scsi: dc395x: Fix incorrect naming in function headers
[linux-2.6-microblaze.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         q->mq_freeze_depth--;
195         WARN_ON_ONCE(q->mq_freeze_depth < 0);
196         if (!q->mq_freeze_depth) {
197                 percpu_ref_resurrect(&q->q_usage_counter);
198                 wake_up_all(&q->mq_freeze_wq);
199         }
200         mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225         struct blk_mq_hw_ctx *hctx;
226         unsigned int i;
227         bool rcu = false;
228
229         blk_mq_quiesce_queue_nowait(q);
230
231         queue_for_each_hw_ctx(q, hctx, i) {
232                 if (hctx->flags & BLK_MQ_F_BLOCKING)
233                         synchronize_srcu(hctx->srcu);
234                 else
235                         rcu = true;
236         }
237         if (rcu)
238                 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253         /* dispatch requests which are inserted during quiescing */
254         blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260         struct blk_mq_hw_ctx *hctx;
261         unsigned int i;
262
263         queue_for_each_hw_ctx(q, hctx, i)
264                 if (blk_mq_hw_queue_mapped(hctx))
265                         blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, u64 alloc_time_ns)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282
283         if (data->q->elevator) {
284                 rq->tag = BLK_MQ_NO_TAG;
285                 rq->internal_tag = tag;
286         } else {
287                 rq->tag = tag;
288                 rq->internal_tag = BLK_MQ_NO_TAG;
289         }
290
291         /* csd/requeue_work/fifo_time is initialized before use */
292         rq->q = data->q;
293         rq->mq_ctx = data->ctx;
294         rq->mq_hctx = data->hctx;
295         rq->rq_flags = 0;
296         rq->cmd_flags = data->cmd_flags;
297         if (data->flags & BLK_MQ_REQ_PM)
298                 rq->rq_flags |= RQF_PM;
299         if (blk_queue_io_stat(data->q))
300                 rq->rq_flags |= RQF_IO_STAT;
301         INIT_LIST_HEAD(&rq->queuelist);
302         INIT_HLIST_NODE(&rq->hash);
303         RB_CLEAR_NODE(&rq->rb_node);
304         rq->rq_disk = NULL;
305         rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307         rq->alloc_time_ns = alloc_time_ns;
308 #endif
309         if (blk_mq_need_time_stamp(rq))
310                 rq->start_time_ns = ktime_get_ns();
311         else
312                 rq->start_time_ns = 0;
313         rq->io_start_time_ns = 0;
314         rq->stats_sectors = 0;
315         rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317         rq->nr_integrity_segments = 0;
318 #endif
319         blk_crypto_rq_set_defaults(rq);
320         /* tag was already set */
321         WRITE_ONCE(rq->deadline, 0);
322
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327
328         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329         refcount_set(&rq->ref, 1);
330
331         if (!op_is_flush(data->cmd_flags)) {
332                 struct elevator_queue *e = data->q->elevator;
333
334                 rq->elv.icq = NULL;
335                 if (e && e->type->ops.prepare_request) {
336                         if (e->type->icq_cache)
337                                 blk_mq_sched_assign_ioc(rq);
338
339                         e->type->ops.prepare_request(rq);
340                         rq->rq_flags |= RQF_ELVPRIV;
341                 }
342         }
343
344         data->hctx->queued++;
345         return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350         struct request_queue *q = data->q;
351         struct elevator_queue *e = q->elevator;
352         u64 alloc_time_ns = 0;
353         unsigned int tag;
354
355         /* alloc_time includes depth and tag waits */
356         if (blk_queue_rq_alloc_time(q))
357                 alloc_time_ns = ktime_get_ns();
358
359         if (data->cmd_flags & REQ_NOWAIT)
360                 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362         if (e) {
363                 /*
364                  * Flush requests are special and go directly to the
365                  * dispatch list. Don't include reserved tags in the
366                  * limiting, as it isn't useful.
367                  */
368                 if (!op_is_flush(data->cmd_flags) &&
369                     e->type->ops.limit_depth &&
370                     !(data->flags & BLK_MQ_REQ_RESERVED))
371                         e->type->ops.limit_depth(data->cmd_flags, data);
372         }
373
374 retry:
375         data->ctx = blk_mq_get_ctx(q);
376         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377         if (!e)
378                 blk_mq_tag_busy(data->hctx);
379
380         /*
381          * Waiting allocations only fail because of an inactive hctx.  In that
382          * case just retry the hctx assignment and tag allocation as CPU hotplug
383          * should have migrated us to an online CPU by now.
384          */
385         tag = blk_mq_get_tag(data);
386         if (tag == BLK_MQ_NO_TAG) {
387                 if (data->flags & BLK_MQ_REQ_NOWAIT)
388                         return NULL;
389
390                 /*
391                  * Give up the CPU and sleep for a random short time to ensure
392                  * that thread using a realtime scheduling class are migrated
393                  * off the CPU, and thus off the hctx that is going away.
394                  */
395                 msleep(3);
396                 goto retry;
397         }
398         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402                 blk_mq_req_flags_t flags)
403 {
404         struct blk_mq_alloc_data data = {
405                 .q              = q,
406                 .flags          = flags,
407                 .cmd_flags      = op,
408         };
409         struct request *rq;
410         int ret;
411
412         ret = blk_queue_enter(q, flags);
413         if (ret)
414                 return ERR_PTR(ret);
415
416         rq = __blk_mq_alloc_request(&data);
417         if (!rq)
418                 goto out_queue_exit;
419         rq->__data_len = 0;
420         rq->__sector = (sector_t) -1;
421         rq->bio = rq->biotail = NULL;
422         return rq;
423 out_queue_exit:
424         blk_queue_exit(q);
425         return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432         struct blk_mq_alloc_data data = {
433                 .q              = q,
434                 .flags          = flags,
435                 .cmd_flags      = op,
436         };
437         u64 alloc_time_ns = 0;
438         unsigned int cpu;
439         unsigned int tag;
440         int ret;
441
442         /* alloc_time includes depth and tag waits */
443         if (blk_queue_rq_alloc_time(q))
444                 alloc_time_ns = ktime_get_ns();
445
446         /*
447          * If the tag allocator sleeps we could get an allocation for a
448          * different hardware context.  No need to complicate the low level
449          * allocator for this for the rare use case of a command tied to
450          * a specific queue.
451          */
452         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453                 return ERR_PTR(-EINVAL);
454
455         if (hctx_idx >= q->nr_hw_queues)
456                 return ERR_PTR(-EIO);
457
458         ret = blk_queue_enter(q, flags);
459         if (ret)
460                 return ERR_PTR(ret);
461
462         /*
463          * Check if the hardware context is actually mapped to anything.
464          * If not tell the caller that it should skip this queue.
465          */
466         ret = -EXDEV;
467         data.hctx = q->queue_hw_ctx[hctx_idx];
468         if (!blk_mq_hw_queue_mapped(data.hctx))
469                 goto out_queue_exit;
470         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471         data.ctx = __blk_mq_get_ctx(q, cpu);
472
473         if (!q->elevator)
474                 blk_mq_tag_busy(data.hctx);
475
476         ret = -EWOULDBLOCK;
477         tag = blk_mq_get_tag(&data);
478         if (tag == BLK_MQ_NO_TAG)
479                 goto out_queue_exit;
480         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481
482 out_queue_exit:
483         blk_queue_exit(q);
484         return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487
488 static void __blk_mq_free_request(struct request *rq)
489 {
490         struct request_queue *q = rq->q;
491         struct blk_mq_ctx *ctx = rq->mq_ctx;
492         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493         const int sched_tag = rq->internal_tag;
494
495         blk_crypto_free_request(rq);
496         blk_pm_mark_last_busy(rq);
497         rq->mq_hctx = NULL;
498         if (rq->tag != BLK_MQ_NO_TAG)
499                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500         if (sched_tag != BLK_MQ_NO_TAG)
501                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502         blk_mq_sched_restart(hctx);
503         blk_queue_exit(q);
504 }
505
506 void blk_mq_free_request(struct request *rq)
507 {
508         struct request_queue *q = rq->q;
509         struct elevator_queue *e = q->elevator;
510         struct blk_mq_ctx *ctx = rq->mq_ctx;
511         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512
513         if (rq->rq_flags & RQF_ELVPRIV) {
514                 if (e && e->type->ops.finish_request)
515                         e->type->ops.finish_request(rq);
516                 if (rq->elv.icq) {
517                         put_io_context(rq->elv.icq->ioc);
518                         rq->elv.icq = NULL;
519                 }
520         }
521
522         ctx->rq_completed[rq_is_sync(rq)]++;
523         if (rq->rq_flags & RQF_MQ_INFLIGHT)
524                 __blk_mq_dec_active_requests(hctx);
525
526         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527                 laptop_io_completion(q->backing_dev_info);
528
529         rq_qos_done(q, rq);
530
531         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532         if (refcount_dec_and_test(&rq->ref))
533                 __blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539         u64 now = 0;
540
541         if (blk_mq_need_time_stamp(rq))
542                 now = ktime_get_ns();
543
544         if (rq->rq_flags & RQF_STATS) {
545                 blk_mq_poll_stats_start(rq->q);
546                 blk_stat_add(rq, now);
547         }
548
549         blk_mq_sched_completed_request(rq, now);
550
551         blk_account_io_done(rq, now);
552
553         if (rq->end_io) {
554                 rq_qos_done(rq->q, rq);
555                 rq->end_io(rq, error);
556         } else {
557                 blk_mq_free_request(rq);
558         }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565                 BUG();
566         __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 static void blk_complete_reqs(struct llist_head *list)
571 {
572         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
573         struct request *rq, *next;
574
575         llist_for_each_entry_safe(rq, next, entry, ipi_list)
576                 rq->q->mq_ops->complete(rq);
577 }
578
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
582 }
583
584 static int blk_softirq_cpu_dead(unsigned int cpu)
585 {
586         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
587         return 0;
588 }
589
590 static void __blk_mq_complete_request_remote(void *data)
591 {
592         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
593 }
594
595 static inline bool blk_mq_complete_need_ipi(struct request *rq)
596 {
597         int cpu = raw_smp_processor_id();
598
599         if (!IS_ENABLED(CONFIG_SMP) ||
600             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
601                 return false;
602         /*
603          * With force threaded interrupts enabled, raising softirq from an SMP
604          * function call will always result in waking the ksoftirqd thread.
605          * This is probably worse than completing the request on a different
606          * cache domain.
607          */
608         if (force_irqthreads)
609                 return false;
610
611         /* same CPU or cache domain?  Complete locally */
612         if (cpu == rq->mq_ctx->cpu ||
613             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
614              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
615                 return false;
616
617         /* don't try to IPI to an offline CPU */
618         return cpu_online(rq->mq_ctx->cpu);
619 }
620
621 static void blk_mq_complete_send_ipi(struct request *rq)
622 {
623         struct llist_head *list;
624         unsigned int cpu;
625
626         cpu = rq->mq_ctx->cpu;
627         list = &per_cpu(blk_cpu_done, cpu);
628         if (llist_add(&rq->ipi_list, list)) {
629                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
630                 smp_call_function_single_async(cpu, &rq->csd);
631         }
632 }
633
634 static void blk_mq_raise_softirq(struct request *rq)
635 {
636         struct llist_head *list;
637
638         preempt_disable();
639         list = this_cpu_ptr(&blk_cpu_done);
640         if (llist_add(&rq->ipi_list, list))
641                 raise_softirq(BLOCK_SOFTIRQ);
642         preempt_enable();
643 }
644
645 bool blk_mq_complete_request_remote(struct request *rq)
646 {
647         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
648
649         /*
650          * For a polled request, always complete locallly, it's pointless
651          * to redirect the completion.
652          */
653         if (rq->cmd_flags & REQ_HIPRI)
654                 return false;
655
656         if (blk_mq_complete_need_ipi(rq)) {
657                 blk_mq_complete_send_ipi(rq);
658                 return true;
659         }
660
661         if (rq->q->nr_hw_queues == 1) {
662                 blk_mq_raise_softirq(rq);
663                 return true;
664         }
665         return false;
666 }
667 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
668
669 /**
670  * blk_mq_complete_request - end I/O on a request
671  * @rq:         the request being processed
672  *
673  * Description:
674  *      Complete a request by scheduling the ->complete_rq operation.
675  **/
676 void blk_mq_complete_request(struct request *rq)
677 {
678         if (!blk_mq_complete_request_remote(rq))
679                 rq->q->mq_ops->complete(rq);
680 }
681 EXPORT_SYMBOL(blk_mq_complete_request);
682
683 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
684         __releases(hctx->srcu)
685 {
686         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
687                 rcu_read_unlock();
688         else
689                 srcu_read_unlock(hctx->srcu, srcu_idx);
690 }
691
692 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
693         __acquires(hctx->srcu)
694 {
695         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
696                 /* shut up gcc false positive */
697                 *srcu_idx = 0;
698                 rcu_read_lock();
699         } else
700                 *srcu_idx = srcu_read_lock(hctx->srcu);
701 }
702
703 /**
704  * blk_mq_start_request - Start processing a request
705  * @rq: Pointer to request to be started
706  *
707  * Function used by device drivers to notify the block layer that a request
708  * is going to be processed now, so blk layer can do proper initializations
709  * such as starting the timeout timer.
710  */
711 void blk_mq_start_request(struct request *rq)
712 {
713         struct request_queue *q = rq->q;
714
715         trace_block_rq_issue(rq);
716
717         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
718                 rq->io_start_time_ns = ktime_get_ns();
719                 rq->stats_sectors = blk_rq_sectors(rq);
720                 rq->rq_flags |= RQF_STATS;
721                 rq_qos_issue(q, rq);
722         }
723
724         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
725
726         blk_add_timer(rq);
727         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
728
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
731                 q->integrity.profile->prepare_fn(rq);
732 #endif
733 }
734 EXPORT_SYMBOL(blk_mq_start_request);
735
736 static void __blk_mq_requeue_request(struct request *rq)
737 {
738         struct request_queue *q = rq->q;
739
740         blk_mq_put_driver_tag(rq);
741
742         trace_block_rq_requeue(rq);
743         rq_qos_requeue(q, rq);
744
745         if (blk_mq_request_started(rq)) {
746                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
747                 rq->rq_flags &= ~RQF_TIMED_OUT;
748         }
749 }
750
751 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
752 {
753         __blk_mq_requeue_request(rq);
754
755         /* this request will be re-inserted to io scheduler queue */
756         blk_mq_sched_requeue_request(rq);
757
758         BUG_ON(!list_empty(&rq->queuelist));
759         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
760 }
761 EXPORT_SYMBOL(blk_mq_requeue_request);
762
763 static void blk_mq_requeue_work(struct work_struct *work)
764 {
765         struct request_queue *q =
766                 container_of(work, struct request_queue, requeue_work.work);
767         LIST_HEAD(rq_list);
768         struct request *rq, *next;
769
770         spin_lock_irq(&q->requeue_lock);
771         list_splice_init(&q->requeue_list, &rq_list);
772         spin_unlock_irq(&q->requeue_lock);
773
774         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
775                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
776                         continue;
777
778                 rq->rq_flags &= ~RQF_SOFTBARRIER;
779                 list_del_init(&rq->queuelist);
780                 /*
781                  * If RQF_DONTPREP, rq has contained some driver specific
782                  * data, so insert it to hctx dispatch list to avoid any
783                  * merge.
784                  */
785                 if (rq->rq_flags & RQF_DONTPREP)
786                         blk_mq_request_bypass_insert(rq, false, false);
787                 else
788                         blk_mq_sched_insert_request(rq, true, false, false);
789         }
790
791         while (!list_empty(&rq_list)) {
792                 rq = list_entry(rq_list.next, struct request, queuelist);
793                 list_del_init(&rq->queuelist);
794                 blk_mq_sched_insert_request(rq, false, false, false);
795         }
796
797         blk_mq_run_hw_queues(q, false);
798 }
799
800 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
801                                 bool kick_requeue_list)
802 {
803         struct request_queue *q = rq->q;
804         unsigned long flags;
805
806         /*
807          * We abuse this flag that is otherwise used by the I/O scheduler to
808          * request head insertion from the workqueue.
809          */
810         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
811
812         spin_lock_irqsave(&q->requeue_lock, flags);
813         if (at_head) {
814                 rq->rq_flags |= RQF_SOFTBARRIER;
815                 list_add(&rq->queuelist, &q->requeue_list);
816         } else {
817                 list_add_tail(&rq->queuelist, &q->requeue_list);
818         }
819         spin_unlock_irqrestore(&q->requeue_lock, flags);
820
821         if (kick_requeue_list)
822                 blk_mq_kick_requeue_list(q);
823 }
824
825 void blk_mq_kick_requeue_list(struct request_queue *q)
826 {
827         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
828 }
829 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
830
831 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
832                                     unsigned long msecs)
833 {
834         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
835                                     msecs_to_jiffies(msecs));
836 }
837 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
838
839 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
840 {
841         if (tag < tags->nr_tags) {
842                 prefetch(tags->rqs[tag]);
843                 return tags->rqs[tag];
844         }
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(blk_mq_tag_to_rq);
849
850 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
851                                void *priv, bool reserved)
852 {
853         /*
854          * If we find a request that isn't idle and the queue matches,
855          * we know the queue is busy. Return false to stop the iteration.
856          */
857         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
858                 bool *busy = priv;
859
860                 *busy = true;
861                 return false;
862         }
863
864         return true;
865 }
866
867 bool blk_mq_queue_inflight(struct request_queue *q)
868 {
869         bool busy = false;
870
871         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
872         return busy;
873 }
874 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
875
876 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
877 {
878         req->rq_flags |= RQF_TIMED_OUT;
879         if (req->q->mq_ops->timeout) {
880                 enum blk_eh_timer_return ret;
881
882                 ret = req->q->mq_ops->timeout(req, reserved);
883                 if (ret == BLK_EH_DONE)
884                         return;
885                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
886         }
887
888         blk_add_timer(req);
889 }
890
891 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
892 {
893         unsigned long deadline;
894
895         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
896                 return false;
897         if (rq->rq_flags & RQF_TIMED_OUT)
898                 return false;
899
900         deadline = READ_ONCE(rq->deadline);
901         if (time_after_eq(jiffies, deadline))
902                 return true;
903
904         if (*next == 0)
905                 *next = deadline;
906         else if (time_after(*next, deadline))
907                 *next = deadline;
908         return false;
909 }
910
911 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
912                 struct request *rq, void *priv, bool reserved)
913 {
914         unsigned long *next = priv;
915
916         /*
917          * Just do a quick check if it is expired before locking the request in
918          * so we're not unnecessarilly synchronizing across CPUs.
919          */
920         if (!blk_mq_req_expired(rq, next))
921                 return true;
922
923         /*
924          * We have reason to believe the request may be expired. Take a
925          * reference on the request to lock this request lifetime into its
926          * currently allocated context to prevent it from being reallocated in
927          * the event the completion by-passes this timeout handler.
928          *
929          * If the reference was already released, then the driver beat the
930          * timeout handler to posting a natural completion.
931          */
932         if (!refcount_inc_not_zero(&rq->ref))
933                 return true;
934
935         /*
936          * The request is now locked and cannot be reallocated underneath the
937          * timeout handler's processing. Re-verify this exact request is truly
938          * expired; if it is not expired, then the request was completed and
939          * reallocated as a new request.
940          */
941         if (blk_mq_req_expired(rq, next))
942                 blk_mq_rq_timed_out(rq, reserved);
943
944         if (is_flush_rq(rq, hctx))
945                 rq->end_io(rq, 0);
946         else if (refcount_dec_and_test(&rq->ref))
947                 __blk_mq_free_request(rq);
948
949         return true;
950 }
951
952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954         struct request_queue *q =
955                 container_of(work, struct request_queue, timeout_work);
956         unsigned long next = 0;
957         struct blk_mq_hw_ctx *hctx;
958         int i;
959
960         /* A deadlock might occur if a request is stuck requiring a
961          * timeout at the same time a queue freeze is waiting
962          * completion, since the timeout code would not be able to
963          * acquire the queue reference here.
964          *
965          * That's why we don't use blk_queue_enter here; instead, we use
966          * percpu_ref_tryget directly, because we need to be able to
967          * obtain a reference even in the short window between the queue
968          * starting to freeze, by dropping the first reference in
969          * blk_freeze_queue_start, and the moment the last request is
970          * consumed, marked by the instant q_usage_counter reaches
971          * zero.
972          */
973         if (!percpu_ref_tryget(&q->q_usage_counter))
974                 return;
975
976         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977
978         if (next != 0) {
979                 mod_timer(&q->timeout, next);
980         } else {
981                 /*
982                  * Request timeouts are handled as a forward rolling timer. If
983                  * we end up here it means that no requests are pending and
984                  * also that no request has been pending for a while. Mark
985                  * each hctx as idle.
986                  */
987                 queue_for_each_hw_ctx(q, hctx, i) {
988                         /* the hctx may be unmapped, so check it here */
989                         if (blk_mq_hw_queue_mapped(hctx))
990                                 blk_mq_tag_idle(hctx);
991                 }
992         }
993         blk_queue_exit(q);
994 }
995
996 struct flush_busy_ctx_data {
997         struct blk_mq_hw_ctx *hctx;
998         struct list_head *list;
999 };
1000
1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003         struct flush_busy_ctx_data *flush_data = data;
1004         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006         enum hctx_type type = hctx->type;
1007
1008         spin_lock(&ctx->lock);
1009         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010         sbitmap_clear_bit(sb, bitnr);
1011         spin_unlock(&ctx->lock);
1012         return true;
1013 }
1014
1015 /*
1016  * Process software queues that have been marked busy, splicing them
1017  * to the for-dispatch
1018  */
1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021         struct flush_busy_ctx_data data = {
1022                 .hctx = hctx,
1023                 .list = list,
1024         };
1025
1026         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029
1030 struct dispatch_rq_data {
1031         struct blk_mq_hw_ctx *hctx;
1032         struct request *rq;
1033 };
1034
1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036                 void *data)
1037 {
1038         struct dispatch_rq_data *dispatch_data = data;
1039         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041         enum hctx_type type = hctx->type;
1042
1043         spin_lock(&ctx->lock);
1044         if (!list_empty(&ctx->rq_lists[type])) {
1045                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046                 list_del_init(&dispatch_data->rq->queuelist);
1047                 if (list_empty(&ctx->rq_lists[type]))
1048                         sbitmap_clear_bit(sb, bitnr);
1049         }
1050         spin_unlock(&ctx->lock);
1051
1052         return !dispatch_data->rq;
1053 }
1054
1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056                                         struct blk_mq_ctx *start)
1057 {
1058         unsigned off = start ? start->index_hw[hctx->type] : 0;
1059         struct dispatch_rq_data data = {
1060                 .hctx = hctx,
1061                 .rq   = NULL,
1062         };
1063
1064         __sbitmap_for_each_set(&hctx->ctx_map, off,
1065                                dispatch_rq_from_ctx, &data);
1066
1067         return data.rq;
1068 }
1069
1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072         if (!queued)
1073                 return 0;
1074
1075         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077
1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082         int tag;
1083
1084         blk_mq_tag_busy(rq->mq_hctx);
1085
1086         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087                 bt = rq->mq_hctx->tags->breserved_tags;
1088                 tag_offset = 0;
1089         } else {
1090                 if (!hctx_may_queue(rq->mq_hctx, bt))
1091                         return false;
1092         }
1093
1094         tag = __sbitmap_queue_get(bt);
1095         if (tag == BLK_MQ_NO_TAG)
1096                 return false;
1097
1098         rq->tag = tag + tag_offset;
1099         return true;
1100 }
1101
1102 static bool blk_mq_get_driver_tag(struct request *rq)
1103 {
1104         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1105
1106         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1107                 return false;
1108
1109         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1110                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1111                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1112                 __blk_mq_inc_active_requests(hctx);
1113         }
1114         hctx->tags->rqs[rq->tag] = rq;
1115         return true;
1116 }
1117
1118 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1119                                 int flags, void *key)
1120 {
1121         struct blk_mq_hw_ctx *hctx;
1122
1123         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1124
1125         spin_lock(&hctx->dispatch_wait_lock);
1126         if (!list_empty(&wait->entry)) {
1127                 struct sbitmap_queue *sbq;
1128
1129                 list_del_init(&wait->entry);
1130                 sbq = hctx->tags->bitmap_tags;
1131                 atomic_dec(&sbq->ws_active);
1132         }
1133         spin_unlock(&hctx->dispatch_wait_lock);
1134
1135         blk_mq_run_hw_queue(hctx, true);
1136         return 1;
1137 }
1138
1139 /*
1140  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1141  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1142  * restart. For both cases, take care to check the condition again after
1143  * marking us as waiting.
1144  */
1145 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1146                                  struct request *rq)
1147 {
1148         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1149         struct wait_queue_head *wq;
1150         wait_queue_entry_t *wait;
1151         bool ret;
1152
1153         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1154                 blk_mq_sched_mark_restart_hctx(hctx);
1155
1156                 /*
1157                  * It's possible that a tag was freed in the window between the
1158                  * allocation failure and adding the hardware queue to the wait
1159                  * queue.
1160                  *
1161                  * Don't clear RESTART here, someone else could have set it.
1162                  * At most this will cost an extra queue run.
1163                  */
1164                 return blk_mq_get_driver_tag(rq);
1165         }
1166
1167         wait = &hctx->dispatch_wait;
1168         if (!list_empty_careful(&wait->entry))
1169                 return false;
1170
1171         wq = &bt_wait_ptr(sbq, hctx)->wait;
1172
1173         spin_lock_irq(&wq->lock);
1174         spin_lock(&hctx->dispatch_wait_lock);
1175         if (!list_empty(&wait->entry)) {
1176                 spin_unlock(&hctx->dispatch_wait_lock);
1177                 spin_unlock_irq(&wq->lock);
1178                 return false;
1179         }
1180
1181         atomic_inc(&sbq->ws_active);
1182         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1183         __add_wait_queue(wq, wait);
1184
1185         /*
1186          * It's possible that a tag was freed in the window between the
1187          * allocation failure and adding the hardware queue to the wait
1188          * queue.
1189          */
1190         ret = blk_mq_get_driver_tag(rq);
1191         if (!ret) {
1192                 spin_unlock(&hctx->dispatch_wait_lock);
1193                 spin_unlock_irq(&wq->lock);
1194                 return false;
1195         }
1196
1197         /*
1198          * We got a tag, remove ourselves from the wait queue to ensure
1199          * someone else gets the wakeup.
1200          */
1201         list_del_init(&wait->entry);
1202         atomic_dec(&sbq->ws_active);
1203         spin_unlock(&hctx->dispatch_wait_lock);
1204         spin_unlock_irq(&wq->lock);
1205
1206         return true;
1207 }
1208
1209 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1211 /*
1212  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1213  * - EWMA is one simple way to compute running average value
1214  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1215  * - take 4 as factor for avoiding to get too small(0) result, and this
1216  *   factor doesn't matter because EWMA decreases exponentially
1217  */
1218 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1219 {
1220         unsigned int ewma;
1221
1222         if (hctx->queue->elevator)
1223                 return;
1224
1225         ewma = hctx->dispatch_busy;
1226
1227         if (!ewma && !busy)
1228                 return;
1229
1230         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1231         if (busy)
1232                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1233         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1234
1235         hctx->dispatch_busy = ewma;
1236 }
1237
1238 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1239
1240 static void blk_mq_handle_dev_resource(struct request *rq,
1241                                        struct list_head *list)
1242 {
1243         struct request *next =
1244                 list_first_entry_or_null(list, struct request, queuelist);
1245
1246         /*
1247          * If an I/O scheduler has been configured and we got a driver tag for
1248          * the next request already, free it.
1249          */
1250         if (next)
1251                 blk_mq_put_driver_tag(next);
1252
1253         list_add(&rq->queuelist, list);
1254         __blk_mq_requeue_request(rq);
1255 }
1256
1257 static void blk_mq_handle_zone_resource(struct request *rq,
1258                                         struct list_head *zone_list)
1259 {
1260         /*
1261          * If we end up here it is because we cannot dispatch a request to a
1262          * specific zone due to LLD level zone-write locking or other zone
1263          * related resource not being available. In this case, set the request
1264          * aside in zone_list for retrying it later.
1265          */
1266         list_add(&rq->queuelist, zone_list);
1267         __blk_mq_requeue_request(rq);
1268 }
1269
1270 enum prep_dispatch {
1271         PREP_DISPATCH_OK,
1272         PREP_DISPATCH_NO_TAG,
1273         PREP_DISPATCH_NO_BUDGET,
1274 };
1275
1276 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1277                                                   bool need_budget)
1278 {
1279         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1280         int budget_token = -1;
1281
1282         if (need_budget) {
1283                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1284                 if (budget_token < 0) {
1285                         blk_mq_put_driver_tag(rq);
1286                         return PREP_DISPATCH_NO_BUDGET;
1287                 }
1288                 blk_mq_set_rq_budget_token(rq, budget_token);
1289         }
1290
1291         if (!blk_mq_get_driver_tag(rq)) {
1292                 /*
1293                  * The initial allocation attempt failed, so we need to
1294                  * rerun the hardware queue when a tag is freed. The
1295                  * waitqueue takes care of that. If the queue is run
1296                  * before we add this entry back on the dispatch list,
1297                  * we'll re-run it below.
1298                  */
1299                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1300                         /*
1301                          * All budgets not got from this function will be put
1302                          * together during handling partial dispatch
1303                          */
1304                         if (need_budget)
1305                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1306                         return PREP_DISPATCH_NO_TAG;
1307                 }
1308         }
1309
1310         return PREP_DISPATCH_OK;
1311 }
1312
1313 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1314 static void blk_mq_release_budgets(struct request_queue *q,
1315                 struct list_head *list)
1316 {
1317         struct request *rq;
1318
1319         list_for_each_entry(rq, list, queuelist) {
1320                 int budget_token = blk_mq_get_rq_budget_token(rq);
1321
1322                 if (budget_token >= 0)
1323                         blk_mq_put_dispatch_budget(q, budget_token);
1324         }
1325 }
1326
1327 /*
1328  * Returns true if we did some work AND can potentially do more.
1329  */
1330 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1331                              unsigned int nr_budgets)
1332 {
1333         enum prep_dispatch prep;
1334         struct request_queue *q = hctx->queue;
1335         struct request *rq, *nxt;
1336         int errors, queued;
1337         blk_status_t ret = BLK_STS_OK;
1338         LIST_HEAD(zone_list);
1339
1340         if (list_empty(list))
1341                 return false;
1342
1343         /*
1344          * Now process all the entries, sending them to the driver.
1345          */
1346         errors = queued = 0;
1347         do {
1348                 struct blk_mq_queue_data bd;
1349
1350                 rq = list_first_entry(list, struct request, queuelist);
1351
1352                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1353                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1354                 if (prep != PREP_DISPATCH_OK)
1355                         break;
1356
1357                 list_del_init(&rq->queuelist);
1358
1359                 bd.rq = rq;
1360
1361                 /*
1362                  * Flag last if we have no more requests, or if we have more
1363                  * but can't assign a driver tag to it.
1364                  */
1365                 if (list_empty(list))
1366                         bd.last = true;
1367                 else {
1368                         nxt = list_first_entry(list, struct request, queuelist);
1369                         bd.last = !blk_mq_get_driver_tag(nxt);
1370                 }
1371
1372                 /*
1373                  * once the request is queued to lld, no need to cover the
1374                  * budget any more
1375                  */
1376                 if (nr_budgets)
1377                         nr_budgets--;
1378                 ret = q->mq_ops->queue_rq(hctx, &bd);
1379                 switch (ret) {
1380                 case BLK_STS_OK:
1381                         queued++;
1382                         break;
1383                 case BLK_STS_RESOURCE:
1384                 case BLK_STS_DEV_RESOURCE:
1385                         blk_mq_handle_dev_resource(rq, list);
1386                         goto out;
1387                 case BLK_STS_ZONE_RESOURCE:
1388                         /*
1389                          * Move the request to zone_list and keep going through
1390                          * the dispatch list to find more requests the drive can
1391                          * accept.
1392                          */
1393                         blk_mq_handle_zone_resource(rq, &zone_list);
1394                         break;
1395                 default:
1396                         errors++;
1397                         blk_mq_end_request(rq, ret);
1398                 }
1399         } while (!list_empty(list));
1400 out:
1401         if (!list_empty(&zone_list))
1402                 list_splice_tail_init(&zone_list, list);
1403
1404         hctx->dispatched[queued_to_index(queued)]++;
1405
1406         /* If we didn't flush the entire list, we could have told the driver
1407          * there was more coming, but that turned out to be a lie.
1408          */
1409         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1410                 q->mq_ops->commit_rqs(hctx);
1411         /*
1412          * Any items that need requeuing? Stuff them into hctx->dispatch,
1413          * that is where we will continue on next queue run.
1414          */
1415         if (!list_empty(list)) {
1416                 bool needs_restart;
1417                 /* For non-shared tags, the RESTART check will suffice */
1418                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1419                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1420                 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1421
1422                 if (nr_budgets)
1423                         blk_mq_release_budgets(q, list);
1424
1425                 spin_lock(&hctx->lock);
1426                 list_splice_tail_init(list, &hctx->dispatch);
1427                 spin_unlock(&hctx->lock);
1428
1429                 /*
1430                  * Order adding requests to hctx->dispatch and checking
1431                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1432                  * in blk_mq_sched_restart(). Avoid restart code path to
1433                  * miss the new added requests to hctx->dispatch, meantime
1434                  * SCHED_RESTART is observed here.
1435                  */
1436                 smp_mb();
1437
1438                 /*
1439                  * If SCHED_RESTART was set by the caller of this function and
1440                  * it is no longer set that means that it was cleared by another
1441                  * thread and hence that a queue rerun is needed.
1442                  *
1443                  * If 'no_tag' is set, that means that we failed getting
1444                  * a driver tag with an I/O scheduler attached. If our dispatch
1445                  * waitqueue is no longer active, ensure that we run the queue
1446                  * AFTER adding our entries back to the list.
1447                  *
1448                  * If no I/O scheduler has been configured it is possible that
1449                  * the hardware queue got stopped and restarted before requests
1450                  * were pushed back onto the dispatch list. Rerun the queue to
1451                  * avoid starvation. Notes:
1452                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1453                  *   been stopped before rerunning a queue.
1454                  * - Some but not all block drivers stop a queue before
1455                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1456                  *   and dm-rq.
1457                  *
1458                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1459                  * bit is set, run queue after a delay to avoid IO stalls
1460                  * that could otherwise occur if the queue is idle.  We'll do
1461                  * similar if we couldn't get budget and SCHED_RESTART is set.
1462                  */
1463                 needs_restart = blk_mq_sched_needs_restart(hctx);
1464                 if (!needs_restart ||
1465                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1466                         blk_mq_run_hw_queue(hctx, true);
1467                 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1468                                            no_budget_avail))
1469                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1470
1471                 blk_mq_update_dispatch_busy(hctx, true);
1472                 return false;
1473         } else
1474                 blk_mq_update_dispatch_busy(hctx, false);
1475
1476         return (queued + errors) != 0;
1477 }
1478
1479 /**
1480  * __blk_mq_run_hw_queue - Run a hardware queue.
1481  * @hctx: Pointer to the hardware queue to run.
1482  *
1483  * Send pending requests to the hardware.
1484  */
1485 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1486 {
1487         int srcu_idx;
1488
1489         /*
1490          * We can't run the queue inline with ints disabled. Ensure that
1491          * we catch bad users of this early.
1492          */
1493         WARN_ON_ONCE(in_interrupt());
1494
1495         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1496
1497         hctx_lock(hctx, &srcu_idx);
1498         blk_mq_sched_dispatch_requests(hctx);
1499         hctx_unlock(hctx, srcu_idx);
1500 }
1501
1502 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1503 {
1504         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1505
1506         if (cpu >= nr_cpu_ids)
1507                 cpu = cpumask_first(hctx->cpumask);
1508         return cpu;
1509 }
1510
1511 /*
1512  * It'd be great if the workqueue API had a way to pass
1513  * in a mask and had some smarts for more clever placement.
1514  * For now we just round-robin here, switching for every
1515  * BLK_MQ_CPU_WORK_BATCH queued items.
1516  */
1517 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1518 {
1519         bool tried = false;
1520         int next_cpu = hctx->next_cpu;
1521
1522         if (hctx->queue->nr_hw_queues == 1)
1523                 return WORK_CPU_UNBOUND;
1524
1525         if (--hctx->next_cpu_batch <= 0) {
1526 select_cpu:
1527                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1528                                 cpu_online_mask);
1529                 if (next_cpu >= nr_cpu_ids)
1530                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1531                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1532         }
1533
1534         /*
1535          * Do unbound schedule if we can't find a online CPU for this hctx,
1536          * and it should only happen in the path of handling CPU DEAD.
1537          */
1538         if (!cpu_online(next_cpu)) {
1539                 if (!tried) {
1540                         tried = true;
1541                         goto select_cpu;
1542                 }
1543
1544                 /*
1545                  * Make sure to re-select CPU next time once after CPUs
1546                  * in hctx->cpumask become online again.
1547                  */
1548                 hctx->next_cpu = next_cpu;
1549                 hctx->next_cpu_batch = 1;
1550                 return WORK_CPU_UNBOUND;
1551         }
1552
1553         hctx->next_cpu = next_cpu;
1554         return next_cpu;
1555 }
1556
1557 /**
1558  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1559  * @hctx: Pointer to the hardware queue to run.
1560  * @async: If we want to run the queue asynchronously.
1561  * @msecs: Milliseconds of delay to wait before running the queue.
1562  *
1563  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1564  * with a delay of @msecs.
1565  */
1566 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1567                                         unsigned long msecs)
1568 {
1569         if (unlikely(blk_mq_hctx_stopped(hctx)))
1570                 return;
1571
1572         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1573                 int cpu = get_cpu();
1574                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1575                         __blk_mq_run_hw_queue(hctx);
1576                         put_cpu();
1577                         return;
1578                 }
1579
1580                 put_cpu();
1581         }
1582
1583         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1584                                     msecs_to_jiffies(msecs));
1585 }
1586
1587 /**
1588  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1589  * @hctx: Pointer to the hardware queue to run.
1590  * @msecs: Milliseconds of delay to wait before running the queue.
1591  *
1592  * Run a hardware queue asynchronously with a delay of @msecs.
1593  */
1594 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1595 {
1596         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1597 }
1598 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1599
1600 /**
1601  * blk_mq_run_hw_queue - Start to run a hardware queue.
1602  * @hctx: Pointer to the hardware queue to run.
1603  * @async: If we want to run the queue asynchronously.
1604  *
1605  * Check if the request queue is not in a quiesced state and if there are
1606  * pending requests to be sent. If this is true, run the queue to send requests
1607  * to hardware.
1608  */
1609 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1610 {
1611         int srcu_idx;
1612         bool need_run;
1613
1614         /*
1615          * When queue is quiesced, we may be switching io scheduler, or
1616          * updating nr_hw_queues, or other things, and we can't run queue
1617          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1618          *
1619          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1620          * quiesced.
1621          */
1622         hctx_lock(hctx, &srcu_idx);
1623         need_run = !blk_queue_quiesced(hctx->queue) &&
1624                 blk_mq_hctx_has_pending(hctx);
1625         hctx_unlock(hctx, srcu_idx);
1626
1627         if (need_run)
1628                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1629 }
1630 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1631
1632 /*
1633  * Is the request queue handled by an IO scheduler that does not respect
1634  * hardware queues when dispatching?
1635  */
1636 static bool blk_mq_has_sqsched(struct request_queue *q)
1637 {
1638         struct elevator_queue *e = q->elevator;
1639
1640         if (e && e->type->ops.dispatch_request &&
1641             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1642                 return true;
1643         return false;
1644 }
1645
1646 /*
1647  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1648  * scheduler.
1649  */
1650 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1651 {
1652         struct blk_mq_hw_ctx *hctx;
1653
1654         /*
1655          * If the IO scheduler does not respect hardware queues when
1656          * dispatching, we just don't bother with multiple HW queues and
1657          * dispatch from hctx for the current CPU since running multiple queues
1658          * just causes lock contention inside the scheduler and pointless cache
1659          * bouncing.
1660          */
1661         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1662                                      raw_smp_processor_id());
1663         if (!blk_mq_hctx_stopped(hctx))
1664                 return hctx;
1665         return NULL;
1666 }
1667
1668 /**
1669  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1670  * @q: Pointer to the request queue to run.
1671  * @async: If we want to run the queue asynchronously.
1672  */
1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1676         int i;
1677
1678         sq_hctx = NULL;
1679         if (blk_mq_has_sqsched(q))
1680                 sq_hctx = blk_mq_get_sq_hctx(q);
1681         queue_for_each_hw_ctx(q, hctx, i) {
1682                 if (blk_mq_hctx_stopped(hctx))
1683                         continue;
1684                 /*
1685                  * Dispatch from this hctx either if there's no hctx preferred
1686                  * by IO scheduler or if it has requests that bypass the
1687                  * scheduler.
1688                  */
1689                 if (!sq_hctx || sq_hctx == hctx ||
1690                     !list_empty_careful(&hctx->dispatch))
1691                         blk_mq_run_hw_queue(hctx, async);
1692         }
1693 }
1694 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1695
1696 /**
1697  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1698  * @q: Pointer to the request queue to run.
1699  * @msecs: Milliseconds of delay to wait before running the queues.
1700  */
1701 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1702 {
1703         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1704         int i;
1705
1706         sq_hctx = NULL;
1707         if (blk_mq_has_sqsched(q))
1708                 sq_hctx = blk_mq_get_sq_hctx(q);
1709         queue_for_each_hw_ctx(q, hctx, i) {
1710                 if (blk_mq_hctx_stopped(hctx))
1711                         continue;
1712                 /*
1713                  * Dispatch from this hctx either if there's no hctx preferred
1714                  * by IO scheduler or if it has requests that bypass the
1715                  * scheduler.
1716                  */
1717                 if (!sq_hctx || sq_hctx == hctx ||
1718                     !list_empty_careful(&hctx->dispatch))
1719                         blk_mq_delay_run_hw_queue(hctx, msecs);
1720         }
1721 }
1722 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1723
1724 /**
1725  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1726  * @q: request queue.
1727  *
1728  * The caller is responsible for serializing this function against
1729  * blk_mq_{start,stop}_hw_queue().
1730  */
1731 bool blk_mq_queue_stopped(struct request_queue *q)
1732 {
1733         struct blk_mq_hw_ctx *hctx;
1734         int i;
1735
1736         queue_for_each_hw_ctx(q, hctx, i)
1737                 if (blk_mq_hctx_stopped(hctx))
1738                         return true;
1739
1740         return false;
1741 }
1742 EXPORT_SYMBOL(blk_mq_queue_stopped);
1743
1744 /*
1745  * This function is often used for pausing .queue_rq() by driver when
1746  * there isn't enough resource or some conditions aren't satisfied, and
1747  * BLK_STS_RESOURCE is usually returned.
1748  *
1749  * We do not guarantee that dispatch can be drained or blocked
1750  * after blk_mq_stop_hw_queue() returns. Please use
1751  * blk_mq_quiesce_queue() for that requirement.
1752  */
1753 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1754 {
1755         cancel_delayed_work(&hctx->run_work);
1756
1757         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1758 }
1759 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1760
1761 /*
1762  * This function is often used for pausing .queue_rq() by driver when
1763  * there isn't enough resource or some conditions aren't satisfied, and
1764  * BLK_STS_RESOURCE is usually returned.
1765  *
1766  * We do not guarantee that dispatch can be drained or blocked
1767  * after blk_mq_stop_hw_queues() returns. Please use
1768  * blk_mq_quiesce_queue() for that requirement.
1769  */
1770 void blk_mq_stop_hw_queues(struct request_queue *q)
1771 {
1772         struct blk_mq_hw_ctx *hctx;
1773         int i;
1774
1775         queue_for_each_hw_ctx(q, hctx, i)
1776                 blk_mq_stop_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1779
1780 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1781 {
1782         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783
1784         blk_mq_run_hw_queue(hctx, false);
1785 }
1786 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1787
1788 void blk_mq_start_hw_queues(struct request_queue *q)
1789 {
1790         struct blk_mq_hw_ctx *hctx;
1791         int i;
1792
1793         queue_for_each_hw_ctx(q, hctx, i)
1794                 blk_mq_start_hw_queue(hctx);
1795 }
1796 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1797
1798 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1799 {
1800         if (!blk_mq_hctx_stopped(hctx))
1801                 return;
1802
1803         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1804         blk_mq_run_hw_queue(hctx, async);
1805 }
1806 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1807
1808 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1809 {
1810         struct blk_mq_hw_ctx *hctx;
1811         int i;
1812
1813         queue_for_each_hw_ctx(q, hctx, i)
1814                 blk_mq_start_stopped_hw_queue(hctx, async);
1815 }
1816 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1817
1818 static void blk_mq_run_work_fn(struct work_struct *work)
1819 {
1820         struct blk_mq_hw_ctx *hctx;
1821
1822         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1823
1824         /*
1825          * If we are stopped, don't run the queue.
1826          */
1827         if (blk_mq_hctx_stopped(hctx))
1828                 return;
1829
1830         __blk_mq_run_hw_queue(hctx);
1831 }
1832
1833 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1834                                             struct request *rq,
1835                                             bool at_head)
1836 {
1837         struct blk_mq_ctx *ctx = rq->mq_ctx;
1838         enum hctx_type type = hctx->type;
1839
1840         lockdep_assert_held(&ctx->lock);
1841
1842         trace_block_rq_insert(rq);
1843
1844         if (at_head)
1845                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1846         else
1847                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1848 }
1849
1850 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1851                              bool at_head)
1852 {
1853         struct blk_mq_ctx *ctx = rq->mq_ctx;
1854
1855         lockdep_assert_held(&ctx->lock);
1856
1857         __blk_mq_insert_req_list(hctx, rq, at_head);
1858         blk_mq_hctx_mark_pending(hctx, ctx);
1859 }
1860
1861 /**
1862  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1863  * @rq: Pointer to request to be inserted.
1864  * @at_head: true if the request should be inserted at the head of the list.
1865  * @run_queue: If we should run the hardware queue after inserting the request.
1866  *
1867  * Should only be used carefully, when the caller knows we want to
1868  * bypass a potential IO scheduler on the target device.
1869  */
1870 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1871                                   bool run_queue)
1872 {
1873         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1874
1875         spin_lock(&hctx->lock);
1876         if (at_head)
1877                 list_add(&rq->queuelist, &hctx->dispatch);
1878         else
1879                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1880         spin_unlock(&hctx->lock);
1881
1882         if (run_queue)
1883                 blk_mq_run_hw_queue(hctx, false);
1884 }
1885
1886 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1887                             struct list_head *list)
1888
1889 {
1890         struct request *rq;
1891         enum hctx_type type = hctx->type;
1892
1893         /*
1894          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1895          * offline now
1896          */
1897         list_for_each_entry(rq, list, queuelist) {
1898                 BUG_ON(rq->mq_ctx != ctx);
1899                 trace_block_rq_insert(rq);
1900         }
1901
1902         spin_lock(&ctx->lock);
1903         list_splice_tail_init(list, &ctx->rq_lists[type]);
1904         blk_mq_hctx_mark_pending(hctx, ctx);
1905         spin_unlock(&ctx->lock);
1906 }
1907
1908 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1909 {
1910         struct request *rqa = container_of(a, struct request, queuelist);
1911         struct request *rqb = container_of(b, struct request, queuelist);
1912
1913         if (rqa->mq_ctx != rqb->mq_ctx)
1914                 return rqa->mq_ctx > rqb->mq_ctx;
1915         if (rqa->mq_hctx != rqb->mq_hctx)
1916                 return rqa->mq_hctx > rqb->mq_hctx;
1917
1918         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1919 }
1920
1921 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1922 {
1923         LIST_HEAD(list);
1924
1925         if (list_empty(&plug->mq_list))
1926                 return;
1927         list_splice_init(&plug->mq_list, &list);
1928
1929         if (plug->rq_count > 2 && plug->multiple_queues)
1930                 list_sort(NULL, &list, plug_rq_cmp);
1931
1932         plug->rq_count = 0;
1933
1934         do {
1935                 struct list_head rq_list;
1936                 struct request *rq, *head_rq = list_entry_rq(list.next);
1937                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1938                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1939                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1940                 unsigned int depth = 1;
1941
1942                 list_for_each_continue(pos, &list) {
1943                         rq = list_entry_rq(pos);
1944                         BUG_ON(!rq->q);
1945                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1946                                 break;
1947                         depth++;
1948                 }
1949
1950                 list_cut_before(&rq_list, &list, pos);
1951                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1952                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1953                                                 from_schedule);
1954         } while(!list_empty(&list));
1955 }
1956
1957 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1958                 unsigned int nr_segs)
1959 {
1960         int err;
1961
1962         if (bio->bi_opf & REQ_RAHEAD)
1963                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1964
1965         rq->__sector = bio->bi_iter.bi_sector;
1966         rq->write_hint = bio->bi_write_hint;
1967         blk_rq_bio_prep(rq, bio, nr_segs);
1968
1969         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1970         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1971         WARN_ON_ONCE(err);
1972
1973         blk_account_io_start(rq);
1974 }
1975
1976 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1977                                             struct request *rq,
1978                                             blk_qc_t *cookie, bool last)
1979 {
1980         struct request_queue *q = rq->q;
1981         struct blk_mq_queue_data bd = {
1982                 .rq = rq,
1983                 .last = last,
1984         };
1985         blk_qc_t new_cookie;
1986         blk_status_t ret;
1987
1988         new_cookie = request_to_qc_t(hctx, rq);
1989
1990         /*
1991          * For OK queue, we are done. For error, caller may kill it.
1992          * Any other error (busy), just add it to our list as we
1993          * previously would have done.
1994          */
1995         ret = q->mq_ops->queue_rq(hctx, &bd);
1996         switch (ret) {
1997         case BLK_STS_OK:
1998                 blk_mq_update_dispatch_busy(hctx, false);
1999                 *cookie = new_cookie;
2000                 break;
2001         case BLK_STS_RESOURCE:
2002         case BLK_STS_DEV_RESOURCE:
2003                 blk_mq_update_dispatch_busy(hctx, true);
2004                 __blk_mq_requeue_request(rq);
2005                 break;
2006         default:
2007                 blk_mq_update_dispatch_busy(hctx, false);
2008                 *cookie = BLK_QC_T_NONE;
2009                 break;
2010         }
2011
2012         return ret;
2013 }
2014
2015 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2016                                                 struct request *rq,
2017                                                 blk_qc_t *cookie,
2018                                                 bool bypass_insert, bool last)
2019 {
2020         struct request_queue *q = rq->q;
2021         bool run_queue = true;
2022         int budget_token;
2023
2024         /*
2025          * RCU or SRCU read lock is needed before checking quiesced flag.
2026          *
2027          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2028          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2029          * and avoid driver to try to dispatch again.
2030          */
2031         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2032                 run_queue = false;
2033                 bypass_insert = false;
2034                 goto insert;
2035         }
2036
2037         if (q->elevator && !bypass_insert)
2038                 goto insert;
2039
2040         budget_token = blk_mq_get_dispatch_budget(q);
2041         if (budget_token < 0)
2042                 goto insert;
2043
2044         blk_mq_set_rq_budget_token(rq, budget_token);
2045
2046         if (!blk_mq_get_driver_tag(rq)) {
2047                 blk_mq_put_dispatch_budget(q, budget_token);
2048                 goto insert;
2049         }
2050
2051         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2052 insert:
2053         if (bypass_insert)
2054                 return BLK_STS_RESOURCE;
2055
2056         blk_mq_sched_insert_request(rq, false, run_queue, false);
2057
2058         return BLK_STS_OK;
2059 }
2060
2061 /**
2062  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2063  * @hctx: Pointer of the associated hardware queue.
2064  * @rq: Pointer to request to be sent.
2065  * @cookie: Request queue cookie.
2066  *
2067  * If the device has enough resources to accept a new request now, send the
2068  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2069  * we can try send it another time in the future. Requests inserted at this
2070  * queue have higher priority.
2071  */
2072 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2073                 struct request *rq, blk_qc_t *cookie)
2074 {
2075         blk_status_t ret;
2076         int srcu_idx;
2077
2078         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2079
2080         hctx_lock(hctx, &srcu_idx);
2081
2082         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2083         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2084                 blk_mq_request_bypass_insert(rq, false, true);
2085         else if (ret != BLK_STS_OK)
2086                 blk_mq_end_request(rq, ret);
2087
2088         hctx_unlock(hctx, srcu_idx);
2089 }
2090
2091 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2092 {
2093         blk_status_t ret;
2094         int srcu_idx;
2095         blk_qc_t unused_cookie;
2096         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2097
2098         hctx_lock(hctx, &srcu_idx);
2099         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2100         hctx_unlock(hctx, srcu_idx);
2101
2102         return ret;
2103 }
2104
2105 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2106                 struct list_head *list)
2107 {
2108         int queued = 0;
2109         int errors = 0;
2110
2111         while (!list_empty(list)) {
2112                 blk_status_t ret;
2113                 struct request *rq = list_first_entry(list, struct request,
2114                                 queuelist);
2115
2116                 list_del_init(&rq->queuelist);
2117                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2118                 if (ret != BLK_STS_OK) {
2119                         if (ret == BLK_STS_RESOURCE ||
2120                                         ret == BLK_STS_DEV_RESOURCE) {
2121                                 blk_mq_request_bypass_insert(rq, false,
2122                                                         list_empty(list));
2123                                 break;
2124                         }
2125                         blk_mq_end_request(rq, ret);
2126                         errors++;
2127                 } else
2128                         queued++;
2129         }
2130
2131         /*
2132          * If we didn't flush the entire list, we could have told
2133          * the driver there was more coming, but that turned out to
2134          * be a lie.
2135          */
2136         if ((!list_empty(list) || errors) &&
2137              hctx->queue->mq_ops->commit_rqs && queued)
2138                 hctx->queue->mq_ops->commit_rqs(hctx);
2139 }
2140
2141 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2142 {
2143         list_add_tail(&rq->queuelist, &plug->mq_list);
2144         plug->rq_count++;
2145         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2146                 struct request *tmp;
2147
2148                 tmp = list_first_entry(&plug->mq_list, struct request,
2149                                                 queuelist);
2150                 if (tmp->q != rq->q)
2151                         plug->multiple_queues = true;
2152         }
2153 }
2154
2155 /**
2156  * blk_mq_submit_bio - Create and send a request to block device.
2157  * @bio: Bio pointer.
2158  *
2159  * Builds up a request structure from @q and @bio and send to the device. The
2160  * request may not be queued directly to hardware if:
2161  * * This request can be merged with another one
2162  * * We want to place request at plug queue for possible future merging
2163  * * There is an IO scheduler active at this queue
2164  *
2165  * It will not queue the request if there is an error with the bio, or at the
2166  * request creation.
2167  *
2168  * Returns: Request queue cookie.
2169  */
2170 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2171 {
2172         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2173         const int is_sync = op_is_sync(bio->bi_opf);
2174         const int is_flush_fua = op_is_flush(bio->bi_opf);
2175         struct blk_mq_alloc_data data = {
2176                 .q              = q,
2177         };
2178         struct request *rq;
2179         struct blk_plug *plug;
2180         struct request *same_queue_rq = NULL;
2181         unsigned int nr_segs;
2182         blk_qc_t cookie;
2183         blk_status_t ret;
2184         bool hipri;
2185
2186         blk_queue_bounce(q, &bio);
2187         __blk_queue_split(&bio, &nr_segs);
2188
2189         if (!bio_integrity_prep(bio))
2190                 goto queue_exit;
2191
2192         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2193             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2194                 goto queue_exit;
2195
2196         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2197                 goto queue_exit;
2198
2199         rq_qos_throttle(q, bio);
2200
2201         hipri = bio->bi_opf & REQ_HIPRI;
2202
2203         data.cmd_flags = bio->bi_opf;
2204         rq = __blk_mq_alloc_request(&data);
2205         if (unlikely(!rq)) {
2206                 rq_qos_cleanup(q, bio);
2207                 if (bio->bi_opf & REQ_NOWAIT)
2208                         bio_wouldblock_error(bio);
2209                 goto queue_exit;
2210         }
2211
2212         trace_block_getrq(bio);
2213
2214         rq_qos_track(q, rq, bio);
2215
2216         cookie = request_to_qc_t(data.hctx, rq);
2217
2218         blk_mq_bio_to_request(rq, bio, nr_segs);
2219
2220         ret = blk_crypto_init_request(rq);
2221         if (ret != BLK_STS_OK) {
2222                 bio->bi_status = ret;
2223                 bio_endio(bio);
2224                 blk_mq_free_request(rq);
2225                 return BLK_QC_T_NONE;
2226         }
2227
2228         plug = blk_mq_plug(q, bio);
2229         if (unlikely(is_flush_fua)) {
2230                 /* Bypass scheduler for flush requests */
2231                 blk_insert_flush(rq);
2232                 blk_mq_run_hw_queue(data.hctx, true);
2233         } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2234                                 !blk_queue_nonrot(q))) {
2235                 /*
2236                  * Use plugging if we have a ->commit_rqs() hook as well, as
2237                  * we know the driver uses bd->last in a smart fashion.
2238                  *
2239                  * Use normal plugging if this disk is slow HDD, as sequential
2240                  * IO may benefit a lot from plug merging.
2241                  */
2242                 unsigned int request_count = plug->rq_count;
2243                 struct request *last = NULL;
2244
2245                 if (!request_count)
2246                         trace_block_plug(q);
2247                 else
2248                         last = list_entry_rq(plug->mq_list.prev);
2249
2250                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2251                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2252                         blk_flush_plug_list(plug, false);
2253                         trace_block_plug(q);
2254                 }
2255
2256                 blk_add_rq_to_plug(plug, rq);
2257         } else if (q->elevator) {
2258                 /* Insert the request at the IO scheduler queue */
2259                 blk_mq_sched_insert_request(rq, false, true, true);
2260         } else if (plug && !blk_queue_nomerges(q)) {
2261                 /*
2262                  * We do limited plugging. If the bio can be merged, do that.
2263                  * Otherwise the existing request in the plug list will be
2264                  * issued. So the plug list will have one request at most
2265                  * The plug list might get flushed before this. If that happens,
2266                  * the plug list is empty, and same_queue_rq is invalid.
2267                  */
2268                 if (list_empty(&plug->mq_list))
2269                         same_queue_rq = NULL;
2270                 if (same_queue_rq) {
2271                         list_del_init(&same_queue_rq->queuelist);
2272                         plug->rq_count--;
2273                 }
2274                 blk_add_rq_to_plug(plug, rq);
2275                 trace_block_plug(q);
2276
2277                 if (same_queue_rq) {
2278                         data.hctx = same_queue_rq->mq_hctx;
2279                         trace_block_unplug(q, 1, true);
2280                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2281                                         &cookie);
2282                 }
2283         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2284                         !data.hctx->dispatch_busy) {
2285                 /*
2286                  * There is no scheduler and we can try to send directly
2287                  * to the hardware.
2288                  */
2289                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2290         } else {
2291                 /* Default case. */
2292                 blk_mq_sched_insert_request(rq, false, true, true);
2293         }
2294
2295         if (!hipri)
2296                 return BLK_QC_T_NONE;
2297         return cookie;
2298 queue_exit:
2299         blk_queue_exit(q);
2300         return BLK_QC_T_NONE;
2301 }
2302
2303 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2304                      unsigned int hctx_idx)
2305 {
2306         struct page *page;
2307
2308         if (tags->rqs && set->ops->exit_request) {
2309                 int i;
2310
2311                 for (i = 0; i < tags->nr_tags; i++) {
2312                         struct request *rq = tags->static_rqs[i];
2313
2314                         if (!rq)
2315                                 continue;
2316                         set->ops->exit_request(set, rq, hctx_idx);
2317                         tags->static_rqs[i] = NULL;
2318                 }
2319         }
2320
2321         while (!list_empty(&tags->page_list)) {
2322                 page = list_first_entry(&tags->page_list, struct page, lru);
2323                 list_del_init(&page->lru);
2324                 /*
2325                  * Remove kmemleak object previously allocated in
2326                  * blk_mq_alloc_rqs().
2327                  */
2328                 kmemleak_free(page_address(page));
2329                 __free_pages(page, page->private);
2330         }
2331 }
2332
2333 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2334 {
2335         kfree(tags->rqs);
2336         tags->rqs = NULL;
2337         kfree(tags->static_rqs);
2338         tags->static_rqs = NULL;
2339
2340         blk_mq_free_tags(tags, flags);
2341 }
2342
2343 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2344                                         unsigned int hctx_idx,
2345                                         unsigned int nr_tags,
2346                                         unsigned int reserved_tags,
2347                                         unsigned int flags)
2348 {
2349         struct blk_mq_tags *tags;
2350         int node;
2351
2352         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2353         if (node == NUMA_NO_NODE)
2354                 node = set->numa_node;
2355
2356         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2357         if (!tags)
2358                 return NULL;
2359
2360         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2361                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2362                                  node);
2363         if (!tags->rqs) {
2364                 blk_mq_free_tags(tags, flags);
2365                 return NULL;
2366         }
2367
2368         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2369                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2370                                         node);
2371         if (!tags->static_rqs) {
2372                 kfree(tags->rqs);
2373                 blk_mq_free_tags(tags, flags);
2374                 return NULL;
2375         }
2376
2377         return tags;
2378 }
2379
2380 static size_t order_to_size(unsigned int order)
2381 {
2382         return (size_t)PAGE_SIZE << order;
2383 }
2384
2385 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2386                                unsigned int hctx_idx, int node)
2387 {
2388         int ret;
2389
2390         if (set->ops->init_request) {
2391                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2392                 if (ret)
2393                         return ret;
2394         }
2395
2396         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2397         return 0;
2398 }
2399
2400 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2401                      unsigned int hctx_idx, unsigned int depth)
2402 {
2403         unsigned int i, j, entries_per_page, max_order = 4;
2404         size_t rq_size, left;
2405         int node;
2406
2407         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2408         if (node == NUMA_NO_NODE)
2409                 node = set->numa_node;
2410
2411         INIT_LIST_HEAD(&tags->page_list);
2412
2413         /*
2414          * rq_size is the size of the request plus driver payload, rounded
2415          * to the cacheline size
2416          */
2417         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2418                                 cache_line_size());
2419         left = rq_size * depth;
2420
2421         for (i = 0; i < depth; ) {
2422                 int this_order = max_order;
2423                 struct page *page;
2424                 int to_do;
2425                 void *p;
2426
2427                 while (this_order && left < order_to_size(this_order - 1))
2428                         this_order--;
2429
2430                 do {
2431                         page = alloc_pages_node(node,
2432                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2433                                 this_order);
2434                         if (page)
2435                                 break;
2436                         if (!this_order--)
2437                                 break;
2438                         if (order_to_size(this_order) < rq_size)
2439                                 break;
2440                 } while (1);
2441
2442                 if (!page)
2443                         goto fail;
2444
2445                 page->private = this_order;
2446                 list_add_tail(&page->lru, &tags->page_list);
2447
2448                 p = page_address(page);
2449                 /*
2450                  * Allow kmemleak to scan these pages as they contain pointers
2451                  * to additional allocations like via ops->init_request().
2452                  */
2453                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2454                 entries_per_page = order_to_size(this_order) / rq_size;
2455                 to_do = min(entries_per_page, depth - i);
2456                 left -= to_do * rq_size;
2457                 for (j = 0; j < to_do; j++) {
2458                         struct request *rq = p;
2459
2460                         tags->static_rqs[i] = rq;
2461                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2462                                 tags->static_rqs[i] = NULL;
2463                                 goto fail;
2464                         }
2465
2466                         p += rq_size;
2467                         i++;
2468                 }
2469         }
2470         return 0;
2471
2472 fail:
2473         blk_mq_free_rqs(set, tags, hctx_idx);
2474         return -ENOMEM;
2475 }
2476
2477 struct rq_iter_data {
2478         struct blk_mq_hw_ctx *hctx;
2479         bool has_rq;
2480 };
2481
2482 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2483 {
2484         struct rq_iter_data *iter_data = data;
2485
2486         if (rq->mq_hctx != iter_data->hctx)
2487                 return true;
2488         iter_data->has_rq = true;
2489         return false;
2490 }
2491
2492 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2493 {
2494         struct blk_mq_tags *tags = hctx->sched_tags ?
2495                         hctx->sched_tags : hctx->tags;
2496         struct rq_iter_data data = {
2497                 .hctx   = hctx,
2498         };
2499
2500         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2501         return data.has_rq;
2502 }
2503
2504 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2505                 struct blk_mq_hw_ctx *hctx)
2506 {
2507         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2508                 return false;
2509         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2510                 return false;
2511         return true;
2512 }
2513
2514 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2515 {
2516         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2517                         struct blk_mq_hw_ctx, cpuhp_online);
2518
2519         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2520             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2521                 return 0;
2522
2523         /*
2524          * Prevent new request from being allocated on the current hctx.
2525          *
2526          * The smp_mb__after_atomic() Pairs with the implied barrier in
2527          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2528          * seen once we return from the tag allocator.
2529          */
2530         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2531         smp_mb__after_atomic();
2532
2533         /*
2534          * Try to grab a reference to the queue and wait for any outstanding
2535          * requests.  If we could not grab a reference the queue has been
2536          * frozen and there are no requests.
2537          */
2538         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2539                 while (blk_mq_hctx_has_requests(hctx))
2540                         msleep(5);
2541                 percpu_ref_put(&hctx->queue->q_usage_counter);
2542         }
2543
2544         return 0;
2545 }
2546
2547 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2548 {
2549         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2550                         struct blk_mq_hw_ctx, cpuhp_online);
2551
2552         if (cpumask_test_cpu(cpu, hctx->cpumask))
2553                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2554         return 0;
2555 }
2556
2557 /*
2558  * 'cpu' is going away. splice any existing rq_list entries from this
2559  * software queue to the hw queue dispatch list, and ensure that it
2560  * gets run.
2561  */
2562 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2563 {
2564         struct blk_mq_hw_ctx *hctx;
2565         struct blk_mq_ctx *ctx;
2566         LIST_HEAD(tmp);
2567         enum hctx_type type;
2568
2569         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2570         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2571                 return 0;
2572
2573         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2574         type = hctx->type;
2575
2576         spin_lock(&ctx->lock);
2577         if (!list_empty(&ctx->rq_lists[type])) {
2578                 list_splice_init(&ctx->rq_lists[type], &tmp);
2579                 blk_mq_hctx_clear_pending(hctx, ctx);
2580         }
2581         spin_unlock(&ctx->lock);
2582
2583         if (list_empty(&tmp))
2584                 return 0;
2585
2586         spin_lock(&hctx->lock);
2587         list_splice_tail_init(&tmp, &hctx->dispatch);
2588         spin_unlock(&hctx->lock);
2589
2590         blk_mq_run_hw_queue(hctx, true);
2591         return 0;
2592 }
2593
2594 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2595 {
2596         if (!(hctx->flags & BLK_MQ_F_STACKING))
2597                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2598                                                     &hctx->cpuhp_online);
2599         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2600                                             &hctx->cpuhp_dead);
2601 }
2602
2603 /* hctx->ctxs will be freed in queue's release handler */
2604 static void blk_mq_exit_hctx(struct request_queue *q,
2605                 struct blk_mq_tag_set *set,
2606                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2607 {
2608         if (blk_mq_hw_queue_mapped(hctx))
2609                 blk_mq_tag_idle(hctx);
2610
2611         if (set->ops->exit_request)
2612                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2613
2614         if (set->ops->exit_hctx)
2615                 set->ops->exit_hctx(hctx, hctx_idx);
2616
2617         blk_mq_remove_cpuhp(hctx);
2618
2619         spin_lock(&q->unused_hctx_lock);
2620         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2621         spin_unlock(&q->unused_hctx_lock);
2622 }
2623
2624 static void blk_mq_exit_hw_queues(struct request_queue *q,
2625                 struct blk_mq_tag_set *set, int nr_queue)
2626 {
2627         struct blk_mq_hw_ctx *hctx;
2628         unsigned int i;
2629
2630         queue_for_each_hw_ctx(q, hctx, i) {
2631                 if (i == nr_queue)
2632                         break;
2633                 blk_mq_debugfs_unregister_hctx(hctx);
2634                 blk_mq_exit_hctx(q, set, hctx, i);
2635         }
2636 }
2637
2638 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2639 {
2640         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2641
2642         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2643                            __alignof__(struct blk_mq_hw_ctx)) !=
2644                      sizeof(struct blk_mq_hw_ctx));
2645
2646         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2647                 hw_ctx_size += sizeof(struct srcu_struct);
2648
2649         return hw_ctx_size;
2650 }
2651
2652 static int blk_mq_init_hctx(struct request_queue *q,
2653                 struct blk_mq_tag_set *set,
2654                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2655 {
2656         hctx->queue_num = hctx_idx;
2657
2658         if (!(hctx->flags & BLK_MQ_F_STACKING))
2659                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2660                                 &hctx->cpuhp_online);
2661         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2662
2663         hctx->tags = set->tags[hctx_idx];
2664
2665         if (set->ops->init_hctx &&
2666             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2667                 goto unregister_cpu_notifier;
2668
2669         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2670                                 hctx->numa_node))
2671                 goto exit_hctx;
2672         return 0;
2673
2674  exit_hctx:
2675         if (set->ops->exit_hctx)
2676                 set->ops->exit_hctx(hctx, hctx_idx);
2677  unregister_cpu_notifier:
2678         blk_mq_remove_cpuhp(hctx);
2679         return -1;
2680 }
2681
2682 static struct blk_mq_hw_ctx *
2683 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2684                 int node)
2685 {
2686         struct blk_mq_hw_ctx *hctx;
2687         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2688
2689         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2690         if (!hctx)
2691                 goto fail_alloc_hctx;
2692
2693         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2694                 goto free_hctx;
2695
2696         atomic_set(&hctx->nr_active, 0);
2697         if (node == NUMA_NO_NODE)
2698                 node = set->numa_node;
2699         hctx->numa_node = node;
2700
2701         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2702         spin_lock_init(&hctx->lock);
2703         INIT_LIST_HEAD(&hctx->dispatch);
2704         hctx->queue = q;
2705         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2706
2707         INIT_LIST_HEAD(&hctx->hctx_list);
2708
2709         /*
2710          * Allocate space for all possible cpus to avoid allocation at
2711          * runtime
2712          */
2713         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2714                         gfp, node);
2715         if (!hctx->ctxs)
2716                 goto free_cpumask;
2717
2718         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2719                                 gfp, node, false, false))
2720                 goto free_ctxs;
2721         hctx->nr_ctx = 0;
2722
2723         spin_lock_init(&hctx->dispatch_wait_lock);
2724         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2725         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2726
2727         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2728         if (!hctx->fq)
2729                 goto free_bitmap;
2730
2731         if (hctx->flags & BLK_MQ_F_BLOCKING)
2732                 init_srcu_struct(hctx->srcu);
2733         blk_mq_hctx_kobj_init(hctx);
2734
2735         return hctx;
2736
2737  free_bitmap:
2738         sbitmap_free(&hctx->ctx_map);
2739  free_ctxs:
2740         kfree(hctx->ctxs);
2741  free_cpumask:
2742         free_cpumask_var(hctx->cpumask);
2743  free_hctx:
2744         kfree(hctx);
2745  fail_alloc_hctx:
2746         return NULL;
2747 }
2748
2749 static void blk_mq_init_cpu_queues(struct request_queue *q,
2750                                    unsigned int nr_hw_queues)
2751 {
2752         struct blk_mq_tag_set *set = q->tag_set;
2753         unsigned int i, j;
2754
2755         for_each_possible_cpu(i) {
2756                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2757                 struct blk_mq_hw_ctx *hctx;
2758                 int k;
2759
2760                 __ctx->cpu = i;
2761                 spin_lock_init(&__ctx->lock);
2762                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2763                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2764
2765                 __ctx->queue = q;
2766
2767                 /*
2768                  * Set local node, IFF we have more than one hw queue. If
2769                  * not, we remain on the home node of the device
2770                  */
2771                 for (j = 0; j < set->nr_maps; j++) {
2772                         hctx = blk_mq_map_queue_type(q, j, i);
2773                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2774                                 hctx->numa_node = cpu_to_node(i);
2775                 }
2776         }
2777 }
2778
2779 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2780                                         int hctx_idx)
2781 {
2782         unsigned int flags = set->flags;
2783         int ret = 0;
2784
2785         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2786                                         set->queue_depth, set->reserved_tags, flags);
2787         if (!set->tags[hctx_idx])
2788                 return false;
2789
2790         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2791                                 set->queue_depth);
2792         if (!ret)
2793                 return true;
2794
2795         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2796         set->tags[hctx_idx] = NULL;
2797         return false;
2798 }
2799
2800 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2801                                          unsigned int hctx_idx)
2802 {
2803         unsigned int flags = set->flags;
2804
2805         if (set->tags && set->tags[hctx_idx]) {
2806                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2807                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2808                 set->tags[hctx_idx] = NULL;
2809         }
2810 }
2811
2812 static void blk_mq_map_swqueue(struct request_queue *q)
2813 {
2814         unsigned int i, j, hctx_idx;
2815         struct blk_mq_hw_ctx *hctx;
2816         struct blk_mq_ctx *ctx;
2817         struct blk_mq_tag_set *set = q->tag_set;
2818
2819         queue_for_each_hw_ctx(q, hctx, i) {
2820                 cpumask_clear(hctx->cpumask);
2821                 hctx->nr_ctx = 0;
2822                 hctx->dispatch_from = NULL;
2823         }
2824
2825         /*
2826          * Map software to hardware queues.
2827          *
2828          * If the cpu isn't present, the cpu is mapped to first hctx.
2829          */
2830         for_each_possible_cpu(i) {
2831
2832                 ctx = per_cpu_ptr(q->queue_ctx, i);
2833                 for (j = 0; j < set->nr_maps; j++) {
2834                         if (!set->map[j].nr_queues) {
2835                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2836                                                 HCTX_TYPE_DEFAULT, i);
2837                                 continue;
2838                         }
2839                         hctx_idx = set->map[j].mq_map[i];
2840                         /* unmapped hw queue can be remapped after CPU topo changed */
2841                         if (!set->tags[hctx_idx] &&
2842                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2843                                 /*
2844                                  * If tags initialization fail for some hctx,
2845                                  * that hctx won't be brought online.  In this
2846                                  * case, remap the current ctx to hctx[0] which
2847                                  * is guaranteed to always have tags allocated
2848                                  */
2849                                 set->map[j].mq_map[i] = 0;
2850                         }
2851
2852                         hctx = blk_mq_map_queue_type(q, j, i);
2853                         ctx->hctxs[j] = hctx;
2854                         /*
2855                          * If the CPU is already set in the mask, then we've
2856                          * mapped this one already. This can happen if
2857                          * devices share queues across queue maps.
2858                          */
2859                         if (cpumask_test_cpu(i, hctx->cpumask))
2860                                 continue;
2861
2862                         cpumask_set_cpu(i, hctx->cpumask);
2863                         hctx->type = j;
2864                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2865                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2866
2867                         /*
2868                          * If the nr_ctx type overflows, we have exceeded the
2869                          * amount of sw queues we can support.
2870                          */
2871                         BUG_ON(!hctx->nr_ctx);
2872                 }
2873
2874                 for (; j < HCTX_MAX_TYPES; j++)
2875                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2876                                         HCTX_TYPE_DEFAULT, i);
2877         }
2878
2879         queue_for_each_hw_ctx(q, hctx, i) {
2880                 /*
2881                  * If no software queues are mapped to this hardware queue,
2882                  * disable it and free the request entries.
2883                  */
2884                 if (!hctx->nr_ctx) {
2885                         /* Never unmap queue 0.  We need it as a
2886                          * fallback in case of a new remap fails
2887                          * allocation
2888                          */
2889                         if (i && set->tags[i])
2890                                 blk_mq_free_map_and_requests(set, i);
2891
2892                         hctx->tags = NULL;
2893                         continue;
2894                 }
2895
2896                 hctx->tags = set->tags[i];
2897                 WARN_ON(!hctx->tags);
2898
2899                 /*
2900                  * Set the map size to the number of mapped software queues.
2901                  * This is more accurate and more efficient than looping
2902                  * over all possibly mapped software queues.
2903                  */
2904                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2905
2906                 /*
2907                  * Initialize batch roundrobin counts
2908                  */
2909                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2910                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2911         }
2912 }
2913
2914 /*
2915  * Caller needs to ensure that we're either frozen/quiesced, or that
2916  * the queue isn't live yet.
2917  */
2918 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2919 {
2920         struct blk_mq_hw_ctx *hctx;
2921         int i;
2922
2923         queue_for_each_hw_ctx(q, hctx, i) {
2924                 if (shared)
2925                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2926                 else
2927                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2928         }
2929 }
2930
2931 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2932                                          bool shared)
2933 {
2934         struct request_queue *q;
2935
2936         lockdep_assert_held(&set->tag_list_lock);
2937
2938         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2939                 blk_mq_freeze_queue(q);
2940                 queue_set_hctx_shared(q, shared);
2941                 blk_mq_unfreeze_queue(q);
2942         }
2943 }
2944
2945 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2946 {
2947         struct blk_mq_tag_set *set = q->tag_set;
2948
2949         mutex_lock(&set->tag_list_lock);
2950         list_del(&q->tag_set_list);
2951         if (list_is_singular(&set->tag_list)) {
2952                 /* just transitioned to unshared */
2953                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2954                 /* update existing queue */
2955                 blk_mq_update_tag_set_shared(set, false);
2956         }
2957         mutex_unlock(&set->tag_list_lock);
2958         INIT_LIST_HEAD(&q->tag_set_list);
2959 }
2960
2961 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2962                                      struct request_queue *q)
2963 {
2964         mutex_lock(&set->tag_list_lock);
2965
2966         /*
2967          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2968          */
2969         if (!list_empty(&set->tag_list) &&
2970             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2971                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2972                 /* update existing queue */
2973                 blk_mq_update_tag_set_shared(set, true);
2974         }
2975         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2976                 queue_set_hctx_shared(q, true);
2977         list_add_tail(&q->tag_set_list, &set->tag_list);
2978
2979         mutex_unlock(&set->tag_list_lock);
2980 }
2981
2982 /* All allocations will be freed in release handler of q->mq_kobj */
2983 static int blk_mq_alloc_ctxs(struct request_queue *q)
2984 {
2985         struct blk_mq_ctxs *ctxs;
2986         int cpu;
2987
2988         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2989         if (!ctxs)
2990                 return -ENOMEM;
2991
2992         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2993         if (!ctxs->queue_ctx)
2994                 goto fail;
2995
2996         for_each_possible_cpu(cpu) {
2997                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2998                 ctx->ctxs = ctxs;
2999         }
3000
3001         q->mq_kobj = &ctxs->kobj;
3002         q->queue_ctx = ctxs->queue_ctx;
3003
3004         return 0;
3005  fail:
3006         kfree(ctxs);
3007         return -ENOMEM;
3008 }
3009
3010 /*
3011  * It is the actual release handler for mq, but we do it from
3012  * request queue's release handler for avoiding use-after-free
3013  * and headache because q->mq_kobj shouldn't have been introduced,
3014  * but we can't group ctx/kctx kobj without it.
3015  */
3016 void blk_mq_release(struct request_queue *q)
3017 {
3018         struct blk_mq_hw_ctx *hctx, *next;
3019         int i;
3020
3021         queue_for_each_hw_ctx(q, hctx, i)
3022                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3023
3024         /* all hctx are in .unused_hctx_list now */
3025         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3026                 list_del_init(&hctx->hctx_list);
3027                 kobject_put(&hctx->kobj);
3028         }
3029
3030         kfree(q->queue_hw_ctx);
3031
3032         /*
3033          * release .mq_kobj and sw queue's kobject now because
3034          * both share lifetime with request queue.
3035          */
3036         blk_mq_sysfs_deinit(q);
3037 }
3038
3039 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3040                 void *queuedata)
3041 {
3042         struct request_queue *uninit_q, *q;
3043
3044         uninit_q = blk_alloc_queue(set->numa_node);
3045         if (!uninit_q)
3046                 return ERR_PTR(-ENOMEM);
3047         uninit_q->queuedata = queuedata;
3048
3049         /*
3050          * Initialize the queue without an elevator. device_add_disk() will do
3051          * the initialization.
3052          */
3053         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3054         if (IS_ERR(q))
3055                 blk_cleanup_queue(uninit_q);
3056
3057         return q;
3058 }
3059 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3060
3061 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3062 {
3063         return blk_mq_init_queue_data(set, NULL);
3064 }
3065 EXPORT_SYMBOL(blk_mq_init_queue);
3066
3067 /*
3068  * Helper for setting up a queue with mq ops, given queue depth, and
3069  * the passed in mq ops flags.
3070  */
3071 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3072                                            const struct blk_mq_ops *ops,
3073                                            unsigned int queue_depth,
3074                                            unsigned int set_flags)
3075 {
3076         struct request_queue *q;
3077         int ret;
3078
3079         memset(set, 0, sizeof(*set));
3080         set->ops = ops;
3081         set->nr_hw_queues = 1;
3082         set->nr_maps = 1;
3083         set->queue_depth = queue_depth;
3084         set->numa_node = NUMA_NO_NODE;
3085         set->flags = set_flags;
3086
3087         ret = blk_mq_alloc_tag_set(set);
3088         if (ret)
3089                 return ERR_PTR(ret);
3090
3091         q = blk_mq_init_queue(set);
3092         if (IS_ERR(q)) {
3093                 blk_mq_free_tag_set(set);
3094                 return q;
3095         }
3096
3097         return q;
3098 }
3099 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3100
3101 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3102                 struct blk_mq_tag_set *set, struct request_queue *q,
3103                 int hctx_idx, int node)
3104 {
3105         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3106
3107         /* reuse dead hctx first */
3108         spin_lock(&q->unused_hctx_lock);
3109         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3110                 if (tmp->numa_node == node) {
3111                         hctx = tmp;
3112                         break;
3113                 }
3114         }
3115         if (hctx)
3116                 list_del_init(&hctx->hctx_list);
3117         spin_unlock(&q->unused_hctx_lock);
3118
3119         if (!hctx)
3120                 hctx = blk_mq_alloc_hctx(q, set, node);
3121         if (!hctx)
3122                 goto fail;
3123
3124         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3125                 goto free_hctx;
3126
3127         return hctx;
3128
3129  free_hctx:
3130         kobject_put(&hctx->kobj);
3131  fail:
3132         return NULL;
3133 }
3134
3135 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3136                                                 struct request_queue *q)
3137 {
3138         int i, j, end;
3139         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3140
3141         if (q->nr_hw_queues < set->nr_hw_queues) {
3142                 struct blk_mq_hw_ctx **new_hctxs;
3143
3144                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3145                                        sizeof(*new_hctxs), GFP_KERNEL,
3146                                        set->numa_node);
3147                 if (!new_hctxs)
3148                         return;
3149                 if (hctxs)
3150                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3151                                sizeof(*hctxs));
3152                 q->queue_hw_ctx = new_hctxs;
3153                 kfree(hctxs);
3154                 hctxs = new_hctxs;
3155         }
3156
3157         /* protect against switching io scheduler  */
3158         mutex_lock(&q->sysfs_lock);
3159         for (i = 0; i < set->nr_hw_queues; i++) {
3160                 int node;
3161                 struct blk_mq_hw_ctx *hctx;
3162
3163                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3164                 /*
3165                  * If the hw queue has been mapped to another numa node,
3166                  * we need to realloc the hctx. If allocation fails, fallback
3167                  * to use the previous one.
3168                  */
3169                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3170                         continue;
3171
3172                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3173                 if (hctx) {
3174                         if (hctxs[i])
3175                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3176                         hctxs[i] = hctx;
3177                 } else {
3178                         if (hctxs[i])
3179                                 pr_warn("Allocate new hctx on node %d fails,\
3180                                                 fallback to previous one on node %d\n",
3181                                                 node, hctxs[i]->numa_node);
3182                         else
3183                                 break;
3184                 }
3185         }
3186         /*
3187          * Increasing nr_hw_queues fails. Free the newly allocated
3188          * hctxs and keep the previous q->nr_hw_queues.
3189          */
3190         if (i != set->nr_hw_queues) {
3191                 j = q->nr_hw_queues;
3192                 end = i;
3193         } else {
3194                 j = i;
3195                 end = q->nr_hw_queues;
3196                 q->nr_hw_queues = set->nr_hw_queues;
3197         }
3198
3199         for (; j < end; j++) {
3200                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3201
3202                 if (hctx) {
3203                         if (hctx->tags)
3204                                 blk_mq_free_map_and_requests(set, j);
3205                         blk_mq_exit_hctx(q, set, hctx, j);
3206                         hctxs[j] = NULL;
3207                 }
3208         }
3209         mutex_unlock(&q->sysfs_lock);
3210 }
3211
3212 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3213                                                   struct request_queue *q,
3214                                                   bool elevator_init)
3215 {
3216         /* mark the queue as mq asap */
3217         q->mq_ops = set->ops;
3218
3219         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3220                                              blk_mq_poll_stats_bkt,
3221                                              BLK_MQ_POLL_STATS_BKTS, q);
3222         if (!q->poll_cb)
3223                 goto err_exit;
3224
3225         if (blk_mq_alloc_ctxs(q))
3226                 goto err_poll;
3227
3228         /* init q->mq_kobj and sw queues' kobjects */
3229         blk_mq_sysfs_init(q);
3230
3231         INIT_LIST_HEAD(&q->unused_hctx_list);
3232         spin_lock_init(&q->unused_hctx_lock);
3233
3234         blk_mq_realloc_hw_ctxs(set, q);
3235         if (!q->nr_hw_queues)
3236                 goto err_hctxs;
3237
3238         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3239         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3240
3241         q->tag_set = set;
3242
3243         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3244         if (set->nr_maps > HCTX_TYPE_POLL &&
3245             set->map[HCTX_TYPE_POLL].nr_queues)
3246                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3247
3248         q->sg_reserved_size = INT_MAX;
3249
3250         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3251         INIT_LIST_HEAD(&q->requeue_list);
3252         spin_lock_init(&q->requeue_lock);
3253
3254         q->nr_requests = set->queue_depth;
3255
3256         /*
3257          * Default to classic polling
3258          */
3259         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3260
3261         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3262         blk_mq_add_queue_tag_set(set, q);
3263         blk_mq_map_swqueue(q);
3264
3265         if (elevator_init)
3266                 elevator_init_mq(q);
3267
3268         return q;
3269
3270 err_hctxs:
3271         kfree(q->queue_hw_ctx);
3272         q->nr_hw_queues = 0;
3273         blk_mq_sysfs_deinit(q);
3274 err_poll:
3275         blk_stat_free_callback(q->poll_cb);
3276         q->poll_cb = NULL;
3277 err_exit:
3278         q->mq_ops = NULL;
3279         return ERR_PTR(-ENOMEM);
3280 }
3281 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3282
3283 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3284 void blk_mq_exit_queue(struct request_queue *q)
3285 {
3286         struct blk_mq_tag_set   *set = q->tag_set;
3287
3288         blk_mq_del_queue_tag_set(q);
3289         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3290 }
3291
3292 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3293 {
3294         int i;
3295
3296         for (i = 0; i < set->nr_hw_queues; i++) {
3297                 if (!__blk_mq_alloc_map_and_request(set, i))
3298                         goto out_unwind;
3299                 cond_resched();
3300         }
3301
3302         return 0;
3303
3304 out_unwind:
3305         while (--i >= 0)
3306                 blk_mq_free_map_and_requests(set, i);
3307
3308         return -ENOMEM;
3309 }
3310
3311 /*
3312  * Allocate the request maps associated with this tag_set. Note that this
3313  * may reduce the depth asked for, if memory is tight. set->queue_depth
3314  * will be updated to reflect the allocated depth.
3315  */
3316 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3317 {
3318         unsigned int depth;
3319         int err;
3320
3321         depth = set->queue_depth;
3322         do {
3323                 err = __blk_mq_alloc_rq_maps(set);
3324                 if (!err)
3325                         break;
3326
3327                 set->queue_depth >>= 1;
3328                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3329                         err = -ENOMEM;
3330                         break;
3331                 }
3332         } while (set->queue_depth);
3333
3334         if (!set->queue_depth || err) {
3335                 pr_err("blk-mq: failed to allocate request map\n");
3336                 return -ENOMEM;
3337         }
3338
3339         if (depth != set->queue_depth)
3340                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3341                                                 depth, set->queue_depth);
3342
3343         return 0;
3344 }
3345
3346 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3347 {
3348         /*
3349          * blk_mq_map_queues() and multiple .map_queues() implementations
3350          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3351          * number of hardware queues.
3352          */
3353         if (set->nr_maps == 1)
3354                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3355
3356         if (set->ops->map_queues && !is_kdump_kernel()) {
3357                 int i;
3358
3359                 /*
3360                  * transport .map_queues is usually done in the following
3361                  * way:
3362                  *
3363                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3364                  *      mask = get_cpu_mask(queue)
3365                  *      for_each_cpu(cpu, mask)
3366                  *              set->map[x].mq_map[cpu] = queue;
3367                  * }
3368                  *
3369                  * When we need to remap, the table has to be cleared for
3370                  * killing stale mapping since one CPU may not be mapped
3371                  * to any hw queue.
3372                  */
3373                 for (i = 0; i < set->nr_maps; i++)
3374                         blk_mq_clear_mq_map(&set->map[i]);
3375
3376                 return set->ops->map_queues(set);
3377         } else {
3378                 BUG_ON(set->nr_maps > 1);
3379                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3380         }
3381 }
3382
3383 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3384                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3385 {
3386         struct blk_mq_tags **new_tags;
3387
3388         if (cur_nr_hw_queues >= new_nr_hw_queues)
3389                 return 0;
3390
3391         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3392                                 GFP_KERNEL, set->numa_node);
3393         if (!new_tags)
3394                 return -ENOMEM;
3395
3396         if (set->tags)
3397                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3398                        sizeof(*set->tags));
3399         kfree(set->tags);
3400         set->tags = new_tags;
3401         set->nr_hw_queues = new_nr_hw_queues;
3402
3403         return 0;
3404 }
3405
3406 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3407                                 int new_nr_hw_queues)
3408 {
3409         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3410 }
3411
3412 /*
3413  * Alloc a tag set to be associated with one or more request queues.
3414  * May fail with EINVAL for various error conditions. May adjust the
3415  * requested depth down, if it's too large. In that case, the set
3416  * value will be stored in set->queue_depth.
3417  */
3418 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3419 {
3420         int i, ret;
3421
3422         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3423
3424         if (!set->nr_hw_queues)
3425                 return -EINVAL;
3426         if (!set->queue_depth)
3427                 return -EINVAL;
3428         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3429                 return -EINVAL;
3430
3431         if (!set->ops->queue_rq)
3432                 return -EINVAL;
3433
3434         if (!set->ops->get_budget ^ !set->ops->put_budget)
3435                 return -EINVAL;
3436
3437         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3438                 pr_info("blk-mq: reduced tag depth to %u\n",
3439                         BLK_MQ_MAX_DEPTH);
3440                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3441         }
3442
3443         if (!set->nr_maps)
3444                 set->nr_maps = 1;
3445         else if (set->nr_maps > HCTX_MAX_TYPES)
3446                 return -EINVAL;
3447
3448         /*
3449          * If a crashdump is active, then we are potentially in a very
3450          * memory constrained environment. Limit us to 1 queue and
3451          * 64 tags to prevent using too much memory.
3452          */
3453         if (is_kdump_kernel()) {
3454                 set->nr_hw_queues = 1;
3455                 set->nr_maps = 1;
3456                 set->queue_depth = min(64U, set->queue_depth);
3457         }
3458         /*
3459          * There is no use for more h/w queues than cpus if we just have
3460          * a single map
3461          */
3462         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3463                 set->nr_hw_queues = nr_cpu_ids;
3464
3465         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3466                 return -ENOMEM;
3467
3468         ret = -ENOMEM;
3469         for (i = 0; i < set->nr_maps; i++) {
3470                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3471                                                   sizeof(set->map[i].mq_map[0]),
3472                                                   GFP_KERNEL, set->numa_node);
3473                 if (!set->map[i].mq_map)
3474                         goto out_free_mq_map;
3475                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3476         }
3477
3478         ret = blk_mq_update_queue_map(set);
3479         if (ret)
3480                 goto out_free_mq_map;
3481
3482         ret = blk_mq_alloc_map_and_requests(set);
3483         if (ret)
3484                 goto out_free_mq_map;
3485
3486         if (blk_mq_is_sbitmap_shared(set->flags)) {
3487                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3488
3489                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3490                         ret = -ENOMEM;
3491                         goto out_free_mq_rq_maps;
3492                 }
3493         }
3494
3495         mutex_init(&set->tag_list_lock);
3496         INIT_LIST_HEAD(&set->tag_list);
3497
3498         return 0;
3499
3500 out_free_mq_rq_maps:
3501         for (i = 0; i < set->nr_hw_queues; i++)
3502                 blk_mq_free_map_and_requests(set, i);
3503 out_free_mq_map:
3504         for (i = 0; i < set->nr_maps; i++) {
3505                 kfree(set->map[i].mq_map);
3506                 set->map[i].mq_map = NULL;
3507         }
3508         kfree(set->tags);
3509         set->tags = NULL;
3510         return ret;
3511 }
3512 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3513
3514 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3515 {
3516         int i, j;
3517
3518         for (i = 0; i < set->nr_hw_queues; i++)
3519                 blk_mq_free_map_and_requests(set, i);
3520
3521         if (blk_mq_is_sbitmap_shared(set->flags))
3522                 blk_mq_exit_shared_sbitmap(set);
3523
3524         for (j = 0; j < set->nr_maps; j++) {
3525                 kfree(set->map[j].mq_map);
3526                 set->map[j].mq_map = NULL;
3527         }
3528
3529         kfree(set->tags);
3530         set->tags = NULL;
3531 }
3532 EXPORT_SYMBOL(blk_mq_free_tag_set);
3533
3534 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3535 {
3536         struct blk_mq_tag_set *set = q->tag_set;
3537         struct blk_mq_hw_ctx *hctx;
3538         int i, ret;
3539
3540         if (!set)
3541                 return -EINVAL;
3542
3543         if (q->nr_requests == nr)
3544                 return 0;
3545
3546         blk_mq_freeze_queue(q);
3547         blk_mq_quiesce_queue(q);
3548
3549         ret = 0;
3550         queue_for_each_hw_ctx(q, hctx, i) {
3551                 if (!hctx->tags)
3552                         continue;
3553                 /*
3554                  * If we're using an MQ scheduler, just update the scheduler
3555                  * queue depth. This is similar to what the old code would do.
3556                  */
3557                 if (!hctx->sched_tags) {
3558                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3559                                                         false);
3560                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3561                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3562                 } else {
3563                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3564                                                         nr, true);
3565                 }
3566                 if (ret)
3567                         break;
3568                 if (q->elevator && q->elevator->type->ops.depth_updated)
3569                         q->elevator->type->ops.depth_updated(hctx);
3570         }
3571
3572         if (!ret)
3573                 q->nr_requests = nr;
3574
3575         blk_mq_unquiesce_queue(q);
3576         blk_mq_unfreeze_queue(q);
3577
3578         return ret;
3579 }
3580
3581 /*
3582  * request_queue and elevator_type pair.
3583  * It is just used by __blk_mq_update_nr_hw_queues to cache
3584  * the elevator_type associated with a request_queue.
3585  */
3586 struct blk_mq_qe_pair {
3587         struct list_head node;
3588         struct request_queue *q;
3589         struct elevator_type *type;
3590 };
3591
3592 /*
3593  * Cache the elevator_type in qe pair list and switch the
3594  * io scheduler to 'none'
3595  */
3596 static bool blk_mq_elv_switch_none(struct list_head *head,
3597                 struct request_queue *q)
3598 {
3599         struct blk_mq_qe_pair *qe;
3600
3601         if (!q->elevator)
3602                 return true;
3603
3604         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3605         if (!qe)
3606                 return false;
3607
3608         INIT_LIST_HEAD(&qe->node);
3609         qe->q = q;
3610         qe->type = q->elevator->type;
3611         list_add(&qe->node, head);
3612
3613         mutex_lock(&q->sysfs_lock);
3614         /*
3615          * After elevator_switch_mq, the previous elevator_queue will be
3616          * released by elevator_release. The reference of the io scheduler
3617          * module get by elevator_get will also be put. So we need to get
3618          * a reference of the io scheduler module here to prevent it to be
3619          * removed.
3620          */
3621         __module_get(qe->type->elevator_owner);
3622         elevator_switch_mq(q, NULL);
3623         mutex_unlock(&q->sysfs_lock);
3624
3625         return true;
3626 }
3627
3628 static void blk_mq_elv_switch_back(struct list_head *head,
3629                 struct request_queue *q)
3630 {
3631         struct blk_mq_qe_pair *qe;
3632         struct elevator_type *t = NULL;
3633
3634         list_for_each_entry(qe, head, node)
3635                 if (qe->q == q) {
3636                         t = qe->type;
3637                         break;
3638                 }
3639
3640         if (!t)
3641                 return;
3642
3643         list_del(&qe->node);
3644         kfree(qe);
3645
3646         mutex_lock(&q->sysfs_lock);
3647         elevator_switch_mq(q, t);
3648         mutex_unlock(&q->sysfs_lock);
3649 }
3650
3651 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3652                                                         int nr_hw_queues)
3653 {
3654         struct request_queue *q;
3655         LIST_HEAD(head);
3656         int prev_nr_hw_queues;
3657
3658         lockdep_assert_held(&set->tag_list_lock);
3659
3660         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3661                 nr_hw_queues = nr_cpu_ids;
3662         if (nr_hw_queues < 1)
3663                 return;
3664         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3665                 return;
3666
3667         list_for_each_entry(q, &set->tag_list, tag_set_list)
3668                 blk_mq_freeze_queue(q);
3669         /*
3670          * Switch IO scheduler to 'none', cleaning up the data associated
3671          * with the previous scheduler. We will switch back once we are done
3672          * updating the new sw to hw queue mappings.
3673          */
3674         list_for_each_entry(q, &set->tag_list, tag_set_list)
3675                 if (!blk_mq_elv_switch_none(&head, q))
3676                         goto switch_back;
3677
3678         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3679                 blk_mq_debugfs_unregister_hctxs(q);
3680                 blk_mq_sysfs_unregister(q);
3681         }
3682
3683         prev_nr_hw_queues = set->nr_hw_queues;
3684         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3685             0)
3686                 goto reregister;
3687
3688         set->nr_hw_queues = nr_hw_queues;
3689 fallback:
3690         blk_mq_update_queue_map(set);
3691         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3692                 blk_mq_realloc_hw_ctxs(set, q);
3693                 if (q->nr_hw_queues != set->nr_hw_queues) {
3694                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3695                                         nr_hw_queues, prev_nr_hw_queues);
3696                         set->nr_hw_queues = prev_nr_hw_queues;
3697                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3698                         goto fallback;
3699                 }
3700                 blk_mq_map_swqueue(q);
3701         }
3702
3703 reregister:
3704         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3705                 blk_mq_sysfs_register(q);
3706                 blk_mq_debugfs_register_hctxs(q);
3707         }
3708
3709 switch_back:
3710         list_for_each_entry(q, &set->tag_list, tag_set_list)
3711                 blk_mq_elv_switch_back(&head, q);
3712
3713         list_for_each_entry(q, &set->tag_list, tag_set_list)
3714                 blk_mq_unfreeze_queue(q);
3715 }
3716
3717 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3718 {
3719         mutex_lock(&set->tag_list_lock);
3720         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3721         mutex_unlock(&set->tag_list_lock);
3722 }
3723 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3724
3725 /* Enable polling stats and return whether they were already enabled. */
3726 static bool blk_poll_stats_enable(struct request_queue *q)
3727 {
3728         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3729             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3730                 return true;
3731         blk_stat_add_callback(q, q->poll_cb);
3732         return false;
3733 }
3734
3735 static void blk_mq_poll_stats_start(struct request_queue *q)
3736 {
3737         /*
3738          * We don't arm the callback if polling stats are not enabled or the
3739          * callback is already active.
3740          */
3741         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3742             blk_stat_is_active(q->poll_cb))
3743                 return;
3744
3745         blk_stat_activate_msecs(q->poll_cb, 100);
3746 }
3747
3748 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3749 {
3750         struct request_queue *q = cb->data;
3751         int bucket;
3752
3753         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3754                 if (cb->stat[bucket].nr_samples)
3755                         q->poll_stat[bucket] = cb->stat[bucket];
3756         }
3757 }
3758
3759 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3760                                        struct request *rq)
3761 {
3762         unsigned long ret = 0;
3763         int bucket;
3764
3765         /*
3766          * If stats collection isn't on, don't sleep but turn it on for
3767          * future users
3768          */
3769         if (!blk_poll_stats_enable(q))
3770                 return 0;
3771
3772         /*
3773          * As an optimistic guess, use half of the mean service time
3774          * for this type of request. We can (and should) make this smarter.
3775          * For instance, if the completion latencies are tight, we can
3776          * get closer than just half the mean. This is especially
3777          * important on devices where the completion latencies are longer
3778          * than ~10 usec. We do use the stats for the relevant IO size
3779          * if available which does lead to better estimates.
3780          */
3781         bucket = blk_mq_poll_stats_bkt(rq);
3782         if (bucket < 0)
3783                 return ret;
3784
3785         if (q->poll_stat[bucket].nr_samples)
3786                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3787
3788         return ret;
3789 }
3790
3791 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3792                                      struct request *rq)
3793 {
3794         struct hrtimer_sleeper hs;
3795         enum hrtimer_mode mode;
3796         unsigned int nsecs;
3797         ktime_t kt;
3798
3799         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3800                 return false;
3801
3802         /*
3803          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3804          *
3805          *  0:  use half of prev avg
3806          * >0:  use this specific value
3807          */
3808         if (q->poll_nsec > 0)
3809                 nsecs = q->poll_nsec;
3810         else
3811                 nsecs = blk_mq_poll_nsecs(q, rq);
3812
3813         if (!nsecs)
3814                 return false;
3815
3816         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3817
3818         /*
3819          * This will be replaced with the stats tracking code, using
3820          * 'avg_completion_time / 2' as the pre-sleep target.
3821          */
3822         kt = nsecs;
3823
3824         mode = HRTIMER_MODE_REL;
3825         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3826         hrtimer_set_expires(&hs.timer, kt);
3827
3828         do {
3829                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3830                         break;
3831                 set_current_state(TASK_UNINTERRUPTIBLE);
3832                 hrtimer_sleeper_start_expires(&hs, mode);
3833                 if (hs.task)
3834                         io_schedule();
3835                 hrtimer_cancel(&hs.timer);
3836                 mode = HRTIMER_MODE_ABS;
3837         } while (hs.task && !signal_pending(current));
3838
3839         __set_current_state(TASK_RUNNING);
3840         destroy_hrtimer_on_stack(&hs.timer);
3841         return true;
3842 }
3843
3844 static bool blk_mq_poll_hybrid(struct request_queue *q,
3845                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3846 {
3847         struct request *rq;
3848
3849         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3850                 return false;
3851
3852         if (!blk_qc_t_is_internal(cookie))
3853                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3854         else {
3855                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3856                 /*
3857                  * With scheduling, if the request has completed, we'll
3858                  * get a NULL return here, as we clear the sched tag when
3859                  * that happens. The request still remains valid, like always,
3860                  * so we should be safe with just the NULL check.
3861                  */
3862                 if (!rq)
3863                         return false;
3864         }
3865
3866         return blk_mq_poll_hybrid_sleep(q, rq);
3867 }
3868
3869 /**
3870  * blk_poll - poll for IO completions
3871  * @q:  the queue
3872  * @cookie: cookie passed back at IO submission time
3873  * @spin: whether to spin for completions
3874  *
3875  * Description:
3876  *    Poll for completions on the passed in queue. Returns number of
3877  *    completed entries found. If @spin is true, then blk_poll will continue
3878  *    looping until at least one completion is found, unless the task is
3879  *    otherwise marked running (or we need to reschedule).
3880  */
3881 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3882 {
3883         struct blk_mq_hw_ctx *hctx;
3884         long state;
3885
3886         if (!blk_qc_t_valid(cookie) ||
3887             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3888                 return 0;
3889
3890         if (current->plug)
3891                 blk_flush_plug_list(current->plug, false);
3892
3893         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3894
3895         /*
3896          * If we sleep, have the caller restart the poll loop to reset
3897          * the state. Like for the other success return cases, the
3898          * caller is responsible for checking if the IO completed. If
3899          * the IO isn't complete, we'll get called again and will go
3900          * straight to the busy poll loop. If specified not to spin,
3901          * we also should not sleep.
3902          */
3903         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3904                 return 1;
3905
3906         hctx->poll_considered++;
3907
3908         state = current->state;
3909         do {
3910                 int ret;
3911
3912                 hctx->poll_invoked++;
3913
3914                 ret = q->mq_ops->poll(hctx);
3915                 if (ret > 0) {
3916                         hctx->poll_success++;
3917                         __set_current_state(TASK_RUNNING);
3918                         return ret;
3919                 }
3920
3921                 if (signal_pending_state(state, current))
3922                         __set_current_state(TASK_RUNNING);
3923
3924                 if (current->state == TASK_RUNNING)
3925                         return 1;
3926                 if (ret < 0 || !spin)
3927                         break;
3928                 cpu_relax();
3929         } while (!need_resched());
3930
3931         __set_current_state(TASK_RUNNING);
3932         return 0;
3933 }
3934 EXPORT_SYMBOL_GPL(blk_poll);
3935
3936 unsigned int blk_mq_rq_cpu(struct request *rq)
3937 {
3938         return rq->mq_ctx->cpu;
3939 }
3940 EXPORT_SYMBOL(blk_mq_rq_cpu);
3941
3942 static int __init blk_mq_init(void)
3943 {
3944         int i;
3945
3946         for_each_possible_cpu(i)
3947                 init_llist_head(&per_cpu(blk_cpu_done, i));
3948         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3949
3950         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3951                                   "block/softirq:dead", NULL,
3952                                   blk_softirq_cpu_dead);
3953         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3954                                 blk_mq_hctx_notify_dead);
3955         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3956                                 blk_mq_hctx_notify_online,
3957                                 blk_mq_hctx_notify_offline);
3958         return 0;
3959 }
3960 subsys_initcall(blk_mq_init);