45f994c100446ca6c5df00e8737989a9563ddc5c
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31
32 #include <trace/events/block.h>
33
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42
43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45
46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47 static void blk_mq_request_bypass_insert(struct request *rq,
48                 blk_insert_t flags);
49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50                 struct list_head *list);
51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52                          struct io_comp_batch *iob, unsigned int flags);
53
54 /*
55  * Check if any of the ctx, dispatch list or elevator
56  * have pending work in this hardware queue.
57  */
58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 {
60         return !list_empty_careful(&hctx->dispatch) ||
61                 sbitmap_any_bit_set(&hctx->ctx_map) ||
62                         blk_mq_sched_has_work(hctx);
63 }
64
65 /*
66  * Mark this ctx as having pending work in this hardware queue
67  */
68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69                                      struct blk_mq_ctx *ctx)
70 {
71         const int bit = ctx->index_hw[hctx->type];
72
73         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74                 sbitmap_set_bit(&hctx->ctx_map, bit);
75 }
76
77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78                                       struct blk_mq_ctx *ctx)
79 {
80         const int bit = ctx->index_hw[hctx->type];
81
82         sbitmap_clear_bit(&hctx->ctx_map, bit);
83 }
84
85 struct mq_inflight {
86         struct block_device *part;
87         unsigned int inflight[2];
88 };
89
90 static bool blk_mq_check_inflight(struct request *rq, void *priv)
91 {
92         struct mq_inflight *mi = priv;
93
94         if (rq->part && blk_do_io_stat(rq) &&
95             (!mi->part->bd_partno || rq->part == mi->part) &&
96             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97                 mi->inflight[rq_data_dir(rq)]++;
98
99         return true;
100 }
101
102 unsigned int blk_mq_in_flight(struct request_queue *q,
103                 struct block_device *part)
104 {
105         struct mq_inflight mi = { .part = part };
106
107         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108
109         return mi.inflight[0] + mi.inflight[1];
110 }
111
112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113                 unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118         inflight[0] = mi.inflight[0];
119         inflight[1] = mi.inflight[1];
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124         mutex_lock(&q->mq_freeze_lock);
125         if (++q->mq_freeze_depth == 1) {
126                 percpu_ref_kill(&q->q_usage_counter);
127                 mutex_unlock(&q->mq_freeze_lock);
128                 if (queue_is_mq(q))
129                         blk_mq_run_hw_queues(q, false);
130         } else {
131                 mutex_unlock(&q->mq_freeze_lock);
132         }
133 }
134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135
136 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 {
138         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141
142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143                                      unsigned long timeout)
144 {
145         return wait_event_timeout(q->mq_freeze_wq,
146                                         percpu_ref_is_zero(&q->q_usage_counter),
147                                         timeout);
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150
151 /*
152  * Guarantee no request is in use, so we can change any data structure of
153  * the queue afterward.
154  */
155 void blk_freeze_queue(struct request_queue *q)
156 {
157         /*
158          * In the !blk_mq case we are only calling this to kill the
159          * q_usage_counter, otherwise this increases the freeze depth
160          * and waits for it to return to zero.  For this reason there is
161          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162          * exported to drivers as the only user for unfreeze is blk_mq.
163          */
164         blk_freeze_queue_start(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179 {
180         mutex_lock(&q->mq_freeze_lock);
181         if (force_atomic)
182                 q->q_usage_counter.data->force_atomic = true;
183         q->mq_freeze_depth--;
184         WARN_ON_ONCE(q->mq_freeze_depth < 0);
185         if (!q->mq_freeze_depth) {
186                 percpu_ref_resurrect(&q->q_usage_counter);
187                 wake_up_all(&q->mq_freeze_wq);
188         }
189         mutex_unlock(&q->mq_freeze_lock);
190 }
191
192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194         __blk_mq_unfreeze_queue(q, false);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197
198 /*
199  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200  * mpt3sas driver such that this function can be removed.
201  */
202 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203 {
204         unsigned long flags;
205
206         spin_lock_irqsave(&q->queue_lock, flags);
207         if (!q->quiesce_depth++)
208                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209         spin_unlock_irqrestore(&q->queue_lock, flags);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212
213 /**
214  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215  * @set: tag_set to wait on
216  *
217  * Note: it is driver's responsibility for making sure that quiesce has
218  * been started on or more of the request_queues of the tag_set.  This
219  * function only waits for the quiesce on those request_queues that had
220  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221  */
222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223 {
224         if (set->flags & BLK_MQ_F_BLOCKING)
225                 synchronize_srcu(set->srcu);
226         else
227                 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230
231 /**
232  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233  * @q: request queue.
234  *
235  * Note: this function does not prevent that the struct request end_io()
236  * callback function is invoked. Once this function is returned, we make
237  * sure no dispatch can happen until the queue is unquiesced via
238  * blk_mq_unquiesce_queue().
239  */
240 void blk_mq_quiesce_queue(struct request_queue *q)
241 {
242         blk_mq_quiesce_queue_nowait(q);
243         /* nothing to wait for non-mq queues */
244         if (queue_is_mq(q))
245                 blk_mq_wait_quiesce_done(q->tag_set);
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         unsigned long flags;
259         bool run_queue = false;
260
261         spin_lock_irqsave(&q->queue_lock, flags);
262         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263                 ;
264         } else if (!--q->quiesce_depth) {
265                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266                 run_queue = true;
267         }
268         spin_unlock_irqrestore(&q->queue_lock, flags);
269
270         /* dispatch requests which are inserted during quiescing */
271         if (run_queue)
272                 blk_mq_run_hw_queues(q, true);
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275
276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277 {
278         struct request_queue *q;
279
280         mutex_lock(&set->tag_list_lock);
281         list_for_each_entry(q, &set->tag_list, tag_set_list) {
282                 if (!blk_queue_skip_tagset_quiesce(q))
283                         blk_mq_quiesce_queue_nowait(q);
284         }
285         blk_mq_wait_quiesce_done(set);
286         mutex_unlock(&set->tag_list_lock);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289
290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291 {
292         struct request_queue *q;
293
294         mutex_lock(&set->tag_list_lock);
295         list_for_each_entry(q, &set->tag_list, tag_set_list) {
296                 if (!blk_queue_skip_tagset_quiesce(q))
297                         blk_mq_unquiesce_queue(q);
298         }
299         mutex_unlock(&set->tag_list_lock);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302
303 void blk_mq_wake_waiters(struct request_queue *q)
304 {
305         struct blk_mq_hw_ctx *hctx;
306         unsigned long i;
307
308         queue_for_each_hw_ctx(q, hctx, i)
309                 if (blk_mq_hw_queue_mapped(hctx))
310                         blk_mq_tag_wakeup_all(hctx->tags, true);
311 }
312
313 void blk_rq_init(struct request_queue *q, struct request *rq)
314 {
315         memset(rq, 0, sizeof(*rq));
316
317         INIT_LIST_HEAD(&rq->queuelist);
318         rq->q = q;
319         rq->__sector = (sector_t) -1;
320         INIT_HLIST_NODE(&rq->hash);
321         RB_CLEAR_NODE(&rq->rb_node);
322         rq->tag = BLK_MQ_NO_TAG;
323         rq->internal_tag = BLK_MQ_NO_TAG;
324         rq->start_time_ns = blk_time_get_ns();
325         rq->part = NULL;
326         blk_crypto_rq_set_defaults(rq);
327 }
328 EXPORT_SYMBOL(blk_rq_init);
329
330 /* Set start and alloc time when the allocated request is actually used */
331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332 {
333         if (blk_mq_need_time_stamp(rq))
334                 rq->start_time_ns = blk_time_get_ns();
335         else
336                 rq->start_time_ns = 0;
337
338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
339         if (blk_queue_rq_alloc_time(rq->q))
340                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341         else
342                 rq->alloc_time_ns = 0;
343 #endif
344 }
345
346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347                 struct blk_mq_tags *tags, unsigned int tag)
348 {
349         struct blk_mq_ctx *ctx = data->ctx;
350         struct blk_mq_hw_ctx *hctx = data->hctx;
351         struct request_queue *q = data->q;
352         struct request *rq = tags->static_rqs[tag];
353
354         rq->q = q;
355         rq->mq_ctx = ctx;
356         rq->mq_hctx = hctx;
357         rq->cmd_flags = data->cmd_flags;
358
359         if (data->flags & BLK_MQ_REQ_PM)
360                 data->rq_flags |= RQF_PM;
361         if (blk_queue_io_stat(q))
362                 data->rq_flags |= RQF_IO_STAT;
363         rq->rq_flags = data->rq_flags;
364
365         if (data->rq_flags & RQF_SCHED_TAGS) {
366                 rq->tag = BLK_MQ_NO_TAG;
367                 rq->internal_tag = tag;
368         } else {
369                 rq->tag = tag;
370                 rq->internal_tag = BLK_MQ_NO_TAG;
371         }
372         rq->timeout = 0;
373
374         rq->part = NULL;
375         rq->io_start_time_ns = 0;
376         rq->stats_sectors = 0;
377         rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379         rq->nr_integrity_segments = 0;
380 #endif
381         rq->end_io = NULL;
382         rq->end_io_data = NULL;
383
384         blk_crypto_rq_set_defaults(rq);
385         INIT_LIST_HEAD(&rq->queuelist);
386         /* tag was already set */
387         WRITE_ONCE(rq->deadline, 0);
388         req_ref_set(rq, 1);
389
390         if (rq->rq_flags & RQF_USE_SCHED) {
391                 struct elevator_queue *e = data->q->elevator;
392
393                 INIT_HLIST_NODE(&rq->hash);
394                 RB_CLEAR_NODE(&rq->rb_node);
395
396                 if (e->type->ops.prepare_request)
397                         e->type->ops.prepare_request(rq);
398         }
399
400         return rq;
401 }
402
403 static inline struct request *
404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 {
406         unsigned int tag, tag_offset;
407         struct blk_mq_tags *tags;
408         struct request *rq;
409         unsigned long tag_mask;
410         int i, nr = 0;
411
412         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413         if (unlikely(!tag_mask))
414                 return NULL;
415
416         tags = blk_mq_tags_from_data(data);
417         for (i = 0; tag_mask; i++) {
418                 if (!(tag_mask & (1UL << i)))
419                         continue;
420                 tag = tag_offset + i;
421                 prefetch(tags->static_rqs[tag]);
422                 tag_mask &= ~(1UL << i);
423                 rq = blk_mq_rq_ctx_init(data, tags, tag);
424                 rq_list_add(data->cached_rq, rq);
425                 nr++;
426         }
427         if (!(data->rq_flags & RQF_SCHED_TAGS))
428                 blk_mq_add_active_requests(data->hctx, nr);
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = blk_time_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data);
487                 if (rq) {
488                         blk_mq_rq_time_init(rq, alloc_time_ns);
489                         return rq;
490                 }
491                 data->nr_tags = 1;
492         }
493
494         /*
495          * Waiting allocations only fail because of an inactive hctx.  In that
496          * case just retry the hctx assignment and tag allocation as CPU hotplug
497          * should have migrated us to an online CPU by now.
498          */
499         tag = blk_mq_get_tag(data);
500         if (tag == BLK_MQ_NO_TAG) {
501                 if (data->flags & BLK_MQ_REQ_NOWAIT)
502                         return NULL;
503                 /*
504                  * Give up the CPU and sleep for a random short time to
505                  * ensure that thread using a realtime scheduling class
506                  * are migrated off the CPU, and thus off the hctx that
507                  * is going away.
508                  */
509                 msleep(3);
510                 goto retry;
511         }
512
513         if (!(data->rq_flags & RQF_SCHED_TAGS))
514                 blk_mq_inc_active_requests(data->hctx);
515         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516         blk_mq_rq_time_init(rq, alloc_time_ns);
517         return rq;
518 }
519
520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521                                             struct blk_plug *plug,
522                                             blk_opf_t opf,
523                                             blk_mq_req_flags_t flags)
524 {
525         struct blk_mq_alloc_data data = {
526                 .q              = q,
527                 .flags          = flags,
528                 .cmd_flags      = opf,
529                 .nr_tags        = plug->nr_ios,
530                 .cached_rq      = &plug->cached_rq,
531         };
532         struct request *rq;
533
534         if (blk_queue_enter(q, flags))
535                 return NULL;
536
537         plug->nr_ios = 1;
538
539         rq = __blk_mq_alloc_requests(&data);
540         if (unlikely(!rq))
541                 blk_queue_exit(q);
542         return rq;
543 }
544
545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546                                                    blk_opf_t opf,
547                                                    blk_mq_req_flags_t flags)
548 {
549         struct blk_plug *plug = current->plug;
550         struct request *rq;
551
552         if (!plug)
553                 return NULL;
554
555         if (rq_list_empty(plug->cached_rq)) {
556                 if (plug->nr_ios == 1)
557                         return NULL;
558                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559                 if (!rq)
560                         return NULL;
561         } else {
562                 rq = rq_list_peek(&plug->cached_rq);
563                 if (!rq || rq->q != q)
564                         return NULL;
565
566                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567                         return NULL;
568                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569                         return NULL;
570
571                 plug->cached_rq = rq_list_next(rq);
572                 blk_mq_rq_time_init(rq, 0);
573         }
574
575         rq->cmd_flags = opf;
576         INIT_LIST_HEAD(&rq->queuelist);
577         return rq;
578 }
579
580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581                 blk_mq_req_flags_t flags)
582 {
583         struct request *rq;
584
585         rq = blk_mq_alloc_cached_request(q, opf, flags);
586         if (!rq) {
587                 struct blk_mq_alloc_data data = {
588                         .q              = q,
589                         .flags          = flags,
590                         .cmd_flags      = opf,
591                         .nr_tags        = 1,
592                 };
593                 int ret;
594
595                 ret = blk_queue_enter(q, flags);
596                 if (ret)
597                         return ERR_PTR(ret);
598
599                 rq = __blk_mq_alloc_requests(&data);
600                 if (!rq)
601                         goto out_queue_exit;
602         }
603         rq->__data_len = 0;
604         rq->__sector = (sector_t) -1;
605         rq->bio = rq->biotail = NULL;
606         return rq;
607 out_queue_exit:
608         blk_queue_exit(q);
609         return ERR_PTR(-EWOULDBLOCK);
610 }
611 EXPORT_SYMBOL(blk_mq_alloc_request);
612
613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 {
616         struct blk_mq_alloc_data data = {
617                 .q              = q,
618                 .flags          = flags,
619                 .cmd_flags      = opf,
620                 .nr_tags        = 1,
621         };
622         u64 alloc_time_ns = 0;
623         struct request *rq;
624         unsigned int cpu;
625         unsigned int tag;
626         int ret;
627
628         /* alloc_time includes depth and tag waits */
629         if (blk_queue_rq_alloc_time(q))
630                 alloc_time_ns = blk_time_get_ns();
631
632         /*
633          * If the tag allocator sleeps we could get an allocation for a
634          * different hardware context.  No need to complicate the low level
635          * allocator for this for the rare use case of a command tied to
636          * a specific queue.
637          */
638         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640                 return ERR_PTR(-EINVAL);
641
642         if (hctx_idx >= q->nr_hw_queues)
643                 return ERR_PTR(-EIO);
644
645         ret = blk_queue_enter(q, flags);
646         if (ret)
647                 return ERR_PTR(ret);
648
649         /*
650          * Check if the hardware context is actually mapped to anything.
651          * If not tell the caller that it should skip this queue.
652          */
653         ret = -EXDEV;
654         data.hctx = xa_load(&q->hctx_table, hctx_idx);
655         if (!blk_mq_hw_queue_mapped(data.hctx))
656                 goto out_queue_exit;
657         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658         if (cpu >= nr_cpu_ids)
659                 goto out_queue_exit;
660         data.ctx = __blk_mq_get_ctx(q, cpu);
661
662         if (q->elevator)
663                 data.rq_flags |= RQF_SCHED_TAGS;
664         else
665                 blk_mq_tag_busy(data.hctx);
666
667         if (flags & BLK_MQ_REQ_RESERVED)
668                 data.rq_flags |= RQF_RESV;
669
670         ret = -EWOULDBLOCK;
671         tag = blk_mq_get_tag(&data);
672         if (tag == BLK_MQ_NO_TAG)
673                 goto out_queue_exit;
674         if (!(data.rq_flags & RQF_SCHED_TAGS))
675                 blk_mq_inc_active_requests(data.hctx);
676         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677         blk_mq_rq_time_init(rq, alloc_time_ns);
678         rq->__data_len = 0;
679         rq->__sector = (sector_t) -1;
680         rq->bio = rq->biotail = NULL;
681         return rq;
682
683 out_queue_exit:
684         blk_queue_exit(q);
685         return ERR_PTR(ret);
686 }
687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688
689 static void blk_mq_finish_request(struct request *rq)
690 {
691         struct request_queue *q = rq->q;
692
693         if (rq->rq_flags & RQF_USE_SCHED) {
694                 q->elevator->type->ops.finish_request(rq);
695                 /*
696                  * For postflush request that may need to be
697                  * completed twice, we should clear this flag
698                  * to avoid double finish_request() on the rq.
699                  */
700                 rq->rq_flags &= ~RQF_USE_SCHED;
701         }
702 }
703
704 static void __blk_mq_free_request(struct request *rq)
705 {
706         struct request_queue *q = rq->q;
707         struct blk_mq_ctx *ctx = rq->mq_ctx;
708         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709         const int sched_tag = rq->internal_tag;
710
711         blk_crypto_free_request(rq);
712         blk_pm_mark_last_busy(rq);
713         rq->mq_hctx = NULL;
714
715         if (rq->tag != BLK_MQ_NO_TAG) {
716                 blk_mq_dec_active_requests(hctx);
717                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718         }
719         if (sched_tag != BLK_MQ_NO_TAG)
720                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721         blk_mq_sched_restart(hctx);
722         blk_queue_exit(q);
723 }
724
725 void blk_mq_free_request(struct request *rq)
726 {
727         struct request_queue *q = rq->q;
728
729         blk_mq_finish_request(rq);
730
731         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732                 laptop_io_completion(q->disk->bdi);
733
734         rq_qos_done(q, rq);
735
736         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737         if (req_ref_put_and_test(rq))
738                 __blk_mq_free_request(rq);
739 }
740 EXPORT_SYMBOL_GPL(blk_mq_free_request);
741
742 void blk_mq_free_plug_rqs(struct blk_plug *plug)
743 {
744         struct request *rq;
745
746         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747                 blk_mq_free_request(rq);
748 }
749
750 void blk_dump_rq_flags(struct request *rq, char *msg)
751 {
752         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753                 rq->q->disk ? rq->q->disk->disk_name : "?",
754                 (__force unsigned long long) rq->cmd_flags);
755
756         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757                (unsigned long long)blk_rq_pos(rq),
758                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760                rq->bio, rq->biotail, blk_rq_bytes(rq));
761 }
762 EXPORT_SYMBOL(blk_dump_rq_flags);
763
764 static void req_bio_endio(struct request *rq, struct bio *bio,
765                           unsigned int nbytes, blk_status_t error)
766 {
767         if (unlikely(error)) {
768                 bio->bi_status = error;
769         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770                 /*
771                  * Partial zone append completions cannot be supported as the
772                  * BIO fragments may end up not being written sequentially.
773                  * For such case, force the completed nbytes to be equal to
774                  * the BIO size so that bio_advance() sets the BIO remaining
775                  * size to 0 and we end up calling bio_endio() before returning.
776                  */
777                 if (bio->bi_iter.bi_size != nbytes) {
778                         bio->bi_status = BLK_STS_IOERR;
779                         nbytes = bio->bi_iter.bi_size;
780                 } else {
781                         bio->bi_iter.bi_sector = rq->__sector;
782                 }
783         }
784
785         bio_advance(bio, nbytes);
786
787         if (unlikely(rq->rq_flags & RQF_QUIET))
788                 bio_set_flag(bio, BIO_QUIET);
789         /* don't actually finish bio if it's part of flush sequence */
790         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
791                 bio_endio(bio);
792 }
793
794 static void blk_account_io_completion(struct request *req, unsigned int bytes)
795 {
796         if (req->part && blk_do_io_stat(req)) {
797                 const int sgrp = op_stat_group(req_op(req));
798
799                 part_stat_lock();
800                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
801                 part_stat_unlock();
802         }
803 }
804
805 static void blk_print_req_error(struct request *req, blk_status_t status)
806 {
807         printk_ratelimited(KERN_ERR
808                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
809                 "phys_seg %u prio class %u\n",
810                 blk_status_to_str(status),
811                 req->q->disk ? req->q->disk->disk_name : "?",
812                 blk_rq_pos(req), (__force u32)req_op(req),
813                 blk_op_str(req_op(req)),
814                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
815                 req->nr_phys_segments,
816                 IOPRIO_PRIO_CLASS(req->ioprio));
817 }
818
819 /*
820  * Fully end IO on a request. Does not support partial completions, or
821  * errors.
822  */
823 static void blk_complete_request(struct request *req)
824 {
825         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
826         int total_bytes = blk_rq_bytes(req);
827         struct bio *bio = req->bio;
828
829         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
830
831         if (!bio)
832                 return;
833
834 #ifdef CONFIG_BLK_DEV_INTEGRITY
835         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
836                 req->q->integrity.profile->complete_fn(req, total_bytes);
837 #endif
838
839         /*
840          * Upper layers may call blk_crypto_evict_key() anytime after the last
841          * bio_endio().  Therefore, the keyslot must be released before that.
842          */
843         blk_crypto_rq_put_keyslot(req);
844
845         blk_account_io_completion(req, total_bytes);
846
847         do {
848                 struct bio *next = bio->bi_next;
849
850                 /* Completion has already been traced */
851                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
852
853                 if (req_op(req) == REQ_OP_ZONE_APPEND)
854                         bio->bi_iter.bi_sector = req->__sector;
855
856                 if (!is_flush)
857                         bio_endio(bio);
858                 bio = next;
859         } while (bio);
860
861         /*
862          * Reset counters so that the request stacking driver
863          * can find how many bytes remain in the request
864          * later.
865          */
866         if (!req->end_io) {
867                 req->bio = NULL;
868                 req->__data_len = 0;
869         }
870 }
871
872 /**
873  * blk_update_request - Complete multiple bytes without completing the request
874  * @req:      the request being processed
875  * @error:    block status code
876  * @nr_bytes: number of bytes to complete for @req
877  *
878  * Description:
879  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
880  *     the request structure even if @req doesn't have leftover.
881  *     If @req has leftover, sets it up for the next range of segments.
882  *
883  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
884  *     %false return from this function.
885  *
886  * Note:
887  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
888  *      except in the consistency check at the end of this function.
889  *
890  * Return:
891  *     %false - this request doesn't have any more data
892  *     %true  - this request has more data
893  **/
894 bool blk_update_request(struct request *req, blk_status_t error,
895                 unsigned int nr_bytes)
896 {
897         int total_bytes;
898
899         trace_block_rq_complete(req, error, nr_bytes);
900
901         if (!req->bio)
902                 return false;
903
904 #ifdef CONFIG_BLK_DEV_INTEGRITY
905         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
906             error == BLK_STS_OK)
907                 req->q->integrity.profile->complete_fn(req, nr_bytes);
908 #endif
909
910         /*
911          * Upper layers may call blk_crypto_evict_key() anytime after the last
912          * bio_endio().  Therefore, the keyslot must be released before that.
913          */
914         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
915                 __blk_crypto_rq_put_keyslot(req);
916
917         if (unlikely(error && !blk_rq_is_passthrough(req) &&
918                      !(req->rq_flags & RQF_QUIET)) &&
919                      !test_bit(GD_DEAD, &req->q->disk->state)) {
920                 blk_print_req_error(req, error);
921                 trace_block_rq_error(req, error, nr_bytes);
922         }
923
924         blk_account_io_completion(req, nr_bytes);
925
926         total_bytes = 0;
927         while (req->bio) {
928                 struct bio *bio = req->bio;
929                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
930
931                 if (bio_bytes == bio->bi_iter.bi_size)
932                         req->bio = bio->bi_next;
933
934                 /* Completion has already been traced */
935                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
936                 req_bio_endio(req, bio, bio_bytes, error);
937
938                 total_bytes += bio_bytes;
939                 nr_bytes -= bio_bytes;
940
941                 if (!nr_bytes)
942                         break;
943         }
944
945         /*
946          * completely done
947          */
948         if (!req->bio) {
949                 /*
950                  * Reset counters so that the request stacking driver
951                  * can find how many bytes remain in the request
952                  * later.
953                  */
954                 req->__data_len = 0;
955                 return false;
956         }
957
958         req->__data_len -= total_bytes;
959
960         /* update sector only for requests with clear definition of sector */
961         if (!blk_rq_is_passthrough(req))
962                 req->__sector += total_bytes >> 9;
963
964         /* mixed attributes always follow the first bio */
965         if (req->rq_flags & RQF_MIXED_MERGE) {
966                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
967                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
968         }
969
970         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
971                 /*
972                  * If total number of sectors is less than the first segment
973                  * size, something has gone terribly wrong.
974                  */
975                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
976                         blk_dump_rq_flags(req, "request botched");
977                         req->__data_len = blk_rq_cur_bytes(req);
978                 }
979
980                 /* recalculate the number of segments */
981                 req->nr_phys_segments = blk_recalc_rq_segments(req);
982         }
983
984         return true;
985 }
986 EXPORT_SYMBOL_GPL(blk_update_request);
987
988 static inline void blk_account_io_done(struct request *req, u64 now)
989 {
990         trace_block_io_done(req);
991
992         /*
993          * Account IO completion.  flush_rq isn't accounted as a
994          * normal IO on queueing nor completion.  Accounting the
995          * containing request is enough.
996          */
997         if (blk_do_io_stat(req) && req->part &&
998             !(req->rq_flags & RQF_FLUSH_SEQ)) {
999                 const int sgrp = op_stat_group(req_op(req));
1000
1001                 part_stat_lock();
1002                 update_io_ticks(req->part, jiffies, true);
1003                 part_stat_inc(req->part, ios[sgrp]);
1004                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1005                 part_stat_unlock();
1006         }
1007 }
1008
1009 static inline void blk_account_io_start(struct request *req)
1010 {
1011         trace_block_io_start(req);
1012
1013         if (blk_do_io_stat(req)) {
1014                 /*
1015                  * All non-passthrough requests are created from a bio with one
1016                  * exception: when a flush command that is part of a flush sequence
1017                  * generated by the state machine in blk-flush.c is cloned onto the
1018                  * lower device by dm-multipath we can get here without a bio.
1019                  */
1020                 if (req->bio)
1021                         req->part = req->bio->bi_bdev;
1022                 else
1023                         req->part = req->q->disk->part0;
1024
1025                 part_stat_lock();
1026                 update_io_ticks(req->part, jiffies, false);
1027                 part_stat_unlock();
1028         }
1029 }
1030
1031 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1032 {
1033         if (rq->rq_flags & RQF_STATS)
1034                 blk_stat_add(rq, now);
1035
1036         blk_mq_sched_completed_request(rq, now);
1037         blk_account_io_done(rq, now);
1038 }
1039
1040 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1041 {
1042         if (blk_mq_need_time_stamp(rq))
1043                 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1044
1045         blk_mq_finish_request(rq);
1046
1047         if (rq->end_io) {
1048                 rq_qos_done(rq->q, rq);
1049                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1050                         blk_mq_free_request(rq);
1051         } else {
1052                 blk_mq_free_request(rq);
1053         }
1054 }
1055 EXPORT_SYMBOL(__blk_mq_end_request);
1056
1057 void blk_mq_end_request(struct request *rq, blk_status_t error)
1058 {
1059         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1060                 BUG();
1061         __blk_mq_end_request(rq, error);
1062 }
1063 EXPORT_SYMBOL(blk_mq_end_request);
1064
1065 #define TAG_COMP_BATCH          32
1066
1067 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1068                                           int *tag_array, int nr_tags)
1069 {
1070         struct request_queue *q = hctx->queue;
1071
1072         blk_mq_sub_active_requests(hctx, nr_tags);
1073
1074         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080         int tags[TAG_COMP_BATCH], nr_tags = 0;
1081         struct blk_mq_hw_ctx *cur_hctx = NULL;
1082         struct request *rq;
1083         u64 now = 0;
1084
1085         if (iob->need_ts)
1086                 now = blk_time_get_ns();
1087
1088         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089                 prefetch(rq->bio);
1090                 prefetch(rq->rq_next);
1091
1092                 blk_complete_request(rq);
1093                 if (iob->need_ts)
1094                         __blk_mq_end_request_acct(rq, now);
1095
1096                 blk_mq_finish_request(rq);
1097
1098                 rq_qos_done(rq->q, rq);
1099
1100                 /*
1101                  * If end_io handler returns NONE, then it still has
1102                  * ownership of the request.
1103                  */
1104                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105                         continue;
1106
1107                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1108                 if (!req_ref_put_and_test(rq))
1109                         continue;
1110
1111                 blk_crypto_free_request(rq);
1112                 blk_pm_mark_last_busy(rq);
1113
1114                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1115                         if (cur_hctx)
1116                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117                         nr_tags = 0;
1118                         cur_hctx = rq->mq_hctx;
1119                 }
1120                 tags[nr_tags++] = rq->tag;
1121         }
1122
1123         if (nr_tags)
1124                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1125 }
1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1127
1128 static void blk_complete_reqs(struct llist_head *list)
1129 {
1130         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1131         struct request *rq, *next;
1132
1133         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1134                 rq->q->mq_ops->complete(rq);
1135 }
1136
1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1138 {
1139         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 }
1141
1142 static int blk_softirq_cpu_dead(unsigned int cpu)
1143 {
1144         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145         return 0;
1146 }
1147
1148 static void __blk_mq_complete_request_remote(void *data)
1149 {
1150         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 }
1152
1153 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1154 {
1155         int cpu = raw_smp_processor_id();
1156
1157         if (!IS_ENABLED(CONFIG_SMP) ||
1158             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159                 return false;
1160         /*
1161          * With force threaded interrupts enabled, raising softirq from an SMP
1162          * function call will always result in waking the ksoftirqd thread.
1163          * This is probably worse than completing the request on a different
1164          * cache domain.
1165          */
1166         if (force_irqthreads())
1167                 return false;
1168
1169         /* same CPU or cache domain?  Complete locally */
1170         if (cpu == rq->mq_ctx->cpu ||
1171             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1172              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1173                 return false;
1174
1175         /* don't try to IPI to an offline CPU */
1176         return cpu_online(rq->mq_ctx->cpu);
1177 }
1178
1179 static void blk_mq_complete_send_ipi(struct request *rq)
1180 {
1181         unsigned int cpu;
1182
1183         cpu = rq->mq_ctx->cpu;
1184         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1185                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1186 }
1187
1188 static void blk_mq_raise_softirq(struct request *rq)
1189 {
1190         struct llist_head *list;
1191
1192         preempt_disable();
1193         list = this_cpu_ptr(&blk_cpu_done);
1194         if (llist_add(&rq->ipi_list, list))
1195                 raise_softirq(BLOCK_SOFTIRQ);
1196         preempt_enable();
1197 }
1198
1199 bool blk_mq_complete_request_remote(struct request *rq)
1200 {
1201         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202
1203         /*
1204          * For request which hctx has only one ctx mapping,
1205          * or a polled request, always complete locally,
1206          * it's pointless to redirect the completion.
1207          */
1208         if ((rq->mq_hctx->nr_ctx == 1 &&
1209              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210              rq->cmd_flags & REQ_POLLED)
1211                 return false;
1212
1213         if (blk_mq_complete_need_ipi(rq)) {
1214                 blk_mq_complete_send_ipi(rq);
1215                 return true;
1216         }
1217
1218         if (rq->q->nr_hw_queues == 1) {
1219                 blk_mq_raise_softirq(rq);
1220                 return true;
1221         }
1222         return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:         the request being processed
1229  *
1230  * Description:
1231  *      Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235         if (!blk_mq_complete_request_remote(rq))
1236                 rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250         struct request_queue *q = rq->q;
1251
1252         trace_block_rq_issue(rq);
1253
1254         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1255             !blk_rq_is_passthrough(rq)) {
1256                 rq->io_start_time_ns = blk_time_get_ns();
1257                 rq->stats_sectors = blk_rq_sectors(rq);
1258                 rq->rq_flags |= RQF_STATS;
1259                 rq_qos_issue(q, rq);
1260         }
1261
1262         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264         blk_add_timer(rq);
1265         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1267
1268 #ifdef CONFIG_BLK_DEV_INTEGRITY
1269         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270                 q->integrity.profile->prepare_fn(rq);
1271 #endif
1272         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274 }
1275 EXPORT_SYMBOL(blk_mq_start_request);
1276
1277 /*
1278  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279  * queues. This is important for md arrays to benefit from merging
1280  * requests.
1281  */
1282 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283 {
1284         if (plug->multiple_queues)
1285                 return BLK_MAX_REQUEST_COUNT * 2;
1286         return BLK_MAX_REQUEST_COUNT;
1287 }
1288
1289 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290 {
1291         struct request *last = rq_list_peek(&plug->mq_list);
1292
1293         if (!plug->rq_count) {
1294                 trace_block_plug(rq->q);
1295         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296                    (!blk_queue_nomerges(rq->q) &&
1297                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298                 blk_mq_flush_plug_list(plug, false);
1299                 last = NULL;
1300                 trace_block_plug(rq->q);
1301         }
1302
1303         if (!plug->multiple_queues && last && last->q != rq->q)
1304                 plug->multiple_queues = true;
1305         /*
1306          * Any request allocated from sched tags can't be issued to
1307          * ->queue_rqs() directly
1308          */
1309         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310                 plug->has_elevator = true;
1311         rq->rq_next = NULL;
1312         rq_list_add(&plug->mq_list, rq);
1313         plug->rq_count++;
1314 }
1315
1316 /**
1317  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318  * @rq:         request to insert
1319  * @at_head:    insert request at head or tail of queue
1320  *
1321  * Description:
1322  *    Insert a fully prepared request at the back of the I/O scheduler queue
1323  *    for execution.  Don't wait for completion.
1324  *
1325  * Note:
1326  *    This function will invoke @done directly if the queue is dead.
1327  */
1328 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329 {
1330         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331
1332         WARN_ON(irqs_disabled());
1333         WARN_ON(!blk_rq_is_passthrough(rq));
1334
1335         blk_account_io_start(rq);
1336
1337         /*
1338          * As plugging can be enabled for passthrough requests on a zoned
1339          * device, directly accessing the plug instead of using blk_mq_plug()
1340          * should not have any consequences.
1341          */
1342         if (current->plug && !at_head) {
1343                 blk_add_rq_to_plug(current->plug, rq);
1344                 return;
1345         }
1346
1347         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349 }
1350 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351
1352 struct blk_rq_wait {
1353         struct completion done;
1354         blk_status_t ret;
1355 };
1356
1357 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358 {
1359         struct blk_rq_wait *wait = rq->end_io_data;
1360
1361         wait->ret = ret;
1362         complete(&wait->done);
1363         return RQ_END_IO_NONE;
1364 }
1365
1366 bool blk_rq_is_poll(struct request *rq)
1367 {
1368         if (!rq->mq_hctx)
1369                 return false;
1370         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371                 return false;
1372         return true;
1373 }
1374 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375
1376 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377 {
1378         do {
1379                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380                 cond_resched();
1381         } while (!completion_done(wait));
1382 }
1383
1384 /**
1385  * blk_execute_rq - insert a request into queue for execution
1386  * @rq:         request to insert
1387  * @at_head:    insert request at head or tail of queue
1388  *
1389  * Description:
1390  *    Insert a fully prepared request at the back of the I/O scheduler queue
1391  *    for execution and wait for completion.
1392  * Return: The blk_status_t result provided to blk_mq_end_request().
1393  */
1394 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395 {
1396         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397         struct blk_rq_wait wait = {
1398                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399         };
1400
1401         WARN_ON(irqs_disabled());
1402         WARN_ON(!blk_rq_is_passthrough(rq));
1403
1404         rq->end_io_data = &wait;
1405         rq->end_io = blk_end_sync_rq;
1406
1407         blk_account_io_start(rq);
1408         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409         blk_mq_run_hw_queue(hctx, false);
1410
1411         if (blk_rq_is_poll(rq))
1412                 blk_rq_poll_completion(rq, &wait.done);
1413         else
1414                 blk_wait_io(&wait.done);
1415
1416         return wait.ret;
1417 }
1418 EXPORT_SYMBOL(blk_execute_rq);
1419
1420 static void __blk_mq_requeue_request(struct request *rq)
1421 {
1422         struct request_queue *q = rq->q;
1423
1424         blk_mq_put_driver_tag(rq);
1425
1426         trace_block_rq_requeue(rq);
1427         rq_qos_requeue(q, rq);
1428
1429         if (blk_mq_request_started(rq)) {
1430                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1431                 rq->rq_flags &= ~RQF_TIMED_OUT;
1432         }
1433 }
1434
1435 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1436 {
1437         struct request_queue *q = rq->q;
1438         unsigned long flags;
1439
1440         __blk_mq_requeue_request(rq);
1441
1442         /* this request will be re-inserted to io scheduler queue */
1443         blk_mq_sched_requeue_request(rq);
1444
1445         spin_lock_irqsave(&q->requeue_lock, flags);
1446         list_add_tail(&rq->queuelist, &q->requeue_list);
1447         spin_unlock_irqrestore(&q->requeue_lock, flags);
1448
1449         if (kick_requeue_list)
1450                 blk_mq_kick_requeue_list(q);
1451 }
1452 EXPORT_SYMBOL(blk_mq_requeue_request);
1453
1454 static void blk_mq_requeue_work(struct work_struct *work)
1455 {
1456         struct request_queue *q =
1457                 container_of(work, struct request_queue, requeue_work.work);
1458         LIST_HEAD(rq_list);
1459         LIST_HEAD(flush_list);
1460         struct request *rq;
1461
1462         spin_lock_irq(&q->requeue_lock);
1463         list_splice_init(&q->requeue_list, &rq_list);
1464         list_splice_init(&q->flush_list, &flush_list);
1465         spin_unlock_irq(&q->requeue_lock);
1466
1467         while (!list_empty(&rq_list)) {
1468                 rq = list_entry(rq_list.next, struct request, queuelist);
1469                 /*
1470                  * If RQF_DONTPREP ist set, the request has been started by the
1471                  * driver already and might have driver-specific data allocated
1472                  * already.  Insert it into the hctx dispatch list to avoid
1473                  * block layer merges for the request.
1474                  */
1475                 if (rq->rq_flags & RQF_DONTPREP) {
1476                         list_del_init(&rq->queuelist);
1477                         blk_mq_request_bypass_insert(rq, 0);
1478                 } else {
1479                         list_del_init(&rq->queuelist);
1480                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1481                 }
1482         }
1483
1484         while (!list_empty(&flush_list)) {
1485                 rq = list_entry(flush_list.next, struct request, queuelist);
1486                 list_del_init(&rq->queuelist);
1487                 blk_mq_insert_request(rq, 0);
1488         }
1489
1490         blk_mq_run_hw_queues(q, false);
1491 }
1492
1493 void blk_mq_kick_requeue_list(struct request_queue *q)
1494 {
1495         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1496 }
1497 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1498
1499 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1500                                     unsigned long msecs)
1501 {
1502         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1503                                     msecs_to_jiffies(msecs));
1504 }
1505 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1506
1507 static bool blk_is_flush_data_rq(struct request *rq)
1508 {
1509         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1510 }
1511
1512 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1513 {
1514         /*
1515          * If we find a request that isn't idle we know the queue is busy
1516          * as it's checked in the iter.
1517          * Return false to stop the iteration.
1518          *
1519          * In case of queue quiesce, if one flush data request is completed,
1520          * don't count it as inflight given the flush sequence is suspended,
1521          * and the original flush data request is invisible to driver, just
1522          * like other pending requests because of quiesce
1523          */
1524         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1525                                 blk_is_flush_data_rq(rq) &&
1526                                 blk_mq_request_completed(rq))) {
1527                 bool *busy = priv;
1528
1529                 *busy = true;
1530                 return false;
1531         }
1532
1533         return true;
1534 }
1535
1536 bool blk_mq_queue_inflight(struct request_queue *q)
1537 {
1538         bool busy = false;
1539
1540         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1541         return busy;
1542 }
1543 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1544
1545 static void blk_mq_rq_timed_out(struct request *req)
1546 {
1547         req->rq_flags |= RQF_TIMED_OUT;
1548         if (req->q->mq_ops->timeout) {
1549                 enum blk_eh_timer_return ret;
1550
1551                 ret = req->q->mq_ops->timeout(req);
1552                 if (ret == BLK_EH_DONE)
1553                         return;
1554                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1555         }
1556
1557         blk_add_timer(req);
1558 }
1559
1560 struct blk_expired_data {
1561         bool has_timedout_rq;
1562         unsigned long next;
1563         unsigned long timeout_start;
1564 };
1565
1566 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1567 {
1568         unsigned long deadline;
1569
1570         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1571                 return false;
1572         if (rq->rq_flags & RQF_TIMED_OUT)
1573                 return false;
1574
1575         deadline = READ_ONCE(rq->deadline);
1576         if (time_after_eq(expired->timeout_start, deadline))
1577                 return true;
1578
1579         if (expired->next == 0)
1580                 expired->next = deadline;
1581         else if (time_after(expired->next, deadline))
1582                 expired->next = deadline;
1583         return false;
1584 }
1585
1586 void blk_mq_put_rq_ref(struct request *rq)
1587 {
1588         if (is_flush_rq(rq)) {
1589                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1590                         blk_mq_free_request(rq);
1591         } else if (req_ref_put_and_test(rq)) {
1592                 __blk_mq_free_request(rq);
1593         }
1594 }
1595
1596 static bool blk_mq_check_expired(struct request *rq, void *priv)
1597 {
1598         struct blk_expired_data *expired = priv;
1599
1600         /*
1601          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1602          * be reallocated underneath the timeout handler's processing, then
1603          * the expire check is reliable. If the request is not expired, then
1604          * it was completed and reallocated as a new request after returning
1605          * from blk_mq_check_expired().
1606          */
1607         if (blk_mq_req_expired(rq, expired)) {
1608                 expired->has_timedout_rq = true;
1609                 return false;
1610         }
1611         return true;
1612 }
1613
1614 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1615 {
1616         struct blk_expired_data *expired = priv;
1617
1618         if (blk_mq_req_expired(rq, expired))
1619                 blk_mq_rq_timed_out(rq);
1620         return true;
1621 }
1622
1623 static void blk_mq_timeout_work(struct work_struct *work)
1624 {
1625         struct request_queue *q =
1626                 container_of(work, struct request_queue, timeout_work);
1627         struct blk_expired_data expired = {
1628                 .timeout_start = jiffies,
1629         };
1630         struct blk_mq_hw_ctx *hctx;
1631         unsigned long i;
1632
1633         /* A deadlock might occur if a request is stuck requiring a
1634          * timeout at the same time a queue freeze is waiting
1635          * completion, since the timeout code would not be able to
1636          * acquire the queue reference here.
1637          *
1638          * That's why we don't use blk_queue_enter here; instead, we use
1639          * percpu_ref_tryget directly, because we need to be able to
1640          * obtain a reference even in the short window between the queue
1641          * starting to freeze, by dropping the first reference in
1642          * blk_freeze_queue_start, and the moment the last request is
1643          * consumed, marked by the instant q_usage_counter reaches
1644          * zero.
1645          */
1646         if (!percpu_ref_tryget(&q->q_usage_counter))
1647                 return;
1648
1649         /* check if there is any timed-out request */
1650         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1651         if (expired.has_timedout_rq) {
1652                 /*
1653                  * Before walking tags, we must ensure any submit started
1654                  * before the current time has finished. Since the submit
1655                  * uses srcu or rcu, wait for a synchronization point to
1656                  * ensure all running submits have finished
1657                  */
1658                 blk_mq_wait_quiesce_done(q->tag_set);
1659
1660                 expired.next = 0;
1661                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1662         }
1663
1664         if (expired.next != 0) {
1665                 mod_timer(&q->timeout, expired.next);
1666         } else {
1667                 /*
1668                  * Request timeouts are handled as a forward rolling timer. If
1669                  * we end up here it means that no requests are pending and
1670                  * also that no request has been pending for a while. Mark
1671                  * each hctx as idle.
1672                  */
1673                 queue_for_each_hw_ctx(q, hctx, i) {
1674                         /* the hctx may be unmapped, so check it here */
1675                         if (blk_mq_hw_queue_mapped(hctx))
1676                                 blk_mq_tag_idle(hctx);
1677                 }
1678         }
1679         blk_queue_exit(q);
1680 }
1681
1682 struct flush_busy_ctx_data {
1683         struct blk_mq_hw_ctx *hctx;
1684         struct list_head *list;
1685 };
1686
1687 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1688 {
1689         struct flush_busy_ctx_data *flush_data = data;
1690         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1691         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1692         enum hctx_type type = hctx->type;
1693
1694         spin_lock(&ctx->lock);
1695         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1696         sbitmap_clear_bit(sb, bitnr);
1697         spin_unlock(&ctx->lock);
1698         return true;
1699 }
1700
1701 /*
1702  * Process software queues that have been marked busy, splicing them
1703  * to the for-dispatch
1704  */
1705 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1706 {
1707         struct flush_busy_ctx_data data = {
1708                 .hctx = hctx,
1709                 .list = list,
1710         };
1711
1712         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1713 }
1714 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1715
1716 struct dispatch_rq_data {
1717         struct blk_mq_hw_ctx *hctx;
1718         struct request *rq;
1719 };
1720
1721 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1722                 void *data)
1723 {
1724         struct dispatch_rq_data *dispatch_data = data;
1725         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1726         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1727         enum hctx_type type = hctx->type;
1728
1729         spin_lock(&ctx->lock);
1730         if (!list_empty(&ctx->rq_lists[type])) {
1731                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1732                 list_del_init(&dispatch_data->rq->queuelist);
1733                 if (list_empty(&ctx->rq_lists[type]))
1734                         sbitmap_clear_bit(sb, bitnr);
1735         }
1736         spin_unlock(&ctx->lock);
1737
1738         return !dispatch_data->rq;
1739 }
1740
1741 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1742                                         struct blk_mq_ctx *start)
1743 {
1744         unsigned off = start ? start->index_hw[hctx->type] : 0;
1745         struct dispatch_rq_data data = {
1746                 .hctx = hctx,
1747                 .rq   = NULL,
1748         };
1749
1750         __sbitmap_for_each_set(&hctx->ctx_map, off,
1751                                dispatch_rq_from_ctx, &data);
1752
1753         return data.rq;
1754 }
1755
1756 bool __blk_mq_alloc_driver_tag(struct request *rq)
1757 {
1758         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1759         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1760         int tag;
1761
1762         blk_mq_tag_busy(rq->mq_hctx);
1763
1764         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1765                 bt = &rq->mq_hctx->tags->breserved_tags;
1766                 tag_offset = 0;
1767         } else {
1768                 if (!hctx_may_queue(rq->mq_hctx, bt))
1769                         return false;
1770         }
1771
1772         tag = __sbitmap_queue_get(bt);
1773         if (tag == BLK_MQ_NO_TAG)
1774                 return false;
1775
1776         rq->tag = tag + tag_offset;
1777         blk_mq_inc_active_requests(rq->mq_hctx);
1778         return true;
1779 }
1780
1781 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1782                                 int flags, void *key)
1783 {
1784         struct blk_mq_hw_ctx *hctx;
1785
1786         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1787
1788         spin_lock(&hctx->dispatch_wait_lock);
1789         if (!list_empty(&wait->entry)) {
1790                 struct sbitmap_queue *sbq;
1791
1792                 list_del_init(&wait->entry);
1793                 sbq = &hctx->tags->bitmap_tags;
1794                 atomic_dec(&sbq->ws_active);
1795         }
1796         spin_unlock(&hctx->dispatch_wait_lock);
1797
1798         blk_mq_run_hw_queue(hctx, true);
1799         return 1;
1800 }
1801
1802 /*
1803  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1804  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1805  * restart. For both cases, take care to check the condition again after
1806  * marking us as waiting.
1807  */
1808 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1809                                  struct request *rq)
1810 {
1811         struct sbitmap_queue *sbq;
1812         struct wait_queue_head *wq;
1813         wait_queue_entry_t *wait;
1814         bool ret;
1815
1816         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1817             !(blk_mq_is_shared_tags(hctx->flags))) {
1818                 blk_mq_sched_mark_restart_hctx(hctx);
1819
1820                 /*
1821                  * It's possible that a tag was freed in the window between the
1822                  * allocation failure and adding the hardware queue to the wait
1823                  * queue.
1824                  *
1825                  * Don't clear RESTART here, someone else could have set it.
1826                  * At most this will cost an extra queue run.
1827                  */
1828                 return blk_mq_get_driver_tag(rq);
1829         }
1830
1831         wait = &hctx->dispatch_wait;
1832         if (!list_empty_careful(&wait->entry))
1833                 return false;
1834
1835         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1836                 sbq = &hctx->tags->breserved_tags;
1837         else
1838                 sbq = &hctx->tags->bitmap_tags;
1839         wq = &bt_wait_ptr(sbq, hctx)->wait;
1840
1841         spin_lock_irq(&wq->lock);
1842         spin_lock(&hctx->dispatch_wait_lock);
1843         if (!list_empty(&wait->entry)) {
1844                 spin_unlock(&hctx->dispatch_wait_lock);
1845                 spin_unlock_irq(&wq->lock);
1846                 return false;
1847         }
1848
1849         atomic_inc(&sbq->ws_active);
1850         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1851         __add_wait_queue(wq, wait);
1852
1853         /*
1854          * Add one explicit barrier since blk_mq_get_driver_tag() may
1855          * not imply barrier in case of failure.
1856          *
1857          * Order adding us to wait queue and allocating driver tag.
1858          *
1859          * The pair is the one implied in sbitmap_queue_wake_up() which
1860          * orders clearing sbitmap tag bits and waitqueue_active() in
1861          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1862          *
1863          * Otherwise, re-order of adding wait queue and getting driver tag
1864          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1865          * the waitqueue_active() may not observe us in wait queue.
1866          */
1867         smp_mb();
1868
1869         /*
1870          * It's possible that a tag was freed in the window between the
1871          * allocation failure and adding the hardware queue to the wait
1872          * queue.
1873          */
1874         ret = blk_mq_get_driver_tag(rq);
1875         if (!ret) {
1876                 spin_unlock(&hctx->dispatch_wait_lock);
1877                 spin_unlock_irq(&wq->lock);
1878                 return false;
1879         }
1880
1881         /*
1882          * We got a tag, remove ourselves from the wait queue to ensure
1883          * someone else gets the wakeup.
1884          */
1885         list_del_init(&wait->entry);
1886         atomic_dec(&sbq->ws_active);
1887         spin_unlock(&hctx->dispatch_wait_lock);
1888         spin_unlock_irq(&wq->lock);
1889
1890         return true;
1891 }
1892
1893 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1895 /*
1896  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1897  * - EWMA is one simple way to compute running average value
1898  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1899  * - take 4 as factor for avoiding to get too small(0) result, and this
1900  *   factor doesn't matter because EWMA decreases exponentially
1901  */
1902 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1903 {
1904         unsigned int ewma;
1905
1906         ewma = hctx->dispatch_busy;
1907
1908         if (!ewma && !busy)
1909                 return;
1910
1911         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1912         if (busy)
1913                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1914         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1915
1916         hctx->dispatch_busy = ewma;
1917 }
1918
1919 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1920
1921 static void blk_mq_handle_dev_resource(struct request *rq,
1922                                        struct list_head *list)
1923 {
1924         list_add(&rq->queuelist, list);
1925         __blk_mq_requeue_request(rq);
1926 }
1927
1928 static void blk_mq_handle_zone_resource(struct request *rq,
1929                                         struct list_head *zone_list)
1930 {
1931         /*
1932          * If we end up here it is because we cannot dispatch a request to a
1933          * specific zone due to LLD level zone-write locking or other zone
1934          * related resource not being available. In this case, set the request
1935          * aside in zone_list for retrying it later.
1936          */
1937         list_add(&rq->queuelist, zone_list);
1938         __blk_mq_requeue_request(rq);
1939 }
1940
1941 enum prep_dispatch {
1942         PREP_DISPATCH_OK,
1943         PREP_DISPATCH_NO_TAG,
1944         PREP_DISPATCH_NO_BUDGET,
1945 };
1946
1947 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948                                                   bool need_budget)
1949 {
1950         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951         int budget_token = -1;
1952
1953         if (need_budget) {
1954                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1955                 if (budget_token < 0) {
1956                         blk_mq_put_driver_tag(rq);
1957                         return PREP_DISPATCH_NO_BUDGET;
1958                 }
1959                 blk_mq_set_rq_budget_token(rq, budget_token);
1960         }
1961
1962         if (!blk_mq_get_driver_tag(rq)) {
1963                 /*
1964                  * The initial allocation attempt failed, so we need to
1965                  * rerun the hardware queue when a tag is freed. The
1966                  * waitqueue takes care of that. If the queue is run
1967                  * before we add this entry back on the dispatch list,
1968                  * we'll re-run it below.
1969                  */
1970                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971                         /*
1972                          * All budgets not got from this function will be put
1973                          * together during handling partial dispatch
1974                          */
1975                         if (need_budget)
1976                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1977                         return PREP_DISPATCH_NO_TAG;
1978                 }
1979         }
1980
1981         return PREP_DISPATCH_OK;
1982 }
1983
1984 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985 static void blk_mq_release_budgets(struct request_queue *q,
1986                 struct list_head *list)
1987 {
1988         struct request *rq;
1989
1990         list_for_each_entry(rq, list, queuelist) {
1991                 int budget_token = blk_mq_get_rq_budget_token(rq);
1992
1993                 if (budget_token >= 0)
1994                         blk_mq_put_dispatch_budget(q, budget_token);
1995         }
1996 }
1997
1998 /*
1999  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2000  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2001  * details)
2002  * Attention, we should explicitly call this in unusual cases:
2003  *  1) did not queue everything initially scheduled to queue
2004  *  2) the last attempt to queue a request failed
2005  */
2006 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2007                               bool from_schedule)
2008 {
2009         if (hctx->queue->mq_ops->commit_rqs && queued) {
2010                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2011                 hctx->queue->mq_ops->commit_rqs(hctx);
2012         }
2013 }
2014
2015 /*
2016  * Returns true if we did some work AND can potentially do more.
2017  */
2018 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2019                              unsigned int nr_budgets)
2020 {
2021         enum prep_dispatch prep;
2022         struct request_queue *q = hctx->queue;
2023         struct request *rq;
2024         int queued;
2025         blk_status_t ret = BLK_STS_OK;
2026         LIST_HEAD(zone_list);
2027         bool needs_resource = false;
2028
2029         if (list_empty(list))
2030                 return false;
2031
2032         /*
2033          * Now process all the entries, sending them to the driver.
2034          */
2035         queued = 0;
2036         do {
2037                 struct blk_mq_queue_data bd;
2038
2039                 rq = list_first_entry(list, struct request, queuelist);
2040
2041                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2042                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2043                 if (prep != PREP_DISPATCH_OK)
2044                         break;
2045
2046                 list_del_init(&rq->queuelist);
2047
2048                 bd.rq = rq;
2049                 bd.last = list_empty(list);
2050
2051                 /*
2052                  * once the request is queued to lld, no need to cover the
2053                  * budget any more
2054                  */
2055                 if (nr_budgets)
2056                         nr_budgets--;
2057                 ret = q->mq_ops->queue_rq(hctx, &bd);
2058                 switch (ret) {
2059                 case BLK_STS_OK:
2060                         queued++;
2061                         break;
2062                 case BLK_STS_RESOURCE:
2063                         needs_resource = true;
2064                         fallthrough;
2065                 case BLK_STS_DEV_RESOURCE:
2066                         blk_mq_handle_dev_resource(rq, list);
2067                         goto out;
2068                 case BLK_STS_ZONE_RESOURCE:
2069                         /*
2070                          * Move the request to zone_list and keep going through
2071                          * the dispatch list to find more requests the drive can
2072                          * accept.
2073                          */
2074                         blk_mq_handle_zone_resource(rq, &zone_list);
2075                         needs_resource = true;
2076                         break;
2077                 default:
2078                         blk_mq_end_request(rq, ret);
2079                 }
2080         } while (!list_empty(list));
2081 out:
2082         if (!list_empty(&zone_list))
2083                 list_splice_tail_init(&zone_list, list);
2084
2085         /* If we didn't flush the entire list, we could have told the driver
2086          * there was more coming, but that turned out to be a lie.
2087          */
2088         if (!list_empty(list) || ret != BLK_STS_OK)
2089                 blk_mq_commit_rqs(hctx, queued, false);
2090
2091         /*
2092          * Any items that need requeuing? Stuff them into hctx->dispatch,
2093          * that is where we will continue on next queue run.
2094          */
2095         if (!list_empty(list)) {
2096                 bool needs_restart;
2097                 /* For non-shared tags, the RESTART check will suffice */
2098                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2100                         blk_mq_is_shared_tags(hctx->flags));
2101
2102                 if (nr_budgets)
2103                         blk_mq_release_budgets(q, list);
2104
2105                 spin_lock(&hctx->lock);
2106                 list_splice_tail_init(list, &hctx->dispatch);
2107                 spin_unlock(&hctx->lock);
2108
2109                 /*
2110                  * Order adding requests to hctx->dispatch and checking
2111                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2112                  * in blk_mq_sched_restart(). Avoid restart code path to
2113                  * miss the new added requests to hctx->dispatch, meantime
2114                  * SCHED_RESTART is observed here.
2115                  */
2116                 smp_mb();
2117
2118                 /*
2119                  * If SCHED_RESTART was set by the caller of this function and
2120                  * it is no longer set that means that it was cleared by another
2121                  * thread and hence that a queue rerun is needed.
2122                  *
2123                  * If 'no_tag' is set, that means that we failed getting
2124                  * a driver tag with an I/O scheduler attached. If our dispatch
2125                  * waitqueue is no longer active, ensure that we run the queue
2126                  * AFTER adding our entries back to the list.
2127                  *
2128                  * If no I/O scheduler has been configured it is possible that
2129                  * the hardware queue got stopped and restarted before requests
2130                  * were pushed back onto the dispatch list. Rerun the queue to
2131                  * avoid starvation. Notes:
2132                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2133                  *   been stopped before rerunning a queue.
2134                  * - Some but not all block drivers stop a queue before
2135                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2136                  *   and dm-rq.
2137                  *
2138                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2139                  * bit is set, run queue after a delay to avoid IO stalls
2140                  * that could otherwise occur if the queue is idle.  We'll do
2141                  * similar if we couldn't get budget or couldn't lock a zone
2142                  * and SCHED_RESTART is set.
2143                  */
2144                 needs_restart = blk_mq_sched_needs_restart(hctx);
2145                 if (prep == PREP_DISPATCH_NO_BUDGET)
2146                         needs_resource = true;
2147                 if (!needs_restart ||
2148                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2149                         blk_mq_run_hw_queue(hctx, true);
2150                 else if (needs_resource)
2151                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152
2153                 blk_mq_update_dispatch_busy(hctx, true);
2154                 return false;
2155         }
2156
2157         blk_mq_update_dispatch_busy(hctx, false);
2158         return true;
2159 }
2160
2161 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2162 {
2163         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2164
2165         if (cpu >= nr_cpu_ids)
2166                 cpu = cpumask_first(hctx->cpumask);
2167         return cpu;
2168 }
2169
2170 /*
2171  * It'd be great if the workqueue API had a way to pass
2172  * in a mask and had some smarts for more clever placement.
2173  * For now we just round-robin here, switching for every
2174  * BLK_MQ_CPU_WORK_BATCH queued items.
2175  */
2176 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2177 {
2178         bool tried = false;
2179         int next_cpu = hctx->next_cpu;
2180
2181         if (hctx->queue->nr_hw_queues == 1)
2182                 return WORK_CPU_UNBOUND;
2183
2184         if (--hctx->next_cpu_batch <= 0) {
2185 select_cpu:
2186                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2187                                 cpu_online_mask);
2188                 if (next_cpu >= nr_cpu_ids)
2189                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2190                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2191         }
2192
2193         /*
2194          * Do unbound schedule if we can't find a online CPU for this hctx,
2195          * and it should only happen in the path of handling CPU DEAD.
2196          */
2197         if (!cpu_online(next_cpu)) {
2198                 if (!tried) {
2199                         tried = true;
2200                         goto select_cpu;
2201                 }
2202
2203                 /*
2204                  * Make sure to re-select CPU next time once after CPUs
2205                  * in hctx->cpumask become online again.
2206                  */
2207                 hctx->next_cpu = next_cpu;
2208                 hctx->next_cpu_batch = 1;
2209                 return WORK_CPU_UNBOUND;
2210         }
2211
2212         hctx->next_cpu = next_cpu;
2213         return next_cpu;
2214 }
2215
2216 /**
2217  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2218  * @hctx: Pointer to the hardware queue to run.
2219  * @msecs: Milliseconds of delay to wait before running the queue.
2220  *
2221  * Run a hardware queue asynchronously with a delay of @msecs.
2222  */
2223 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2224 {
2225         if (unlikely(blk_mq_hctx_stopped(hctx)))
2226                 return;
2227         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2228                                     msecs_to_jiffies(msecs));
2229 }
2230 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2231
2232 /**
2233  * blk_mq_run_hw_queue - Start to run a hardware queue.
2234  * @hctx: Pointer to the hardware queue to run.
2235  * @async: If we want to run the queue asynchronously.
2236  *
2237  * Check if the request queue is not in a quiesced state and if there are
2238  * pending requests to be sent. If this is true, run the queue to send requests
2239  * to hardware.
2240  */
2241 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2242 {
2243         bool need_run;
2244
2245         /*
2246          * We can't run the queue inline with interrupts disabled.
2247          */
2248         WARN_ON_ONCE(!async && in_interrupt());
2249
2250         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2251
2252         /*
2253          * When queue is quiesced, we may be switching io scheduler, or
2254          * updating nr_hw_queues, or other things, and we can't run queue
2255          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2256          *
2257          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2258          * quiesced.
2259          */
2260         __blk_mq_run_dispatch_ops(hctx->queue, false,
2261                 need_run = !blk_queue_quiesced(hctx->queue) &&
2262                 blk_mq_hctx_has_pending(hctx));
2263
2264         if (!need_run)
2265                 return;
2266
2267         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2268                 blk_mq_delay_run_hw_queue(hctx, 0);
2269                 return;
2270         }
2271
2272         blk_mq_run_dispatch_ops(hctx->queue,
2273                                 blk_mq_sched_dispatch_requests(hctx));
2274 }
2275 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2276
2277 /*
2278  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2279  * scheduler.
2280  */
2281 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2282 {
2283         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2284         /*
2285          * If the IO scheduler does not respect hardware queues when
2286          * dispatching, we just don't bother with multiple HW queues and
2287          * dispatch from hctx for the current CPU since running multiple queues
2288          * just causes lock contention inside the scheduler and pointless cache
2289          * bouncing.
2290          */
2291         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2292
2293         if (!blk_mq_hctx_stopped(hctx))
2294                 return hctx;
2295         return NULL;
2296 }
2297
2298 /**
2299  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2300  * @q: Pointer to the request queue to run.
2301  * @async: If we want to run the queue asynchronously.
2302  */
2303 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2304 {
2305         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2306         unsigned long i;
2307
2308         sq_hctx = NULL;
2309         if (blk_queue_sq_sched(q))
2310                 sq_hctx = blk_mq_get_sq_hctx(q);
2311         queue_for_each_hw_ctx(q, hctx, i) {
2312                 if (blk_mq_hctx_stopped(hctx))
2313                         continue;
2314                 /*
2315                  * Dispatch from this hctx either if there's no hctx preferred
2316                  * by IO scheduler or if it has requests that bypass the
2317                  * scheduler.
2318                  */
2319                 if (!sq_hctx || sq_hctx == hctx ||
2320                     !list_empty_careful(&hctx->dispatch))
2321                         blk_mq_run_hw_queue(hctx, async);
2322         }
2323 }
2324 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2325
2326 /**
2327  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2328  * @q: Pointer to the request queue to run.
2329  * @msecs: Milliseconds of delay to wait before running the queues.
2330  */
2331 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2332 {
2333         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334         unsigned long i;
2335
2336         sq_hctx = NULL;
2337         if (blk_queue_sq_sched(q))
2338                 sq_hctx = blk_mq_get_sq_hctx(q);
2339         queue_for_each_hw_ctx(q, hctx, i) {
2340                 if (blk_mq_hctx_stopped(hctx))
2341                         continue;
2342                 /*
2343                  * If there is already a run_work pending, leave the
2344                  * pending delay untouched. Otherwise, a hctx can stall
2345                  * if another hctx is re-delaying the other's work
2346                  * before the work executes.
2347                  */
2348                 if (delayed_work_pending(&hctx->run_work))
2349                         continue;
2350                 /*
2351                  * Dispatch from this hctx either if there's no hctx preferred
2352                  * by IO scheduler or if it has requests that bypass the
2353                  * scheduler.
2354                  */
2355                 if (!sq_hctx || sq_hctx == hctx ||
2356                     !list_empty_careful(&hctx->dispatch))
2357                         blk_mq_delay_run_hw_queue(hctx, msecs);
2358         }
2359 }
2360 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2361
2362 /*
2363  * This function is often used for pausing .queue_rq() by driver when
2364  * there isn't enough resource or some conditions aren't satisfied, and
2365  * BLK_STS_RESOURCE is usually returned.
2366  *
2367  * We do not guarantee that dispatch can be drained or blocked
2368  * after blk_mq_stop_hw_queue() returns. Please use
2369  * blk_mq_quiesce_queue() for that requirement.
2370  */
2371 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2372 {
2373         cancel_delayed_work(&hctx->run_work);
2374
2375         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2376 }
2377 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2378
2379 /*
2380  * This function is often used for pausing .queue_rq() by driver when
2381  * there isn't enough resource or some conditions aren't satisfied, and
2382  * BLK_STS_RESOURCE is usually returned.
2383  *
2384  * We do not guarantee that dispatch can be drained or blocked
2385  * after blk_mq_stop_hw_queues() returns. Please use
2386  * blk_mq_quiesce_queue() for that requirement.
2387  */
2388 void blk_mq_stop_hw_queues(struct request_queue *q)
2389 {
2390         struct blk_mq_hw_ctx *hctx;
2391         unsigned long i;
2392
2393         queue_for_each_hw_ctx(q, hctx, i)
2394                 blk_mq_stop_hw_queue(hctx);
2395 }
2396 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2397
2398 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2399 {
2400         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401
2402         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2403 }
2404 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2405
2406 void blk_mq_start_hw_queues(struct request_queue *q)
2407 {
2408         struct blk_mq_hw_ctx *hctx;
2409         unsigned long i;
2410
2411         queue_for_each_hw_ctx(q, hctx, i)
2412                 blk_mq_start_hw_queue(hctx);
2413 }
2414 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2415
2416 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2417 {
2418         if (!blk_mq_hctx_stopped(hctx))
2419                 return;
2420
2421         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422         blk_mq_run_hw_queue(hctx, async);
2423 }
2424 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2425
2426 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2427 {
2428         struct blk_mq_hw_ctx *hctx;
2429         unsigned long i;
2430
2431         queue_for_each_hw_ctx(q, hctx, i)
2432                 blk_mq_start_stopped_hw_queue(hctx, async ||
2433                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2434 }
2435 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2436
2437 static void blk_mq_run_work_fn(struct work_struct *work)
2438 {
2439         struct blk_mq_hw_ctx *hctx =
2440                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2441
2442         blk_mq_run_dispatch_ops(hctx->queue,
2443                                 blk_mq_sched_dispatch_requests(hctx));
2444 }
2445
2446 /**
2447  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2448  * @rq: Pointer to request to be inserted.
2449  * @flags: BLK_MQ_INSERT_*
2450  *
2451  * Should only be used carefully, when the caller knows we want to
2452  * bypass a potential IO scheduler on the target device.
2453  */
2454 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2455 {
2456         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2457
2458         spin_lock(&hctx->lock);
2459         if (flags & BLK_MQ_INSERT_AT_HEAD)
2460                 list_add(&rq->queuelist, &hctx->dispatch);
2461         else
2462                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2463         spin_unlock(&hctx->lock);
2464 }
2465
2466 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2467                 struct blk_mq_ctx *ctx, struct list_head *list,
2468                 bool run_queue_async)
2469 {
2470         struct request *rq;
2471         enum hctx_type type = hctx->type;
2472
2473         /*
2474          * Try to issue requests directly if the hw queue isn't busy to save an
2475          * extra enqueue & dequeue to the sw queue.
2476          */
2477         if (!hctx->dispatch_busy && !run_queue_async) {
2478                 blk_mq_run_dispatch_ops(hctx->queue,
2479                         blk_mq_try_issue_list_directly(hctx, list));
2480                 if (list_empty(list))
2481                         goto out;
2482         }
2483
2484         /*
2485          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2486          * offline now
2487          */
2488         list_for_each_entry(rq, list, queuelist) {
2489                 BUG_ON(rq->mq_ctx != ctx);
2490                 trace_block_rq_insert(rq);
2491                 if (rq->cmd_flags & REQ_NOWAIT)
2492                         run_queue_async = true;
2493         }
2494
2495         spin_lock(&ctx->lock);
2496         list_splice_tail_init(list, &ctx->rq_lists[type]);
2497         blk_mq_hctx_mark_pending(hctx, ctx);
2498         spin_unlock(&ctx->lock);
2499 out:
2500         blk_mq_run_hw_queue(hctx, run_queue_async);
2501 }
2502
2503 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2504 {
2505         struct request_queue *q = rq->q;
2506         struct blk_mq_ctx *ctx = rq->mq_ctx;
2507         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2508
2509         if (blk_rq_is_passthrough(rq)) {
2510                 /*
2511                  * Passthrough request have to be added to hctx->dispatch
2512                  * directly.  The device may be in a situation where it can't
2513                  * handle FS request, and always returns BLK_STS_RESOURCE for
2514                  * them, which gets them added to hctx->dispatch.
2515                  *
2516                  * If a passthrough request is required to unblock the queues,
2517                  * and it is added to the scheduler queue, there is no chance to
2518                  * dispatch it given we prioritize requests in hctx->dispatch.
2519                  */
2520                 blk_mq_request_bypass_insert(rq, flags);
2521         } else if (req_op(rq) == REQ_OP_FLUSH) {
2522                 /*
2523                  * Firstly normal IO request is inserted to scheduler queue or
2524                  * sw queue, meantime we add flush request to dispatch queue(
2525                  * hctx->dispatch) directly and there is at most one in-flight
2526                  * flush request for each hw queue, so it doesn't matter to add
2527                  * flush request to tail or front of the dispatch queue.
2528                  *
2529                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2530                  * command, and queueing it will fail when there is any
2531                  * in-flight normal IO request(NCQ command). When adding flush
2532                  * rq to the front of hctx->dispatch, it is easier to introduce
2533                  * extra time to flush rq's latency because of S_SCHED_RESTART
2534                  * compared with adding to the tail of dispatch queue, then
2535                  * chance of flush merge is increased, and less flush requests
2536                  * will be issued to controller. It is observed that ~10% time
2537                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2538                  * drive when adding flush rq to the front of hctx->dispatch.
2539                  *
2540                  * Simply queue flush rq to the front of hctx->dispatch so that
2541                  * intensive flush workloads can benefit in case of NCQ HW.
2542                  */
2543                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2544         } else if (q->elevator) {
2545                 LIST_HEAD(list);
2546
2547                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2548
2549                 list_add(&rq->queuelist, &list);
2550                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2551         } else {
2552                 trace_block_rq_insert(rq);
2553
2554                 spin_lock(&ctx->lock);
2555                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2556                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2557                 else
2558                         list_add_tail(&rq->queuelist,
2559                                       &ctx->rq_lists[hctx->type]);
2560                 blk_mq_hctx_mark_pending(hctx, ctx);
2561                 spin_unlock(&ctx->lock);
2562         }
2563 }
2564
2565 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2566                 unsigned int nr_segs)
2567 {
2568         int err;
2569
2570         if (bio->bi_opf & REQ_RAHEAD)
2571                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2572
2573         rq->__sector = bio->bi_iter.bi_sector;
2574         blk_rq_bio_prep(rq, bio, nr_segs);
2575
2576         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2577         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2578         WARN_ON_ONCE(err);
2579
2580         blk_account_io_start(rq);
2581 }
2582
2583 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2584                                             struct request *rq, bool last)
2585 {
2586         struct request_queue *q = rq->q;
2587         struct blk_mq_queue_data bd = {
2588                 .rq = rq,
2589                 .last = last,
2590         };
2591         blk_status_t ret;
2592
2593         /*
2594          * For OK queue, we are done. For error, caller may kill it.
2595          * Any other error (busy), just add it to our list as we
2596          * previously would have done.
2597          */
2598         ret = q->mq_ops->queue_rq(hctx, &bd);
2599         switch (ret) {
2600         case BLK_STS_OK:
2601                 blk_mq_update_dispatch_busy(hctx, false);
2602                 break;
2603         case BLK_STS_RESOURCE:
2604         case BLK_STS_DEV_RESOURCE:
2605                 blk_mq_update_dispatch_busy(hctx, true);
2606                 __blk_mq_requeue_request(rq);
2607                 break;
2608         default:
2609                 blk_mq_update_dispatch_busy(hctx, false);
2610                 break;
2611         }
2612
2613         return ret;
2614 }
2615
2616 static bool blk_mq_get_budget_and_tag(struct request *rq)
2617 {
2618         int budget_token;
2619
2620         budget_token = blk_mq_get_dispatch_budget(rq->q);
2621         if (budget_token < 0)
2622                 return false;
2623         blk_mq_set_rq_budget_token(rq, budget_token);
2624         if (!blk_mq_get_driver_tag(rq)) {
2625                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2626                 return false;
2627         }
2628         return true;
2629 }
2630
2631 /**
2632  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2633  * @hctx: Pointer of the associated hardware queue.
2634  * @rq: Pointer to request to be sent.
2635  *
2636  * If the device has enough resources to accept a new request now, send the
2637  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2638  * we can try send it another time in the future. Requests inserted at this
2639  * queue have higher priority.
2640  */
2641 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2642                 struct request *rq)
2643 {
2644         blk_status_t ret;
2645
2646         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2647                 blk_mq_insert_request(rq, 0);
2648                 return;
2649         }
2650
2651         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2652                 blk_mq_insert_request(rq, 0);
2653                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2654                 return;
2655         }
2656
2657         ret = __blk_mq_issue_directly(hctx, rq, true);
2658         switch (ret) {
2659         case BLK_STS_OK:
2660                 break;
2661         case BLK_STS_RESOURCE:
2662         case BLK_STS_DEV_RESOURCE:
2663                 blk_mq_request_bypass_insert(rq, 0);
2664                 blk_mq_run_hw_queue(hctx, false);
2665                 break;
2666         default:
2667                 blk_mq_end_request(rq, ret);
2668                 break;
2669         }
2670 }
2671
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2673 {
2674         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2675
2676         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2677                 blk_mq_insert_request(rq, 0);
2678                 return BLK_STS_OK;
2679         }
2680
2681         if (!blk_mq_get_budget_and_tag(rq))
2682                 return BLK_STS_RESOURCE;
2683         return __blk_mq_issue_directly(hctx, rq, last);
2684 }
2685
2686 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2687 {
2688         struct blk_mq_hw_ctx *hctx = NULL;
2689         struct request *rq;
2690         int queued = 0;
2691         blk_status_t ret = BLK_STS_OK;
2692
2693         while ((rq = rq_list_pop(&plug->mq_list))) {
2694                 bool last = rq_list_empty(plug->mq_list);
2695
2696                 if (hctx != rq->mq_hctx) {
2697                         if (hctx) {
2698                                 blk_mq_commit_rqs(hctx, queued, false);
2699                                 queued = 0;
2700                         }
2701                         hctx = rq->mq_hctx;
2702                 }
2703
2704                 ret = blk_mq_request_issue_directly(rq, last);
2705                 switch (ret) {
2706                 case BLK_STS_OK:
2707                         queued++;
2708                         break;
2709                 case BLK_STS_RESOURCE:
2710                 case BLK_STS_DEV_RESOURCE:
2711                         blk_mq_request_bypass_insert(rq, 0);
2712                         blk_mq_run_hw_queue(hctx, false);
2713                         goto out;
2714                 default:
2715                         blk_mq_end_request(rq, ret);
2716                         break;
2717                 }
2718         }
2719
2720 out:
2721         if (ret != BLK_STS_OK)
2722                 blk_mq_commit_rqs(hctx, queued, false);
2723 }
2724
2725 static void __blk_mq_flush_plug_list(struct request_queue *q,
2726                                      struct blk_plug *plug)
2727 {
2728         if (blk_queue_quiesced(q))
2729                 return;
2730         q->mq_ops->queue_rqs(&plug->mq_list);
2731 }
2732
2733 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2734 {
2735         struct blk_mq_hw_ctx *this_hctx = NULL;
2736         struct blk_mq_ctx *this_ctx = NULL;
2737         struct request *requeue_list = NULL;
2738         struct request **requeue_lastp = &requeue_list;
2739         unsigned int depth = 0;
2740         bool is_passthrough = false;
2741         LIST_HEAD(list);
2742
2743         do {
2744                 struct request *rq = rq_list_pop(&plug->mq_list);
2745
2746                 if (!this_hctx) {
2747                         this_hctx = rq->mq_hctx;
2748                         this_ctx = rq->mq_ctx;
2749                         is_passthrough = blk_rq_is_passthrough(rq);
2750                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2751                            is_passthrough != blk_rq_is_passthrough(rq)) {
2752                         rq_list_add_tail(&requeue_lastp, rq);
2753                         continue;
2754                 }
2755                 list_add(&rq->queuelist, &list);
2756                 depth++;
2757         } while (!rq_list_empty(plug->mq_list));
2758
2759         plug->mq_list = requeue_list;
2760         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2761
2762         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2763         /* passthrough requests should never be issued to the I/O scheduler */
2764         if (is_passthrough) {
2765                 spin_lock(&this_hctx->lock);
2766                 list_splice_tail_init(&list, &this_hctx->dispatch);
2767                 spin_unlock(&this_hctx->lock);
2768                 blk_mq_run_hw_queue(this_hctx, from_sched);
2769         } else if (this_hctx->queue->elevator) {
2770                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2771                                 &list, 0);
2772                 blk_mq_run_hw_queue(this_hctx, from_sched);
2773         } else {
2774                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2775         }
2776         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2777 }
2778
2779 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2780 {
2781         struct request *rq;
2782
2783         /*
2784          * We may have been called recursively midway through handling
2785          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2786          * To avoid mq_list changing under our feet, clear rq_count early and
2787          * bail out specifically if rq_count is 0 rather than checking
2788          * whether the mq_list is empty.
2789          */
2790         if (plug->rq_count == 0)
2791                 return;
2792         plug->rq_count = 0;
2793
2794         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2795                 struct request_queue *q;
2796
2797                 rq = rq_list_peek(&plug->mq_list);
2798                 q = rq->q;
2799
2800                 /*
2801                  * Peek first request and see if we have a ->queue_rqs() hook.
2802                  * If we do, we can dispatch the whole plug list in one go. We
2803                  * already know at this point that all requests belong to the
2804                  * same queue, caller must ensure that's the case.
2805                  */
2806                 if (q->mq_ops->queue_rqs) {
2807                         blk_mq_run_dispatch_ops(q,
2808                                 __blk_mq_flush_plug_list(q, plug));
2809                         if (rq_list_empty(plug->mq_list))
2810                                 return;
2811                 }
2812
2813                 blk_mq_run_dispatch_ops(q,
2814                                 blk_mq_plug_issue_direct(plug));
2815                 if (rq_list_empty(plug->mq_list))
2816                         return;
2817         }
2818
2819         do {
2820                 blk_mq_dispatch_plug_list(plug, from_schedule);
2821         } while (!rq_list_empty(plug->mq_list));
2822 }
2823
2824 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2825                 struct list_head *list)
2826 {
2827         int queued = 0;
2828         blk_status_t ret = BLK_STS_OK;
2829
2830         while (!list_empty(list)) {
2831                 struct request *rq = list_first_entry(list, struct request,
2832                                 queuelist);
2833
2834                 list_del_init(&rq->queuelist);
2835                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2836                 switch (ret) {
2837                 case BLK_STS_OK:
2838                         queued++;
2839                         break;
2840                 case BLK_STS_RESOURCE:
2841                 case BLK_STS_DEV_RESOURCE:
2842                         blk_mq_request_bypass_insert(rq, 0);
2843                         if (list_empty(list))
2844                                 blk_mq_run_hw_queue(hctx, false);
2845                         goto out;
2846                 default:
2847                         blk_mq_end_request(rq, ret);
2848                         break;
2849                 }
2850         }
2851
2852 out:
2853         if (ret != BLK_STS_OK)
2854                 blk_mq_commit_rqs(hctx, queued, false);
2855 }
2856
2857 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2858                                      struct bio *bio, unsigned int nr_segs)
2859 {
2860         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2861                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2862                         return true;
2863                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2864                         return true;
2865         }
2866         return false;
2867 }
2868
2869 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2870                                                struct blk_plug *plug,
2871                                                struct bio *bio,
2872                                                unsigned int nsegs)
2873 {
2874         struct blk_mq_alloc_data data = {
2875                 .q              = q,
2876                 .nr_tags        = 1,
2877                 .cmd_flags      = bio->bi_opf,
2878         };
2879         struct request *rq;
2880
2881         rq_qos_throttle(q, bio);
2882
2883         if (plug) {
2884                 data.nr_tags = plug->nr_ios;
2885                 plug->nr_ios = 1;
2886                 data.cached_rq = &plug->cached_rq;
2887         }
2888
2889         rq = __blk_mq_alloc_requests(&data);
2890         if (rq)
2891                 return rq;
2892         rq_qos_cleanup(q, bio);
2893         if (bio->bi_opf & REQ_NOWAIT)
2894                 bio_wouldblock_error(bio);
2895         return NULL;
2896 }
2897
2898 /*
2899  * Check if there is a suitable cached request and return it.
2900  */
2901 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2902                 struct request_queue *q, blk_opf_t opf)
2903 {
2904         enum hctx_type type = blk_mq_get_hctx_type(opf);
2905         struct request *rq;
2906
2907         if (!plug)
2908                 return NULL;
2909         rq = rq_list_peek(&plug->cached_rq);
2910         if (!rq || rq->q != q)
2911                 return NULL;
2912         if (type != rq->mq_hctx->type &&
2913             (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2914                 return NULL;
2915         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2916                 return NULL;
2917         return rq;
2918 }
2919
2920 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2921                 struct bio *bio)
2922 {
2923         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2924
2925         /*
2926          * If any qos ->throttle() end up blocking, we will have flushed the
2927          * plug and hence killed the cached_rq list as well. Pop this entry
2928          * before we throttle.
2929          */
2930         plug->cached_rq = rq_list_next(rq);
2931         rq_qos_throttle(rq->q, bio);
2932
2933         blk_mq_rq_time_init(rq, 0);
2934         rq->cmd_flags = bio->bi_opf;
2935         INIT_LIST_HEAD(&rq->queuelist);
2936 }
2937
2938 /**
2939  * blk_mq_submit_bio - Create and send a request to block device.
2940  * @bio: Bio pointer.
2941  *
2942  * Builds up a request structure from @q and @bio and send to the device. The
2943  * request may not be queued directly to hardware if:
2944  * * This request can be merged with another one
2945  * * We want to place request at plug queue for possible future merging
2946  * * There is an IO scheduler active at this queue
2947  *
2948  * It will not queue the request if there is an error with the bio, or at the
2949  * request creation.
2950  */
2951 void blk_mq_submit_bio(struct bio *bio)
2952 {
2953         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2954         struct blk_plug *plug = blk_mq_plug(bio);
2955         const int is_sync = op_is_sync(bio->bi_opf);
2956         struct blk_mq_hw_ctx *hctx;
2957         unsigned int nr_segs = 1;
2958         struct request *rq;
2959         blk_status_t ret;
2960
2961         bio = blk_queue_bounce(bio, q);
2962
2963         /*
2964          * If the plug has a cached request for this queue, try use it.
2965          *
2966          * The cached request already holds a q_usage_counter reference and we
2967          * don't have to acquire a new one if we use it.
2968          */
2969         rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2970         if (!rq) {
2971                 if (unlikely(bio_queue_enter(bio)))
2972                         return;
2973         }
2974
2975         if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2976                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2977                 if (!bio)
2978                         goto queue_exit;
2979         }
2980         if (!bio_integrity_prep(bio))
2981                 goto queue_exit;
2982
2983         if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2984                 goto queue_exit;
2985
2986         if (!rq) {
2987                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2988                 if (unlikely(!rq))
2989                         goto queue_exit;
2990         } else {
2991                 blk_mq_use_cached_rq(rq, plug, bio);
2992         }
2993
2994         trace_block_getrq(bio);
2995
2996         rq_qos_track(q, rq, bio);
2997
2998         blk_mq_bio_to_request(rq, bio, nr_segs);
2999
3000         ret = blk_crypto_rq_get_keyslot(rq);
3001         if (ret != BLK_STS_OK) {
3002                 bio->bi_status = ret;
3003                 bio_endio(bio);
3004                 blk_mq_free_request(rq);
3005                 return;
3006         }
3007
3008         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3009                 return;
3010
3011         if (plug) {
3012                 blk_add_rq_to_plug(plug, rq);
3013                 return;
3014         }
3015
3016         hctx = rq->mq_hctx;
3017         if ((rq->rq_flags & RQF_USE_SCHED) ||
3018             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3019                 blk_mq_insert_request(rq, 0);
3020                 blk_mq_run_hw_queue(hctx, true);
3021         } else {
3022                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3023         }
3024         return;
3025
3026 queue_exit:
3027         /*
3028          * Don't drop the queue reference if we were trying to use a cached
3029          * request and thus didn't acquire one.
3030          */
3031         if (!rq)
3032                 blk_queue_exit(q);
3033 }
3034
3035 #ifdef CONFIG_BLK_MQ_STACKING
3036 /**
3037  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3038  * @rq: the request being queued
3039  */
3040 blk_status_t blk_insert_cloned_request(struct request *rq)
3041 {
3042         struct request_queue *q = rq->q;
3043         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3044         unsigned int max_segments = blk_rq_get_max_segments(rq);
3045         blk_status_t ret;
3046
3047         if (blk_rq_sectors(rq) > max_sectors) {
3048                 /*
3049                  * SCSI device does not have a good way to return if
3050                  * Write Same/Zero is actually supported. If a device rejects
3051                  * a non-read/write command (discard, write same,etc.) the
3052                  * low-level device driver will set the relevant queue limit to
3053                  * 0 to prevent blk-lib from issuing more of the offending
3054                  * operations. Commands queued prior to the queue limit being
3055                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3056                  * errors being propagated to upper layers.
3057                  */
3058                 if (max_sectors == 0)
3059                         return BLK_STS_NOTSUPP;
3060
3061                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3062                         __func__, blk_rq_sectors(rq), max_sectors);
3063                 return BLK_STS_IOERR;
3064         }
3065
3066         /*
3067          * The queue settings related to segment counting may differ from the
3068          * original queue.
3069          */
3070         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3071         if (rq->nr_phys_segments > max_segments) {
3072                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3073                         __func__, rq->nr_phys_segments, max_segments);
3074                 return BLK_STS_IOERR;
3075         }
3076
3077         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3078                 return BLK_STS_IOERR;
3079
3080         ret = blk_crypto_rq_get_keyslot(rq);
3081         if (ret != BLK_STS_OK)
3082                 return ret;
3083
3084         blk_account_io_start(rq);
3085
3086         /*
3087          * Since we have a scheduler attached on the top device,
3088          * bypass a potential scheduler on the bottom device for
3089          * insert.
3090          */
3091         blk_mq_run_dispatch_ops(q,
3092                         ret = blk_mq_request_issue_directly(rq, true));
3093         if (ret)
3094                 blk_account_io_done(rq, blk_time_get_ns());
3095         return ret;
3096 }
3097 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3098
3099 /**
3100  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3101  * @rq: the clone request to be cleaned up
3102  *
3103  * Description:
3104  *     Free all bios in @rq for a cloned request.
3105  */
3106 void blk_rq_unprep_clone(struct request *rq)
3107 {
3108         struct bio *bio;
3109
3110         while ((bio = rq->bio) != NULL) {
3111                 rq->bio = bio->bi_next;
3112
3113                 bio_put(bio);
3114         }
3115 }
3116 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3117
3118 /**
3119  * blk_rq_prep_clone - Helper function to setup clone request
3120  * @rq: the request to be setup
3121  * @rq_src: original request to be cloned
3122  * @bs: bio_set that bios for clone are allocated from
3123  * @gfp_mask: memory allocation mask for bio
3124  * @bio_ctr: setup function to be called for each clone bio.
3125  *           Returns %0 for success, non %0 for failure.
3126  * @data: private data to be passed to @bio_ctr
3127  *
3128  * Description:
3129  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3130  *     Also, pages which the original bios are pointing to are not copied
3131  *     and the cloned bios just point same pages.
3132  *     So cloned bios must be completed before original bios, which means
3133  *     the caller must complete @rq before @rq_src.
3134  */
3135 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3136                       struct bio_set *bs, gfp_t gfp_mask,
3137                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3138                       void *data)
3139 {
3140         struct bio *bio, *bio_src;
3141
3142         if (!bs)
3143                 bs = &fs_bio_set;
3144
3145         __rq_for_each_bio(bio_src, rq_src) {
3146                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3147                                       bs);
3148                 if (!bio)
3149                         goto free_and_out;
3150
3151                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3152                         goto free_and_out;
3153
3154                 if (rq->bio) {
3155                         rq->biotail->bi_next = bio;
3156                         rq->biotail = bio;
3157                 } else {
3158                         rq->bio = rq->biotail = bio;
3159                 }
3160                 bio = NULL;
3161         }
3162
3163         /* Copy attributes of the original request to the clone request. */
3164         rq->__sector = blk_rq_pos(rq_src);
3165         rq->__data_len = blk_rq_bytes(rq_src);
3166         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3167                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3168                 rq->special_vec = rq_src->special_vec;
3169         }
3170         rq->nr_phys_segments = rq_src->nr_phys_segments;
3171         rq->ioprio = rq_src->ioprio;
3172
3173         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3174                 goto free_and_out;
3175
3176         return 0;
3177
3178 free_and_out:
3179         if (bio)
3180                 bio_put(bio);
3181         blk_rq_unprep_clone(rq);
3182
3183         return -ENOMEM;
3184 }
3185 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3186 #endif /* CONFIG_BLK_MQ_STACKING */
3187
3188 /*
3189  * Steal bios from a request and add them to a bio list.
3190  * The request must not have been partially completed before.
3191  */
3192 void blk_steal_bios(struct bio_list *list, struct request *rq)
3193 {
3194         if (rq->bio) {
3195                 if (list->tail)
3196                         list->tail->bi_next = rq->bio;
3197                 else
3198                         list->head = rq->bio;
3199                 list->tail = rq->biotail;
3200
3201                 rq->bio = NULL;
3202                 rq->biotail = NULL;
3203         }
3204
3205         rq->__data_len = 0;
3206 }
3207 EXPORT_SYMBOL_GPL(blk_steal_bios);
3208
3209 static size_t order_to_size(unsigned int order)
3210 {
3211         return (size_t)PAGE_SIZE << order;
3212 }
3213
3214 /* called before freeing request pool in @tags */
3215 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3216                                     struct blk_mq_tags *tags)
3217 {
3218         struct page *page;
3219         unsigned long flags;
3220
3221         /*
3222          * There is no need to clear mapping if driver tags is not initialized
3223          * or the mapping belongs to the driver tags.
3224          */
3225         if (!drv_tags || drv_tags == tags)
3226                 return;
3227
3228         list_for_each_entry(page, &tags->page_list, lru) {
3229                 unsigned long start = (unsigned long)page_address(page);
3230                 unsigned long end = start + order_to_size(page->private);
3231                 int i;
3232
3233                 for (i = 0; i < drv_tags->nr_tags; i++) {
3234                         struct request *rq = drv_tags->rqs[i];
3235                         unsigned long rq_addr = (unsigned long)rq;
3236
3237                         if (rq_addr >= start && rq_addr < end) {
3238                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3239                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3240                         }
3241                 }
3242         }
3243
3244         /*
3245          * Wait until all pending iteration is done.
3246          *
3247          * Request reference is cleared and it is guaranteed to be observed
3248          * after the ->lock is released.
3249          */
3250         spin_lock_irqsave(&drv_tags->lock, flags);
3251         spin_unlock_irqrestore(&drv_tags->lock, flags);
3252 }
3253
3254 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3255                      unsigned int hctx_idx)
3256 {
3257         struct blk_mq_tags *drv_tags;
3258         struct page *page;
3259
3260         if (list_empty(&tags->page_list))
3261                 return;
3262
3263         if (blk_mq_is_shared_tags(set->flags))
3264                 drv_tags = set->shared_tags;
3265         else
3266                 drv_tags = set->tags[hctx_idx];
3267
3268         if (tags->static_rqs && set->ops->exit_request) {
3269                 int i;
3270
3271                 for (i = 0; i < tags->nr_tags; i++) {
3272                         struct request *rq = tags->static_rqs[i];
3273
3274                         if (!rq)
3275                                 continue;
3276                         set->ops->exit_request(set, rq, hctx_idx);
3277                         tags->static_rqs[i] = NULL;
3278                 }
3279         }
3280
3281         blk_mq_clear_rq_mapping(drv_tags, tags);
3282
3283         while (!list_empty(&tags->page_list)) {
3284                 page = list_first_entry(&tags->page_list, struct page, lru);
3285                 list_del_init(&page->lru);
3286                 /*
3287                  * Remove kmemleak object previously allocated in
3288                  * blk_mq_alloc_rqs().
3289                  */
3290                 kmemleak_free(page_address(page));
3291                 __free_pages(page, page->private);
3292         }
3293 }
3294
3295 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3296 {
3297         kfree(tags->rqs);
3298         tags->rqs = NULL;
3299         kfree(tags->static_rqs);
3300         tags->static_rqs = NULL;
3301
3302         blk_mq_free_tags(tags);
3303 }
3304
3305 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3306                 unsigned int hctx_idx)
3307 {
3308         int i;
3309
3310         for (i = 0; i < set->nr_maps; i++) {
3311                 unsigned int start = set->map[i].queue_offset;
3312                 unsigned int end = start + set->map[i].nr_queues;
3313
3314                 if (hctx_idx >= start && hctx_idx < end)
3315                         break;
3316         }
3317
3318         if (i >= set->nr_maps)
3319                 i = HCTX_TYPE_DEFAULT;
3320
3321         return i;
3322 }
3323
3324 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3325                 unsigned int hctx_idx)
3326 {
3327         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3328
3329         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3330 }
3331
3332 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3333                                                unsigned int hctx_idx,
3334                                                unsigned int nr_tags,
3335                                                unsigned int reserved_tags)
3336 {
3337         int node = blk_mq_get_hctx_node(set, hctx_idx);
3338         struct blk_mq_tags *tags;
3339
3340         if (node == NUMA_NO_NODE)
3341                 node = set->numa_node;
3342
3343         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3344                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3345         if (!tags)
3346                 return NULL;
3347
3348         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3349                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3350                                  node);
3351         if (!tags->rqs)
3352                 goto err_free_tags;
3353
3354         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3355                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3356                                         node);
3357         if (!tags->static_rqs)
3358                 goto err_free_rqs;
3359
3360         return tags;
3361
3362 err_free_rqs:
3363         kfree(tags->rqs);
3364 err_free_tags:
3365         blk_mq_free_tags(tags);
3366         return NULL;
3367 }
3368
3369 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3370                                unsigned int hctx_idx, int node)
3371 {
3372         int ret;
3373
3374         if (set->ops->init_request) {
3375                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3376                 if (ret)
3377                         return ret;
3378         }
3379
3380         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3381         return 0;
3382 }
3383
3384 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3385                             struct blk_mq_tags *tags,
3386                             unsigned int hctx_idx, unsigned int depth)
3387 {
3388         unsigned int i, j, entries_per_page, max_order = 4;
3389         int node = blk_mq_get_hctx_node(set, hctx_idx);
3390         size_t rq_size, left;
3391
3392         if (node == NUMA_NO_NODE)
3393                 node = set->numa_node;
3394
3395         INIT_LIST_HEAD(&tags->page_list);
3396
3397         /*
3398          * rq_size is the size of the request plus driver payload, rounded
3399          * to the cacheline size
3400          */
3401         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3402                                 cache_line_size());
3403         left = rq_size * depth;
3404
3405         for (i = 0; i < depth; ) {
3406                 int this_order = max_order;
3407                 struct page *page;
3408                 int to_do;
3409                 void *p;
3410
3411                 while (this_order && left < order_to_size(this_order - 1))
3412                         this_order--;
3413
3414                 do {
3415                         page = alloc_pages_node(node,
3416                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3417                                 this_order);
3418                         if (page)
3419                                 break;
3420                         if (!this_order--)
3421                                 break;
3422                         if (order_to_size(this_order) < rq_size)
3423                                 break;
3424                 } while (1);
3425
3426                 if (!page)
3427                         goto fail;
3428
3429                 page->private = this_order;
3430                 list_add_tail(&page->lru, &tags->page_list);
3431
3432                 p = page_address(page);
3433                 /*
3434                  * Allow kmemleak to scan these pages as they contain pointers
3435                  * to additional allocations like via ops->init_request().
3436                  */
3437                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3438                 entries_per_page = order_to_size(this_order) / rq_size;
3439                 to_do = min(entries_per_page, depth - i);
3440                 left -= to_do * rq_size;
3441                 for (j = 0; j < to_do; j++) {
3442                         struct request *rq = p;
3443
3444                         tags->static_rqs[i] = rq;
3445                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3446                                 tags->static_rqs[i] = NULL;
3447                                 goto fail;
3448                         }
3449
3450                         p += rq_size;
3451                         i++;
3452                 }
3453         }
3454         return 0;
3455
3456 fail:
3457         blk_mq_free_rqs(set, tags, hctx_idx);
3458         return -ENOMEM;
3459 }
3460
3461 struct rq_iter_data {
3462         struct blk_mq_hw_ctx *hctx;
3463         bool has_rq;
3464 };
3465
3466 static bool blk_mq_has_request(struct request *rq, void *data)
3467 {
3468         struct rq_iter_data *iter_data = data;
3469
3470         if (rq->mq_hctx != iter_data->hctx)
3471                 return true;
3472         iter_data->has_rq = true;
3473         return false;
3474 }
3475
3476 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3477 {
3478         struct blk_mq_tags *tags = hctx->sched_tags ?
3479                         hctx->sched_tags : hctx->tags;
3480         struct rq_iter_data data = {
3481                 .hctx   = hctx,
3482         };
3483
3484         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3485         return data.has_rq;
3486 }
3487
3488 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3489                 struct blk_mq_hw_ctx *hctx)
3490 {
3491         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3492                 return false;
3493         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3494                 return false;
3495         return true;
3496 }
3497
3498 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3499 {
3500         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3501                         struct blk_mq_hw_ctx, cpuhp_online);
3502
3503         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3504             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3505                 return 0;
3506
3507         /*
3508          * Prevent new request from being allocated on the current hctx.
3509          *
3510          * The smp_mb__after_atomic() Pairs with the implied barrier in
3511          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3512          * seen once we return from the tag allocator.
3513          */
3514         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3515         smp_mb__after_atomic();
3516
3517         /*
3518          * Try to grab a reference to the queue and wait for any outstanding
3519          * requests.  If we could not grab a reference the queue has been
3520          * frozen and there are no requests.
3521          */
3522         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3523                 while (blk_mq_hctx_has_requests(hctx))
3524                         msleep(5);
3525                 percpu_ref_put(&hctx->queue->q_usage_counter);
3526         }
3527
3528         return 0;
3529 }
3530
3531 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3532 {
3533         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3534                         struct blk_mq_hw_ctx, cpuhp_online);
3535
3536         if (cpumask_test_cpu(cpu, hctx->cpumask))
3537                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3538         return 0;
3539 }
3540
3541 /*
3542  * 'cpu' is going away. splice any existing rq_list entries from this
3543  * software queue to the hw queue dispatch list, and ensure that it
3544  * gets run.
3545  */
3546 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3547 {
3548         struct blk_mq_hw_ctx *hctx;
3549         struct blk_mq_ctx *ctx;
3550         LIST_HEAD(tmp);
3551         enum hctx_type type;
3552
3553         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3554         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3555                 return 0;
3556
3557         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3558         type = hctx->type;
3559
3560         spin_lock(&ctx->lock);
3561         if (!list_empty(&ctx->rq_lists[type])) {
3562                 list_splice_init(&ctx->rq_lists[type], &tmp);
3563                 blk_mq_hctx_clear_pending(hctx, ctx);
3564         }
3565         spin_unlock(&ctx->lock);
3566
3567         if (list_empty(&tmp))
3568                 return 0;
3569
3570         spin_lock(&hctx->lock);
3571         list_splice_tail_init(&tmp, &hctx->dispatch);
3572         spin_unlock(&hctx->lock);
3573
3574         blk_mq_run_hw_queue(hctx, true);
3575         return 0;
3576 }
3577
3578 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3579 {
3580         if (!(hctx->flags & BLK_MQ_F_STACKING))
3581                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3582                                                     &hctx->cpuhp_online);
3583         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3584                                             &hctx->cpuhp_dead);
3585 }
3586
3587 /*
3588  * Before freeing hw queue, clearing the flush request reference in
3589  * tags->rqs[] for avoiding potential UAF.
3590  */
3591 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3592                 unsigned int queue_depth, struct request *flush_rq)
3593 {
3594         int i;
3595         unsigned long flags;
3596
3597         /* The hw queue may not be mapped yet */
3598         if (!tags)
3599                 return;
3600
3601         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3602
3603         for (i = 0; i < queue_depth; i++)
3604                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3605
3606         /*
3607          * Wait until all pending iteration is done.
3608          *
3609          * Request reference is cleared and it is guaranteed to be observed
3610          * after the ->lock is released.
3611          */
3612         spin_lock_irqsave(&tags->lock, flags);
3613         spin_unlock_irqrestore(&tags->lock, flags);
3614 }
3615
3616 /* hctx->ctxs will be freed in queue's release handler */
3617 static void blk_mq_exit_hctx(struct request_queue *q,
3618                 struct blk_mq_tag_set *set,
3619                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3620 {
3621         struct request *flush_rq = hctx->fq->flush_rq;
3622
3623         if (blk_mq_hw_queue_mapped(hctx))
3624                 blk_mq_tag_idle(hctx);
3625
3626         if (blk_queue_init_done(q))
3627                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3628                                 set->queue_depth, flush_rq);
3629         if (set->ops->exit_request)
3630                 set->ops->exit_request(set, flush_rq, hctx_idx);
3631
3632         if (set->ops->exit_hctx)
3633                 set->ops->exit_hctx(hctx, hctx_idx);
3634
3635         blk_mq_remove_cpuhp(hctx);
3636
3637         xa_erase(&q->hctx_table, hctx_idx);
3638
3639         spin_lock(&q->unused_hctx_lock);
3640         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3641         spin_unlock(&q->unused_hctx_lock);
3642 }
3643
3644 static void blk_mq_exit_hw_queues(struct request_queue *q,
3645                 struct blk_mq_tag_set *set, int nr_queue)
3646 {
3647         struct blk_mq_hw_ctx *hctx;
3648         unsigned long i;
3649
3650         queue_for_each_hw_ctx(q, hctx, i) {
3651                 if (i == nr_queue)
3652                         break;
3653                 blk_mq_exit_hctx(q, set, hctx, i);
3654         }
3655 }
3656
3657 static int blk_mq_init_hctx(struct request_queue *q,
3658                 struct blk_mq_tag_set *set,
3659                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3660 {
3661         hctx->queue_num = hctx_idx;
3662
3663         if (!(hctx->flags & BLK_MQ_F_STACKING))
3664                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3665                                 &hctx->cpuhp_online);
3666         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3667
3668         hctx->tags = set->tags[hctx_idx];
3669
3670         if (set->ops->init_hctx &&
3671             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3672                 goto unregister_cpu_notifier;
3673
3674         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3675                                 hctx->numa_node))
3676                 goto exit_hctx;
3677
3678         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3679                 goto exit_flush_rq;
3680
3681         return 0;
3682
3683  exit_flush_rq:
3684         if (set->ops->exit_request)
3685                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3686  exit_hctx:
3687         if (set->ops->exit_hctx)
3688                 set->ops->exit_hctx(hctx, hctx_idx);
3689  unregister_cpu_notifier:
3690         blk_mq_remove_cpuhp(hctx);
3691         return -1;
3692 }
3693
3694 static struct blk_mq_hw_ctx *
3695 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3696                 int node)
3697 {
3698         struct blk_mq_hw_ctx *hctx;
3699         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3700
3701         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3702         if (!hctx)
3703                 goto fail_alloc_hctx;
3704
3705         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3706                 goto free_hctx;
3707
3708         atomic_set(&hctx->nr_active, 0);
3709         if (node == NUMA_NO_NODE)
3710                 node = set->numa_node;
3711         hctx->numa_node = node;
3712
3713         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3714         spin_lock_init(&hctx->lock);
3715         INIT_LIST_HEAD(&hctx->dispatch);
3716         hctx->queue = q;
3717         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3718
3719         INIT_LIST_HEAD(&hctx->hctx_list);
3720
3721         /*
3722          * Allocate space for all possible cpus to avoid allocation at
3723          * runtime
3724          */
3725         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3726                         gfp, node);
3727         if (!hctx->ctxs)
3728                 goto free_cpumask;
3729
3730         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3731                                 gfp, node, false, false))
3732                 goto free_ctxs;
3733         hctx->nr_ctx = 0;
3734
3735         spin_lock_init(&hctx->dispatch_wait_lock);
3736         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3737         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3738
3739         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3740         if (!hctx->fq)
3741                 goto free_bitmap;
3742
3743         blk_mq_hctx_kobj_init(hctx);
3744
3745         return hctx;
3746
3747  free_bitmap:
3748         sbitmap_free(&hctx->ctx_map);
3749  free_ctxs:
3750         kfree(hctx->ctxs);
3751  free_cpumask:
3752         free_cpumask_var(hctx->cpumask);
3753  free_hctx:
3754         kfree(hctx);
3755  fail_alloc_hctx:
3756         return NULL;
3757 }
3758
3759 static void blk_mq_init_cpu_queues(struct request_queue *q,
3760                                    unsigned int nr_hw_queues)
3761 {
3762         struct blk_mq_tag_set *set = q->tag_set;
3763         unsigned int i, j;
3764
3765         for_each_possible_cpu(i) {
3766                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3767                 struct blk_mq_hw_ctx *hctx;
3768                 int k;
3769
3770                 __ctx->cpu = i;
3771                 spin_lock_init(&__ctx->lock);
3772                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3773                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3774
3775                 __ctx->queue = q;
3776
3777                 /*
3778                  * Set local node, IFF we have more than one hw queue. If
3779                  * not, we remain on the home node of the device
3780                  */
3781                 for (j = 0; j < set->nr_maps; j++) {
3782                         hctx = blk_mq_map_queue_type(q, j, i);
3783                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3784                                 hctx->numa_node = cpu_to_node(i);
3785                 }
3786         }
3787 }
3788
3789 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3790                                              unsigned int hctx_idx,
3791                                              unsigned int depth)
3792 {
3793         struct blk_mq_tags *tags;
3794         int ret;
3795
3796         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3797         if (!tags)
3798                 return NULL;
3799
3800         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3801         if (ret) {
3802                 blk_mq_free_rq_map(tags);
3803                 return NULL;
3804         }
3805
3806         return tags;
3807 }
3808
3809 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3810                                        int hctx_idx)
3811 {
3812         if (blk_mq_is_shared_tags(set->flags)) {
3813                 set->tags[hctx_idx] = set->shared_tags;
3814
3815                 return true;
3816         }
3817
3818         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3819                                                        set->queue_depth);
3820
3821         return set->tags[hctx_idx];
3822 }
3823
3824 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3825                              struct blk_mq_tags *tags,
3826                              unsigned int hctx_idx)
3827 {
3828         if (tags) {
3829                 blk_mq_free_rqs(set, tags, hctx_idx);
3830                 blk_mq_free_rq_map(tags);
3831         }
3832 }
3833
3834 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3835                                       unsigned int hctx_idx)
3836 {
3837         if (!blk_mq_is_shared_tags(set->flags))
3838                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3839
3840         set->tags[hctx_idx] = NULL;
3841 }
3842
3843 static void blk_mq_map_swqueue(struct request_queue *q)
3844 {
3845         unsigned int j, hctx_idx;
3846         unsigned long i;
3847         struct blk_mq_hw_ctx *hctx;
3848         struct blk_mq_ctx *ctx;
3849         struct blk_mq_tag_set *set = q->tag_set;
3850
3851         queue_for_each_hw_ctx(q, hctx, i) {
3852                 cpumask_clear(hctx->cpumask);
3853                 hctx->nr_ctx = 0;
3854                 hctx->dispatch_from = NULL;
3855         }
3856
3857         /*
3858          * Map software to hardware queues.
3859          *
3860          * If the cpu isn't present, the cpu is mapped to first hctx.
3861          */
3862         for_each_possible_cpu(i) {
3863
3864                 ctx = per_cpu_ptr(q->queue_ctx, i);
3865                 for (j = 0; j < set->nr_maps; j++) {
3866                         if (!set->map[j].nr_queues) {
3867                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3868                                                 HCTX_TYPE_DEFAULT, i);
3869                                 continue;
3870                         }
3871                         hctx_idx = set->map[j].mq_map[i];
3872                         /* unmapped hw queue can be remapped after CPU topo changed */
3873                         if (!set->tags[hctx_idx] &&
3874                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3875                                 /*
3876                                  * If tags initialization fail for some hctx,
3877                                  * that hctx won't be brought online.  In this
3878                                  * case, remap the current ctx to hctx[0] which
3879                                  * is guaranteed to always have tags allocated
3880                                  */
3881                                 set->map[j].mq_map[i] = 0;
3882                         }
3883
3884                         hctx = blk_mq_map_queue_type(q, j, i);
3885                         ctx->hctxs[j] = hctx;
3886                         /*
3887                          * If the CPU is already set in the mask, then we've
3888                          * mapped this one already. This can happen if
3889                          * devices share queues across queue maps.
3890                          */
3891                         if (cpumask_test_cpu(i, hctx->cpumask))
3892                                 continue;
3893
3894                         cpumask_set_cpu(i, hctx->cpumask);
3895                         hctx->type = j;
3896                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3897                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3898
3899                         /*
3900                          * If the nr_ctx type overflows, we have exceeded the
3901                          * amount of sw queues we can support.
3902                          */
3903                         BUG_ON(!hctx->nr_ctx);
3904                 }
3905
3906                 for (; j < HCTX_MAX_TYPES; j++)
3907                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3908                                         HCTX_TYPE_DEFAULT, i);
3909         }
3910
3911         queue_for_each_hw_ctx(q, hctx, i) {
3912                 /*
3913                  * If no software queues are mapped to this hardware queue,
3914                  * disable it and free the request entries.
3915                  */
3916                 if (!hctx->nr_ctx) {
3917                         /* Never unmap queue 0.  We need it as a
3918                          * fallback in case of a new remap fails
3919                          * allocation
3920                          */
3921                         if (i)
3922                                 __blk_mq_free_map_and_rqs(set, i);
3923
3924                         hctx->tags = NULL;
3925                         continue;
3926                 }
3927
3928                 hctx->tags = set->tags[i];
3929                 WARN_ON(!hctx->tags);
3930
3931                 /*
3932                  * Set the map size to the number of mapped software queues.
3933                  * This is more accurate and more efficient than looping
3934                  * over all possibly mapped software queues.
3935                  */
3936                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3937
3938                 /*
3939                  * Initialize batch roundrobin counts
3940                  */
3941                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3942                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3943         }
3944 }
3945
3946 /*
3947  * Caller needs to ensure that we're either frozen/quiesced, or that
3948  * the queue isn't live yet.
3949  */
3950 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3951 {
3952         struct blk_mq_hw_ctx *hctx;
3953         unsigned long i;
3954
3955         queue_for_each_hw_ctx(q, hctx, i) {
3956                 if (shared) {
3957                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3958                 } else {
3959                         blk_mq_tag_idle(hctx);
3960                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3961                 }
3962         }
3963 }
3964
3965 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3966                                          bool shared)
3967 {
3968         struct request_queue *q;
3969
3970         lockdep_assert_held(&set->tag_list_lock);
3971
3972         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3973                 blk_mq_freeze_queue(q);
3974                 queue_set_hctx_shared(q, shared);
3975                 blk_mq_unfreeze_queue(q);
3976         }
3977 }
3978
3979 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3980 {
3981         struct blk_mq_tag_set *set = q->tag_set;
3982
3983         mutex_lock(&set->tag_list_lock);
3984         list_del(&q->tag_set_list);
3985         if (list_is_singular(&set->tag_list)) {
3986                 /* just transitioned to unshared */
3987                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3988                 /* update existing queue */
3989                 blk_mq_update_tag_set_shared(set, false);
3990         }
3991         mutex_unlock(&set->tag_list_lock);
3992         INIT_LIST_HEAD(&q->tag_set_list);
3993 }
3994
3995 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3996                                      struct request_queue *q)
3997 {
3998         mutex_lock(&set->tag_list_lock);
3999
4000         /*
4001          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4002          */
4003         if (!list_empty(&set->tag_list) &&
4004             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4005                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4006                 /* update existing queue */
4007                 blk_mq_update_tag_set_shared(set, true);
4008         }
4009         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4010                 queue_set_hctx_shared(q, true);
4011         list_add_tail(&q->tag_set_list, &set->tag_list);
4012
4013         mutex_unlock(&set->tag_list_lock);
4014 }
4015
4016 /* All allocations will be freed in release handler of q->mq_kobj */
4017 static int blk_mq_alloc_ctxs(struct request_queue *q)
4018 {
4019         struct blk_mq_ctxs *ctxs;
4020         int cpu;
4021
4022         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4023         if (!ctxs)
4024                 return -ENOMEM;
4025
4026         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4027         if (!ctxs->queue_ctx)
4028                 goto fail;
4029
4030         for_each_possible_cpu(cpu) {
4031                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4032                 ctx->ctxs = ctxs;
4033         }
4034
4035         q->mq_kobj = &ctxs->kobj;
4036         q->queue_ctx = ctxs->queue_ctx;
4037
4038         return 0;
4039  fail:
4040         kfree(ctxs);
4041         return -ENOMEM;
4042 }
4043
4044 /*
4045  * It is the actual release handler for mq, but we do it from
4046  * request queue's release handler for avoiding use-after-free
4047  * and headache because q->mq_kobj shouldn't have been introduced,
4048  * but we can't group ctx/kctx kobj without it.
4049  */
4050 void blk_mq_release(struct request_queue *q)
4051 {
4052         struct blk_mq_hw_ctx *hctx, *next;
4053         unsigned long i;
4054
4055         queue_for_each_hw_ctx(q, hctx, i)
4056                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4057
4058         /* all hctx are in .unused_hctx_list now */
4059         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4060                 list_del_init(&hctx->hctx_list);
4061                 kobject_put(&hctx->kobj);
4062         }
4063
4064         xa_destroy(&q->hctx_table);
4065
4066         /*
4067          * release .mq_kobj and sw queue's kobject now because
4068          * both share lifetime with request queue.
4069          */
4070         blk_mq_sysfs_deinit(q);
4071 }
4072
4073 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4074                 struct queue_limits *lim, void *queuedata)
4075 {
4076         struct queue_limits default_lim = { };
4077         struct request_queue *q;
4078         int ret;
4079
4080         q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4081         if (IS_ERR(q))
4082                 return q;
4083         q->queuedata = queuedata;
4084         ret = blk_mq_init_allocated_queue(set, q);
4085         if (ret) {
4086                 blk_put_queue(q);
4087                 return ERR_PTR(ret);
4088         }
4089         return q;
4090 }
4091 EXPORT_SYMBOL(blk_mq_alloc_queue);
4092
4093 /**
4094  * blk_mq_destroy_queue - shutdown a request queue
4095  * @q: request queue to shutdown
4096  *
4097  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4098  * requests will be failed with -ENODEV. The caller is responsible for dropping
4099  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4100  *
4101  * Context: can sleep
4102  */
4103 void blk_mq_destroy_queue(struct request_queue *q)
4104 {
4105         WARN_ON_ONCE(!queue_is_mq(q));
4106         WARN_ON_ONCE(blk_queue_registered(q));
4107
4108         might_sleep();
4109
4110         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4111         blk_queue_start_drain(q);
4112         blk_mq_freeze_queue_wait(q);
4113
4114         blk_sync_queue(q);
4115         blk_mq_cancel_work_sync(q);
4116         blk_mq_exit_queue(q);
4117 }
4118 EXPORT_SYMBOL(blk_mq_destroy_queue);
4119
4120 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4121                 struct queue_limits *lim, void *queuedata,
4122                 struct lock_class_key *lkclass)
4123 {
4124         struct request_queue *q;
4125         struct gendisk *disk;
4126
4127         q = blk_mq_alloc_queue(set, lim, queuedata);
4128         if (IS_ERR(q))
4129                 return ERR_CAST(q);
4130
4131         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4132         if (!disk) {
4133                 blk_mq_destroy_queue(q);
4134                 blk_put_queue(q);
4135                 return ERR_PTR(-ENOMEM);
4136         }
4137         set_bit(GD_OWNS_QUEUE, &disk->state);
4138         return disk;
4139 }
4140 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4141
4142 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4143                 struct lock_class_key *lkclass)
4144 {
4145         struct gendisk *disk;
4146
4147         if (!blk_get_queue(q))
4148                 return NULL;
4149         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4150         if (!disk)
4151                 blk_put_queue(q);
4152         return disk;
4153 }
4154 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4155
4156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4157                 struct blk_mq_tag_set *set, struct request_queue *q,
4158                 int hctx_idx, int node)
4159 {
4160         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4161
4162         /* reuse dead hctx first */
4163         spin_lock(&q->unused_hctx_lock);
4164         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4165                 if (tmp->numa_node == node) {
4166                         hctx = tmp;
4167                         break;
4168                 }
4169         }
4170         if (hctx)
4171                 list_del_init(&hctx->hctx_list);
4172         spin_unlock(&q->unused_hctx_lock);
4173
4174         if (!hctx)
4175                 hctx = blk_mq_alloc_hctx(q, set, node);
4176         if (!hctx)
4177                 goto fail;
4178
4179         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4180                 goto free_hctx;
4181
4182         return hctx;
4183
4184  free_hctx:
4185         kobject_put(&hctx->kobj);
4186  fail:
4187         return NULL;
4188 }
4189
4190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4191                                                 struct request_queue *q)
4192 {
4193         struct blk_mq_hw_ctx *hctx;
4194         unsigned long i, j;
4195
4196         /* protect against switching io scheduler  */
4197         mutex_lock(&q->sysfs_lock);
4198         for (i = 0; i < set->nr_hw_queues; i++) {
4199                 int old_node;
4200                 int node = blk_mq_get_hctx_node(set, i);
4201                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4202
4203                 if (old_hctx) {
4204                         old_node = old_hctx->numa_node;
4205                         blk_mq_exit_hctx(q, set, old_hctx, i);
4206                 }
4207
4208                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4209                         if (!old_hctx)
4210                                 break;
4211                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4212                                         node, old_node);
4213                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4214                         WARN_ON_ONCE(!hctx);
4215                 }
4216         }
4217         /*
4218          * Increasing nr_hw_queues fails. Free the newly allocated
4219          * hctxs and keep the previous q->nr_hw_queues.
4220          */
4221         if (i != set->nr_hw_queues) {
4222                 j = q->nr_hw_queues;
4223         } else {
4224                 j = i;
4225                 q->nr_hw_queues = set->nr_hw_queues;
4226         }
4227
4228         xa_for_each_start(&q->hctx_table, j, hctx, j)
4229                 blk_mq_exit_hctx(q, set, hctx, j);
4230         mutex_unlock(&q->sysfs_lock);
4231 }
4232
4233 static void blk_mq_update_poll_flag(struct request_queue *q)
4234 {
4235         struct blk_mq_tag_set *set = q->tag_set;
4236
4237         if (set->nr_maps > HCTX_TYPE_POLL &&
4238             set->map[HCTX_TYPE_POLL].nr_queues)
4239                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4240         else
4241                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4242 }
4243
4244 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4245                 struct request_queue *q)
4246 {
4247         /* mark the queue as mq asap */
4248         q->mq_ops = set->ops;
4249
4250         if (blk_mq_alloc_ctxs(q))
4251                 goto err_exit;
4252
4253         /* init q->mq_kobj and sw queues' kobjects */
4254         blk_mq_sysfs_init(q);
4255
4256         INIT_LIST_HEAD(&q->unused_hctx_list);
4257         spin_lock_init(&q->unused_hctx_lock);
4258
4259         xa_init(&q->hctx_table);
4260
4261         blk_mq_realloc_hw_ctxs(set, q);
4262         if (!q->nr_hw_queues)
4263                 goto err_hctxs;
4264
4265         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4266         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4267
4268         q->tag_set = set;
4269
4270         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4271         blk_mq_update_poll_flag(q);
4272
4273         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4274         INIT_LIST_HEAD(&q->flush_list);
4275         INIT_LIST_HEAD(&q->requeue_list);
4276         spin_lock_init(&q->requeue_lock);
4277
4278         q->nr_requests = set->queue_depth;
4279
4280         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4281         blk_mq_add_queue_tag_set(set, q);
4282         blk_mq_map_swqueue(q);
4283         return 0;
4284
4285 err_hctxs:
4286         blk_mq_release(q);
4287 err_exit:
4288         q->mq_ops = NULL;
4289         return -ENOMEM;
4290 }
4291 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4292
4293 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4294 void blk_mq_exit_queue(struct request_queue *q)
4295 {
4296         struct blk_mq_tag_set *set = q->tag_set;
4297
4298         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4299         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4300         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4301         blk_mq_del_queue_tag_set(q);
4302 }
4303
4304 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4305 {
4306         int i;
4307
4308         if (blk_mq_is_shared_tags(set->flags)) {
4309                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4310                                                 BLK_MQ_NO_HCTX_IDX,
4311                                                 set->queue_depth);
4312                 if (!set->shared_tags)
4313                         return -ENOMEM;
4314         }
4315
4316         for (i = 0; i < set->nr_hw_queues; i++) {
4317                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4318                         goto out_unwind;
4319                 cond_resched();
4320         }
4321
4322         return 0;
4323
4324 out_unwind:
4325         while (--i >= 0)
4326                 __blk_mq_free_map_and_rqs(set, i);
4327
4328         if (blk_mq_is_shared_tags(set->flags)) {
4329                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4330                                         BLK_MQ_NO_HCTX_IDX);
4331         }
4332
4333         return -ENOMEM;
4334 }
4335
4336 /*
4337  * Allocate the request maps associated with this tag_set. Note that this
4338  * may reduce the depth asked for, if memory is tight. set->queue_depth
4339  * will be updated to reflect the allocated depth.
4340  */
4341 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4342 {
4343         unsigned int depth;
4344         int err;
4345
4346         depth = set->queue_depth;
4347         do {
4348                 err = __blk_mq_alloc_rq_maps(set);
4349                 if (!err)
4350                         break;
4351
4352                 set->queue_depth >>= 1;
4353                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4354                         err = -ENOMEM;
4355                         break;
4356                 }
4357         } while (set->queue_depth);
4358
4359         if (!set->queue_depth || err) {
4360                 pr_err("blk-mq: failed to allocate request map\n");
4361                 return -ENOMEM;
4362         }
4363
4364         if (depth != set->queue_depth)
4365                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4366                                                 depth, set->queue_depth);
4367
4368         return 0;
4369 }
4370
4371 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4372 {
4373         /*
4374          * blk_mq_map_queues() and multiple .map_queues() implementations
4375          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4376          * number of hardware queues.
4377          */
4378         if (set->nr_maps == 1)
4379                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4380
4381         if (set->ops->map_queues && !is_kdump_kernel()) {
4382                 int i;
4383
4384                 /*
4385                  * transport .map_queues is usually done in the following
4386                  * way:
4387                  *
4388                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4389                  *      mask = get_cpu_mask(queue)
4390                  *      for_each_cpu(cpu, mask)
4391                  *              set->map[x].mq_map[cpu] = queue;
4392                  * }
4393                  *
4394                  * When we need to remap, the table has to be cleared for
4395                  * killing stale mapping since one CPU may not be mapped
4396                  * to any hw queue.
4397                  */
4398                 for (i = 0; i < set->nr_maps; i++)
4399                         blk_mq_clear_mq_map(&set->map[i]);
4400
4401                 set->ops->map_queues(set);
4402         } else {
4403                 BUG_ON(set->nr_maps > 1);
4404                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4405         }
4406 }
4407
4408 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4409                                        int new_nr_hw_queues)
4410 {
4411         struct blk_mq_tags **new_tags;
4412         int i;
4413
4414         if (set->nr_hw_queues >= new_nr_hw_queues)
4415                 goto done;
4416
4417         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4418                                 GFP_KERNEL, set->numa_node);
4419         if (!new_tags)
4420                 return -ENOMEM;
4421
4422         if (set->tags)
4423                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4424                        sizeof(*set->tags));
4425         kfree(set->tags);
4426         set->tags = new_tags;
4427
4428         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4429                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4430                         while (--i >= set->nr_hw_queues)
4431                                 __blk_mq_free_map_and_rqs(set, i);
4432                         return -ENOMEM;
4433                 }
4434                 cond_resched();
4435         }
4436
4437 done:
4438         set->nr_hw_queues = new_nr_hw_queues;
4439         return 0;
4440 }
4441
4442 /*
4443  * Alloc a tag set to be associated with one or more request queues.
4444  * May fail with EINVAL for various error conditions. May adjust the
4445  * requested depth down, if it's too large. In that case, the set
4446  * value will be stored in set->queue_depth.
4447  */
4448 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4449 {
4450         int i, ret;
4451
4452         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4453
4454         if (!set->nr_hw_queues)
4455                 return -EINVAL;
4456         if (!set->queue_depth)
4457                 return -EINVAL;
4458         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4459                 return -EINVAL;
4460
4461         if (!set->ops->queue_rq)
4462                 return -EINVAL;
4463
4464         if (!set->ops->get_budget ^ !set->ops->put_budget)
4465                 return -EINVAL;
4466
4467         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4468                 pr_info("blk-mq: reduced tag depth to %u\n",
4469                         BLK_MQ_MAX_DEPTH);
4470                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4471         }
4472
4473         if (!set->nr_maps)
4474                 set->nr_maps = 1;
4475         else if (set->nr_maps > HCTX_MAX_TYPES)
4476                 return -EINVAL;
4477
4478         /*
4479          * If a crashdump is active, then we are potentially in a very
4480          * memory constrained environment. Limit us to 1 queue and
4481          * 64 tags to prevent using too much memory.
4482          */
4483         if (is_kdump_kernel()) {
4484                 set->nr_hw_queues = 1;
4485                 set->nr_maps = 1;
4486                 set->queue_depth = min(64U, set->queue_depth);
4487         }
4488         /*
4489          * There is no use for more h/w queues than cpus if we just have
4490          * a single map
4491          */
4492         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4493                 set->nr_hw_queues = nr_cpu_ids;
4494
4495         if (set->flags & BLK_MQ_F_BLOCKING) {
4496                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4497                 if (!set->srcu)
4498                         return -ENOMEM;
4499                 ret = init_srcu_struct(set->srcu);
4500                 if (ret)
4501                         goto out_free_srcu;
4502         }
4503
4504         ret = -ENOMEM;
4505         set->tags = kcalloc_node(set->nr_hw_queues,
4506                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4507                                  set->numa_node);
4508         if (!set->tags)
4509                 goto out_cleanup_srcu;
4510
4511         for (i = 0; i < set->nr_maps; i++) {
4512                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4513                                                   sizeof(set->map[i].mq_map[0]),
4514                                                   GFP_KERNEL, set->numa_node);
4515                 if (!set->map[i].mq_map)
4516                         goto out_free_mq_map;
4517                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4518         }
4519
4520         blk_mq_update_queue_map(set);
4521
4522         ret = blk_mq_alloc_set_map_and_rqs(set);
4523         if (ret)
4524                 goto out_free_mq_map;
4525
4526         mutex_init(&set->tag_list_lock);
4527         INIT_LIST_HEAD(&set->tag_list);
4528
4529         return 0;
4530
4531 out_free_mq_map:
4532         for (i = 0; i < set->nr_maps; i++) {
4533                 kfree(set->map[i].mq_map);
4534                 set->map[i].mq_map = NULL;
4535         }
4536         kfree(set->tags);
4537         set->tags = NULL;
4538 out_cleanup_srcu:
4539         if (set->flags & BLK_MQ_F_BLOCKING)
4540                 cleanup_srcu_struct(set->srcu);
4541 out_free_srcu:
4542         if (set->flags & BLK_MQ_F_BLOCKING)
4543                 kfree(set->srcu);
4544         return ret;
4545 }
4546 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4547
4548 /* allocate and initialize a tagset for a simple single-queue device */
4549 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4550                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4551                 unsigned int set_flags)
4552 {
4553         memset(set, 0, sizeof(*set));
4554         set->ops = ops;
4555         set->nr_hw_queues = 1;
4556         set->nr_maps = 1;
4557         set->queue_depth = queue_depth;
4558         set->numa_node = NUMA_NO_NODE;
4559         set->flags = set_flags;
4560         return blk_mq_alloc_tag_set(set);
4561 }
4562 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4563
4564 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4565 {
4566         int i, j;
4567
4568         for (i = 0; i < set->nr_hw_queues; i++)
4569                 __blk_mq_free_map_and_rqs(set, i);
4570
4571         if (blk_mq_is_shared_tags(set->flags)) {
4572                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4573                                         BLK_MQ_NO_HCTX_IDX);
4574         }
4575
4576         for (j = 0; j < set->nr_maps; j++) {
4577                 kfree(set->map[j].mq_map);
4578                 set->map[j].mq_map = NULL;
4579         }
4580
4581         kfree(set->tags);
4582         set->tags = NULL;
4583         if (set->flags & BLK_MQ_F_BLOCKING) {
4584                 cleanup_srcu_struct(set->srcu);
4585                 kfree(set->srcu);
4586         }
4587 }
4588 EXPORT_SYMBOL(blk_mq_free_tag_set);
4589
4590 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4591 {
4592         struct blk_mq_tag_set *set = q->tag_set;
4593         struct blk_mq_hw_ctx *hctx;
4594         int ret;
4595         unsigned long i;
4596
4597         if (!set)
4598                 return -EINVAL;
4599
4600         if (q->nr_requests == nr)
4601                 return 0;
4602
4603         blk_mq_freeze_queue(q);
4604         blk_mq_quiesce_queue(q);
4605
4606         ret = 0;
4607         queue_for_each_hw_ctx(q, hctx, i) {
4608                 if (!hctx->tags)
4609                         continue;
4610                 /*
4611                  * If we're using an MQ scheduler, just update the scheduler
4612                  * queue depth. This is similar to what the old code would do.
4613                  */
4614                 if (hctx->sched_tags) {
4615                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4616                                                       nr, true);
4617                 } else {
4618                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4619                                                       false);
4620                 }
4621                 if (ret)
4622                         break;
4623                 if (q->elevator && q->elevator->type->ops.depth_updated)
4624                         q->elevator->type->ops.depth_updated(hctx);
4625         }
4626         if (!ret) {
4627                 q->nr_requests = nr;
4628                 if (blk_mq_is_shared_tags(set->flags)) {
4629                         if (q->elevator)
4630                                 blk_mq_tag_update_sched_shared_tags(q);
4631                         else
4632                                 blk_mq_tag_resize_shared_tags(set, nr);
4633                 }
4634         }
4635
4636         blk_mq_unquiesce_queue(q);
4637         blk_mq_unfreeze_queue(q);
4638
4639         return ret;
4640 }
4641
4642 /*
4643  * request_queue and elevator_type pair.
4644  * It is just used by __blk_mq_update_nr_hw_queues to cache
4645  * the elevator_type associated with a request_queue.
4646  */
4647 struct blk_mq_qe_pair {
4648         struct list_head node;
4649         struct request_queue *q;
4650         struct elevator_type *type;
4651 };
4652
4653 /*
4654  * Cache the elevator_type in qe pair list and switch the
4655  * io scheduler to 'none'
4656  */
4657 static bool blk_mq_elv_switch_none(struct list_head *head,
4658                 struct request_queue *q)
4659 {
4660         struct blk_mq_qe_pair *qe;
4661
4662         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4663         if (!qe)
4664                 return false;
4665
4666         /* q->elevator needs protection from ->sysfs_lock */
4667         mutex_lock(&q->sysfs_lock);
4668
4669         /* the check has to be done with holding sysfs_lock */
4670         if (!q->elevator) {
4671                 kfree(qe);
4672                 goto unlock;
4673         }
4674
4675         INIT_LIST_HEAD(&qe->node);
4676         qe->q = q;
4677         qe->type = q->elevator->type;
4678         /* keep a reference to the elevator module as we'll switch back */
4679         __elevator_get(qe->type);
4680         list_add(&qe->node, head);
4681         elevator_disable(q);
4682 unlock:
4683         mutex_unlock(&q->sysfs_lock);
4684
4685         return true;
4686 }
4687
4688 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4689                                                 struct request_queue *q)
4690 {
4691         struct blk_mq_qe_pair *qe;
4692
4693         list_for_each_entry(qe, head, node)
4694                 if (qe->q == q)
4695                         return qe;
4696
4697         return NULL;
4698 }
4699
4700 static void blk_mq_elv_switch_back(struct list_head *head,
4701                                   struct request_queue *q)
4702 {
4703         struct blk_mq_qe_pair *qe;
4704         struct elevator_type *t;
4705
4706         qe = blk_lookup_qe_pair(head, q);
4707         if (!qe)
4708                 return;
4709         t = qe->type;
4710         list_del(&qe->node);
4711         kfree(qe);
4712
4713         mutex_lock(&q->sysfs_lock);
4714         elevator_switch(q, t);
4715         /* drop the reference acquired in blk_mq_elv_switch_none */
4716         elevator_put(t);
4717         mutex_unlock(&q->sysfs_lock);
4718 }
4719
4720 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4721                                                         int nr_hw_queues)
4722 {
4723         struct request_queue *q;
4724         LIST_HEAD(head);
4725         int prev_nr_hw_queues = set->nr_hw_queues;
4726         int i;
4727
4728         lockdep_assert_held(&set->tag_list_lock);
4729
4730         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4731                 nr_hw_queues = nr_cpu_ids;
4732         if (nr_hw_queues < 1)
4733                 return;
4734         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4735                 return;
4736
4737         list_for_each_entry(q, &set->tag_list, tag_set_list)
4738                 blk_mq_freeze_queue(q);
4739         /*
4740          * Switch IO scheduler to 'none', cleaning up the data associated
4741          * with the previous scheduler. We will switch back once we are done
4742          * updating the new sw to hw queue mappings.
4743          */
4744         list_for_each_entry(q, &set->tag_list, tag_set_list)
4745                 if (!blk_mq_elv_switch_none(&head, q))
4746                         goto switch_back;
4747
4748         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4749                 blk_mq_debugfs_unregister_hctxs(q);
4750                 blk_mq_sysfs_unregister_hctxs(q);
4751         }
4752
4753         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4754                 goto reregister;
4755
4756 fallback:
4757         blk_mq_update_queue_map(set);
4758         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4759                 blk_mq_realloc_hw_ctxs(set, q);
4760                 blk_mq_update_poll_flag(q);
4761                 if (q->nr_hw_queues != set->nr_hw_queues) {
4762                         int i = prev_nr_hw_queues;
4763
4764                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4765                                         nr_hw_queues, prev_nr_hw_queues);
4766                         for (; i < set->nr_hw_queues; i++)
4767                                 __blk_mq_free_map_and_rqs(set, i);
4768
4769                         set->nr_hw_queues = prev_nr_hw_queues;
4770                         goto fallback;
4771                 }
4772                 blk_mq_map_swqueue(q);
4773         }
4774
4775 reregister:
4776         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4777                 blk_mq_sysfs_register_hctxs(q);
4778                 blk_mq_debugfs_register_hctxs(q);
4779         }
4780
4781 switch_back:
4782         list_for_each_entry(q, &set->tag_list, tag_set_list)
4783                 blk_mq_elv_switch_back(&head, q);
4784
4785         list_for_each_entry(q, &set->tag_list, tag_set_list)
4786                 blk_mq_unfreeze_queue(q);
4787
4788         /* Free the excess tags when nr_hw_queues shrink. */
4789         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4790                 __blk_mq_free_map_and_rqs(set, i);
4791 }
4792
4793 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4794 {
4795         mutex_lock(&set->tag_list_lock);
4796         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4797         mutex_unlock(&set->tag_list_lock);
4798 }
4799 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4800
4801 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4802                          struct io_comp_batch *iob, unsigned int flags)
4803 {
4804         long state = get_current_state();
4805         int ret;
4806
4807         do {
4808                 ret = q->mq_ops->poll(hctx, iob);
4809                 if (ret > 0) {
4810                         __set_current_state(TASK_RUNNING);
4811                         return ret;
4812                 }
4813
4814                 if (signal_pending_state(state, current))
4815                         __set_current_state(TASK_RUNNING);
4816                 if (task_is_running(current))
4817                         return 1;
4818
4819                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4820                         break;
4821                 cpu_relax();
4822         } while (!need_resched());
4823
4824         __set_current_state(TASK_RUNNING);
4825         return 0;
4826 }
4827
4828 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4829                 struct io_comp_batch *iob, unsigned int flags)
4830 {
4831         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4832
4833         return blk_hctx_poll(q, hctx, iob, flags);
4834 }
4835
4836 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4837                 unsigned int poll_flags)
4838 {
4839         struct request_queue *q = rq->q;
4840         int ret;
4841
4842         if (!blk_rq_is_poll(rq))
4843                 return 0;
4844         if (!percpu_ref_tryget(&q->q_usage_counter))
4845                 return 0;
4846
4847         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4848         blk_queue_exit(q);
4849
4850         return ret;
4851 }
4852 EXPORT_SYMBOL_GPL(blk_rq_poll);
4853
4854 unsigned int blk_mq_rq_cpu(struct request *rq)
4855 {
4856         return rq->mq_ctx->cpu;
4857 }
4858 EXPORT_SYMBOL(blk_mq_rq_cpu);
4859
4860 void blk_mq_cancel_work_sync(struct request_queue *q)
4861 {
4862         struct blk_mq_hw_ctx *hctx;
4863         unsigned long i;
4864
4865         cancel_delayed_work_sync(&q->requeue_work);
4866
4867         queue_for_each_hw_ctx(q, hctx, i)
4868                 cancel_delayed_work_sync(&hctx->run_work);
4869 }
4870
4871 static int __init blk_mq_init(void)
4872 {
4873         int i;
4874
4875         for_each_possible_cpu(i)
4876                 init_llist_head(&per_cpu(blk_cpu_done, i));
4877         for_each_possible_cpu(i)
4878                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4879                          __blk_mq_complete_request_remote, NULL);
4880         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4881
4882         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4883                                   "block/softirq:dead", NULL,
4884                                   blk_softirq_cpu_dead);
4885         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4886                                 blk_mq_hctx_notify_dead);
4887         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4888                                 blk_mq_hctx_notify_online,
4889                                 blk_mq_hctx_notify_offline);
4890         return 0;
4891 }
4892 subsys_initcall(blk_mq_init);