk_plug *plug,
546                                             blk_opf_t opf,
547                                             blk_mq_req_flags_t flags)
548 {
549         struct blk_mq_alloc_data data = {
550                 .q              = q,
551                 .flags          = flags,
552                 .cmd_flags      = opf,
553                 .nr_tags        = plug->nr_ios,
554                 .cached_rq      = &plug->cached_rq,
555         };
556         struct request *rq;
557
558         if (blk_queue_enter(q, flags))
559                 return NULL;
560
561         plug->nr_ios = 1;
562
563         rq = __blk_mq_alloc_requests(&data);
564         if (unlikely(!rq))
565                 blk_queue_exit(q);
566         return rq;
567 }
568
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570                                                    blk_opf_t opf,
571                                                    blk_mq_req_flags_t flags)
572 {
573         struct blk_plug *plug = current->plug;
574         struct request *rq;
575
576         if (!plug)
577                 return NULL;
578
579         if (rq_list_empty(plug->cached_rq)) {
580                 if (plug->nr_ios == 1)
581                         return NULL;
582                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583                 if (!rq)
584                         return NULL;
585         } else {
586                 rq = rq_list_peek(&plug->cached_rq);
587                 if (!rq || rq->q != q)
588                         return NULL;
589
590                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591                         return NULL;
592                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593                         return NULL;
594
595                 plug->cached_rq = rq_list_next(rq);
596         }
597
598         rq->cmd_flags = opf;
599         INIT_LIST_HEAD(&rq->queuelist);
600         return rq;
601 }
602
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604                 blk_mq_req_flags_t flags)
605 {
606         struct request *rq;
607
608         rq = blk_mq_alloc_cached_request(q, opf, flags);
609         if (!rq) {
610                 struct blk_mq_alloc_data data = {
611                         .q              = q,
612                         .flags          = flags,
613                         .cmd_flags      = opf,
614                         .nr_tags        = 1,
615                 };
616                 int ret;
617
618                 ret = blk_queue_enter(q, flags);
619                 if (ret)
620                         return ERR_PTR(ret);
621
622                 rq = __blk_mq_alloc_requests(&data);
623                 if (!rq)
624                         goto out_queue_exit;
625         }
626         rq->__data_len = 0;
627         rq->__sector = (sector_t) -1;
628         rq->bio = rq->biotail = NULL;
629         return rq;
630 out_queue_exit:
631         blk_queue_exit(q);
632         return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639         struct blk_mq_alloc_data data = {
640                 .q              = q,
641                 .flags          = flags,
642                 .cmd_flags      = opf,
643                 .nr_tags        = 1,
644         };
645         u64 alloc_time_ns = 0;
646         unsigned int cpu;
647         unsigned int tag;
648         int ret;
649
650         /* alloc_time includes depth and tag waits */
651         if (blk_queue_rq_alloc_time(q))
652                 alloc_time_ns = ktime_get_ns();
653
654         /*
655          * If the tag allocator sleeps we could get an allocation for a
656          * different hardware context.  No need to complicate the low level
657          * allocator for this for the rare use case of a command tied to
658          * a specific queue.
659          */
660         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
661                 return ERR_PTR(-EINVAL);
662
663         if (hctx_idx >= q->nr_hw_queues)
664                 return ERR_PTR(-EIO);
665
666         ret = blk_queue_enter(q, flags);
667         if (ret)
668                 return ERR_PTR(ret);
669
670         /*
671          * Check if the hardware context is actually mapped to anything.
672          * If not tell the caller that it should skip this queue.
673          */
674         ret = -EXDEV;
675         data.hctx = xa_load(&q->hctx_table, hctx_idx);
676         if (!blk_mq_hw_queue_mapped(data.hctx))
677                 goto out_queue_exit;
678         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
679         if (cpu >= nr_cpu_ids)
680                 goto out_queue_exit;
681         data.ctx = __blk_mq_get_ctx(q, cpu);
682
683         if (!q->elevator)
684                 blk_mq_tag_busy(data.hctx);
685         else
686                 data.rq_flags |= RQF_ELV;
687
688         if (flags & BLK_MQ_REQ_RESERVED)
689                 data.rq_flags |= RQF_RESV;
690
691         ret = -EWOULDBLOCK;
692         tag = blk_mq_get_tag(&data);
693         if (tag == BLK_MQ_NO_TAG)
694                 goto out_queue_exit;
695         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
696                                         alloc_time_ns);
697
698 out_queue_exit:
699         blk_queue_exit(q);
700         return ERR_PTR(ret);
701 }
702 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
703
704 static void __blk_mq_free_request(struct request *rq)
705 {
706         struct request_queue *q = rq->q;
707         struct blk_mq_ctx *ctx = rq->mq_ctx;
708         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709         const int sched_tag = rq->internal_tag;
710
711         blk_crypto_free_request(rq);
712         blk_pm_mark_last_busy(rq);
713         rq->mq_hctx = NULL;
714         if (rq->tag != BLK_MQ_NO_TAG)
715                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716         if (sched_tag != BLK_MQ_NO_TAG)
717                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718         blk_mq_sched_restart(hctx);
719         blk_queue_exit(q);
720 }
721
722 void blk_mq_free_request(struct request *rq)
723 {
724         struct request_queue *q = rq->q;
725         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
726
727         if ((rq->rq_flags & RQF_ELVPRIV) &&
728             q->elevator->type->ops.finish_request)
729                 q->elevator->type->ops.finish_request(rq);
730
731         if (rq->rq_flags & RQF_MQ_INFLIGHT)
732                 __blk_mq_dec_active_requests(hctx);
733
734         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
735                 laptop_io_completion(q->disk->bdi);
736
737         rq_qos_done(q, rq);
738
739         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
740         if (req_ref_put_and_test(rq))
741                 __blk_mq_free_request(rq);
742 }
743 EXPORT_SYMBOL_GPL(blk_mq_free_request);
744
745 void blk_mq_free_plug_rqs(struct blk_plug *plug)
746 {
747         struct request *rq;
748
749         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
750                 blk_mq_free_request(rq);
751 }
752
753 void blk_dump_rq_flags(struct request *rq, char *msg)
754 {
755         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
756                 rq->q->disk ? rq->q->disk->disk_name : "?",
757                 (__force unsigned long long) rq->cmd_flags);
758
759         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
760                (unsigned long long)blk_rq_pos(rq),
761                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
763                rq->bio, rq->biotail, blk_rq_bytes(rq));
764 }
765 EXPORT_SYMBOL(blk_dump_rq_flags);
766
767 static void req_bio_endio(struct request *rq, struct bio *bio,
768                           unsigned int nbytes, blk_status_t error)
769 {
770         if (unlikely(error)) {
771                 bio->bi_status = error;
772         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
773                 /*
774                  * Partial zone append completions cannot be supported as the
775                  * BIO fragments may end up not being written sequentially.
776                  */
777                 if (bio->bi_iter.bi_size != nbytes)
778                         bio->bi_status = BLK_STS_IOERR;
779                 else
780                         bio->bi_iter.bi_sector = rq->__sector;
781         }
782
783         bio_advance(bio, nbytes);
784
785         if (unlikely(rq->rq_flags & RQF_QUIET))
786                 bio_set_flag(bio, BIO_QUIET);
787         /* don't actually finish bio if it's part of flush sequence */
788         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
789                 bio_endio(bio);
790 }
791
792 static void blk_account_io_completion(struct request *req, unsigned int bytes)
793 {
794         if (req->part && blk_do_io_stat(req)) {
795                 const int sgrp = op_stat_group(req_op(req));
796
797                 part_stat_lock();
798                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
799                 part_stat_unlock();
800         }
801 }
802
803 static void blk_print_req_error(struct request *req, blk_status_t status)
804 {
805         printk_ratelimited(KERN_ERR
806                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
807                 "phys_seg %u prio class %u\n",
808                 blk_status_to_str(status),
809                 req->q->disk ? req->q->disk->disk_name : "?",
810                 blk_rq_pos(req), (__force u32)req_op(req),
811                 blk_op_str(req_op(req)),
812                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
813                 req->nr_phys_segments,
814                 IOPRIO_PRIO_CLASS(req->ioprio));
815 }
816
817 /*
818  * Fully end IO on a request. Does not support partial completions, or
819  * errors.
820  */
821 static void blk_complete_request(struct request *req)
822 {
823         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
824         int total_bytes = blk_rq_bytes(req);
825         struct bio *bio = req->bio;
826
827         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
828
829         if (!bio)
830                 return;
831
832 #ifdef CONFIG_BLK_DEV_INTEGRITY
833         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
834                 req->q->integrity.profile->complete_fn(req, total_bytes);
835 #endif
836
837         blk_account_io_completion(req, total_bytes);
838
839         do {
840                 struct bio *next = bio->bi_next;
841
842                 /* Completion has already been traced */
843                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844
845                 if (req_op(req) == REQ_OP_ZONE_APPEND)
846                         bio->bi_iter.bi_sector = req->__sector;
847
848                 if (!is_flush)
849                         bio_endio(bio);
850                 bio = next;
851         } while (bio);
852
853         /*
854          * Reset counters so that the request stacking driver
855          * can find how many bytes remain in the request
856          * later.
857          */
858         if (!req->end_io) {
859                 req->bio = NULL;
860                 req->__data_len = 0;
861         }
862 }
863
864 /**
865  * blk_update_request - Complete multiple bytes without completing the request
866  * @req:      the request being processed
867  * @error:    block status code
868  * @nr_bytes: number of bytes to complete for @req
869  *
870  * Description:
871  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
872  *     the request structure even if @req doesn't have leftover.
873  *     If @req has leftover, sets it up for the next range of segments.
874  *
875  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876  *     %false return from this function.
877  *
878  * Note:
879  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880  *      except in the consistency check at the end of this function.
881  *
882  * Return:
883  *     %false - this request doesn't have any more data
884  *     %true  - this request has more data
885  **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887                 unsigned int nr_bytes)
888 {
889         int total_bytes;
890
891         trace_block_rq_complete(req, error, nr_bytes);
892
893         if (!req->bio)
894                 return false;
895
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898             error == BLK_STS_OK)
899                 req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901
902         if (unlikely(error && !blk_rq_is_passthrough(req) &&
903                      !(req->rq_flags & RQF_QUIET)) &&
904                      !test_bit(GD_DEAD, &req->q->disk->state)) {
905                 blk_print_req_error(req, error);
906                 trace_block_rq_error(req, error, nr_bytes);
907         }
908
909         blk_account_io_completion(req, nr_bytes);
910
911         total_bytes = 0;
912         while (req->bio) {
913                 struct bio *bio = req->bio;
914                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
915
916                 if (bio_bytes == bio->bi_iter.bi_size)
917                         req->bio = bio->bi_next;
918
919                 /* Completion has already been traced */
920                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
921                 req_bio_endio(req, bio, bio_bytes, error);
922
923                 total_bytes += bio_bytes;
924                 nr_bytes -= bio_bytes;
925
926                 if (!nr_bytes)
927                         break;
928         }
929
930         /*
931          * completely done
932          */
933         if (!req->bio) {
934                 /*
935                  * Reset counters so that the request stacking driver
936                  * can find how many bytes remain in the request
937                  * later.
938                  */
939                 req->__data_len = 0;
940                 return false;
941         }
942
943         req->__data_len -= total_bytes;
944
945         /* update sector only for requests with clear definition of sector */
946         if (!blk_rq_is_passthrough(req))
947                 req->__sector += total_bytes >> 9;
948
949         /* mixed attributes always follow the first bio */
950         if (req->rq_flags & RQF_MIXED_MERGE) {
951                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
952                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
953         }
954
955         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
956                 /*
957                  * If total number of sectors is less than the first segment
958                  * size, something has gone terribly wrong.
959                  */
960                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
961                         blk_dump_rq_flags(req, "request botched");
962                         req->__data_len = blk_rq_cur_bytes(req);
963                 }
964
965                 /* recalculate the number of segments */
966                 req->nr_phys_segments = blk_recalc_rq_segments(req);
967         }
968
969         return true;
970 }
971 EXPORT_SYMBOL_GPL(blk_update_request);
972
973 static void __blk_account_io_done(struct request *req, u64 now)
974 {
975         const int sgrp = op_stat_group(req_op(req));
976
977         part_stat_lock();
978         update_io_ticks(req->part, jiffies, true);
979         part_stat_inc(req->part, ios[sgrp]);
980         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
981         part_stat_unlock();
982 }
983
984 static inline void blk_account_io_done(struct request *req, u64 now)
985 {
986         /*
987          * Account IO completion.  flush_rq isn't accounted as a
988          * normal IO on queueing nor completion.  Accounting the
989          * containing request is enough.
990          */
991         if (blk_do_io_stat(req) && req->part &&
992             !(req->rq_flags & RQF_FLUSH_SEQ))
993                 __blk_account_io_done(req, now);
994 }
995
996 static void __blk_account_io_start(struct request *rq)
997 {
998         /*
999          * All non-passthrough requests are created from a bio with one
1000          * exception: when a flush command that is part of a flush sequence
1001          * generated by the state machine in blk-flush.c is cloned onto the
1002          * lower device by dm-multipath we can get here without a bio.
1003          */
1004         if (rq->bio)
1005                 rq->part = rq->bio->bi_bdev;
1006         else
1007                 rq->part = rq->q->disk->part0;
1008
1009         part_stat_lock();
1010         update_io_ticks(rq->part, jiffies, false);
1011         part_stat_unlock();
1012 }
1013
1014 static inline void blk_account_io_start(struct request *req)
1015 {
1016         if (blk_do_io_stat(req))
1017                 __blk_account_io_start(req);
1018 }
1019
1020 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1021 {
1022         if (rq->rq_flags & RQF_STATS) {
1023                 blk_mq_poll_stats_start(rq->q);
1024                 blk_stat_add(rq, now);
1025         }
1026
1027         blk_mq_sched_completed_request(rq, now);
1028         blk_account_io_done(rq, now);
1029 }
1030
1031 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1032 {
1033         if (blk_mq_need_time_stamp(rq))
1034                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1035
1036         if (rq->end_io) {
1037                 rq_qos_done(rq->q, rq);
1038                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1039                         blk_mq_free_request(rq);
1040         } else {
1041                 blk_mq_free_request(rq);
1042         }
1043 }
1044 EXPORT_SYMBOL(__blk_mq_end_request);
1045
1046 void blk_mq_end_request(struct request *rq, blk_status_t error)
1047 {
1048         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1049                 BUG();
1050         __blk_mq_end_request(rq, error);
1051 }
1052 EXPORT_SYMBOL(blk_mq_end_request);
1053
1054 #define TAG_COMP_BATCH          32
1055
1056 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1057                                           int *tag_array, int nr_tags)
1058 {
1059         struct request_queue *q = hctx->queue;
1060
1061         /*
1062          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1063          * update hctx->nr_active in batch
1064          */
1065         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1066                 __blk_mq_sub_active_requests(hctx, nr_tags);
1067
1068         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1069         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1070 }
1071
1072 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1073 {
1074         int tags[TAG_COMP_BATCH], nr_tags = 0;
1075         struct blk_mq_hw_ctx *cur_hctx = NULL;
1076         struct request *rq;
1077         u64 now = 0;
1078
1079         if (iob->need_ts)
1080                 now = ktime_get_ns();
1081
1082         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1083                 prefetch(rq->bio);
1084                 prefetch(rq->rq_next);
1085
1086                 blk_complete_request(rq);
1087                 if (iob->need_ts)
1088                         __blk_mq_end_request_acct(rq, now);
1089
1090                 rq_qos_done(rq->q, rq);
1091
1092                 /*
1093                  * If end_io handler returns NONE, then it still has
1094                  * ownership of the request.
1095                  */
1096                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1097                         continue;
1098
1099                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1100                 if (!req_ref_put_and_test(rq))
1101                         continue;
1102
1103                 blk_crypto_free_request(rq);
1104                 blk_pm_mark_last_busy(rq);
1105
1106                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1107                         if (cur_hctx)
1108                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1109                         nr_tags = 0;
1110                         cur_hctx = rq->mq_hctx;
1111                 }
1112                 tags[nr_tags++] = rq->tag;
1113         }
1114
1115         if (nr_tags)
1116                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117 }
1118 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1119
1120 static void blk_complete_reqs(struct llist_head *list)
1121 {
1122         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1123         struct request *rq, *next;
1124
1125         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1126                 rq->q->mq_ops->complete(rq);
1127 }
1128
1129 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1130 {
1131         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1132 }
1133
1134 static int blk_softirq_cpu_dead(unsigned int cpu)
1135 {
1136         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1137         return 0;
1138 }
1139
1140 static void __blk_mq_complete_request_remote(void *data)
1141 {
1142         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1143 }
1144
1145 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1146 {
1147         int cpu = raw_smp_processor_id();
1148
1149         if (!IS_ENABLED(CONFIG_SMP) ||
1150             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1151                 return false;
1152         /*
1153          * With force threaded interrupts enabled, raising softirq from an SMP
1154          * function call will always result in waking the ksoftirqd thread.
1155          * This is probably worse than completing the request on a different
1156          * cache domain.
1157          */
1158         if (force_irqthreads())
1159                 return false;
1160
1161         /* same CPU or cache domain?  Complete locally */
1162         if (cpu == rq->mq_ctx->cpu ||
1163             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1164              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1165                 return false;
1166
1167         /* don't try to IPI to an offline CPU */
1168         return cpu_online(rq->mq_ctx->cpu);
1169 }
1170
1171 static void blk_mq_complete_send_ipi(struct request *rq)
1172 {
1173         struct llist_head *list;
1174         unsigned int cpu;
1175
1176         cpu = rq->mq_ctx->cpu;
1177         list = &per_cpu(blk_cpu_done, cpu);
1178         if (llist_add(&rq->ipi_list, list)) {
1179                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1180                 smp_call_function_single_async(cpu, &rq->csd);
1181         }
1182 }
1183
1184 static void blk_mq_raise_softirq(struct request *rq)
1185 {
1186         struct llist_head *list;
1187
1188         preempt_disable();
1189         list = this_cpu_ptr(&blk_cpu_done);
1190         if (llist_add(&rq->ipi_list, list))
1191                 raise_softirq(BLOCK_SOFTIRQ);
1192         preempt_enable();
1193 }
1194
1195 bool blk_mq_complete_request_remote(struct request *rq)
1196 {
1197         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1198
1199         /*
1200          * For request which hctx has only one ctx mapping,
1201          * or a polled request, always complete locally,
1202          * it's pointless to redirect the completion.
1203          */
1204         if (rq->mq_hctx->nr_ctx == 1 ||
1205                 rq->cmd_flags & REQ_POLLED)
1206                 return false;
1207
1208         if (blk_mq_complete_need_ipi(rq)) {
1209                 blk_mq_complete_send_ipi(rq);
1210                 return true;
1211         }
1212
1213         if (rq->q->nr_hw_queues == 1) {
1214                 blk_mq_raise_softirq(rq);
1215                 return true;
1216         }
1217         return false;
1218 }
1219 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1220
1221 /**
1222  * blk_mq_complete_request - end I/O on a request
1223  * @rq:         the request being processed
1224  *
1225  * Description:
1226  *      Complete a request by scheduling the ->complete_rq operation.
1227  **/
1228 void blk_mq_complete_request(struct request *rq)
1229 {
1230         if (!blk_mq_complete_request_remote(rq))
1231                 rq->q->mq_ops->complete(rq);
1232 }
1233 EXPORT_SYMBOL(blk_mq_complete_request);
1234
1235 /**
1236  * blk_mq_start_request - Start processing a request
1237  * @rq: Pointer to request to be started
1238  *
1239  * Function used by device drivers to notify the block layer that a request
1240  * is going to be processed now, so blk layer can do proper initializations
1241  * such as starting the timeout timer.
1242  */
1243 void blk_mq_start_request(struct request *rq)
1244 {
1245         struct request_queue *q = rq->q;
1246
1247         trace_block_rq_issue(rq);
1248
1249         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1250                 rq->io_start_time_ns = ktime_get_ns();
1251                 rq->stats_sectors = blk_rq_sectors(rq);
1252                 rq->rq_flags |= RQF_STATS;
1253                 rq_qos_issue(q, rq);
1254         }
1255
1256         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1257
1258         blk_add_timer(rq);
1259         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1260
1261 #ifdef CONFIG_BLK_DEV_INTEGRITY
1262         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1263                 q->integrity.profile->prepare_fn(rq);
1264 #endif
1265         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1266                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1267 }
1268 EXPORT_SYMBOL(blk_mq_start_request);
1269
1270 /*
1271  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1272  * queues. This is important for md arrays to benefit from merging
1273  * requests.
1274  */
1275 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1276 {
1277         if (plug->multiple_queues)
1278                 return BLK_MAX_REQUEST_COUNT * 2;
1279         return BLK_MAX_REQUEST_COUNT;
1280 }
1281
1282 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1283 {
1284         struct request *last = rq_list_peek(&plug->mq_list);
1285
1286         if (!plug->rq_count) {
1287                 trace_block_plug(rq->q);
1288         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1289                    (!blk_queue_nomerges(rq->q) &&
1290                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1291                 blk_mq_flush_plug_list(plug, false);
1292                 trace_block_plug(rq->q);
1293         }
1294
1295         if (!plug->multiple_queues && last && last->q != rq->q)
1296                 plug->multiple_queues = true;
1297         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1298                 plug->has_elevator = true;
1299         rq->rq_next = NULL;
1300         rq_list_add(&plug->mq_list, rq);
1301         plug->rq_count++;
1302 }
1303
1304 /**
1305  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1306  * @rq:         request to insert
1307  * @at_head:    insert request at head or tail of queue
1308  *
1309  * Description:
1310  *    Insert a fully prepared request at the back of the I/O scheduler queue
1311  *    for execution.  Don't wait for completion.
1312  *
1313  * Note:
1314  *    This function will invoke @done directly if the queue is dead.
1315  */
1316 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1317 {
1318         WARN_ON(irqs_disabled());
1319         WARN_ON(!blk_rq_is_passthrough(rq));
1320
1321         blk_account_io_start(rq);
1322
1323         /*
1324          * As plugging can be enabled for passthrough requests on a zoned
1325          * device, directly accessing the plug instead of using blk_mq_plug()
1326          * should not have any consequences.
1327          */
1328         if (current->plug)
1329                 blk_add_rq_to_plug(current->plug, rq);
1330         else
1331                 blk_mq_sched_insert_request(rq, at_head, true, false);
1332 }
1333 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1334
1335 struct blk_rq_wait {
1336         struct completion done;
1337         blk_status_t ret;
1338 };
1339
1340 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1341 {
1342         struct blk_rq_wait *wait = rq->end_io_data;
1343
1344         wait->ret = ret;
1345         complete(&wait->done);
1346         return RQ_END_IO_NONE;
1347 }
1348
1349 bool blk_rq_is_poll(struct request *rq)
1350 {
1351         if (!rq->mq_hctx)
1352                 return false;
1353         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1354                 return false;
1355         if (WARN_ON_ONCE(!rq->bio))
1356                 return false;
1357         return true;
1358 }
1359 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1360
1361 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1362 {
1363         do {
1364                 bio_poll(rq->bio, NULL, 0);
1365                 cond_resched();
1366         } while (!completion_done(wait));
1367 }
1368
1369 /**
1370  * blk_execute_rq - insert a request into queue for execution
1371  * @rq:         request to insert
1372  * @at_head:    insert request at head or tail of queue
1373  *
1374  * Description:
1375  *    Insert a fully prepared request at the back of the I/O scheduler queue
1376  *    for execution and wait for completion.
1377  * Return: The blk_status_t result provided to blk_mq_end_request().
1378  */
1379 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1380 {
1381         struct blk_rq_wait wait = {
1382                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1383         };
1384
1385         WARN_ON(irqs_disabled());
1386         WARN_ON(!blk_rq_is_passthrough(rq));
1387
1388         rq->end_io_data = &wait;
1389         rq->end_io = blk_end_sync_rq;
1390
1391         blk_account_io_start(rq);
1392         blk_mq_sched_insert_request(rq, at_head, true, false);
1393
1394         if (blk_rq_is_poll(rq)) {
1395                 blk_rq_poll_completion(rq, &wait.done);
1396         } else {
1397                 /*
1398                  * Prevent hang_check timer from firing at us during very long
1399                  * I/O
1400                  */
1401                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1402
1403                 if (hang_check)
1404                         while (!wait_for_completion_io_timeout(&wait.done,
1405                                         hang_check * (HZ/2)))
1406                                 ;
1407                 else
1408                         wait_for_completion_io(&wait.done);
1409         }
1410
1411         return wait.ret;
1412 }
1413 EXPORT_SYMBOL(blk_execute_rq);
1414
1415 static void __blk_mq_requeue_request(struct request *rq)
1416 {
1417         struct request_queue *q = rq->q;
1418
1419         blk_mq_put_driver_tag(rq);
1420
1421         trace_block_rq_requeue(rq);
1422         rq_qos_requeue(q, rq);
1423
1424         if (blk_mq_request_started(rq)) {
1425                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1426                 rq->rq_flags &= ~RQF_TIMED_OUT;
1427         }
1428 }
1429
1430 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1431 {
1432         __blk_mq_requeue_request(rq);
1433
1434         /* this request will be re-inserted to io scheduler queue */
1435         blk_mq_sched_requeue_request(rq);
1436
1437         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1438 }
1439 EXPORT_SYMBOL(blk_mq_requeue_request);
1440
1441 static void blk_mq_requeue_work(struct work_struct *work)
1442 {
1443         struct request_queue *q =
1444                 container_of(work, struct request_queue, requeue_work.work);
1445         LIST_HEAD(rq_list);
1446         struct request *rq, *next;
1447
1448         spin_lock_irq(&q->requeue_lock);
1449         list_splice_init(&q->requeue_list, &rq_list);
1450         spin_unlock_irq(&q->requeue_lock);
1451
1452         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1453                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1454                         continue;
1455
1456                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1457                 list_del_init(&rq->queuelist);
1458                 /*
1459                  * If RQF_DONTPREP, rq has contained some driver specific
1460                  * data, so insert it to hctx dispatch list to avoid any
1461                  * merge.
1462                  */
1463                 if (rq->rq_flags & RQF_DONTPREP)
1464                         blk_mq_request_bypass_insert(rq, false, false);
1465                 else
1466                         blk_mq_sched_insert_request(rq, true, false, false);
1467         }
1468
1469         while (!list_empty(&rq_list)) {
1470                 rq = list_entry(rq_list.next, struct request, queuelist);
1471                 list_del_init(&rq->queuelist);
1472                 blk_mq_sched_insert_request(rq, false, false, false);
1473         }
1474
1475         blk_mq_run_hw_queues(q, false);
1476 }
1477
1478 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1479                                 bool kick_requeue_list)
1480 {
1481         struct request_queue *q = rq->q;
1482         unsigned long flags;
1483
1484         /*
1485          * We abuse this flag that is otherwise used by the I/O scheduler to
1486          * request head insertion from the workqueue.
1487          */
1488         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1489
1490         spin_lock_irqsave(&q->requeue_lock, flags);
1491         if (at_head) {
1492                 rq->rq_flags |= RQF_SOFTBARRIER;
1493                 list_add(&rq->queuelist, &q->requeue_list);
1494         } else {
1495                 list_add_tail(&rq->queuelist, &q->requeue_list);
1496         }
1497         spin_unlock_irqrestore(&q->requeue_lock, flags);
1498
1499         if (kick_requeue_list)
1500                 blk_mq_kick_requeue_list(q);
1501 }
1502
1503 void blk_mq_kick_requeue_list(struct request_queue *q)
1504 {
1505         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1506 }
1507 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1508
1509 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1510                                     unsigned long msecs)
1511 {
1512         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1513                                     msecs_to_jiffies(msecs));
1514 }
1515 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1516
1517 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1518 {
1519         /*
1520          * If we find a request that isn't idle we know the queue is busy
1521          * as it's checked in the iter.
1522          * Return false to stop the iteration.
1523          */
1524         if (blk_mq_request_started(rq)) {
1525                 bool *busy = priv;
1526
1527                 *busy = true;
1528                 return false;
1529         }
1530
1531         return true;
1532 }
1533
1534 bool blk_mq_queue_inflight(struct request_queue *q)
1535 {
1536         bool busy = false;
1537
1538         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1539         return busy;
1540 }
1541 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1542
1543 static void blk_mq_rq_timed_out(struct request *req)
1544 {
1545         req->rq_flags |= RQF_TIMED_OUT;
1546         if (req->q->mq_ops->timeout) {
1547                 enum blk_eh_timer_return ret;
1548
1549                 ret = req->q->mq_ops->timeout(req);
1550                 if (ret == BLK_EH_DONE)
1551                         return;
1552                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1553         }
1554
1555         blk_add_timer(req);
1556 }
1557
1558 struct blk_expired_data {
1559         bool has_timedout_rq;
1560         unsigned long next;
1561         unsigned long timeout_start;
1562 };
1563
1564 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1565 {
1566         unsigned long deadline;
1567
1568         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1569                 return false;
1570         if (rq->rq_flags & RQF_TIMED_OUT)
1571                 return false;
1572
1573         deadline = READ_ONCE(rq->deadline);
1574         if (time_after_eq(expired->timeout_start, deadline))
1575                 return true;
1576
1577         if (expired->next == 0)
1578                 expired->next = deadline;
1579         else if (time_after(expired->next, deadline))
1580                 expired->next = deadline;
1581         return false;
1582 }
1583
1584 void blk_mq_put_rq_ref(struct request *rq)
1585 {
1586         if (is_flush_rq(rq)) {
1587                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1588                         blk_mq_free_request(rq);
1589         } else if (req_ref_put_and_test(rq)) {
1590                 __blk_mq_free_request(rq);
1591         }
1592 }
1593
1594 static bool blk_mq_check_expired(struct request *rq, void *priv)
1595 {
1596         struct blk_expired_data *expired = priv;
1597
1598         /*
1599          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1600          * be reallocated underneath the timeout handler's processing, then
1601          * the expire check is reliable. If the request is not expired, then
1602          * it was completed and reallocated as a new request after returning
1603          * from blk_mq_check_expired().
1604          */
1605         if (blk_mq_req_expired(rq, expired)) {
1606                 expired->has_timedout_rq = true;
1607                 return false;
1608         }
1609         return true;
1610 }
1611
1612 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1613 {
1614         struct blk_expired_data *expired = priv;
1615
1616         if (blk_mq_req_expired(rq, expired))
1617                 blk_mq_rq_timed_out(rq);
1618         return true;
1619 }
1620
1621 static void blk_mq_timeout_work(struct work_struct *work)
1622 {
1623         struct request_queue *q =
1624                 container_of(work, struct request_queue, timeout_work);
1625         struct blk_expired_data expired = {
1626                 .timeout_start = jiffies,
1627         };
1628         struct blk_mq_hw_ctx *hctx;
1629         unsigned long i;
1630
1631         /* A deadlock might occur if a request is stuck requiring a
1632          * timeout at the same time a queue freeze is waiting
1633          * completion, since the timeout code would not be able to
1634          * acquire the queue reference here.
1635          *
1636          * That's why we don't use blk_queue_enter here; instead, we use
1637          * percpu_ref_tryget directly, because we need to be able to
1638          * obtain a reference even in the short window between the queue
1639          * starting to freeze, by dropping the first reference in
1640          * blk_freeze_queue_start, and the moment the last request is
1641          * consumed, marked by the instant q_usage_counter reaches
1642          * zero.
1643          */
1644         if (!percpu_ref_tryget(&q->q_usage_counter))
1645                 return;
1646
1647         /* check if there is any timed-out request */
1648         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1649         if (expired.has_timedout_rq) {
1650                 /*
1651                  * Before walking tags, we must ensure any submit started
1652                  * before the current time has finished. Since the submit
1653                  * uses srcu or rcu, wait for a synchronization point to
1654                  * ensure all running submits have finished
1655                  */
1656                 blk_mq_wait_quiesce_done(q->tag_set);
1657
1658                 expired.next = 0;
1659                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1660         }
1661
1662         if (expired.next != 0) {
1663                 mod_timer(&q->timeout, expired.next);
1664         } else {
1665                 /*
1666                  * Request timeouts are handled as a forward rolling timer. If
1667                  * we end up here it means that no requests are pending and
1668                  * also that no request has been pending for a while. Mark
1669                  * each hctx as idle.
1670                  */
1671                 queue_for_each_hw_ctx(q, hctx, i) {
1672                         /* the hctx may be unmapped, so check it here */
1673                         if (blk_mq_hw_queue_mapped(hctx))
1674                                 blk_mq_tag_idle(hctx);
1675                 }
1676         }
1677         blk_queue_exit(q);
1678 }
1679
1680 struct flush_busy_ctx_data {
1681         struct blk_mq_hw_ctx *hctx;
1682         struct list_head *list;
1683 };
1684
1685 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1686 {
1687         struct flush_busy_ctx_data *flush_data = data;
1688         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1689         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1690         enum hctx_type type = hctx->type;
1691
1692         spin_lock(&ctx->lock);
1693         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1694         sbitmap_clear_bit(sb, bitnr);
1695         spin_unlock(&ctx->lock);
1696         return true;
1697 }
1698
1699 /*
1700  * Process software queues that have been marked busy, splicing them
1701  * to the for-dispatch
1702  */
1703 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1704 {
1705         struct flush_busy_ctx_data data = {
1706                 .hctx = hctx,
1707                 .list = list,
1708         };
1709
1710         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1711 }
1712 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1713
1714 struct dispatch_rq_data {
1715         struct blk_mq_hw_ctx *hctx;
1716         struct request *rq;
1717 };
1718
1719 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1720                 void *data)
1721 {
1722         struct dispatch_rq_data *dispatch_data = data;
1723         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1724         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1725         enum hctx_type type = hctx->type;
1726
1727         spin_lock(&ctx->lock);
1728         if (!list_empty(&ctx->rq_lists[type])) {
1729                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1730                 list_del_init(&dispatch_data->rq->queuelist);
1731                 if (list_empty(&ctx->rq_lists[type]))
1732                         sbitmap_clear_bit(sb, bitnr);
1733         }
1734         spin_unlock(&ctx->lock);
1735
1736         return !dispatch_data->rq;
1737 }
1738
1739 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1740                                         struct blk_mq_ctx *start)
1741 {
1742         unsigned off = start ? start->index_hw[hctx->type] : 0;
1743         struct dispatch_rq_data data = {
1744                 .hctx = hctx,
1745                 .rq   = NULL,
1746         };
1747
1748         __sbitmap_for_each_set(&hctx->ctx_map, off,
1749                                dispatch_rq_from_ctx, &data);
1750
1751         return data.rq;
1752 }
1753
1754 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1755 {
1756         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1757         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1758         int tag;
1759
1760         blk_mq_tag_busy(rq->mq_hctx);
1761
1762         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1763                 bt = &rq->mq_hctx->tags->breserved_tags;
1764                 tag_offset = 0;
1765         } else {
1766                 if (!hctx_may_queue(rq->mq_hctx, bt))
1767                         return false;
1768         }
1769
1770         tag = __sbitmap_queue_get(bt);
1771         if (tag == BLK_MQ_NO_TAG)
1772                 return false;
1773
1774         rq->tag = tag + tag_offset;
1775         return true;
1776 }
1777
1778 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1779 {
1780         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1781                 return false;
1782
1783         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1784                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1785                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1786                 __blk_mq_inc_active_requests(hctx);
1787         }
1788         hctx->tags->rqs[rq->tag] = rq;
1789         return true;
1790 }
1791
1792 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1793                                 int flags, void *key)
1794 {
1795         struct blk_mq_hw_ctx *hctx;
1796
1797         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1798
1799         spin_lock(&hctx->dispatch_wait_lock);
1800         if (!list_empty(&wait->entry)) {
1801                 struct sbitmap_queue *sbq;
1802
1803                 list_del_init(&wait->entry);
1804                 sbq = &hctx->tags->bitmap_tags;
1805                 atomic_dec(&sbq->ws_active);
1806         }
1807         spin_unlock(&hctx->dispatch_wait_lock);
1808
1809         blk_mq_run_hw_queue(hctx, true);
1810         return 1;
1811 }
1812
1813 /*
1814  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1815  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1816  * restart. For both cases, take care to check the condition again after
1817  * marking us as waiting.
1818  */
1819 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1820                                  struct request *rq)
1821 {
1822         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1823         struct wait_queue_head *wq;
1824         wait_queue_entry_t *wait;
1825         bool ret;
1826
1827         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1828                 blk_mq_sched_mark_restart_hctx(hctx);
1829
1830                 /*
1831                  * It's possible that a tag was freed in the window between the
1832                  * allocation failure and adding the hardware queue to the wait
1833                  * queue.
1834                  *
1835                  * Don't clear RESTART here, someone else could have set it.
1836                  * At most this will cost an extra queue run.
1837                  */
1838                 return blk_mq_get_driver_tag(rq);
1839         }
1840
1841         wait = &hctx->dispatch_wait;
1842         if (!list_empty_careful(&wait->entry))
1843                 return false;
1844
1845         wq = &bt_wait_ptr(sbq, hctx)->wait;
1846
1847         spin_lock_irq(&wq->lock);
1848         spin_lock(&hctx->dispatch_wait_lock);
1849         if (!list_empty(&wait->entry)) {
1850                 spin_unlock(&hctx->dispatch_wait_lock);
1851                 spin_unlock_irq(&wq->lock);
1852                 return false;
1853         }
1854
1855         atomic_inc(&sbq->ws_active);
1856         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1857         __add_wait_queue(wq, wait);
1858
1859         /*
1860          * It's possible that a tag was freed in the window between the
1861          * allocation failure and adding the hardware queue to the wait
1862          * queue.
1863          */
1864         ret = blk_mq_get_driver_tag(rq);
1865         if (!ret) {
1866                 spin_unlock(&hctx->dispatch_wait_lock);
1867                 spin_unlock_irq(&wq->lock);
1868                 return false;
1869         }
1870
1871         /*
1872          * We got a tag, remove ourselves from the wait queue to ensure
1873          * someone else gets the wakeup.
1874          */
1875         list_del_init(&wait->entry);
1876         atomic_dec(&sbq->ws_active);
1877         spin_unlock(&hctx->dispatch_wait_lock);
1878         spin_unlock_irq(&wq->lock);
1879
1880         return true;
1881 }
1882
1883 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1884 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1885 /*
1886  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1887  * - EWMA is one simple way to compute running average value
1888  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1889  * - take 4 as factor for avoiding to get too small(0) result, and this
1890  *   factor doesn't matter because EWMA decreases exponentially
1891  */
1892 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1893 {
1894         unsigned int ewma;
1895
1896         ewma = hctx->dispatch_busy;
1897
1898         if (!ewma && !busy)
1899                 return;
1900
1901         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1902         if (busy)
1903                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1904         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1905
1906         hctx->dispatch_busy = ewma;
1907 }
1908
1909 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1910
1911 static void blk_mq_handle_dev_resource(struct request *rq,
1912                                        struct list_head *list)
1913 {
1914         struct request *next =
1915                 list_first_entry_or_null(list, struct request, queuelist);
1916
1917         /*
1918          * If an I/O scheduler has been configured and we got a driver tag for
1919          * the next request already, free it.
1920          */
1921         if (next)
1922                 blk_mq_put_driver_tag(next);
1923
1924         list_add(&rq->queuelist, list);
1925         __blk_mq_requeue_request(rq);
1926 }
1927
1928 static void blk_mq_handle_zone_resource(struct request *rq,
1929                                         struct list_head *zone_list)
1930 {
1931         /*
1932          * If we end up here it is because we cannot dispatch a request to a
1933          * specific zone due to LLD level zone-write locking or other zone
1934          * related resource not being available. In this case, set the request
1935          * aside in zone_list for retrying it later.
1936          */
1937         list_add(&rq->queuelist, zone_list);
1938         __blk_mq_requeue_request(rq);
1939 }
1940
1941 enum prep_dispatch {
1942         PREP_DISPATCH_OK,
1943         PREP_DISPATCH_NO_TAG,
1944         PREP_DISPATCH_NO_BUDGET,
1945 };
1946
1947 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948                                                   bool need_budget)
1949 {
1950         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951         int budget_token = -1;
1952
1953         if (need_budget) {
1954                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1955                 if (budget_token < 0) {
1956                         blk_mq_put_driver_tag(rq);
1957                         return PREP_DISPATCH_NO_BUDGET;
1958                 }
1959                 blk_mq_set_rq_budget_token(rq, budget_token);
1960         }
1961
1962         if (!blk_mq_get_driver_tag(rq)) {
1963                 /*
1964                  * The initial allocation attempt failed, so we need to
1965                  * rerun the hardware queue when a tag is freed. The
1966                  * waitqueue takes care of that. If the queue is run
1967                  * before we add this entry back on the dispatch list,
1968                  * we'll re-run it below.
1969                  */
1970                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971                         /*
1972                          * All budgets not got from this function will be put
1973                          * together during handling partial dispatch
1974                          */
1975                         if (need_budget)
1976                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1977                         return PREP_DISPATCH_NO_TAG;
1978                 }
1979         }
1980
1981         return PREP_DISPATCH_OK;
1982 }
1983
1984 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985 static void blk_mq_release_budgets(struct request_queue *q,
1986                 struct list_head *list)
1987 {
1988         struct request *rq;
1989
1990         list_for_each_entry(rq, list, queuelist) {
1991                 int budget_token = blk_mq_get_rq_budget_token(rq);
1992
1993                 if (budget_token >= 0)
1994                         blk_mq_put_dispatch_budget(q, budget_token);
1995         }
1996 }
1997
1998 /*
1999  * Returns true if we did some work AND can potentially do more.
2000  */
2001 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2002                              unsigned int nr_budgets)
2003 {
2004         enum prep_dispatch prep;
2005         struct request_queue *q = hctx->queue;
2006         struct request *rq, *nxt;
2007         int errors, queued;
2008         blk_status_t ret = BLK_STS_OK;
2009         LIST_HEAD(zone_list);
2010         bool needs_resource = false;
2011
2012         if (list_empty(list))
2013                 return false;
2014
2015         /*
2016          * Now process all the entries, sending them to the driver.
2017          */
2018         errors = queued = 0;
2019         do {
2020                 struct blk_mq_queue_data bd;
2021
2022                 rq = list_first_entry(list, struct request, queuelist);
2023
2024                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2025                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2026                 if (prep != PREP_DISPATCH_OK)
2027                         break;
2028
2029                 list_del_init(&rq->queuelist);
2030
2031                 bd.rq = rq;
2032
2033                 /*
2034                  * Flag last if we have no more requests, or if we have more
2035                  * but can't assign a driver tag to it.
2036                  */
2037                 if (list_empty(list))
2038                         bd.last = true;
2039                 else {
2040                         nxt = list_first_entry(list, struct request, queuelist);
2041                         bd.last = !blk_mq_get_driver_tag(nxt);
2042                 }
2043
2044                 /*
2045                  * once the request is queued to lld, no need to cover the
2046                  * budget any more
2047                  */
2048                 if (nr_budgets)
2049                         nr_budgets--;
2050                 ret = q->mq_ops->queue_rq(hctx, &bd);
2051                 switch (ret) {
2052                 case BLK_STS_OK:
2053                         queued++;
2054                         break;
2055                 case BLK_STS_RESOURCE:
2056                         needs_resource = true;
2057                         fallthrough;
2058                 case BLK_STS_DEV_RESOURCE:
2059                         blk_mq_handle_dev_resource(rq, list);
2060                         goto out;
2061                 case BLK_STS_ZONE_RESOURCE:
2062                         /*
2063                          * Move the request to zone_list and keep going through
2064                          * the dispatch list to find more requests the drive can
2065                          * accept.
2066                          */
2067                         blk_mq_handle_zone_resource(rq, &zone_list);
2068                         needs_resource = true;
2069                         break;
2070                 default:
2071                         errors++;
2072                         blk_mq_end_request(rq, ret);
2073                 }
2074         } while (!list_empty(list));
2075 out:
2076         if (!list_empty(&zone_list))
2077                 list_splice_tail_init(&zone_list, list);
2078
2079         /* If we didn't flush the entire list, we could have told the driver
2080          * there was more coming, but that turned out to be a lie.
2081          */
2082         if ((!list_empty(list) || errors || needs_resource ||
2083              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2084                 q->mq_ops->commit_rqs(hctx);
2085         /*
2086          * Any items that need requeuing? Stuff them into hctx->dispatch,
2087          * that is where we will continue on next queue run.
2088          */
2089         if (!list_empty(list)) {
2090                 bool needs_restart;
2091                 /* For non-shared tags, the RESTART check will suffice */
2092                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2093                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2094
2095                 if (nr_budgets)
2096                         blk_mq_release_budgets(q, list);
2097
2098                 spin_lock(&hctx->lock);
2099                 list_splice_tail_init(list, &hctx->dispatch);
2100                 spin_unlock(&hctx->lock);
2101
2102                 /*
2103                  * Order adding requests to hctx->dispatch and checking
2104                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2105                  * in blk_mq_sched_restart(). Avoid restart code path to
2106                  * miss the new added requests to hctx->dispatch, meantime
2107                  * SCHED_RESTART is observed here.
2108                  */
2109                 smp_mb();
2110
2111                 /*
2112                  * If SCHED_RESTART was set by the caller of this function and
2113                  * it is no longer set that means that it was cleared by another
2114                  * thread and hence that a queue rerun is needed.
2115                  *
2116                  * If 'no_tag' is set, that means that we failed getting
2117                  * a driver tag with an I/O scheduler attached. If our dispatch
2118                  * waitqueue is no longer active, ensure that we run the queue
2119                  * AFTER adding our entries back to the list.
2120                  *
2121                  * If no I/O scheduler has been configured it is possible that
2122                  * the hardware queue got stopped and restarted before requests
2123                  * were pushed back onto the dispatch list. Rerun the queue to
2124                  * avoid starvation. Notes:
2125                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2126                  *   been stopped before rerunning a queue.
2127                  * - Some but not all block drivers stop a queue before
2128                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2129                  *   and dm-rq.
2130                  *
2131                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2132                  * bit is set, run queue after a delay to avoid IO stalls
2133                  * that could otherwise occur if the queue is idle.  We'll do
2134                  * similar if we couldn't get budget or couldn't lock a zone
2135                  * and SCHED_RESTART is set.
2136                  */
2137                 needs_restart = blk_mq_sched_needs_restart(hctx);
2138                 if (prep == PREP_DISPATCH_NO_BUDGET)
2139                         needs_resource = true;
2140                 if (!needs_restart ||
2141                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2142                         blk_mq_run_hw_queue(hctx, true);
2143                 else if (needs_resource)
2144                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2145
2146                 blk_mq_update_dispatch_busy(hctx, true);
2147                 return false;
2148         } else
2149                 blk_mq_update_dispatch_busy(hctx, false);
2150
2151         return (queued + errors) != 0;
2152 }
2153
2154 /**
2155  * __blk_mq_run_hw_queue - Run a hardware queue.
2156  * @hctx: Pointer to the hardware queue to run.
2157  *
2158  * Send pending requests to the hardware.
2159  */
2160 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2161 {
2162         /*
2163          * We can't run the queue inline with ints disabled. Ensure that
2164          * we catch bad users of this early.
2165          */
2166         WARN_ON_ONCE(in_interrupt());
2167
2168         blk_mq_run_dispatch_ops(hctx->queue,
2169                         blk_mq_sched_dispatch_requests(hctx));
2170 }
2171
2172 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2173 {
2174         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2175
2176         if (cpu >= nr_cpu_ids)
2177                 cpu = cpumask_first(hctx->cpumask);
2178         return cpu;
2179 }
2180
2181 /*
2182  * It'd be great if the workqueue API had a way to pass
2183  * in a mask and had some smarts for more clever placement.
2184  * For now we just round-robin here, switching for every
2185  * BLK_MQ_CPU_WORK_BATCH queued items.
2186  */
2187 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2188 {
2189         bool tried = false;
2190         int next_cpu = hctx->next_cpu;
2191
2192         if (hctx->queue->nr_hw_queues == 1)
2193                 return WORK_CPU_UNBOUND;
2194
2195         if (--hctx->next_cpu_batch <= 0) {
2196 select_cpu:
2197                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2198                                 cpu_online_mask);
2199                 if (next_cpu >= nr_cpu_ids)
2200                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2201                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2202         }
2203
2204         /*
2205          * Do unbound schedule if we can't find a online CPU for this hctx,
2206          * and it should only happen in the path of handling CPU DEAD.
2207          */
2208         if (!cpu_online(next_cpu)) {
2209                 if (!tried) {
2210                         tried = true;
2211                         goto select_cpu;
2212                 }
2213
2214                 /*
2215                  * Make sure to re-select CPU next time once after CPUs
2216                  * in hctx->cpumask become online again.
2217                  */
2218                 hctx->next_cpu = next_cpu;
2219                 hctx->next_cpu_batch = 1;
2220                 return WORK_CPU_UNBOUND;
2221         }
2222
2223         hctx->next_cpu = next_cpu;
2224         return next_cpu;
2225 }
2226
2227 /**
2228  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2229  * @hctx: Pointer to the hardware queue to run.
2230  * @async: If we want to run the queue asynchronously.
2231  * @msecs: Milliseconds of delay to wait before running the queue.
2232  *
2233  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2234  * with a delay of @msecs.
2235  */
2236 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2237                                         unsigned long msecs)
2238 {
2239         if (unlikely(blk_mq_hctx_stopped(hctx)))
2240                 return;
2241
2242         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2243                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2244                         __blk_mq_run_hw_queue(hctx);
2245                         return;
2246                 }
2247         }
2248
2249         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2250                                     msecs_to_jiffies(msecs));
2251 }
2252
2253 /**
2254  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2255  * @hctx: Pointer to the hardware queue to run.
2256  * @msecs: Milliseconds of delay to wait before running the queue.
2257  *
2258  * Run a hardware queue asynchronously with a delay of @msecs.
2259  */
2260 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2261 {
2262         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2263 }
2264 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2265
2266 /**
2267  * blk_mq_run_hw_queue - Start to run a hardware queue.
2268  * @hctx: Pointer to the hardware queue to run.
2269  * @async: If we want to run the queue asynchronously.
2270  *
2271  * Check if the request queue is not in a quiesced state and if there are
2272  * pending requests to be sent. If this is true, run the queue to send requests
2273  * to hardware.
2274  */
2275 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2276 {
2277         bool need_run;
2278
2279         /*
2280          * When queue is quiesced, we may be switching io scheduler, or
2281          * updating nr_hw_queues, or other things, and we can't run queue
2282          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2283          *
2284          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2285          * quiesced.
2286          */
2287         __blk_mq_run_dispatch_ops(hctx->queue, false,
2288                 need_run = !blk_queue_quiesced(hctx->queue) &&
2289                 blk_mq_hctx_has_pending(hctx));
2290
2291         if (need_run)
2292                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2293 }
2294 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2295
2296 /*
2297  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2298  * scheduler.
2299  */
2300 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2301 {
2302         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2303         /*
2304          * If the IO scheduler does not respect hardware queues when
2305          * dispatching, we just don't bother with multiple HW queues and
2306          * dispatch from hctx for the current CPU since running multiple queues
2307          * just causes lock contention inside the scheduler and pointless cache
2308          * bouncing.
2309          */
2310         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2311
2312         if (!blk_mq_hctx_stopped(hctx))
2313                 return hctx;
2314         return NULL;
2315 }
2316
2317 /**
2318  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2319  * @q: Pointer to the request queue to run.
2320  * @async: If we want to run the queue asynchronously.
2321  */
2322 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2323 {
2324         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2325         unsigned long i;
2326
2327         sq_hctx = NULL;
2328         if (blk_queue_sq_sched(q))
2329                 sq_hctx = blk_mq_get_sq_hctx(q);
2330         queue_for_each_hw_ctx(q, hctx, i) {
2331                 if (blk_mq_hctx_stopped(hctx))
2332                         continue;
2333                 /*
2334                  * Dispatch from this hctx either if there's no hctx preferred
2335                  * by IO scheduler or if it has requests that bypass the
2336                  * scheduler.
2337                  */
2338                 if (!sq_hctx || sq_hctx == hctx ||
2339                     !list_empty_careful(&hctx->dispatch))
2340                         blk_mq_run_hw_queue(hctx, async);
2341         }
2342 }
2343 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2344
2345 /**
2346  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2347  * @q: Pointer to the request queue to run.
2348  * @msecs: Milliseconds of delay to wait before running the queues.
2349  */
2350 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2351 {
2352         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2353         unsigned long i;
2354
2355         sq_hctx = NULL;
2356         if (blk_queue_sq_sched(q))
2357                 sq_hctx = blk_mq_get_sq_hctx(q);
2358         queue_for_each_hw_ctx(q, hctx, i) {
2359                 if (blk_mq_hctx_stopped(hctx))
2360                         continue;
2361                 /*
2362                  * If there is already a run_work pending, leave the
2363                  * pending delay untouched. Otherwise, a hctx can stall
2364                  * if another hctx is re-delaying the other's work
2365                  * before the work executes.
2366                  */
2367                 if (delayed_work_pending(&hctx->run_work))
2368                         continue;
2369                 /*
2370                  * Dispatch from this hctx either if there's no hctx preferred
2371                  * by IO scheduler or if it has requests that bypass the
2372                  * scheduler.
2373                  */
2374                 if (!sq_hctx || sq_hctx == hctx ||
2375                     !list_empty_careful(&hctx->dispatch))
2376                         blk_mq_delay_run_hw_queue(hctx, msecs);
2377         }
2378 }
2379 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2380
2381 /*
2382  * This function is often used for pausing .queue_rq() by driver when
2383  * there isn't enough resource or some conditions aren't satisfied, and
2384  * BLK_STS_RESOURCE is usually returned.
2385  *
2386  * We do not guarantee that dispatch can be drained or blocked
2387  * after blk_mq_stop_hw_queue() returns. Please use
2388  * blk_mq_quiesce_queue() for that requirement.
2389  */
2390 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2391 {
2392         cancel_delayed_work(&hctx->run_work);
2393
2394         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395 }
2396 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2397
2398 /*
2399  * This function is often used for pausing .queue_rq() by driver when
2400  * there isn't enough resource or some conditions aren't satisfied, and
2401  * BLK_STS_RESOURCE is usually returned.
2402  *
2403  * We do not guarantee that dispatch can be drained or blocked
2404  * after blk_mq_stop_hw_queues() returns. Please use
2405  * blk_mq_quiesce_queue() for that requirement.
2406  */
2407 void blk_mq_stop_hw_queues(struct request_queue *q)
2408 {
2409         struct blk_mq_hw_ctx *hctx;
2410         unsigned long i;
2411
2412         queue_for_each_hw_ctx(q, hctx, i)
2413                 blk_mq_stop_hw_queue(hctx);
2414 }
2415 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2416
2417 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2418 {
2419         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2420
2421         blk_mq_run_hw_queue(hctx, false);
2422 }
2423 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2424
2425 void blk_mq_start_hw_queues(struct request_queue *q)
2426 {
2427         struct blk_mq_hw_ctx *hctx;
2428         unsigned long i;
2429
2430         queue_for_each_hw_ctx(q, hctx, i)
2431                 blk_mq_start_hw_queue(hctx);
2432 }
2433 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2434
2435 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2436 {
2437         if (!blk_mq_hctx_stopped(hctx))
2438                 return;
2439
2440         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2441         blk_mq_run_hw_queue(hctx, async);
2442 }
2443 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2444
2445 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2446 {
2447         struct blk_mq_hw_ctx *hctx;
2448         unsigned long i;
2449
2450         queue_for_each_hw_ctx(q, hctx, i)
2451                 blk_mq_start_stopped_hw_queue(hctx, async);
2452 }
2453 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2454
2455 static void blk_mq_run_work_fn(struct work_struct *work)
2456 {
2457         struct blk_mq_hw_ctx *hctx;
2458
2459         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2460
2461         /*
2462          * If we are stopped, don't run the queue.
2463          */
2464         if (blk_mq_hctx_stopped(hctx))
2465                 return;
2466
2467         __blk_mq_run_hw_queue(hctx);
2468 }
2469
2470 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2471                                             struct request *rq,
2472                                             bool at_head)
2473 {
2474         struct blk_mq_ctx *ctx = rq->mq_ctx;
2475         enum hctx_type type = hctx->type;
2476
2477         lockdep_assert_held(&ctx->lock);
2478
2479         trace_block_rq_insert(rq);
2480
2481         if (at_head)
2482                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2483         else
2484                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2485 }
2486
2487 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2488                              bool at_head)
2489 {
2490         struct blk_mq_ctx *ctx = rq->mq_ctx;
2491
2492         lockdep_assert_held(&ctx->lock);
2493
2494         __blk_mq_insert_req_list(hctx, rq, at_head);
2495         blk_mq_hctx_mark_pending(hctx, ctx);
2496 }
2497
2498 /**
2499  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2500  * @rq: Pointer to request to be inserted.
2501  * @at_head: true if the request should be inserted at the head of the list.
2502  * @run_queue: If we should run the hardware queue after inserting the request.
2503  *
2504  * Should only be used carefully, when the caller knows we want to
2505  * bypass a potential IO scheduler on the target device.
2506  */
2507 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2508                                   bool run_queue)
2509 {
2510         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2511
2512         spin_lock(&hctx->lock);
2513         if (at_head)
2514                 list_add(&rq->queuelist, &hctx->dispatch);
2515         else
2516                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2517         spin_unlock(&hctx->lock);
2518
2519         if (run_queue)
2520                 blk_mq_run_hw_queue(hctx, false);
2521 }
2522
2523 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2524                             struct list_head *list)
2525
2526 {
2527         struct request *rq;
2528         enum hctx_type type = hctx->type;
2529
2530         /*
2531          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2532          * offline now
2533          */
2534         list_for_each_entry(rq, list, queuelist) {
2535                 BUG_ON(rq->mq_ctx != ctx);
2536                 trace_block_rq_insert(rq);
2537         }
2538
2539         spin_lock(&ctx->lock);
2540         list_splice_tail_init(list, &ctx->rq_lists[type]);
2541         blk_mq_hctx_mark_pending(hctx, ctx);
2542         spin_unlock(&ctx->lock);
2543 }
2544
2545 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2546                               bool from_schedule)
2547 {
2548         if (hctx->queue->mq_ops->commit_rqs) {
2549                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2550                 hctx->queue->mq_ops->commit_rqs(hctx);
2551         }
2552         *queued = 0;
2553 }
2554
2555 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2556                 unsigned int nr_segs)
2557 {
2558         int err;
2559
2560         if (bio->bi_opf & REQ_RAHEAD)
2561                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2562
2563         rq->__sector = bio->bi_iter.bi_sector;
2564         blk_rq_bio_prep(rq, bio, nr_segs);
2565
2566         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2567         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2568         WARN_ON_ONCE(err);
2569
2570         blk_account_io_start(rq);
2571 }
2572
2573 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2574                                             struct request *rq, bool last)
2575 {
2576         struct request_queue *q = rq->q;
2577         struct blk_mq_queue_data bd = {
2578                 .rq = rq,
2579                 .last = last,
2580         };
2581         blk_status_t ret;
2582
2583         /*
2584          * For OK queue, we are done. For error, caller may kill it.
2585          * Any other error (busy), just add it to our list as we
2586          * previously would have done.
2587          */
2588         ret = q->mq_ops->queue_rq(hctx, &bd);
2589         switch (ret) {
2590         case BLK_STS_OK:
2591                 blk_mq_update_dispatch_busy(hctx, false);
2592                 break;
2593         case BLK_STS_RESOURCE:
2594         case BLK_STS_DEV_RESOURCE:
2595                 blk_mq_update_dispatch_busy(hctx, true);
2596                 __blk_mq_requeue_request(rq);
2597                 break;
2598         default:
2599                 blk_mq_update_dispatch_busy(hctx, false);
2600                 break;
2601         }
2602
2603         return ret;
2604 }
2605
2606 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2607                                                 struct request *rq,
2608                                                 bool bypass_insert, bool last)
2609 {
2610         struct request_queue *q = rq->q;
2611         bool run_queue = true;
2612         int budget_token;
2613
2614         /*
2615          * RCU or SRCU read lock is needed before checking quiesced flag.
2616          *
2617          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2618          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2619          * and avoid driver to try to dispatch again.
2620          */
2621         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2622                 run_queue = false;
2623                 bypass_insert = false;
2624                 goto insert;
2625         }
2626
2627         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2628                 goto insert;
2629
2630         budget_token = blk_mq_get_dispatch_budget(q);
2631         if (budget_token < 0)
2632                 goto insert;
2633
2634         blk_mq_set_rq_budget_token(rq, budget_token);
2635
2636         if (!blk_mq_get_driver_tag(rq)) {
2637                 blk_mq_put_dispatch_budget(q, budget_token);
2638                 goto insert;
2639         }
2640
2641         return __blk_mq_issue_directly(hctx, rq, last);
2642 insert:
2643         if (bypass_insert)
2644                 return BLK_STS_RESOURCE;
2645
2646         blk_mq_sched_insert_request(rq, false, run_queue, false);
2647
2648         return BLK_STS_OK;
2649 }
2650
2651 /**
2652  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2653  * @hctx: Pointer of the associated hardware queue.
2654  * @rq: Pointer to request to be sent.
2655  *
2656  * If the device has enough resources to accept a new request now, send the
2657  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2658  * we can try send it another time in the future. Requests inserted at this
2659  * queue have higher priority.
2660  */
2661 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2662                 struct request *rq)
2663 {
2664         blk_status_t ret =
2665                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2666
2667         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2668                 blk_mq_request_bypass_insert(rq, false, true);
2669         else if (ret != BLK_STS_OK)
2670                 blk_mq_end_request(rq, ret);
2671 }
2672
2673 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2674 {
2675         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2676 }
2677
2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2679 {
2680         struct blk_mq_hw_ctx *hctx = NULL;
2681         struct request *rq;
2682         int queued = 0;
2683         int errors = 0;
2684
2685         while ((rq = rq_list_pop(&plug->mq_list))) {
2686                 bool last = rq_list_empty(plug->mq_list);
2687                 blk_status_t ret;
2688
2689                 if (hctx != rq->mq_hctx) {
2690                         if (hctx)
2691                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2692                         hctx = rq->mq_hctx;
2693                 }
2694
2695                 ret = blk_mq_request_issue_directly(rq, last);
2696                 switch (ret) {
2697                 case BLK_STS_OK:
2698                         queued++;
2699                         break;
2700                 case BLK_STS_RESOURCE:
2701                 case BLK_STS_DEV_RESOURCE:
2702                         blk_mq_request_bypass_insert(rq, false, true);
2703                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2704                         return;
2705                 default:
2706                         blk_mq_end_request(rq, ret);
2707                         errors++;
2708                         break;
2709                 }
2710         }
2711
2712         /*
2713          * If we didn't flush the entire list, we could have told the driver
2714          * there was more coming, but that turned out to be a lie.
2715          */
2716         if (errors)
2717                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2718 }
2719
2720 static void __blk_mq_flush_plug_list(struct request_queue *q,
2721                                      struct blk_plug *plug)
2722 {
2723         if (blk_queue_quiesced(q))
2724                 return;
2725         q->mq_ops->queue_rqs(&plug->mq_list);
2726 }
2727
2728 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2729 {
2730         struct blk_mq_hw_ctx *this_hctx = NULL;
2731         struct blk_mq_ctx *this_ctx = NULL;
2732         struct request *requeue_list = NULL;
2733         unsigned int depth = 0;
2734         LIST_HEAD(list);
2735
2736         do {
2737                 struct request *rq = rq_list_pop(&plug->mq_list);
2738
2739                 if (!this_hctx) {
2740                         this_hctx = rq->mq_hctx;
2741                         this_ctx = rq->mq_ctx;
2742                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2743                         rq_list_add(&requeue_list, rq);
2744                         continue;
2745                 }
2746                 list_add_tail(&rq->queuelist, &list);
2747                 depth++;
2748         } while (!rq_list_empty(plug->mq_list));
2749
2750         plug->mq_list = requeue_list;
2751         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2752         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2753 }
2754
2755 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2756 {
2757         struct request *rq;
2758
2759         if (rq_list_empty(plug->mq_list))
2760                 return;
2761         plug->rq_count = 0;
2762
2763         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2764                 struct request_queue *q;
2765
2766                 rq = rq_list_peek(&plug->mq_list);
2767                 q = rq->q;
2768
2769                 /*
2770                  * Peek first request and see if we have a ->queue_rqs() hook.
2771                  * If we do, we can dispatch the whole plug list in one go. We
2772                  * already know at this point that all requests belong to the
2773                  * same queue, caller must ensure that's the case.
2774                  *
2775                  * Since we pass off the full list to the driver at this point,
2776                  * we do not increment the active request count for the queue.
2777                  * Bypass shared tags for now because of that.
2778                  */
2779                 if (q->mq_ops->queue_rqs &&
2780                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2781                         blk_mq_run_dispatch_ops(q,
2782                                 __blk_mq_flush_plug_list(q, plug));
2783                         if (rq_list_empty(plug->mq_list))
2784                                 return;
2785                 }
2786
2787                 blk_mq_run_dispatch_ops(q,
2788                                 blk_mq_plug_issue_direct(plug, false));
2789                 if (rq_list_empty(plug->mq_list))
2790                         return;
2791         }
2792
2793         do {
2794                 blk_mq_dispatch_plug_list(plug, from_schedule);
2795         } while (!rq_list_empty(plug->mq_list));
2796 }
2797
2798 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2799                 struct list_head *list)
2800 {
2801         int queued = 0;
2802         int errors = 0;
2803
2804         while (!list_empty(list)) {
2805                 blk_status_t ret;
2806                 struct request *rq = list_first_entry(list, struct request,
2807                                 queuelist);
2808
2809                 list_del_init(&rq->queuelist);
2810                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2811                 if (ret != BLK_STS_OK) {
2812                         errors++;
2813                         if (ret == BLK_STS_RESOURCE ||
2814                                         ret == BLK_STS_DEV_RESOURCE) {
2815                                 blk_mq_request_bypass_insert(rq, false,
2816                                                         list_empty(list));
2817                                 break;
2818                         }
2819                         blk_mq_end_request(rq, ret);
2820                 } else
2821                         queued++;
2822         }
2823
2824         /*
2825          * If we didn't flush the entire list, we could have told
2826          * the driver there was more coming, but that turned out to
2827          * be a lie.
2828          */
2829         if ((!list_empty(list) || errors) &&
2830              hctx->queue->mq_ops->commit_rqs && queued)
2831                 hctx->queue->mq_ops->commit_rqs(hctx);
2832 }
2833
2834 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2835                                      struct bio *bio, unsigned int nr_segs)
2836 {
2837         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2838                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2839                         return true;
2840                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2841                         return true;
2842         }
2843         return false;
2844 }
2845
2846 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2847                                                struct blk_plug *plug,
2848                                                struct bio *bio,
2849                                                unsigned int nsegs)
2850 {
2851         struct blk_mq_alloc_data data = {
2852                 .q              = q,
2853                 .nr_tags        = 1,
2854                 .cmd_flags      = bio->bi_opf,
2855         };
2856         struct request *rq;
2857
2858         if (unlikely(bio_queue_enter(bio)))
2859                 return NULL;
2860
2861         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2862                 goto queue_exit;
2863
2864         rq_qos_throttle(q, bio);
2865
2866         if (plug) {
2867                 data.nr_tags = plug->nr_ios;
2868                 plug->nr_ios = 1;
2869                 data.cached_rq = &plug->cached_rq;
2870         }
2871
2872         rq = __blk_mq_alloc_requests(&data);
2873         if (rq)
2874                 return rq;
2875         rq_qos_cleanup(q, bio);
2876         if (bio->bi_opf & REQ_NOWAIT)
2877                 bio_wouldblock_error(bio);
2878 queue_exit:
2879         blk_queue_exit(q);
2880         return NULL;
2881 }
2882
2883 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2884                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2885 {
2886         struct request *rq;
2887
2888         if (!plug)
2889                 return NULL;
2890         rq = rq_list_peek(&plug->cached_rq);
2891         if (!rq || rq->q != q)
2892                 return NULL;
2893
2894         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2895                 *bio = NULL;
2896                 return NULL;
2897         }
2898
2899         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2900                 return NULL;
2901         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2902                 return NULL;
2903
2904         /*
2905          * If any qos ->throttle() end up blocking, we will have flushed the
2906          * plug and hence killed the cached_rq list as well. Pop this entry
2907          * before we throttle.
2908          */
2909         plug->cached_rq = rq_list_next(rq);
2910         rq_qos_throttle(q, *bio);
2911
2912         rq->cmd_flags = (*bio)->bi_opf;
2913         INIT_LIST_HEAD(&rq->queuelist);
2914         return rq;
2915 }
2916
2917 static void bio_set_ioprio(struct bio *bio)
2918 {
2919         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2920         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2921                 bio->bi_ioprio = get_current_ioprio();
2922         blkcg_set_ioprio(bio);
2923 }
2924
2925 /**
2926  * blk_mq_submit_bio - Create and send a request to block device.
2927  * @bio: Bio pointer.
2928  *
2929  * Builds up a request structure from @q and @bio and send to the device. The
2930  * request may not be queued directly to hardware if:
2931  * * This request can be merged with another one
2932  * * We want to place request at plug queue for possible future merging
2933  * * There is an IO scheduler active at this queue
2934  *
2935  * It will not queue the request if there is an error with the bio, or at the
2936  * request creation.
2937  */
2938 void blk_mq_submit_bio(struct bio *bio)
2939 {
2940         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2941         struct blk_plug *plug = blk_mq_plug(bio);
2942         const int is_sync = op_is_sync(bio->bi_opf);
2943         struct request *rq;
2944         unsigned int nr_segs = 1;
2945         blk_status_t ret;
2946
2947         bio = blk_queue_bounce(bio, q);
2948         if (bio_may_exceed_limits(bio, &q->limits))
2949                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2950
2951         if (!bio_integrity_prep(bio))
2952                 return;
2953
2954         bio_set_ioprio(bio);
2955
2956         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2957         if (!rq) {
2958                 if (!bio)
2959                         return;
2960                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2961                 if (unlikely(!rq))
2962                         return;
2963         }
2964
2965         trace_block_getrq(bio);
2966
2967         rq_qos_track(q, rq, bio);
2968
2969         blk_mq_bio_to_request(rq, bio, nr_segs);
2970
2971         ret = blk_crypto_init_request(rq);
2972         if (ret != BLK_STS_OK) {
2973                 bio->bi_status = ret;
2974                 bio_endio(bio);
2975                 blk_mq_free_request(rq);
2976                 return;
2977         }
2978
2979         if (op_is_flush(bio->bi_opf)) {
2980                 blk_insert_flush(rq);
2981                 return;
2982         }
2983
2984         if (plug)
2985                 blk_add_rq_to_plug(plug, rq);
2986         else if ((rq->rq_flags & RQF_ELV) ||
2987                  (rq->mq_hctx->dispatch_busy &&
2988                   (q->nr_hw_queues == 1 || !is_sync)))
2989                 blk_mq_sched_insert_request(rq, false, true, true);
2990         else
2991                 blk_mq_run_dispatch_ops(rq->q,
2992                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2993 }
2994
2995 #ifdef CONFIG_BLK_MQ_STACKING
2996 /**
2997  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2998  * @rq: the request being queued
2999  */
3000 blk_status_t blk_insert_cloned_request(struct request *rq)
3001 {
3002         struct request_queue *q = rq->q;
3003         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3004         blk_status_t ret;
3005
3006         if (blk_rq_sectors(rq) > max_sectors) {
3007                 /*
3008                  * SCSI device does not have a good way to return if
3009                  * Write Same/Zero is actually supported. If a device rejects
3010                  * a non-read/write command (discard, write same,etc.) the
3011                  * low-level device driver will set the relevant queue limit to
3012                  * 0 to prevent blk-lib from issuing more of the offending
3013                  * operations. Commands queued prior to the queue limit being
3014                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3015                  * errors being propagated to upper layers.
3016                  */
3017                 if (max_sectors == 0)
3018                         return BLK_STS_NOTSUPP;
3019
3020                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3021                         __func__, blk_rq_sectors(rq), max_sectors);
3022                 return BLK_STS_IOERR;
3023         }
3024
3025         /*
3026          * The queue settings related to segment counting may differ from the
3027          * original queue.
3028          */
3029         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3030         if (rq->nr_phys_segments > queue_max_segments(q)) {
3031                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3032                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3033                 return BLK_STS_IOERR;
3034         }
3035
3036         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3037                 return BLK_STS_IOERR;
3038
3039         if (blk_crypto_insert_cloned_request(rq))
3040                 return BLK_STS_IOERR;
3041
3042         blk_account_io_start(rq);
3043
3044         /*
3045          * Since we have a scheduler attached on the top device,
3046          * bypass a potential scheduler on the bottom device for
3047          * insert.
3048          */
3049         blk_mq_run_dispatch_ops(q,
3050                         ret = blk_mq_request_issue_directly(rq, true));
3051         if (ret)
3052                 blk_account_io_done(rq, ktime_get_ns());
3053         return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066         struct bio *bio;
3067
3068         while ((bio = rq->bio) != NULL) {
3069                 rq->bio = bio->bi_next;
3070
3071                 bio_put(bio);
3072         }
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094                       struct bio_set *bs, gfp_t gfp_mask,
3095                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3096                       void *data)
3097 {
3098         struct bio *bio, *bio_src;
3099
3100         if (!bs)
3101                 bs = &fs_bio_set;
3102
3103         __rq_for_each_bio(bio_src, rq_src) {
3104                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105                                       bs);
3106                 if (!bio)
3107                         goto free_and_out;
3108
3109                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3110                         goto free_and_out;
3111
3112                 if (rq->bio) {
3113                         rq->biotail->bi_next = bio;
3114                         rq->biotail = bio;
3115                 } else {
3116                         rq->bio = rq->biotail = bio;
3117                 }
3118                 bio = NULL;
3119         }
3120
3121         /* Copy attributes of the original request to the clone request. */
3122         rq->__sector = blk_rq_pos(rq_src);
3123         rq->__data_len = blk_rq_bytes(rq_src);
3124         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126                 rq->special_vec = rq_src->special_vec;
3127         }
3128         rq->nr_phys_segments = rq_src->nr_phys_segments;
3129         rq->ioprio = rq_src->ioprio;
3130
3131         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132                 goto free_and_out;
3133
3134         return 0;
3135
3136 free_and_out:
3137         if (bio)
3138                 bio_put(bio);
3139         blk_rq_unprep_clone(rq);
3140
3141         return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152         if (rq->bio) {
3153                 if (list->tail)
3154                         list->tail->bi_next = rq->bio;
3155                 else
3156                         list->head = rq->bio;
3157                 list->tail = rq->biotail;
3158
3159                 rq->bio = NULL;
3160                 rq->biotail = NULL;
3161         }
3162
3163         rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166
3167 static size_t order_to_size(unsigned int order)
3168 {
3169         return (size_t)PAGE_SIZE << order;
3170 }
3171
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174                                     struct blk_mq_tags *tags)
3175 {
3176         struct page *page;
3177         unsigned long flags;
3178
3179         /*
3180          * There is no need to clear mapping if driver tags is not initialized
3181          * or the mapping belongs to the driver tags.
3182          */
3183         if (!drv_tags || drv_tags == tags)
3184                 return;
3185
3186         list_for_each_entry(page, &tags->page_list, lru) {
3187                 unsigned long start = (unsigned long)page_address(page);
3188                 unsigned long end = start + order_to_size(page->private);
3189                 int i;
3190
3191                 for (i = 0; i < drv_tags->nr_tags; i++) {
3192                         struct request *rq = drv_tags->rqs[i];
3193                         unsigned long rq_addr = (unsigned long)rq;
3194
3195                         if (rq_addr >= start && rq_addr < end) {
3196                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3197                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198                         }
3199                 }
3200         }
3201
3202         /*
3203          * Wait until all pending iteration is done.
3204          *
3205          * Request reference is cleared and it is guaranteed to be observed
3206          * after the ->lock is released.
3207          */
3208         spin_lock_irqsave(&drv_tags->lock, flags);
3209         spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213                      unsigned int hctx_idx)
3214 {
3215         struct blk_mq_tags *drv_tags;
3216         struct page *page;
3217
3218         if (list_empty(&tags->page_list))
3219                 return;
3220
3221         if (blk_mq_is_shared_tags(set->flags))
3222                 drv_tags = set->shared_tags;
3223         else
3224                 drv_tags = set->tags[hctx_idx];
3225
3226         if (tags->static_rqs && set->ops->exit_request) {
3227                 int i;
3228
3229                 for (i = 0; i < tags->nr_tags; i++) {
3230                         struct request *rq = tags->static_rqs[i];
3231
3232                         if (!rq)
3233                                 continue;
3234                         set->ops->exit_request(set, rq, hctx_idx);
3235                         tags->static_rqs[i] = NULL;
3236                 }
3237         }
3238
3239         blk_mq_clear_rq_mapping(drv_tags, tags);
3240
3241         while (!list_empty(&tags->page_list)) {
3242                 page = list_first_entry(&tags->page_list, struct page, lru);
3243                 list_del_init(&page->lru);
3244                 /*
3245                  * Remove kmemleak object previously allocated in
3246                  * blk_mq_alloc_rqs().
3247                  */
3248                 kmemleak_free(page_address(page));
3249                 __free_pages(page, page->private);
3250         }
3251 }
3252
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255         kfree(tags->rqs);
3256         tags->rqs = NULL;
3257         kfree(tags->static_rqs);
3258         tags->static_rqs = NULL;
3259
3260         blk_mq_free_tags(tags);
3261 }
3262
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264                 unsigned int hctx_idx)
3265 {
3266         int i;
3267
3268         for (i = 0; i < set->nr_maps; i++) {
3269                 unsigned int start = set->map[i].queue_offset;
3270                 unsigned int end = start + set->map[i].nr_queues;
3271
3272                 if (hctx_idx >= start && hctx_idx < end)
3273                         break;
3274         }
3275
3276         if (i >= set->nr_maps)
3277                 i = HCTX_TYPE_DEFAULT;
3278
3279         return i;
3280 }
3281
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283                 unsigned int hctx_idx)
3284 {
3285         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286
3287         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291                                                unsigned int hctx_idx,
3292                                                unsigned int nr_tags,
3293                                                unsigned int reserved_tags)
3294 {
3295         int node = blk_mq_get_hctx_node(set, hctx_idx);
3296         struct blk_mq_tags *tags;
3297
3298         if (node == NUMA_NO_NODE)
3299                 node = set->numa_node;
3300
3301         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303         if (!tags)
3304                 return NULL;
3305
3306         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308                                  node);
3309         if (!tags->rqs)
3310                 goto err_free_tags;
3311
3312         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314                                         node);
3315         if (!tags->static_rqs)
3316                 goto err_free_rqs;
3317
3318         return tags;
3319
3320 err_free_rqs:
3321         kfree(tags->rqs);
3322 err_free_tags:
3323         blk_mq_free_tags(tags);
3324         return NULL;
3325 }
3326
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328                                unsigned int hctx_idx, int node)
3329 {
3330         int ret;
3331
3332         if (set->ops->init_request) {
3333                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3334                 if (ret)
3335                         return ret;
3336         }
3337
3338         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339         return 0;
3340 }
3341
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343                             struct blk_mq_tags *tags,
3344                             unsigned int hctx_idx, unsigned int depth)
3345 {
3346         unsigned int i, j, entries_per_page, max_order = 4;
3347         int node = blk_mq_get_hctx_node(set, hctx_idx);
3348         size_t rq_size, left;
3349
3350         if (node == NUMA_NO_NODE)
3351                 node = set->numa_node;
3352
3353         INIT_LIST_HEAD(&tags->page_list);
3354
3355         /*
3356          * rq_size is the size of the request plus driver payload, rounded
3357          * to the cacheline size
3358          */
3359         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360                                 cache_line_size());
3361         left = rq_size * depth;
3362
3363         for (i = 0; i < depth; ) {
3364                 int this_order = max_order;
3365                 struct page *page;
3366                 int to_do;
3367                 void *p;
3368
3369                 while (this_order && left < order_to_size(this_order - 1))
3370                         this_order--;
3371
3372                 do {
3373                         page = alloc_pages_node(node,
3374                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375                                 this_order);
3376                         if (page)
3377                                 break;
3378                         if (!this_order--)
3379                                 break;
3380                         if (order_to_size(this_order) < rq_size)
3381                                 break;
3382                 } while (1);
3383
3384                 if (!page)
3385                         goto fail;
3386
3387                 page->private = this_order;
3388                 list_add_tail(&page->lru, &tags->page_list);
3389
3390                 p = page_address(page);
3391                 /*
3392                  * Allow kmemleak to scan these pages as they contain pointers
3393                  * to additional allocations like via ops->init_request().
3394                  */
3395                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396                 entries_per_page = order_to_size(this_order) / rq_size;
3397                 to_do = min(entries_per_page, depth - i);
3398                 left -= to_do * rq_size;
3399                 for (j = 0; j < to_do; j++) {
3400                         struct request *rq = p;
3401
3402                         tags->static_rqs[i] = rq;
3403                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404                                 tags->static_rqs[i] = NULL;
3405                                 goto fail;
3406                         }
3407
3408                         p += rq_size;
3409                         i++;
3410                 }
3411         }
3412         return 0;
3413
3414 fail:
3415         blk_mq_free_rqs(set, tags, hctx_idx);
3416         return -ENOMEM;
3417 }
3418
3419 struct rq_iter_data {
3420         struct blk_mq_hw_ctx *hctx;
3421         bool has_rq;
3422 };
3423
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426         struct rq_iter_data *iter_data = data;
3427
3428         if (rq->mq_hctx != iter_data->hctx)
3429                 return true;
3430         iter_data->has_rq = true;
3431         return false;
3432 }
3433
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436         struct blk_mq_tags *tags = hctx->sched_tags ?
3437                         hctx->sched_tags : hctx->tags;
3438         struct rq_iter_data data = {
3439                 .hctx   = hctx,
3440         };
3441
3442         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443         return data.has_rq;
3444 }
3445
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447                 struct blk_mq_hw_ctx *hctx)
3448 {
3449         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450                 return false;
3451         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452                 return false;
3453         return true;
3454 }
3455
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459                         struct blk_mq_hw_ctx, cpuhp_online);
3460
3461         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463                 return 0;
3464
3465         /*
3466          * Prevent new request from being allocated on the current hctx.
3467          *
3468          * The smp_mb__after_atomic() Pairs with the implied barrier in
3469          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470          * seen once we return from the tag allocator.
3471          */
3472         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473         smp_mb__after_atomic();
3474
3475         /*
3476          * Try to grab a reference to the queue and wait for any outstanding
3477          * requests.  If we could not grab a reference the queue has been
3478          * frozen and there are no requests.
3479          */
3480         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481                 while (blk_mq_hctx_has_requests(hctx))
3482                         msleep(5);
3483                 percpu_ref_put(&hctx->queue->q_usage_counter);
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492                         struct blk_mq_hw_ctx, cpuhp_online);
3493
3494         if (cpumask_test_cpu(cpu, hctx->cpumask))
3495                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496         return 0;
3497 }
3498
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506         struct blk_mq_hw_ctx *hctx;
3507         struct blk_mq_ctx *ctx;
3508         LIST_HEAD(tmp);
3509         enum hctx_type type;
3510
3511         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513                 return 0;
3514
3515         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516         type = hctx->type;
3517
3518         spin_lock(&ctx->lock);
3519         if (!list_empty(&ctx->rq_lists[type])) {
3520                 list_splice_init(&ctx->rq_lists[type], &tmp);
3521                 blk_mq_hctx_clear_pending(hctx, ctx);
3522         }
3523         spin_unlock(&ctx->lock);
3524
3525         if (list_empty(&tmp))
3526                 return 0;
3527
3528         spin_lock(&hctx->lock);
3529         list_splice_tail_init(&tmp, &hctx->dispatch);
3530         spin_unlock(&hctx->lock);
3531
3532         blk_mq_run_hw_queue(hctx, true);
3533         return 0;
3534 }
3535
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538         if (!(hctx->flags & BLK_MQ_F_STACKING))
3539                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540                                                     &hctx->cpuhp_online);
3541         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542                                             &hctx->cpuhp_dead);
3543 }
3544
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550                 unsigned int queue_depth, struct request *flush_rq)
3551 {
3552         int i;
3553         unsigned long flags;
3554
3555         /* The hw queue may not be mapped yet */
3556         if (!tags)
3557                 return;
3558
3559         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560
3561         for (i = 0; i < queue_depth; i++)
3562                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563
3564         /*
3565          * Wait until all pending iteration is done.
3566          *
3567          * Request reference is cleared and it is guaranteed to be observed
3568          * after the ->lock is released.
3569          */
3570         spin_lock_irqsave(&tags->lock, flags);
3571         spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576                 struct blk_mq_tag_set *set,
3577                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579         struct request *flush_rq = hctx->fq->flush_rq;
3580
3581         if (blk_mq_hw_queue_mapped(hctx))
3582                 blk_mq_tag_idle(hctx);
3583
3584         if (blk_queue_init_done(q))
3585                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586                                 set->queue_depth, flush_rq);
3587         if (set->ops->exit_request)
3588                 set->ops->exit_request(set, flush_rq, hctx_idx);
3589
3590         if (set->ops->exit_hctx)
3591                 set->ops->exit_hctx(hctx, hctx_idx);
3592
3593         blk_mq_remove_cpuhp(hctx);
3594
3595         xa_erase(&q->hctx_table, hctx_idx);
3596
3597         spin_lock(&q->unused_hctx_lock);
3598         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599         spin_unlock(&q->unused_hctx_lock);
3600 }
3601
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603                 struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605         struct blk_mq_hw_ctx *hctx;
3606         unsigned long i;
3607
3608         queue_for_each_hw_ctx(q, hctx, i) {
3609                 if (i == nr_queue)
3610                         break;
3611                 blk_mq_exit_hctx(q, set, hctx, i);
3612         }
3613 }
3614
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616                 struct blk_mq_tag_set *set,
3617                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619         hctx->queue_num = hctx_idx;
3620
3621         if (!(hctx->flags & BLK_MQ_F_STACKING))
3622                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623                                 &hctx->cpuhp_online);
3624         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625
3626         hctx->tags = set->tags[hctx_idx];
3627
3628         if (set->ops->init_hctx &&
3629             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630                 goto unregister_cpu_notifier;
3631
3632         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633                                 hctx->numa_node))
3634                 goto exit_hctx;
3635
3636         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637                 goto exit_flush_rq;
3638
3639         return 0;
3640
3641  exit_flush_rq:
3642         if (set->ops->exit_request)
3643                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645         if (set->ops->exit_hctx)
3646                 set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648         blk_mq_remove_cpuhp(hctx);
3649         return -1;
3650 }
3651
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654                 int node)
3655 {
3656         struct blk_mq_hw_ctx *hctx;
3657         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658
3659         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660         if (!hctx)
3661                 goto fail_alloc_hctx;
3662
3663         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664                 goto free_hctx;
3665
3666         atomic_set(&hctx->nr_active, 0);
3667         if (node == NUMA_NO_NODE)
3668                 node = set->numa_node;
3669         hctx->numa_node = node;
3670
3671         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672         spin_lock_init(&hctx->lock);
3673         INIT_LIST_HEAD(&hctx->dispatch);
3674         hctx->queue = q;
3675         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676
3677         INIT_LIST_HEAD(&hctx->hctx_list);
3678
3679         /*
3680          * Allocate space for all possible cpus to avoid allocation at
3681          * runtime
3682          */
3683         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684                         gfp, node);
3685         if (!hctx->ctxs)
3686                 goto free_cpumask;
3687
3688         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689                                 gfp, node, false, false))
3690                 goto free_ctxs;
3691         hctx->nr_ctx = 0;
3692
3693         spin_lock_init(&hctx->dispatch_wait_lock);
3694         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696
3697         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698         if (!hctx->fq)
3699                 goto free_bitmap;
3700
3701         blk_mq_hctx_kobj_init(hctx);
3702
3703         return hctx;
3704
3705  free_bitmap:
3706         sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708         kfree(hctx->ctxs);
3709  free_cpumask:
3710         free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712         kfree(hctx);
3713  fail_alloc_hctx:
3714         return NULL;
3715 }
3716
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718                                    unsigned int nr_hw_queues)
3719 {
3720         struct blk_mq_tag_set *set = q->tag_set;
3721         unsigned int i, j;
3722
3723         for_each_possible_cpu(i) {
3724                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725                 struct blk_mq_hw_ctx *hctx;
3726                 int k;
3727
3728                 __ctx->cpu = i;
3729                 spin_lock_init(&__ctx->lock);
3730                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732
3733                 __ctx->queue = q;
3734
3735                 /*
3736                  * Set local node, IFF we have more than one hw queue. If
3737                  * not, we remain on the home node of the device
3738                  */
3739                 for (j = 0; j < set->nr_maps; j++) {
3740                         hctx = blk_mq_map_queue_type(q, j, i);
3741                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742                                 hctx->numa_node = cpu_to_node(i);
3743                 }
3744         }
3745 }
3746
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748                                              unsigned int hctx_idx,
3749                                              unsigned int depth)
3750 {
3751         struct blk_mq_tags *tags;
3752         int ret;
3753
3754         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755         if (!tags)
3756                 return NULL;
3757
3758         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759         if (ret) {
3760                 blk_mq_free_rq_map(tags);
3761                 return NULL;
3762         }
3763
3764         return tags;
3765 }
3766
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768                                        int hctx_idx)
3769 {
3770         if (blk_mq_is_shared_tags(set->flags)) {
3771                 set->tags[hctx_idx] = set->shared_tags;
3772
3773                 return true;
3774         }
3775
3776         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777                                                        set->queue_depth);
3778
3779         return set->tags[hctx_idx];
3780 }
3781
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783                              struct blk_mq_tags *tags,
3784                              unsigned int hctx_idx)
3785 {
3786         if (tags) {
3787                 blk_mq_free_rqs(set, tags, hctx_idx);
3788                 blk_mq_free_rq_map(tags);
3789         }
3790 }
3791
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793                                       unsigned int hctx_idx)
3794 {
3795         if (!blk_mq_is_shared_tags(set->flags))
3796                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797
3798         set->tags[hctx_idx] = NULL;
3799 }
3800
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803         unsigned int j, hctx_idx;
3804         unsigned long i;
3805         struct blk_mq_hw_ctx *hctx;
3806         struct blk_mq_ctx *ctx;
3807         struct blk_mq_tag_set *set = q->tag_set;
3808
3809         queue_for_each_hw_ctx(q, hctx, i) {
3810                 cpumask_clear(hctx->cpumask);
3811                 hctx->nr_ctx = 0;
3812                 hctx->dispatch_from = NULL;
3813         }
3814
3815         /*
3816          * Map software to hardware queues.
3817          *
3818          * If the cpu isn't present, the cpu is mapped to first hctx.
3819          */
3820         for_each_possible_cpu(i) {
3821
3822                 ctx = per_cpu_ptr(q->queue_ctx, i);
3823                 for (j = 0; j < set->nr_maps; j++) {
3824                         if (!set->map[j].nr_queues) {
3825                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826                                                 HCTX_TYPE_DEFAULT, i);
3827                                 continue;
3828                         }
3829                         hctx_idx = set->map[j].mq_map[i];
3830                         /* unmapped hw queue can be remapped after CPU topo changed */
3831                         if (!set->tags[hctx_idx] &&
3832                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833                                 /*
3834                                  * If tags initialization fail for some hctx,
3835                                  * that hctx won't be brought online.  In this
3836                                  * case, remap the current ctx to hctx[0] which
3837                                  * is guaranteed to always have tags allocated
3838                                  */
3839                                 set->map[j].mq_map[i] = 0;
3840                         }
3841
3842                         hctx = blk_mq_map_queue_type(q, j, i);
3843                         ctx->hctxs[j] = hctx;
3844                         /*
3845                          * If the CPU is already set in the mask, then we've
3846                          * mapped this one already. This can happen if
3847                          * devices share queues across queue maps.
3848                          */
3849                         if (cpumask_test_cpu(i, hctx->cpumask))
3850                                 continue;
3851
3852                         cpumask_set_cpu(i, hctx->cpumask);
3853                         hctx->type = j;
3854                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3856
3857                         /*
3858                          * If the nr_ctx type overflows, we have exceeded the
3859                          * amount of sw queues we can support.
3860                          */
3861                         BUG_ON(!hctx->nr_ctx);
3862                 }
3863
3864                 for (; j < HCTX_MAX_TYPES; j++)
3865                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866                                         HCTX_TYPE_DEFAULT, i);
3867         }
3868
3869         queue_for_each_hw_ctx(q, hctx, i) {
3870                 /*
3871                  * If no software queues are mapped to this hardware queue,
3872                  * disable it and free the request entries.
3873                  */
3874                 if (!hctx->nr_ctx) {
3875                         /* Never unmap queue 0.  We need it as a
3876                          * fallback in case of a new remap fails
3877                          * allocation
3878                          */
3879                         if (i)
3880                                 __blk_mq_free_map_and_rqs(set, i);
3881
3882                         hctx->tags = NULL;
3883                         continue;
3884                 }
3885
3886                 hctx->tags = set->tags[i];
3887                 WARN_ON(!hctx->tags);
3888
3889                 /*
3890                  * Set the map size to the number of mapped software queues.
3891                  * This is more accurate and more efficient than looping
3892                  * over all possibly mapped software queues.
3893                  */
3894                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895
3896                 /*
3897                  * Initialize batch roundrobin counts
3898                  */
3899                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901         }
3902 }
3903
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910         struct blk_mq_hw_ctx *hctx;
3911         unsigned long i;
3912
3913         queue_for_each_hw_ctx(q, hctx, i) {
3914                 if (shared) {
3915                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916                 } else {
3917                         blk_mq_tag_idle(hctx);
3918                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919                 }
3920         }
3921 }
3922
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924                                          bool shared)
3925 {
3926         struct request_queue *q;
3927
3928         lockdep_assert_held(&set->tag_list_lock);
3929
3930         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931                 blk_mq_freeze_queue(q);
3932                 queue_set_hctx_shared(q, shared);
3933                 blk_mq_unfreeze_queue(q);
3934         }
3935 }
3936
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939         struct blk_mq_tag_set *set = q->tag_set;
3940
3941         mutex_lock(&set->tag_list_lock);
3942         list_del(&q->tag_set_list);
3943         if (list_is_singular(&set->tag_list)) {
3944                 /* just transitioned to unshared */
3945                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946                 /* update existing queue */
3947                 blk_mq_update_tag_set_shared(set, false);
3948         }
3949         mutex_unlock(&set->tag_list_lock);
3950         INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954                                      struct request_queue *q)
3955 {
3956         mutex_lock(&set->tag_list_lock);
3957
3958         /*
3959          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960          */
3961         if (!list_empty(&set->tag_list) &&
3962             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964                 /* update existing queue */
3965                 blk_mq_update_tag_set_shared(set, true);
3966         }
3967         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968                 queue_set_hctx_shared(q, true);
3969         list_add_tail(&q->tag_set_list, &set->tag_list);
3970
3971         mutex_unlock(&set->tag_list_lock);
3972 }
3973
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977         struct blk_mq_ctxs *ctxs;
3978         int cpu;
3979
3980         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981         if (!ctxs)
3982                 return -ENOMEM;
3983
3984         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985         if (!ctxs->queue_ctx)
3986                 goto fail;
3987
3988         for_each_possible_cpu(cpu) {
3989                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990                 ctx->ctxs = ctxs;
3991         }
3992
3993         q->mq_kobj = &ctxs->kobj;
3994         q->queue_ctx = ctxs->queue_ctx;
3995
3996         return 0;
3997  fail:
3998         kfree(ctxs);
3999         return -ENOMEM;
4000 }
4001
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010         struct blk_mq_hw_ctx *hctx, *next;
4011         unsigned long i;
4012
4013         queue_for_each_hw_ctx(q, hctx, i)
4014                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015
4016         /* all hctx are in .unused_hctx_list now */
4017         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018                 list_del_init(&hctx->hctx_list);
4019                 kobject_put(&hctx->kobj);
4020         }
4021
4022         xa_destroy(&q->hctx_table);
4023
4024         /*
4025          * release .mq_kobj and sw queue's kobject now because
4026          * both share lifetime with request queue.
4027          */
4028         blk_mq_sysfs_deinit(q);
4029 }
4030
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032                 void *queuedata)
4033 {
4034         struct request_queue *q;
4035         int ret;
4036
4037         q = blk_alloc_queue(set->numa_node);
4038         if (!q)
4039                 return ERR_PTR(-ENOMEM);
4040         q->queuedata = queuedata;
4041         ret = blk_mq_init_allocated_queue(set, q);
4042         if (ret) {
4043                 blk_put_queue(q);
4044                 return ERR_PTR(ret);
4045         }
4046         return q;
4047 }
4048
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051         return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4060  * the initial reference.  All future requests will failed with -ENODEV.
4061  *
4062  * Context: can sleep
4063  */
4064 void blk_mq_destroy_queue(struct request_queue *q)
4065 {
4066         WARN_ON_ONCE(!queue_is_mq(q));
4067         WARN_ON_ONCE(blk_queue_registered(q));
4068
4069         might_sleep();
4070
4071         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4072         blk_queue_start_drain(q);
4073         blk_mq_freeze_queue_wait(q);
4074
4075         blk_sync_queue(q);
4076         blk_mq_cancel_work_sync(q);
4077         blk_mq_exit_queue(q);
4078 }
4079 EXPORT_SYMBOL(blk_mq_destroy_queue);
4080
4081 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4082                 struct lock_class_key *lkclass)
4083 {
4084         struct request_queue *q;
4085         struct gendisk *disk;
4086
4087         q = blk_mq_init_queue_data(set, queuedata);
4088         if (IS_ERR(q))
4089                 return ERR_CAST(q);
4090
4091         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4092         if (!disk) {
4093                 blk_mq_destroy_queue(q);
4094                 blk_put_queue(q);
4095                 return ERR_PTR(-ENOMEM);
4096         }
4097         set_bit(GD_OWNS_QUEUE, &disk->state);
4098         return disk;
4099 }
4100 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4101
4102 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4103                 struct lock_class_key *lkclass)
4104 {
4105         if (!blk_get_queue(q))
4106                 return NULL;
4107         return __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4108 }
4109 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4110
4111 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4112                 struct blk_mq_tag_set *set, struct request_queue *q,
4113                 int hctx_idx, int node)
4114 {
4115         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4116
4117         /* reuse dead hctx first */
4118         spin_lock(&q->unused_hctx_lock);
4119         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4120                 if (tmp->numa_node == node) {
4121                         hctx = tmp;
4122                         break;
4123                 }
4124         }
4125         if (hctx)
4126                 list_del_init(&hctx->hctx_list);
4127         spin_unlock(&q->unused_hctx_lock);
4128
4129         if (!hctx)
4130                 hctx = blk_mq_alloc_hctx(q, set, node);
4131         if (!hctx)
4132                 goto fail;
4133
4134         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4135                 goto free_hctx;
4136
4137         return hctx;
4138
4139  free_hctx:
4140         kobject_put(&hctx->kobj);
4141  fail:
4142         return NULL;
4143 }
4144
4145 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4146                                                 struct request_queue *q)
4147 {
4148         struct blk_mq_hw_ctx *hctx;
4149         unsigned long i, j;
4150
4151         /* protect against switching io scheduler  */
4152         mutex_lock(&q->sysfs_lock);
4153         for (i = 0; i < set->nr_hw_queues; i++) {
4154                 int old_node;
4155                 int node = blk_mq_get_hctx_node(set, i);
4156                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4157
4158                 if (old_hctx) {
4159                         old_node = old_hctx->numa_node;
4160                         blk_mq_exit_hctx(q, set, old_hctx, i);
4161                 }
4162
4163                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4164                         if (!old_hctx)
4165                                 break;
4166                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4167                                         node, old_node);
4168                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4169                         WARN_ON_ONCE(!hctx);
4170                 }
4171         }
4172         /*
4173          * Increasing nr_hw_queues fails. Free the newly allocated
4174          * hctxs and keep the previous q->nr_hw_queues.
4175          */
4176         if (i != set->nr_hw_queues) {
4177                 j = q->nr_hw_queues;
4178         } else {
4179                 j = i;
4180                 q->nr_hw_queues = set->nr_hw_queues;
4181         }
4182
4183         xa_for_each_start(&q->hctx_table, j, hctx, j)
4184                 blk_mq_exit_hctx(q, set, hctx, j);
4185         mutex_unlock(&q->sysfs_lock);
4186 }
4187
4188 static void blk_mq_update_poll_flag(struct request_queue *q)
4189 {
4190         struct blk_mq_tag_set *set = q->tag_set;
4191
4192         if (set->nr_maps > HCTX_TYPE_POLL &&
4193             set->map[HCTX_TYPE_POLL].nr_queues)
4194                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4195         else
4196                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4197 }
4198
4199 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4200                 struct request_queue *q)
4201 {
4202         /* mark the queue as mq asap */
4203         q->mq_ops = set->ops;
4204
4205         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4206                                              blk_mq_poll_stats_bkt,
4207                                              BLK_MQ_POLL_STATS_BKTS, q);
4208         if (!q->poll_cb)
4209                 goto err_exit;
4210
4211         if (blk_mq_alloc_ctxs(q))
4212                 goto err_poll;
4213
4214         /* init q->mq_kobj and sw queues' kobjects */
4215         blk_mq_sysfs_init(q);
4216
4217         INIT_LIST_HEAD(&q->unused_hctx_list);
4218         spin_lock_init(&q->unused_hctx_lock);
4219
4220         xa_init(&q->hctx_table);
4221
4222         blk_mq_realloc_hw_ctxs(set, q);
4223         if (!q->nr_hw_queues)
4224                 goto err_hctxs;
4225
4226         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4227         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4228
4229         q->tag_set = set;
4230
4231         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4232         blk_mq_update_poll_flag(q);
4233
4234         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4235         INIT_LIST_HEAD(&q->requeue_list);
4236         spin_lock_init(&q->requeue_lock);
4237
4238         q->nr_requests = set->queue_depth;
4239
4240         /*
4241          * Default to classic polling
4242          */
4243         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4244
4245         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4246         blk_mq_add_queue_tag_set(set, q);
4247         blk_mq_map_swqueue(q);
4248         return 0;
4249
4250 err_hctxs:
4251         xa_destroy(&q->hctx_table);
4252         q->nr_hw_queues = 0;
4253         blk_mq_sysfs_deinit(q);
4254 err_poll:
4255         blk_stat_free_callback(q->poll_cb);
4256         q->poll_cb = NULL;
4257 err_exit:
4258         q->mq_ops = NULL;
4259         return -ENOMEM;
4260 }
4261 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4262
4263 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4264 void blk_mq_exit_queue(struct request_queue *q)
4265 {
4266         struct blk_mq_tag_set *set = q->tag_set;
4267
4268         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4269         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4270         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4271         blk_mq_del_queue_tag_set(q);
4272 }
4273
4274 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4275 {
4276         int i;
4277
4278         if (blk_mq_is_shared_tags(set->flags)) {
4279                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4280                                                 BLK_MQ_NO_HCTX_IDX,
4281                                                 set->queue_depth);
4282                 if (!set->shared_tags)
4283                         return -ENOMEM;
4284         }
4285
4286         for (i = 0; i < set->nr_hw_queues; i++) {
4287                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4288                         goto out_unwind;
4289                 cond_resched();
4290         }
4291
4292         return 0;
4293
4294 out_unwind:
4295         while (--i >= 0)
4296                 __blk_mq_free_map_and_rqs(set, i);
4297
4298         if (blk_mq_is_shared_tags(set->flags)) {
4299                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4300                                         BLK_MQ_NO_HCTX_IDX);
4301         }
4302
4303         return -ENOMEM;
4304 }
4305
4306 /*
4307  * Allocate the request maps associated with this tag_set. Note that this
4308  * may reduce the depth asked for, if memory is tight. set->queue_depth
4309  * will be updated to reflect the allocated depth.
4310  */
4311 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4312 {
4313         unsigned int depth;
4314         int err;
4315
4316         depth = set->queue_depth;
4317         do {
4318                 err = __blk_mq_alloc_rq_maps(set);
4319                 if (!err)
4320                         break;
4321
4322                 set->queue_depth >>= 1;
4323                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4324                         err = -ENOMEM;
4325                         break;
4326                 }
4327         } while (set->queue_depth);
4328
4329         if (!set->queue_depth || err) {
4330                 pr_err("blk-mq: failed to allocate request map\n");
4331                 return -ENOMEM;
4332         }
4333
4334         if (depth != set->queue_depth)
4335                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4336                                                 depth, set->queue_depth);
4337
4338         return 0;
4339 }
4340
4341 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4342 {
4343         /*
4344          * blk_mq_map_queues() and multiple .map_queues() implementations
4345          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4346          * number of hardware queues.
4347          */
4348         if (set->nr_maps == 1)
4349                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4350
4351         if (set->ops->map_queues && !is_kdump_kernel()) {
4352                 int i;
4353
4354                 /*
4355                  * transport .map_queues is usually done in the following
4356                  * way:
4357                  *
4358                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4359                  *      mask = get_cpu_mask(queue)
4360                  *      for_each_cpu(cpu, mask)
4361                  *              set->map[x].mq_map[cpu] = queue;
4362                  * }
4363                  *
4364                  * When we need to remap, the table has to be cleared for
4365                  * killing stale mapping since one CPU may not be mapped
4366                  * to any hw queue.
4367                  */
4368                 for (i = 0; i < set->nr_maps; i++)
4369                         blk_mq_clear_mq_map(&set->map[i]);
4370
4371                 set->ops->map_queues(set);
4372         } else {
4373                 BUG_ON(set->nr_maps > 1);
4374                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4375         }
4376 }
4377
4378 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4379                                        int new_nr_hw_queues)
4380 {
4381         struct blk_mq_tags **new_tags;
4382
4383         if (set->nr_hw_queues >= new_nr_hw_queues)
4384                 goto done;
4385
4386         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4387                                 GFP_KERNEL, set->numa_node);
4388         if (!new_tags)
4389                 return -ENOMEM;
4390
4391         if (set->tags)
4392                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4393                        sizeof(*set->tags));
4394         kfree(set->tags);
4395         set->tags = new_tags;
4396 done:
4397         set->nr_hw_queues = new_nr_hw_queues;
4398         return 0;
4399 }
4400
4401 /*
4402  * Alloc a tag set to be associated with one or more request queues.
4403  * May fail with EINVAL for various error conditions. May adjust the
4404  * requested depth down, if it's too large. In that case, the set
4405  * value will be stored in set->queue_depth.
4406  */
4407 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4408 {
4409         int i, ret;
4410
4411         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4412
4413         if (!set->nr_hw_queues)
4414                 return -EINVAL;
4415         if (!set->queue_depth)
4416                 return -EINVAL;
4417         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4418                 return -EINVAL;
4419
4420         if (!set->ops->queue_rq)
4421                 return -EINVAL;
4422
4423         if (!set->ops->get_budget ^ !set->ops->put_budget)
4424                 return -EINVAL;
4425
4426         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4427                 pr_info("blk-mq: reduced tag depth to %u\n",
4428                         BLK_MQ_MAX_DEPTH);
4429                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4430         }
4431
4432         if (!set->nr_maps)
4433                 set->nr_maps = 1;
4434         else if (set->nr_maps > HCTX_MAX_TYPES)
4435                 return -EINVAL;
4436
4437         /*
4438          * If a crashdump is active, then we are potentially in a very
4439          * memory constrained environment. Limit us to 1 queue and
4440          * 64 tags to prevent using too much memory.
4441          */
4442         if (is_kdump_kernel()) {
4443                 set->nr_hw_queues = 1;
4444                 set->nr_maps = 1;
4445                 set->queue_depth = min(64U, set->queue_depth);
4446         }
4447         /*
4448          * There is no use for more h/w queues than cpus if we just have
4449          * a single map
4450          */
4451         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4452                 set->nr_hw_queues = nr_cpu_ids;
4453
4454         if (set->flags & BLK_MQ_F_BLOCKING) {
4455                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4456                 if (!set->srcu)
4457                         return -ENOMEM;
4458                 ret = init_srcu_struct(set->srcu);
4459                 if (ret)
4460                         goto out_free_srcu;
4461         }
4462
4463         ret = -ENOMEM;
4464         set->tags = kcalloc_node(set->nr_hw_queues,
4465                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4466                                  set->numa_node);
4467         if (!set->tags)
4468                 goto out_cleanup_srcu;
4469
4470         for (i = 0; i < set->nr_maps; i++) {
4471                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4472                                                   sizeof(set->map[i].mq_map[0]),
4473                                                   GFP_KERNEL, set->numa_node);
4474                 if (!set->map[i].mq_map)
4475                         goto out_free_mq_map;
4476                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4477         }
4478
4479         blk_mq_update_queue_map(set);
4480
4481         ret = blk_mq_alloc_set_map_and_rqs(set);
4482         if (ret)
4483                 goto out_free_mq_map;
4484
4485         mutex_init(&set->tag_list_lock);
4486         INIT_LIST_HEAD(&set->tag_list);
4487
4488         return 0;
4489
4490 out_free_mq_map:
4491         for (i = 0; i < set->nr_maps; i++) {
4492                 kfree(set->map[i].mq_map);
4493                 set->map[i].mq_map = NULL;
4494         }
4495         kfree(set->tags);
4496         set->tags = NULL;
4497 out_cleanup_srcu:
4498         if (set->flags & BLK_MQ_F_BLOCKING)
4499                 cleanup_srcu_struct(set->srcu);
4500 out_free_srcu:
4501         if (set->flags & BLK_MQ_F_BLOCKING)
4502                 kfree(set->srcu);
4503         return ret;
4504 }
4505 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4506
4507 /* allocate and initialize a tagset for a simple single-queue device */
4508 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4509                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4510                 unsigned int set_flags)
4511 {
4512         memset(set, 0, sizeof(*set));
4513         set->ops = ops;
4514         set->nr_hw_queues = 1;
4515         set->nr_maps = 1;
4516         set->queue_depth = queue_depth;
4517         set->numa_node = NUMA_NO_NODE;
4518         set->flags = set_flags;
4519         return blk_mq_alloc_tag_set(set);
4520 }
4521 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4522
4523 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4524 {
4525         int i, j;
4526
4527         for (i = 0; i < set->nr_hw_queues; i++)
4528                 __blk_mq_free_map_and_rqs(set, i);
4529
4530         if (blk_mq_is_shared_tags(set->flags)) {
4531                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4532                                         BLK_MQ_NO_HCTX_IDX);
4533         }
4534
4535         for (j = 0; j < set->nr_maps; j++) {
4536                 kfree(set->map[j].mq_map);
4537                 set->map[j].mq_map = NULL;
4538         }
4539
4540         kfree(set->tags);
4541         set->tags = NULL;
4542         if (set->flags & BLK_MQ_F_BLOCKING) {
4543                 cleanup_srcu_struct(set->srcu);
4544                 kfree(set->srcu);
4545         }
4546 }
4547 EXPORT_SYMBOL(blk_mq_free_tag_set);
4548
4549 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4550 {
4551         struct blk_mq_tag_set *set = q->tag_set;
4552         struct blk_mq_hw_ctx *hctx;
4553         int ret;
4554         unsigned long i;
4555
4556         if (!set)
4557                 return -EINVAL;
4558
4559         if (q->nr_requests == nr)
4560                 return 0;
4561
4562         blk_mq_freeze_queue(q);
4563         blk_mq_quiesce_queue(q);
4564
4565         ret = 0;
4566         queue_for_each_hw_ctx(q, hctx, i) {
4567                 if (!hctx->tags)
4568                         continue;
4569                 /*
4570                  * If we're using an MQ scheduler, just update the scheduler
4571                  * queue depth. This is similar to what the old code would do.
4572                  */
4573                 if (hctx->sched_tags) {
4574                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4575                                                       nr, true);
4576                 } else {
4577                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4578                                                       false);
4579                 }
4580                 if (ret)
4581                         break;
4582                 if (q->elevator && q->elevator->type->ops.depth_updated)
4583                         q->elevator->type->ops.depth_updated(hctx);
4584         }
4585         if (!ret) {
4586                 q->nr_requests = nr;
4587                 if (blk_mq_is_shared_tags(set->flags)) {
4588                         if (q->elevator)
4589                                 blk_mq_tag_update_sched_shared_tags(q);
4590                         else
4591                                 blk_mq_tag_resize_shared_tags(set, nr);
4592                 }
4593         }
4594
4595         blk_mq_unquiesce_queue(q);
4596         blk_mq_unfreeze_queue(q);
4597
4598         return ret;
4599 }
4600
4601 /*
4602  * request_queue and elevator_type pair.
4603  * It is just used by __blk_mq_update_nr_hw_queues to cache
4604  * the elevator_type associated with a request_queue.
4605  */
4606 struct blk_mq_qe_pair {
4607         struct list_head node;
4608         struct request_queue *q;
4609         struct elevator_type *type;
4610 };
4611
4612 /*
4613  * Cache the elevator_type in qe pair list and switch the
4614  * io scheduler to 'none'
4615  */
4616 static bool blk_mq_elv_switch_none(struct list_head *head,
4617                 struct request_queue *q)
4618 {
4619         struct blk_mq_qe_pair *qe;
4620
4621         if (!q->elevator)
4622                 return true;
4623
4624         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4625         if (!qe)
4626                 return false;
4627
4628         /* q->elevator needs protection from ->sysfs_lock */
4629         mutex_lock(&q->sysfs_lock);
4630
4631         INIT_LIST_HEAD(&qe->node);
4632         qe->q = q;
4633         qe->type = q->elevator->type;
4634         /* keep a reference to the elevator module as we'll switch back */
4635         __elevator_get(qe->type);
4636         list_add(&qe->node, head);
4637         elevator_disable(q);
4638         mutex_unlock(&q->sysfs_lock);
4639
4640         return true;
4641 }
4642
4643 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4644                                                 struct request_queue *q)
4645 {
4646         struct blk_mq_qe_pair *qe;
4647
4648         list_for_each_entry(qe, head, node)
4649                 if (qe->q == q)
4650                         return qe;
4651
4652         return NULL;
4653 }
4654
4655 static void blk_mq_elv_switch_back(struct list_head *head,
4656                                   struct request_queue *q)
4657 {
4658         struct blk_mq_qe_pair *qe;
4659         struct elevator_type *t;
4660
4661         qe = blk_lookup_qe_pair(head, q);
4662         if (!qe)
4663                 return;
4664         t = qe->type;
4665         list_del(&qe->node);
4666         kfree(qe);
4667
4668         mutex_lock(&q->sysfs_lock);
4669         elevator_switch(q, t);
4670         /* drop the reference acquired in blk_mq_elv_switch_none */
4671         elevator_put(t);
4672         mutex_unlock(&q->sysfs_lock);
4673 }
4674
4675 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4676                                                         int nr_hw_queues)
4677 {
4678         struct request_queue *q;
4679         LIST_HEAD(head);
4680         int prev_nr_hw_queues;
4681
4682         lockdep_assert_held(&set->tag_list_lock);
4683
4684         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4685                 nr_hw_queues = nr_cpu_ids;
4686         if (nr_hw_queues < 1)
4687                 return;
4688         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4689                 return;
4690
4691         list_for_each_entry(q, &set->tag_list, tag_set_list)
4692                 blk_mq_freeze_queue(q);
4693         /*
4694          * Switch IO scheduler to 'none', cleaning up the data associated
4695          * with the previous scheduler. We will switch back once we are done
4696          * updating the new sw to hw queue mappings.
4697          */
4698         list_for_each_entry(q, &set->tag_list, tag_set_list)
4699                 if (!blk_mq_elv_switch_none(&head, q))
4700                         goto switch_back;
4701
4702         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4703                 blk_mq_debugfs_unregister_hctxs(q);
4704                 blk_mq_sysfs_unregister_hctxs(q);
4705         }
4706
4707         prev_nr_hw_queues = set->nr_hw_queues;
4708         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4709                 goto reregister;
4710
4711 fallback:
4712         blk_mq_update_queue_map(set);
4713         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4714                 blk_mq_realloc_hw_ctxs(set, q);
4715                 blk_mq_update_poll_flag(q);
4716                 if (q->nr_hw_queues != set->nr_hw_queues) {
4717                         int i = prev_nr_hw_queues;
4718
4719                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4720                                         nr_hw_queues, prev_nr_hw_queues);
4721                         for (; i < set->nr_hw_queues; i++)
4722                                 __blk_mq_free_map_and_rqs(set, i);
4723
4724                         set->nr_hw_queues = prev_nr_hw_queues;
4725                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4726                         goto fallback;
4727                 }
4728                 blk_mq_map_swqueue(q);
4729         }
4730
4731 reregister:
4732         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4733                 blk_mq_sysfs_register_hctxs(q);
4734                 blk_mq_debugfs_register_hctxs(q);
4735         }
4736
4737 switch_back:
4738         list_for_each_entry(q, &set->tag_list, tag_set_list)
4739                 blk_mq_elv_switch_back(&head, q);
4740
4741         list_for_each_entry(q, &set->tag_list, tag_set_list)
4742                 blk_mq_unfreeze_queue(q);
4743 }
4744
4745 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4746 {
4747         mutex_lock(&set->tag_list_lock);
4748         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4749         mutex_unlock(&set->tag_list_lock);
4750 }
4751 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4752
4753 /* Enable polling stats and return whether they were already enabled. */
4754 static bool blk_poll_stats_enable(struct request_queue *q)
4755 {
4756         if (q->poll_stat)
4757                 return true;
4758
4759         return blk_stats_alloc_enable(q);
4760 }
4761
4762 static void blk_mq_poll_stats_start(struct request_queue *q)
4763 {
4764         /*
4765          * We don't arm the callback if polling stats are not enabled or the
4766          * callback is already active.
4767          */
4768         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4769                 return;
4770
4771         blk_stat_activate_msecs(q->poll_cb, 100);
4772 }
4773
4774 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4775 {
4776         struct request_queue *q = cb->data;
4777         int bucket;
4778
4779         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4780                 if (cb->stat[bucket].nr_samples)
4781                         q->poll_stat[bucket] = cb->stat[bucket];
4782         }
4783 }
4784
4785 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4786                                        struct request *rq)
4787 {
4788         unsigned long ret = 0;
4789         int bucket;
4790
4791         /*
4792          * If stats collection isn't on, don't sleep but turn it on for
4793          * future users
4794          */
4795         if (!blk_poll_stats_enable(q))
4796                 return 0;
4797
4798         /*
4799          * As an optimistic guess, use half of the mean service time
4800          * for this type of request. We can (and should) make this smarter.
4801          * For instance, if the completion latencies are tight, we can
4802          * get closer than just half the mean. This is especially
4803          * important on devices where the completion latencies are longer
4804          * than ~10 usec. We do use the stats for the relevant IO size
4805          * if available which does lead to better estimates.
4806          */
4807         bucket = blk_mq_poll_stats_bkt(rq);
4808         if (bucket < 0)
4809                 return ret;
4810
4811         if (q->poll_stat[bucket].nr_samples)
4812                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4813
4814         return ret;
4815 }
4816
4817 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4818 {
4819         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4820         struct request *rq = blk_qc_to_rq(hctx, qc);
4821         struct hrtimer_sleeper hs;
4822         enum hrtimer_mode mode;
4823         unsigned int nsecs;
4824         ktime_t kt;
4825
4826         /*
4827          * If a request has completed on queue that uses an I/O scheduler, we
4828          * won't get back a request from blk_qc_to_rq.
4829          */
4830         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4831                 return false;
4832
4833         /*
4834          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4835          *
4836          *  0:  use half of prev avg
4837          * >0:  use this specific value
4838          */
4839         if (q->poll_nsec > 0)
4840                 nsecs = q->poll_nsec;
4841         else
4842                 nsecs = blk_mq_poll_nsecs(q, rq);
4843
4844         if (!nsecs)
4845                 return false;
4846
4847         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4848
4849         /*
4850          * This will be replaced with the stats tracking code, using
4851          * 'avg_completion_time / 2' as the pre-sleep target.
4852          */
4853         kt = nsecs;
4854
4855         mode = HRTIMER_MODE_REL;
4856         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4857         hrtimer_set_expires(&hs.timer, kt);
4858
4859         do {
4860                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4861                         break;
4862                 set_current_state(TASK_UNINTERRUPTIBLE);
4863                 hrtimer_sleeper_start_expires(&hs, mode);
4864                 if (hs.task)
4865                         io_schedule();
4866                 hrtimer_cancel(&hs.timer);
4867                 mode = HRTIMER_MODE_ABS;
4868         } while (hs.task && !signal_pending(current));
4869
4870         __set_current_state(TASK_RUNNING);
4871         destroy_hrtimer_on_stack(&hs.timer);
4872
4873         /*
4874          * If we sleep, have the caller restart the poll loop to reset the
4875          * state.  Like for the other success return cases, the caller is
4876          * responsible for checking if the IO completed.  If the IO isn't
4877          * complete, we'll get called again and will go straight to the busy
4878          * poll loop.
4879          */
4880         return true;
4881 }
4882
4883 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4884                                struct io_comp_batch *iob, unsigned int flags)
4885 {
4886         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4887         long state = get_current_state();
4888         int ret;
4889
4890         do {
4891                 ret = q->mq_ops->poll(hctx, iob);
4892                 if (ret > 0) {
4893                         __set_current_state(TASK_RUNNING);
4894                         return ret;
4895                 }
4896
4897                 if (signal_pending_state(state, current))
4898                         __set_current_state(TASK_RUNNING);
4899                 if (task_is_running(current))
4900                         return 1;
4901
4902                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4903                         break;
4904                 cpu_relax();
4905         } while (!need_resched());
4906
4907         __set_current_state(TASK_RUNNING);
4908         return 0;
4909 }
4910
4911 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4912                 unsigned int flags)
4913 {
4914         if (!(flags & BLK_POLL_NOSLEEP) &&
4915             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4916                 if (blk_mq_poll_hybrid(q, cookie))
4917                         return 1;
4918         }
4919         return blk_mq_poll_classic(q, cookie, iob, flags);
4920 }
4921
4922 unsigned int blk_mq_rq_cpu(struct request *rq)
4923 {
4924         return rq->mq_ctx->cpu;
4925 }
4926 EXPORT_SYMBOL(blk_mq_rq_cpu);
4927
4928 void blk_mq_cancel_work_sync(struct request_queue *q)
4929 {
4930         struct blk_mq_hw_ctx *hctx;
4931         unsigned long i;
4932
4933         cancel_delayed_work_sync(&q->requeue_work);
4934
4935         queue_for_each_hw_ctx(q, hctx, i)
4936                 cancel_delayed_work_sync(&hctx->run_work);
4937 }
4938
4939 static int __init blk_mq_init(void)
4940 {
4941         int i;
4942
4943         for_each_possible_cpu(i)
4944                 init_llist_head(&per_cpu(blk_cpu_done, i));
4945         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4946
4947         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4948                                   "block/softirq:dead", NULL,
4949                                   blk_softirq_cpu_dead);
4950         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4951                                 blk_mq_hctx_notify_dead);
4952         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4953                                 blk_mq_hctx_notify_online,
4954                                 blk_mq_hctx_notify_offline);
4955         return 0;
4956 }
4957 subsys_initcall(blk_mq_init);