Merge tag 'devicetree-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per        : Timer period
166  * - cur_per    : Internal wall and device vtime clock
167  * - vrate      : Device virtual time rate against wall clock
168  * - weight     : Surplus-adjusted and configured weights
169  * - hweight    : Surplus-adjusted and configured hierarchical weights
170  * - inflt      : The percentage of in-flight IO cost at the end of last period
171  * - del_ms     : Deferred issuer delay induction level and duration
172  * - usages     : Usage history
173  */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
196         do {                                                                    \
197                 unsigned long flags;                                            \
198                 if (trace_iocost_##type##_enabled()) {                          \
199                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
200                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
201                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
202                         trace_iocost_##type(iocg, trace_iocg_path,              \
203                                               ##__VA_ARGS__);                   \
204                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
205                 }                                                               \
206         } while (0)
207
208 #else   /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
210 #endif  /* CONFIG_TRACE_POINTS */
211
212 enum {
213         MILLION                 = 1000000,
214
215         /* timer period is calculated from latency requirements, bound it */
216         MIN_PERIOD              = USEC_PER_MSEC,
217         MAX_PERIOD              = USEC_PER_SEC,
218
219         /*
220          * iocg->vtime is targeted at 50% behind the device vtime, which
221          * serves as its IO credit buffer.  Surplus weight adjustment is
222          * immediately canceled if the vtime margin runs below 10%.
223          */
224         MARGIN_MIN_PCT          = 10,
225         MARGIN_LOW_PCT          = 20,
226         MARGIN_TARGET_PCT       = 50,
227
228         INUSE_ADJ_STEP_PCT      = 25,
229
230         /* Have some play in timer operations */
231         TIMER_SLACK_PCT         = 1,
232
233         /* 1/64k is granular enough and can easily be handled w/ u32 */
234         WEIGHT_ONE              = 1 << 16,
235
236         /*
237          * As vtime is used to calculate the cost of each IO, it needs to
238          * be fairly high precision.  For example, it should be able to
239          * represent the cost of a single page worth of discard with
240          * suffificient accuracy.  At the same time, it should be able to
241          * represent reasonably long enough durations to be useful and
242          * convenient during operation.
243          *
244          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245          * granularity and days of wrap-around time even at extreme vrates.
246          */
247         VTIME_PER_SEC_SHIFT     = 37,
248         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
249         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
250         VTIME_PER_NSEC          = VTIME_PER_SEC / NSEC_PER_SEC,
251
252         /* bound vrate adjustments within two orders of magnitude */
253         VRATE_MIN_PPM           = 10000,        /* 1% */
254         VRATE_MAX_PPM           = 100000000,    /* 10000% */
255
256         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257         VRATE_CLAMP_ADJ_PCT     = 4,
258
259         /* if IOs end up waiting for requests, issue less */
260         RQ_WAIT_BUSY_PCT        = 5,
261
262         /* unbusy hysterisis */
263         UNBUSY_THR_PCT          = 75,
264
265         /*
266          * The effect of delay is indirect and non-linear and a huge amount of
267          * future debt can accumulate abruptly while unthrottled. Linearly scale
268          * up delay as debt is going up and then let it decay exponentially.
269          * This gives us quick ramp ups while delay is accumulating and long
270          * tails which can help reducing the frequency of debt explosions on
271          * unthrottle. The parameters are experimentally determined.
272          *
273          * The delay mechanism provides adequate protection and behavior in many
274          * cases. However, this is far from ideal and falls shorts on both
275          * fronts. The debtors are often throttled too harshly costing a
276          * significant level of fairness and possibly total work while the
277          * protection against their impacts on the system can be choppy and
278          * unreliable.
279          *
280          * The shortcoming primarily stems from the fact that, unlike for page
281          * cache, the kernel doesn't have well-defined back-pressure propagation
282          * mechanism and policies for anonymous memory. Fully addressing this
283          * issue will likely require substantial improvements in the area.
284          */
285         MIN_DELAY_THR_PCT       = 500,
286         MAX_DELAY_THR_PCT       = 25000,
287         MIN_DELAY               = 250,
288         MAX_DELAY               = 250 * USEC_PER_MSEC,
289
290         /* halve debts if avg usage over 100ms is under 50% */
291         DFGV_USAGE_PCT          = 50,
292         DFGV_PERIOD             = 100 * USEC_PER_MSEC,
293
294         /* don't let cmds which take a very long time pin lagging for too long */
295         MAX_LAGGING_PERIODS     = 10,
296
297         /* switch iff the conditions are met for longer than this */
298         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
299
300         /*
301          * Count IO size in 4k pages.  The 12bit shift helps keeping
302          * size-proportional components of cost calculation in closer
303          * numbers of digits to per-IO cost components.
304          */
305         IOC_PAGE_SHIFT          = 12,
306         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
307         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309         /* if apart further than 16M, consider randio for linear model */
310         LCOEF_RANDIO_PAGES      = 4096,
311 };
312
313 enum ioc_running {
314         IOC_IDLE,
315         IOC_RUNNING,
316         IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321         QOS_ENABLE,
322         QOS_CTRL,
323         NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328         QOS_RPPM,
329         QOS_RLAT,
330         QOS_WPPM,
331         QOS_WLAT,
332         QOS_MIN,
333         QOS_MAX,
334         NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339         COST_CTRL,
340         COST_MODEL,
341         NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346         I_LCOEF_RBPS,
347         I_LCOEF_RSEQIOPS,
348         I_LCOEF_RRANDIOPS,
349         I_LCOEF_WBPS,
350         I_LCOEF_WSEQIOPS,
351         I_LCOEF_WRANDIOPS,
352         NR_I_LCOEFS,
353 };
354
355 enum {
356         LCOEF_RPAGE,
357         LCOEF_RSEQIO,
358         LCOEF_RRANDIO,
359         LCOEF_WPAGE,
360         LCOEF_WSEQIO,
361         LCOEF_WRANDIO,
362         NR_LCOEFS,
363 };
364
365 enum {
366         AUTOP_INVALID,
367         AUTOP_HDD,
368         AUTOP_SSD_QD1,
369         AUTOP_SSD_DFL,
370         AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374         u32                             qos[NR_QOS_PARAMS];
375         u64                             i_lcoefs[NR_I_LCOEFS];
376         u64                             lcoefs[NR_LCOEFS];
377         u32                             too_fast_vrate_pct;
378         u32                             too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382         s64                             min;
383         s64                             low;
384         s64                             target;
385 };
386
387 struct ioc_missed {
388         local_t                         nr_met;
389         local_t                         nr_missed;
390         u32                             last_met;
391         u32                             last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395         struct ioc_missed               missed[2];
396
397         local64_t                       rq_wait_ns;
398         u64                             last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403         struct rq_qos                   rqos;
404
405         bool                            enabled;
406
407         struct ioc_params               params;
408         struct ioc_margins              margins;
409         u32                             period_us;
410         u32                             timer_slack_ns;
411         u64                             vrate_min;
412         u64                             vrate_max;
413
414         spinlock_t                      lock;
415         struct timer_list               timer;
416         struct list_head                active_iocgs;   /* active cgroups */
417         struct ioc_pcpu_stat __percpu   *pcpu_stat;
418
419         enum ioc_running                running;
420         atomic64_t                      vtime_rate;
421         u64                             vtime_base_rate;
422         s64                             vtime_err;
423
424         seqcount_spinlock_t             period_seqcount;
425         u64                             period_at;      /* wallclock starttime */
426         u64                             period_at_vtime; /* vtime starttime */
427
428         atomic64_t                      cur_period;     /* inc'd each period */
429         int                             busy_level;     /* saturation history */
430
431         bool                            weights_updated;
432         atomic_t                        hweight_gen;    /* for lazy hweights */
433
434         /* debt forgivness */
435         u64                             dfgv_period_at;
436         u64                             dfgv_period_rem;
437         u64                             dfgv_usage_us_sum;
438
439         u64                             autop_too_fast_at;
440         u64                             autop_too_slow_at;
441         int                             autop_idx;
442         bool                            user_qos_params:1;
443         bool                            user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447         local64_t                       abs_vusage;
448 };
449
450 struct iocg_stat {
451         u64                             usage_us;
452         u64                             wait_us;
453         u64                             indebt_us;
454         u64                             indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459         struct blkg_policy_data         pd;
460         struct ioc                      *ioc;
461
462         /*
463          * A iocg can get its weight from two sources - an explicit
464          * per-device-cgroup configuration or the default weight of the
465          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466          * configuration.  `weight` is the effective considering both
467          * sources.
468          *
469          * When an idle cgroup becomes active its `active` goes from 0 to
470          * `weight`.  `inuse` is the surplus adjusted active weight.
471          * `active` and `inuse` are used to calculate `hweight_active` and
472          * `hweight_inuse`.
473          *
474          * `last_inuse` remembers `inuse` while an iocg is idle to persist
475          * surplus adjustments.
476          *
477          * `inuse` may be adjusted dynamically during period. `saved_*` are used
478          * to determine and track adjustments.
479          */
480         u32                             cfg_weight;
481         u32                             weight;
482         u32                             active;
483         u32                             inuse;
484
485         u32                             last_inuse;
486         s64                             saved_margin;
487
488         sector_t                        cursor;         /* to detect randio */
489
490         /*
491          * `vtime` is this iocg's vtime cursor which progresses as IOs are
492          * issued.  If lagging behind device vtime, the delta represents
493          * the currently available IO budget.  If running ahead, the
494          * overage.
495          *
496          * `vtime_done` is the same but progressed on completion rather
497          * than issue.  The delta behind `vtime` represents the cost of
498          * currently in-flight IOs.
499          */
500         atomic64_t                      vtime;
501         atomic64_t                      done_vtime;
502         u64                             abs_vdebt;
503
504         /* current delay in effect and when it started */
505         u64                             delay;
506         u64                             delay_at;
507
508         /*
509          * The period this iocg was last active in.  Used for deactivation
510          * and invalidating `vtime`.
511          */
512         atomic64_t                      active_period;
513         struct list_head                active_list;
514
515         /* see __propagate_weights() and current_hweight() for details */
516         u64                             child_active_sum;
517         u64                             child_inuse_sum;
518         u64                             child_adjusted_sum;
519         int                             hweight_gen;
520         u32                             hweight_active;
521         u32                             hweight_inuse;
522         u32                             hweight_donating;
523         u32                             hweight_after_donation;
524
525         struct list_head                walk_list;
526         struct list_head                surplus_list;
527
528         struct wait_queue_head          waitq;
529         struct hrtimer                  waitq_timer;
530
531         /* timestamp at the latest activation */
532         u64                             activated_at;
533
534         /* statistics */
535         struct iocg_pcpu_stat __percpu  *pcpu_stat;
536         struct iocg_stat                local_stat;
537         struct iocg_stat                desc_stat;
538         struct iocg_stat                last_stat;
539         u64                             last_stat_abs_vusage;
540         u64                             usage_delta_us;
541         u64                             wait_since;
542         u64                             indebt_since;
543         u64                             indelay_since;
544
545         /* this iocg's depth in the hierarchy and ancestors including self */
546         int                             level;
547         struct ioc_gq                   *ancestors[];
548 };
549
550 /* per cgroup */
551 struct ioc_cgrp {
552         struct blkcg_policy_data        cpd;
553         unsigned int                    dfl_weight;
554 };
555
556 struct ioc_now {
557         u64                             now_ns;
558         u64                             now;
559         u64                             vnow;
560         u64                             vrate;
561 };
562
563 struct iocg_wait {
564         struct wait_queue_entry         wait;
565         struct bio                      *bio;
566         u64                             abs_cost;
567         bool                            committed;
568 };
569
570 struct iocg_wake_ctx {
571         struct ioc_gq                   *iocg;
572         u32                             hw_inuse;
573         s64                             vbudget;
574 };
575
576 static const struct ioc_params autop[] = {
577         [AUTOP_HDD] = {
578                 .qos                            = {
579                         [QOS_RLAT]              =        250000, /* 250ms */
580                         [QOS_WLAT]              =        250000,
581                         [QOS_MIN]               = VRATE_MIN_PPM,
582                         [QOS_MAX]               = VRATE_MAX_PPM,
583                 },
584                 .i_lcoefs                       = {
585                         [I_LCOEF_RBPS]          =     174019176,
586                         [I_LCOEF_RSEQIOPS]      =         41708,
587                         [I_LCOEF_RRANDIOPS]     =           370,
588                         [I_LCOEF_WBPS]          =     178075866,
589                         [I_LCOEF_WSEQIOPS]      =         42705,
590                         [I_LCOEF_WRANDIOPS]     =           378,
591                 },
592         },
593         [AUTOP_SSD_QD1] = {
594                 .qos                            = {
595                         [QOS_RLAT]              =         25000, /* 25ms */
596                         [QOS_WLAT]              =         25000,
597                         [QOS_MIN]               = VRATE_MIN_PPM,
598                         [QOS_MAX]               = VRATE_MAX_PPM,
599                 },
600                 .i_lcoefs                       = {
601                         [I_LCOEF_RBPS]          =     245855193,
602                         [I_LCOEF_RSEQIOPS]      =         61575,
603                         [I_LCOEF_RRANDIOPS]     =          6946,
604                         [I_LCOEF_WBPS]          =     141365009,
605                         [I_LCOEF_WSEQIOPS]      =         33716,
606                         [I_LCOEF_WRANDIOPS]     =         26796,
607                 },
608         },
609         [AUTOP_SSD_DFL] = {
610                 .qos                            = {
611                         [QOS_RLAT]              =         25000, /* 25ms */
612                         [QOS_WLAT]              =         25000,
613                         [QOS_MIN]               = VRATE_MIN_PPM,
614                         [QOS_MAX]               = VRATE_MAX_PPM,
615                 },
616                 .i_lcoefs                       = {
617                         [I_LCOEF_RBPS]          =     488636629,
618                         [I_LCOEF_RSEQIOPS]      =          8932,
619                         [I_LCOEF_RRANDIOPS]     =          8518,
620                         [I_LCOEF_WBPS]          =     427891549,
621                         [I_LCOEF_WSEQIOPS]      =         28755,
622                         [I_LCOEF_WRANDIOPS]     =         21940,
623                 },
624                 .too_fast_vrate_pct             =           500,
625         },
626         [AUTOP_SSD_FAST] = {
627                 .qos                            = {
628                         [QOS_RLAT]              =          5000, /* 5ms */
629                         [QOS_WLAT]              =          5000,
630                         [QOS_MIN]               = VRATE_MIN_PPM,
631                         [QOS_MAX]               = VRATE_MAX_PPM,
632                 },
633                 .i_lcoefs                       = {
634                         [I_LCOEF_RBPS]          =    3102524156LLU,
635                         [I_LCOEF_RSEQIOPS]      =        724816,
636                         [I_LCOEF_RRANDIOPS]     =        778122,
637                         [I_LCOEF_WBPS]          =    1742780862LLU,
638                         [I_LCOEF_WSEQIOPS]      =        425702,
639                         [I_LCOEF_WRANDIOPS]     =        443193,
640                 },
641                 .too_slow_vrate_pct             =            10,
642         },
643 };
644
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650         { 0, 0, 0, 0,
651           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654
655 static struct blkcg_policy blkcg_policy_iocost;
656
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660         return container_of(rqos, struct ioc, rqos);
661 }
662
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667
668 static const char *q_name(struct request_queue *q)
669 {
670         if (blk_queue_registered(q))
671                 return kobject_name(q->kobj.parent);
672         else
673                 return "<unknown>";
674 }
675
676 static const char __maybe_unused *ioc_name(struct ioc *ioc)
677 {
678         return q_name(ioc->rqos.q);
679 }
680
681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 {
683         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 }
685
686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 {
688         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 }
690
691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 {
693         return pd_to_blkg(&iocg->pd);
694 }
695
696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 {
698         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
699                             struct ioc_cgrp, cpd);
700 }
701
702 /*
703  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
704  * weight, the more expensive each IO.  Must round up.
705  */
706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 {
708         return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
709 }
710
711 /*
712  * The inverse of abs_cost_to_cost().  Must round up.
713  */
714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 {
716         return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 }
718
719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
720                             u64 abs_cost, u64 cost)
721 {
722         struct iocg_pcpu_stat *gcs;
723
724         bio->bi_iocost_cost = cost;
725         atomic64_add(cost, &iocg->vtime);
726
727         gcs = get_cpu_ptr(iocg->pcpu_stat);
728         local64_add(abs_cost, &gcs->abs_vusage);
729         put_cpu_ptr(gcs);
730 }
731
732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 {
734         if (lock_ioc) {
735                 spin_lock_irqsave(&iocg->ioc->lock, *flags);
736                 spin_lock(&iocg->waitq.lock);
737         } else {
738                 spin_lock_irqsave(&iocg->waitq.lock, *flags);
739         }
740 }
741
742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 {
744         if (unlock_ioc) {
745                 spin_unlock(&iocg->waitq.lock);
746                 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747         } else {
748                 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
749         }
750 }
751
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
754
755 static void ioc_refresh_margins(struct ioc *ioc)
756 {
757         struct ioc_margins *margins = &ioc->margins;
758         u32 period_us = ioc->period_us;
759         u64 vrate = ioc->vtime_base_rate;
760
761         margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
762         margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
763         margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 }
765
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc *ioc)
768 {
769         u32 ppm, lat, multi, period_us;
770
771         lockdep_assert_held(&ioc->lock);
772
773         /* pick the higher latency target */
774         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
775                 ppm = ioc->params.qos[QOS_RPPM];
776                 lat = ioc->params.qos[QOS_RLAT];
777         } else {
778                 ppm = ioc->params.qos[QOS_WPPM];
779                 lat = ioc->params.qos[QOS_WLAT];
780         }
781
782         /*
783          * We want the period to be long enough to contain a healthy number
784          * of IOs while short enough for granular control.  Define it as a
785          * multiple of the latency target.  Ideally, the multiplier should
786          * be scaled according to the percentile so that it would nominally
787          * contain a certain number of requests.  Let's be simpler and
788          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789          */
790         if (ppm)
791                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792         else
793                 multi = 2;
794         period_us = multi * lat;
795         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796
797         /* calculate dependent params */
798         ioc->period_us = period_us;
799         ioc->timer_slack_ns = div64_u64(
800                 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801                 100);
802         ioc_refresh_margins(ioc);
803 }
804
805 static int ioc_autop_idx(struct ioc *ioc)
806 {
807         int idx = ioc->autop_idx;
808         const struct ioc_params *p = &autop[idx];
809         u32 vrate_pct;
810         u64 now_ns;
811
812         /* rotational? */
813         if (!blk_queue_nonrot(ioc->rqos.q))
814                 return AUTOP_HDD;
815
816         /* handle SATA SSDs w/ broken NCQ */
817         if (blk_queue_depth(ioc->rqos.q) == 1)
818                 return AUTOP_SSD_QD1;
819
820         /* use one of the normal ssd sets */
821         if (idx < AUTOP_SSD_DFL)
822                 return AUTOP_SSD_DFL;
823
824         /* if user is overriding anything, maintain what was there */
825         if (ioc->user_qos_params || ioc->user_cost_model)
826                 return idx;
827
828         /* step up/down based on the vrate */
829         vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
830         now_ns = ktime_get_ns();
831
832         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
833                 if (!ioc->autop_too_fast_at)
834                         ioc->autop_too_fast_at = now_ns;
835                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
836                         return idx + 1;
837         } else {
838                 ioc->autop_too_fast_at = 0;
839         }
840
841         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
842                 if (!ioc->autop_too_slow_at)
843                         ioc->autop_too_slow_at = now_ns;
844                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
845                         return idx - 1;
846         } else {
847                 ioc->autop_too_slow_at = 0;
848         }
849
850         return idx;
851 }
852
853 /*
854  * Take the followings as input
855  *
856  *  @bps        maximum sequential throughput
857  *  @seqiops    maximum sequential 4k iops
858  *  @randiops   maximum random 4k iops
859  *
860  * and calculate the linear model cost coefficients.
861  *
862  *  *@page      per-page cost           1s / (@bps / 4096)
863  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
864  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
865  */
866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
867                         u64 *page, u64 *seqio, u64 *randio)
868 {
869         u64 v;
870
871         *page = *seqio = *randio = 0;
872
873         if (bps)
874                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
875                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
876
877         if (seqiops) {
878                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
879                 if (v > *page)
880                         *seqio = v - *page;
881         }
882
883         if (randiops) {
884                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
885                 if (v > *page)
886                         *randio = v - *page;
887         }
888 }
889
890 static void ioc_refresh_lcoefs(struct ioc *ioc)
891 {
892         u64 *u = ioc->params.i_lcoefs;
893         u64 *c = ioc->params.lcoefs;
894
895         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
896                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
897         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
898                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
899 }
900
901 static bool ioc_refresh_params(struct ioc *ioc, bool force)
902 {
903         const struct ioc_params *p;
904         int idx;
905
906         lockdep_assert_held(&ioc->lock);
907
908         idx = ioc_autop_idx(ioc);
909         p = &autop[idx];
910
911         if (idx == ioc->autop_idx && !force)
912                 return false;
913
914         if (idx != ioc->autop_idx)
915                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
916
917         ioc->autop_idx = idx;
918         ioc->autop_too_fast_at = 0;
919         ioc->autop_too_slow_at = 0;
920
921         if (!ioc->user_qos_params)
922                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
923         if (!ioc->user_cost_model)
924                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
925
926         ioc_refresh_period_us(ioc);
927         ioc_refresh_lcoefs(ioc);
928
929         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
930                                             VTIME_PER_USEC, MILLION);
931         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
932                                    VTIME_PER_USEC, MILLION);
933
934         return true;
935 }
936
937 /*
938  * When an iocg accumulates too much vtime or gets deactivated, we throw away
939  * some vtime, which lowers the overall device utilization. As the exact amount
940  * which is being thrown away is known, we can compensate by accelerating the
941  * vrate accordingly so that the extra vtime generated in the current period
942  * matches what got lost.
943  */
944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
945 {
946         s64 pleft = ioc->period_at + ioc->period_us - now->now;
947         s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
948         s64 vcomp, vcomp_min, vcomp_max;
949
950         lockdep_assert_held(&ioc->lock);
951
952         /* we need some time left in this period */
953         if (pleft <= 0)
954                 goto done;
955
956         /*
957          * Calculate how much vrate should be adjusted to offset the error.
958          * Limit the amount of adjustment and deduct the adjusted amount from
959          * the error.
960          */
961         vcomp = -div64_s64(ioc->vtime_err, pleft);
962         vcomp_min = -(ioc->vtime_base_rate >> 1);
963         vcomp_max = ioc->vtime_base_rate;
964         vcomp = clamp(vcomp, vcomp_min, vcomp_max);
965
966         ioc->vtime_err += vcomp * pleft;
967
968         atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
969 done:
970         /* bound how much error can accumulate */
971         ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
972 }
973
974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
975                                   int nr_lagging, int nr_shortages,
976                                   int prev_busy_level, u32 *missed_ppm)
977 {
978         u64 vrate = ioc->vtime_base_rate;
979         u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
980
981         if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
982                 if (ioc->busy_level != prev_busy_level || nr_lagging)
983                         trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
984                                                    missed_ppm, rq_wait_pct,
985                                                    nr_lagging, nr_shortages);
986
987                 return;
988         }
989
990         /* rq_wait signal is always reliable, ignore user vrate_min */
991         if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
992                 vrate_min = VRATE_MIN;
993
994         /*
995          * If vrate is out of bounds, apply clamp gradually as the
996          * bounds can change abruptly.  Otherwise, apply busy_level
997          * based adjustment.
998          */
999         if (vrate < vrate_min) {
1000                 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1001                 vrate = min(vrate, vrate_min);
1002         } else if (vrate > vrate_max) {
1003                 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1004                 vrate = max(vrate, vrate_max);
1005         } else {
1006                 int idx = min_t(int, abs(ioc->busy_level),
1007                                 ARRAY_SIZE(vrate_adj_pct) - 1);
1008                 u32 adj_pct = vrate_adj_pct[idx];
1009
1010                 if (ioc->busy_level > 0)
1011                         adj_pct = 100 - adj_pct;
1012                 else
1013                         adj_pct = 100 + adj_pct;
1014
1015                 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1016                               vrate_min, vrate_max);
1017         }
1018
1019         trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1020                                    nr_lagging, nr_shortages);
1021
1022         ioc->vtime_base_rate = vrate;
1023         ioc_refresh_margins(ioc);
1024 }
1025
1026 /* take a snapshot of the current [v]time and vrate */
1027 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1028 {
1029         unsigned seq;
1030
1031         now->now_ns = ktime_get();
1032         now->now = ktime_to_us(now->now_ns);
1033         now->vrate = atomic64_read(&ioc->vtime_rate);
1034
1035         /*
1036          * The current vtime is
1037          *
1038          *   vtime at period start + (wallclock time since the start) * vrate
1039          *
1040          * As a consistent snapshot of `period_at_vtime` and `period_at` is
1041          * needed, they're seqcount protected.
1042          */
1043         do {
1044                 seq = read_seqcount_begin(&ioc->period_seqcount);
1045                 now->vnow = ioc->period_at_vtime +
1046                         (now->now - ioc->period_at) * now->vrate;
1047         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1048 }
1049
1050 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1051 {
1052         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1053
1054         write_seqcount_begin(&ioc->period_seqcount);
1055         ioc->period_at = now->now;
1056         ioc->period_at_vtime = now->vnow;
1057         write_seqcount_end(&ioc->period_seqcount);
1058
1059         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1060         add_timer(&ioc->timer);
1061 }
1062
1063 /*
1064  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1065  * weight sums and propagate upwards accordingly. If @save, the current margin
1066  * is saved to be used as reference for later inuse in-period adjustments.
1067  */
1068 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1069                                 bool save, struct ioc_now *now)
1070 {
1071         struct ioc *ioc = iocg->ioc;
1072         int lvl;
1073
1074         lockdep_assert_held(&ioc->lock);
1075
1076         inuse = clamp_t(u32, inuse, 1, active);
1077
1078         iocg->last_inuse = iocg->inuse;
1079         if (save)
1080                 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1081
1082         if (active == iocg->active && inuse == iocg->inuse)
1083                 return;
1084
1085         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1086                 struct ioc_gq *parent = iocg->ancestors[lvl];
1087                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1088                 u32 parent_active = 0, parent_inuse = 0;
1089
1090                 /* update the level sums */
1091                 parent->child_active_sum += (s32)(active - child->active);
1092                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1093                 /* apply the udpates */
1094                 child->active = active;
1095                 child->inuse = inuse;
1096
1097                 /*
1098                  * The delta between inuse and active sums indicates that
1099                  * much of weight is being given away.  Parent's inuse
1100                  * and active should reflect the ratio.
1101                  */
1102                 if (parent->child_active_sum) {
1103                         parent_active = parent->weight;
1104                         parent_inuse = DIV64_U64_ROUND_UP(
1105                                 parent_active * parent->child_inuse_sum,
1106                                 parent->child_active_sum);
1107                 }
1108
1109                 /* do we need to keep walking up? */
1110                 if (parent_active == parent->active &&
1111                     parent_inuse == parent->inuse)
1112                         break;
1113
1114                 active = parent_active;
1115                 inuse = parent_inuse;
1116         }
1117
1118         ioc->weights_updated = true;
1119 }
1120
1121 static void commit_weights(struct ioc *ioc)
1122 {
1123         lockdep_assert_held(&ioc->lock);
1124
1125         if (ioc->weights_updated) {
1126                 /* paired with rmb in current_hweight(), see there */
1127                 smp_wmb();
1128                 atomic_inc(&ioc->hweight_gen);
1129                 ioc->weights_updated = false;
1130         }
1131 }
1132
1133 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1134                               bool save, struct ioc_now *now)
1135 {
1136         __propagate_weights(iocg, active, inuse, save, now);
1137         commit_weights(iocg->ioc);
1138 }
1139
1140 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1141 {
1142         struct ioc *ioc = iocg->ioc;
1143         int lvl;
1144         u32 hwa, hwi;
1145         int ioc_gen;
1146
1147         /* hot path - if uptodate, use cached */
1148         ioc_gen = atomic_read(&ioc->hweight_gen);
1149         if (ioc_gen == iocg->hweight_gen)
1150                 goto out;
1151
1152         /*
1153          * Paired with wmb in commit_weights(). If we saw the updated
1154          * hweight_gen, all the weight updates from __propagate_weights() are
1155          * visible too.
1156          *
1157          * We can race with weight updates during calculation and get it
1158          * wrong.  However, hweight_gen would have changed and a future
1159          * reader will recalculate and we're guaranteed to discard the
1160          * wrong result soon.
1161          */
1162         smp_rmb();
1163
1164         hwa = hwi = WEIGHT_ONE;
1165         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1166                 struct ioc_gq *parent = iocg->ancestors[lvl];
1167                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1168                 u64 active_sum = READ_ONCE(parent->child_active_sum);
1169                 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1170                 u32 active = READ_ONCE(child->active);
1171                 u32 inuse = READ_ONCE(child->inuse);
1172
1173                 /* we can race with deactivations and either may read as zero */
1174                 if (!active_sum || !inuse_sum)
1175                         continue;
1176
1177                 active_sum = max_t(u64, active, active_sum);
1178                 hwa = div64_u64((u64)hwa * active, active_sum);
1179
1180                 inuse_sum = max_t(u64, inuse, inuse_sum);
1181                 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1182         }
1183
1184         iocg->hweight_active = max_t(u32, hwa, 1);
1185         iocg->hweight_inuse = max_t(u32, hwi, 1);
1186         iocg->hweight_gen = ioc_gen;
1187 out:
1188         if (hw_activep)
1189                 *hw_activep = iocg->hweight_active;
1190         if (hw_inusep)
1191                 *hw_inusep = iocg->hweight_inuse;
1192 }
1193
1194 /*
1195  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1196  * other weights stay unchanged.
1197  */
1198 static u32 current_hweight_max(struct ioc_gq *iocg)
1199 {
1200         u32 hwm = WEIGHT_ONE;
1201         u32 inuse = iocg->active;
1202         u64 child_inuse_sum;
1203         int lvl;
1204
1205         lockdep_assert_held(&iocg->ioc->lock);
1206
1207         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1208                 struct ioc_gq *parent = iocg->ancestors[lvl];
1209                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1210
1211                 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1212                 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1213                 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1214                                            parent->child_active_sum);
1215         }
1216
1217         return max_t(u32, hwm, 1);
1218 }
1219
1220 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1221 {
1222         struct ioc *ioc = iocg->ioc;
1223         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1224         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1225         u32 weight;
1226
1227         lockdep_assert_held(&ioc->lock);
1228
1229         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1230         if (weight != iocg->weight && iocg->active)
1231                 propagate_weights(iocg, weight, iocg->inuse, true, now);
1232         iocg->weight = weight;
1233 }
1234
1235 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1236 {
1237         struct ioc *ioc = iocg->ioc;
1238         u64 last_period, cur_period;
1239         u64 vtime, vtarget;
1240         int i;
1241
1242         /*
1243          * If seem to be already active, just update the stamp to tell the
1244          * timer that we're still active.  We don't mind occassional races.
1245          */
1246         if (!list_empty(&iocg->active_list)) {
1247                 ioc_now(ioc, now);
1248                 cur_period = atomic64_read(&ioc->cur_period);
1249                 if (atomic64_read(&iocg->active_period) != cur_period)
1250                         atomic64_set(&iocg->active_period, cur_period);
1251                 return true;
1252         }
1253
1254         /* racy check on internal node IOs, treat as root level IOs */
1255         if (iocg->child_active_sum)
1256                 return false;
1257
1258         spin_lock_irq(&ioc->lock);
1259
1260         ioc_now(ioc, now);
1261
1262         /* update period */
1263         cur_period = atomic64_read(&ioc->cur_period);
1264         last_period = atomic64_read(&iocg->active_period);
1265         atomic64_set(&iocg->active_period, cur_period);
1266
1267         /* already activated or breaking leaf-only constraint? */
1268         if (!list_empty(&iocg->active_list))
1269                 goto succeed_unlock;
1270         for (i = iocg->level - 1; i > 0; i--)
1271                 if (!list_empty(&iocg->ancestors[i]->active_list))
1272                         goto fail_unlock;
1273
1274         if (iocg->child_active_sum)
1275                 goto fail_unlock;
1276
1277         /*
1278          * Always start with the target budget. On deactivation, we throw away
1279          * anything above it.
1280          */
1281         vtarget = now->vnow - ioc->margins.target;
1282         vtime = atomic64_read(&iocg->vtime);
1283
1284         atomic64_add(vtarget - vtime, &iocg->vtime);
1285         atomic64_add(vtarget - vtime, &iocg->done_vtime);
1286         vtime = vtarget;
1287
1288         /*
1289          * Activate, propagate weight and start period timer if not
1290          * running.  Reset hweight_gen to avoid accidental match from
1291          * wrapping.
1292          */
1293         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1294         list_add(&iocg->active_list, &ioc->active_iocgs);
1295
1296         propagate_weights(iocg, iocg->weight,
1297                           iocg->last_inuse ?: iocg->weight, true, now);
1298
1299         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1300                         last_period, cur_period, vtime);
1301
1302         iocg->activated_at = now->now;
1303
1304         if (ioc->running == IOC_IDLE) {
1305                 ioc->running = IOC_RUNNING;
1306                 ioc->dfgv_period_at = now->now;
1307                 ioc->dfgv_period_rem = 0;
1308                 ioc_start_period(ioc, now);
1309         }
1310
1311 succeed_unlock:
1312         spin_unlock_irq(&ioc->lock);
1313         return true;
1314
1315 fail_unlock:
1316         spin_unlock_irq(&ioc->lock);
1317         return false;
1318 }
1319
1320 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1321 {
1322         struct ioc *ioc = iocg->ioc;
1323         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1324         u64 tdelta, delay, new_delay;
1325         s64 vover, vover_pct;
1326         u32 hwa;
1327
1328         lockdep_assert_held(&iocg->waitq.lock);
1329
1330         /* calculate the current delay in effect - 1/2 every second */
1331         tdelta = now->now - iocg->delay_at;
1332         if (iocg->delay)
1333                 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1334         else
1335                 delay = 0;
1336
1337         /* calculate the new delay from the debt amount */
1338         current_hweight(iocg, &hwa, NULL);
1339         vover = atomic64_read(&iocg->vtime) +
1340                 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1341         vover_pct = div64_s64(100 * vover,
1342                               ioc->period_us * ioc->vtime_base_rate);
1343
1344         if (vover_pct <= MIN_DELAY_THR_PCT)
1345                 new_delay = 0;
1346         else if (vover_pct >= MAX_DELAY_THR_PCT)
1347                 new_delay = MAX_DELAY;
1348         else
1349                 new_delay = MIN_DELAY +
1350                         div_u64((MAX_DELAY - MIN_DELAY) *
1351                                 (vover_pct - MIN_DELAY_THR_PCT),
1352                                 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1353
1354         /* pick the higher one and apply */
1355         if (new_delay > delay) {
1356                 iocg->delay = new_delay;
1357                 iocg->delay_at = now->now;
1358                 delay = new_delay;
1359         }
1360
1361         if (delay >= MIN_DELAY) {
1362                 if (!iocg->indelay_since)
1363                         iocg->indelay_since = now->now;
1364                 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1365                 return true;
1366         } else {
1367                 if (iocg->indelay_since) {
1368                         iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1369                         iocg->indelay_since = 0;
1370                 }
1371                 iocg->delay = 0;
1372                 blkcg_clear_delay(blkg);
1373                 return false;
1374         }
1375 }
1376
1377 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1378                             struct ioc_now *now)
1379 {
1380         struct iocg_pcpu_stat *gcs;
1381
1382         lockdep_assert_held(&iocg->ioc->lock);
1383         lockdep_assert_held(&iocg->waitq.lock);
1384         WARN_ON_ONCE(list_empty(&iocg->active_list));
1385
1386         /*
1387          * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1388          * inuse donating all of it share to others until its debt is paid off.
1389          */
1390         if (!iocg->abs_vdebt && abs_cost) {
1391                 iocg->indebt_since = now->now;
1392                 propagate_weights(iocg, iocg->active, 0, false, now);
1393         }
1394
1395         iocg->abs_vdebt += abs_cost;
1396
1397         gcs = get_cpu_ptr(iocg->pcpu_stat);
1398         local64_add(abs_cost, &gcs->abs_vusage);
1399         put_cpu_ptr(gcs);
1400 }
1401
1402 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1403                           struct ioc_now *now)
1404 {
1405         lockdep_assert_held(&iocg->ioc->lock);
1406         lockdep_assert_held(&iocg->waitq.lock);
1407
1408         /* make sure that nobody messed with @iocg */
1409         WARN_ON_ONCE(list_empty(&iocg->active_list));
1410         WARN_ON_ONCE(iocg->inuse > 1);
1411
1412         iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1413
1414         /* if debt is paid in full, restore inuse */
1415         if (!iocg->abs_vdebt) {
1416                 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1417                 iocg->indebt_since = 0;
1418
1419                 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1420                                   false, now);
1421         }
1422 }
1423
1424 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1425                         int flags, void *key)
1426 {
1427         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1428         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1429         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1430
1431         ctx->vbudget -= cost;
1432
1433         if (ctx->vbudget < 0)
1434                 return -1;
1435
1436         iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1437
1438         /*
1439          * autoremove_wake_function() removes the wait entry only when it
1440          * actually changed the task state.  We want the wait always
1441          * removed.  Remove explicitly and use default_wake_function().
1442          */
1443         list_del_init(&wq_entry->entry);
1444         wait->committed = true;
1445
1446         default_wake_function(wq_entry, mode, flags, key);
1447         return 0;
1448 }
1449
1450 /*
1451  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1452  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1453  * addition to iocg->waitq.lock.
1454  */
1455 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1456                             struct ioc_now *now)
1457 {
1458         struct ioc *ioc = iocg->ioc;
1459         struct iocg_wake_ctx ctx = { .iocg = iocg };
1460         u64 vshortage, expires, oexpires;
1461         s64 vbudget;
1462         u32 hwa;
1463
1464         lockdep_assert_held(&iocg->waitq.lock);
1465
1466         current_hweight(iocg, &hwa, NULL);
1467         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1468
1469         /* pay off debt */
1470         if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1471                 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1472                 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1473                 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1474
1475                 lockdep_assert_held(&ioc->lock);
1476
1477                 atomic64_add(vpay, &iocg->vtime);
1478                 atomic64_add(vpay, &iocg->done_vtime);
1479                 iocg_pay_debt(iocg, abs_vpay, now);
1480                 vbudget -= vpay;
1481         }
1482
1483         if (iocg->abs_vdebt || iocg->delay)
1484                 iocg_kick_delay(iocg, now);
1485
1486         /*
1487          * Debt can still be outstanding if we haven't paid all yet or the
1488          * caller raced and called without @pay_debt. Shouldn't wake up waiters
1489          * under debt. Make sure @vbudget reflects the outstanding amount and is
1490          * not positive.
1491          */
1492         if (iocg->abs_vdebt) {
1493                 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1494                 vbudget = min_t(s64, 0, vbudget - vdebt);
1495         }
1496
1497         /*
1498          * Wake up the ones which are due and see how much vtime we'll need for
1499          * the next one. As paying off debt restores hw_inuse, it must be read
1500          * after the above debt payment.
1501          */
1502         ctx.vbudget = vbudget;
1503         current_hweight(iocg, NULL, &ctx.hw_inuse);
1504
1505         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1506
1507         if (!waitqueue_active(&iocg->waitq)) {
1508                 if (iocg->wait_since) {
1509                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
1510                         iocg->wait_since = 0;
1511                 }
1512                 return;
1513         }
1514
1515         if (!iocg->wait_since)
1516                 iocg->wait_since = now->now;
1517
1518         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1519                 return;
1520
1521         /* determine next wakeup, add a timer margin to guarantee chunking */
1522         vshortage = -ctx.vbudget;
1523         expires = now->now_ns +
1524                 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1525                 NSEC_PER_USEC;
1526         expires += ioc->timer_slack_ns;
1527
1528         /* if already active and close enough, don't bother */
1529         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1530         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1531             abs(oexpires - expires) <= ioc->timer_slack_ns)
1532                 return;
1533
1534         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1535                                ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1536 }
1537
1538 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1539 {
1540         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1541         bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1542         struct ioc_now now;
1543         unsigned long flags;
1544
1545         ioc_now(iocg->ioc, &now);
1546
1547         iocg_lock(iocg, pay_debt, &flags);
1548         iocg_kick_waitq(iocg, pay_debt, &now);
1549         iocg_unlock(iocg, pay_debt, &flags);
1550
1551         return HRTIMER_NORESTART;
1552 }
1553
1554 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1555 {
1556         u32 nr_met[2] = { };
1557         u32 nr_missed[2] = { };
1558         u64 rq_wait_ns = 0;
1559         int cpu, rw;
1560
1561         for_each_online_cpu(cpu) {
1562                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1563                 u64 this_rq_wait_ns;
1564
1565                 for (rw = READ; rw <= WRITE; rw++) {
1566                         u32 this_met = local_read(&stat->missed[rw].nr_met);
1567                         u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1568
1569                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1570                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1571                         stat->missed[rw].last_met = this_met;
1572                         stat->missed[rw].last_missed = this_missed;
1573                 }
1574
1575                 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1576                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1577                 stat->last_rq_wait_ns = this_rq_wait_ns;
1578         }
1579
1580         for (rw = READ; rw <= WRITE; rw++) {
1581                 if (nr_met[rw] + nr_missed[rw])
1582                         missed_ppm_ar[rw] =
1583                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1584                                                    nr_met[rw] + nr_missed[rw]);
1585                 else
1586                         missed_ppm_ar[rw] = 0;
1587         }
1588
1589         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1590                                    ioc->period_us * NSEC_PER_USEC);
1591 }
1592
1593 /* was iocg idle this period? */
1594 static bool iocg_is_idle(struct ioc_gq *iocg)
1595 {
1596         struct ioc *ioc = iocg->ioc;
1597
1598         /* did something get issued this period? */
1599         if (atomic64_read(&iocg->active_period) ==
1600             atomic64_read(&ioc->cur_period))
1601                 return false;
1602
1603         /* is something in flight? */
1604         if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1605                 return false;
1606
1607         return true;
1608 }
1609
1610 /*
1611  * Call this function on the target leaf @iocg's to build pre-order traversal
1612  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1613  * ->walk_list and the caller is responsible for dissolving the list after use.
1614  */
1615 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1616                                   struct list_head *inner_walk)
1617 {
1618         int lvl;
1619
1620         WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1621
1622         /* find the first ancestor which hasn't been visited yet */
1623         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1624                 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1625                         break;
1626         }
1627
1628         /* walk down and visit the inner nodes to get pre-order traversal */
1629         while (++lvl <= iocg->level - 1) {
1630                 struct ioc_gq *inner = iocg->ancestors[lvl];
1631
1632                 /* record traversal order */
1633                 list_add_tail(&inner->walk_list, inner_walk);
1634         }
1635 }
1636
1637 /* collect per-cpu counters and propagate the deltas to the parent */
1638 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1639 {
1640         struct ioc *ioc = iocg->ioc;
1641         struct iocg_stat new_stat;
1642         u64 abs_vusage = 0;
1643         u64 vusage_delta;
1644         int cpu;
1645
1646         lockdep_assert_held(&iocg->ioc->lock);
1647
1648         /* collect per-cpu counters */
1649         for_each_possible_cpu(cpu) {
1650                 abs_vusage += local64_read(
1651                                 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1652         }
1653         vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1654         iocg->last_stat_abs_vusage = abs_vusage;
1655
1656         iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1657         iocg->local_stat.usage_us += iocg->usage_delta_us;
1658
1659         /* propagate upwards */
1660         new_stat.usage_us =
1661                 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1662         new_stat.wait_us =
1663                 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1664         new_stat.indebt_us =
1665                 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1666         new_stat.indelay_us =
1667                 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1668
1669         /* propagate the deltas to the parent */
1670         if (iocg->level > 0) {
1671                 struct iocg_stat *parent_stat =
1672                         &iocg->ancestors[iocg->level - 1]->desc_stat;
1673
1674                 parent_stat->usage_us +=
1675                         new_stat.usage_us - iocg->last_stat.usage_us;
1676                 parent_stat->wait_us +=
1677                         new_stat.wait_us - iocg->last_stat.wait_us;
1678                 parent_stat->indebt_us +=
1679                         new_stat.indebt_us - iocg->last_stat.indebt_us;
1680                 parent_stat->indelay_us +=
1681                         new_stat.indelay_us - iocg->last_stat.indelay_us;
1682         }
1683
1684         iocg->last_stat = new_stat;
1685 }
1686
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690         LIST_HEAD(inner_walk);
1691         struct ioc_gq *iocg, *tiocg;
1692
1693         /* flush leaves and build inner node walk list */
1694         list_for_each_entry(iocg, target_iocgs, active_list) {
1695                 iocg_flush_stat_one(iocg, now);
1696                 iocg_build_inner_walk(iocg, &inner_walk);
1697         }
1698
1699         /* keep flushing upwards by walking the inner list backwards */
1700         list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701                 iocg_flush_stat_one(iocg, now);
1702                 list_del_init(&iocg->walk_list);
1703         }
1704 }
1705
1706 /*
1707  * Determine what @iocg's hweight_inuse should be after donating unused
1708  * capacity. @hwm is the upper bound and used to signal no donation. This
1709  * function also throws away @iocg's excess budget.
1710  */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712                                   u32 usage, struct ioc_now *now)
1713 {
1714         struct ioc *ioc = iocg->ioc;
1715         u64 vtime = atomic64_read(&iocg->vtime);
1716         s64 excess, delta, target, new_hwi;
1717
1718         /* debt handling owns inuse for debtors */
1719         if (iocg->abs_vdebt)
1720                 return 1;
1721
1722         /* see whether minimum margin requirement is met */
1723         if (waitqueue_active(&iocg->waitq) ||
1724             time_after64(vtime, now->vnow - ioc->margins.min))
1725                 return hwm;
1726
1727         /* throw away excess above target */
1728         excess = now->vnow - vtime - ioc->margins.target;
1729         if (excess > 0) {
1730                 atomic64_add(excess, &iocg->vtime);
1731                 atomic64_add(excess, &iocg->done_vtime);
1732                 vtime += excess;
1733                 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734         }
1735
1736         /*
1737          * Let's say the distance between iocg's and device's vtimes as a
1738          * fraction of period duration is delta. Assuming that the iocg will
1739          * consume the usage determined above, we want to determine new_hwi so
1740          * that delta equals MARGIN_TARGET at the end of the next period.
1741          *
1742          * We need to execute usage worth of IOs while spending the sum of the
1743          * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744          * (delta):
1745          *
1746          *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747          *
1748          * Therefore, the new_hwi is:
1749          *
1750          *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751          */
1752         delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753                           now->vnow - ioc->period_at_vtime);
1754         target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755         new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756
1757         return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759
1760 /*
1761  * For work-conservation, an iocg which isn't using all of its share should
1762  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764  *
1765  * #1 is mathematically simpler but has the drawback of requiring synchronous
1766  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767  * change due to donation snapbacks as it has the possibility of grossly
1768  * overshooting what's allowed by the model and vrate.
1769  *
1770  * #2 is inherently safe with local operations. The donating iocg can easily
1771  * snap back to higher weights when needed without worrying about impacts on
1772  * other nodes as the impacts will be inherently correct. This also makes idle
1773  * iocg activations safe. The only effect activations have is decreasing
1774  * hweight_inuse of others, the right solution to which is for those iocgs to
1775  * snap back to higher weights.
1776  *
1777  * So, we go with #2. The challenge is calculating how each donating iocg's
1778  * inuse should be adjusted to achieve the target donation amounts. This is done
1779  * using Andy's method described in the following pdf.
1780  *
1781  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782  *
1783  * Given the weights and target after-donation hweight_inuse values, Andy's
1784  * method determines how the proportional distribution should look like at each
1785  * sibling level to maintain the relative relationship between all non-donating
1786  * pairs. To roughly summarize, it divides the tree into donating and
1787  * non-donating parts, calculates global donation rate which is used to
1788  * determine the target hweight_inuse for each node, and then derives per-level
1789  * proportions.
1790  *
1791  * The following pdf shows that global distribution calculated this way can be
1792  * achieved by scaling inuse weights of donating leaves and propagating the
1793  * adjustments upwards proportionally.
1794  *
1795  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796  *
1797  * Combining the above two, we can determine how each leaf iocg's inuse should
1798  * be adjusted to achieve the target donation.
1799  *
1800  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801  *
1802  * The inline comments use symbols from the last pdf.
1803  *
1804  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1807  *   w is the weight of the node. w = w_f + w_t
1808  *   w_f is the non-donating portion of w. w_f = w * f / b
1809  *   w_b is the donating portion of w. w_t = w * t / b
1810  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1811  *   s_f and s_t are the non-donating and donating portions of s.
1812  *
1813  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815  * after adjustments. Subscript r denotes the root node's values.
1816  */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819         LIST_HEAD(over_hwa);
1820         LIST_HEAD(inner_walk);
1821         struct ioc_gq *iocg, *tiocg, *root_iocg;
1822         u32 after_sum, over_sum, over_target, gamma;
1823
1824         /*
1825          * It's pretty unlikely but possible for the total sum of
1826          * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827          * confuse the following calculations. If such condition is detected,
1828          * scale down everyone over its full share equally to keep the sum below
1829          * WEIGHT_ONE.
1830          */
1831         after_sum = 0;
1832         over_sum = 0;
1833         list_for_each_entry(iocg, surpluses, surplus_list) {
1834                 u32 hwa;
1835
1836                 current_hweight(iocg, &hwa, NULL);
1837                 after_sum += iocg->hweight_after_donation;
1838
1839                 if (iocg->hweight_after_donation > hwa) {
1840                         over_sum += iocg->hweight_after_donation;
1841                         list_add(&iocg->walk_list, &over_hwa);
1842                 }
1843         }
1844
1845         if (after_sum >= WEIGHT_ONE) {
1846                 /*
1847                  * The delta should be deducted from the over_sum, calculate
1848                  * target over_sum value.
1849                  */
1850                 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851                 WARN_ON_ONCE(over_sum <= over_delta);
1852                 over_target = over_sum - over_delta;
1853         } else {
1854                 over_target = 0;
1855         }
1856
1857         list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858                 if (over_target)
1859                         iocg->hweight_after_donation =
1860                                 div_u64((u64)iocg->hweight_after_donation *
1861                                         over_target, over_sum);
1862                 list_del_init(&iocg->walk_list);
1863         }
1864
1865         /*
1866          * Build pre-order inner node walk list and prepare for donation
1867          * adjustment calculations.
1868          */
1869         list_for_each_entry(iocg, surpluses, surplus_list) {
1870                 iocg_build_inner_walk(iocg, &inner_walk);
1871         }
1872
1873         root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874         WARN_ON_ONCE(root_iocg->level > 0);
1875
1876         list_for_each_entry(iocg, &inner_walk, walk_list) {
1877                 iocg->child_adjusted_sum = 0;
1878                 iocg->hweight_donating = 0;
1879                 iocg->hweight_after_donation = 0;
1880         }
1881
1882         /*
1883          * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884          * up the hierarchy.
1885          */
1886         list_for_each_entry(iocg, surpluses, surplus_list) {
1887                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888
1889                 parent->hweight_donating += iocg->hweight_donating;
1890                 parent->hweight_after_donation += iocg->hweight_after_donation;
1891         }
1892
1893         list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894                 if (iocg->level > 0) {
1895                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896
1897                         parent->hweight_donating += iocg->hweight_donating;
1898                         parent->hweight_after_donation += iocg->hweight_after_donation;
1899                 }
1900         }
1901
1902         /*
1903          * Calculate inner hwa's (b) and make sure the donation values are
1904          * within the accepted ranges as we're doing low res calculations with
1905          * roundups.
1906          */
1907         list_for_each_entry(iocg, &inner_walk, walk_list) {
1908                 if (iocg->level) {
1909                         struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910
1911                         iocg->hweight_active = DIV64_U64_ROUND_UP(
1912                                 (u64)parent->hweight_active * iocg->active,
1913                                 parent->child_active_sum);
1914
1915                 }
1916
1917                 iocg->hweight_donating = min(iocg->hweight_donating,
1918                                              iocg->hweight_active);
1919                 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920                                                    iocg->hweight_donating - 1);
1921                 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922                                  iocg->hweight_donating <= 1 ||
1923                                  iocg->hweight_after_donation == 0)) {
1924                         pr_warn("iocg: invalid donation weights in ");
1925                         pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926                         pr_cont(": active=%u donating=%u after=%u\n",
1927                                 iocg->hweight_active, iocg->hweight_donating,
1928                                 iocg->hweight_after_donation);
1929                 }
1930         }
1931
1932         /*
1933          * Calculate the global donation rate (gamma) - the rate to adjust
1934          * non-donating budgets by.
1935          *
1936          * No need to use 64bit multiplication here as the first operand is
1937          * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938          *
1939          * We know that there are beneficiary nodes and the sum of the donating
1940          * hweights can't be whole; however, due to the round-ups during hweight
1941          * calculations, root_iocg->hweight_donating might still end up equal to
1942          * or greater than whole. Limit the range when calculating the divider.
1943          *
1944          * gamma = (1 - t_r') / (1 - t_r)
1945          */
1946         gamma = DIV_ROUND_UP(
1947                 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948                 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949
1950         /*
1951          * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952          * nodes.
1953          */
1954         list_for_each_entry(iocg, &inner_walk, walk_list) {
1955                 struct ioc_gq *parent;
1956                 u32 inuse, wpt, wptp;
1957                 u64 st, sf;
1958
1959                 if (iocg->level == 0) {
1960                         /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961                         iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962                                 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963                                 WEIGHT_ONE - iocg->hweight_after_donation);
1964                         continue;
1965                 }
1966
1967                 parent = iocg->ancestors[iocg->level - 1];
1968
1969                 /* b' = gamma * b_f + b_t' */
1970                 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971                         (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972                         WEIGHT_ONE) + iocg->hweight_after_donation;
1973
1974                 /* w' = s' * b' / b'_p */
1975                 inuse = DIV64_U64_ROUND_UP(
1976                         (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977                         parent->hweight_inuse);
1978
1979                 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980                 st = DIV64_U64_ROUND_UP(
1981                         iocg->child_active_sum * iocg->hweight_donating,
1982                         iocg->hweight_active);
1983                 sf = iocg->child_active_sum - st;
1984                 wpt = DIV64_U64_ROUND_UP(
1985                         (u64)iocg->active * iocg->hweight_donating,
1986                         iocg->hweight_active);
1987                 wptp = DIV64_U64_ROUND_UP(
1988                         (u64)inuse * iocg->hweight_after_donation,
1989                         iocg->hweight_inuse);
1990
1991                 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992         }
1993
1994         /*
1995          * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996          * we can finally determine leaf adjustments.
1997          */
1998         list_for_each_entry(iocg, surpluses, surplus_list) {
1999                 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000                 u32 inuse;
2001
2002                 /*
2003                  * In-debt iocgs participated in the donation calculation with
2004                  * the minimum target hweight_inuse. Configuring inuse
2005                  * accordingly would work fine but debt handling expects
2006                  * @iocg->inuse stay at the minimum and we don't wanna
2007                  * interfere.
2008                  */
2009                 if (iocg->abs_vdebt) {
2010                         WARN_ON_ONCE(iocg->inuse > 1);
2011                         continue;
2012                 }
2013
2014                 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015                 inuse = DIV64_U64_ROUND_UP(
2016                         parent->child_adjusted_sum * iocg->hweight_after_donation,
2017                         parent->hweight_inuse);
2018
2019                 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020                                 iocg->inuse, inuse,
2021                                 iocg->hweight_inuse,
2022                                 iocg->hweight_after_donation);
2023
2024                 __propagate_weights(iocg, iocg->active, inuse, true, now);
2025         }
2026
2027         /* walk list should be dissolved after use */
2028         list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029                 list_del_init(&iocg->walk_list);
2030 }
2031
2032 /*
2033  * A low weight iocg can amass a large amount of debt, for example, when
2034  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035  * memory paired with a slow IO device, the debt can span multiple seconds or
2036  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037  * up blocked paying its debt while the IO device is idle.
2038  *
2039  * The following protects against such cases. If the device has been
2040  * sufficiently idle for a while, the debts are halved and delays are
2041  * recalculated.
2042  */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044                               struct ioc_now *now)
2045 {
2046         struct ioc_gq *iocg;
2047         u64 dur, usage_pct, nr_cycles;
2048
2049         /* if no debtor, reset the cycle */
2050         if (!nr_debtors) {
2051                 ioc->dfgv_period_at = now->now;
2052                 ioc->dfgv_period_rem = 0;
2053                 ioc->dfgv_usage_us_sum = 0;
2054                 return;
2055         }
2056
2057         /*
2058          * Debtors can pass through a lot of writes choking the device and we
2059          * don't want to be forgiving debts while the device is struggling from
2060          * write bursts. If we're missing latency targets, consider the device
2061          * fully utilized.
2062          */
2063         if (ioc->busy_level > 0)
2064                 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065
2066         ioc->dfgv_usage_us_sum += usage_us_sum;
2067         if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068                 return;
2069
2070         /*
2071          * At least DFGV_PERIOD has passed since the last period. Calculate the
2072          * average usage and reset the period counters.
2073          */
2074         dur = now->now - ioc->dfgv_period_at;
2075         usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076
2077         ioc->dfgv_period_at = now->now;
2078         ioc->dfgv_usage_us_sum = 0;
2079
2080         /* if was too busy, reset everything */
2081         if (usage_pct > DFGV_USAGE_PCT) {
2082                 ioc->dfgv_period_rem = 0;
2083                 return;
2084         }
2085
2086         /*
2087          * Usage is lower than threshold. Let's forgive some debts. Debt
2088          * forgiveness runs off of the usual ioc timer but its period usually
2089          * doesn't match ioc's. Compensate the difference by performing the
2090          * reduction as many times as would fit in the duration since the last
2091          * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092          * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093          * reductions is doubled.
2094          */
2095         nr_cycles = dur + ioc->dfgv_period_rem;
2096         ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097
2098         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099                 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100
2101                 if (!iocg->abs_vdebt && !iocg->delay)
2102                         continue;
2103
2104                 spin_lock(&iocg->waitq.lock);
2105
2106                 old_debt = iocg->abs_vdebt;
2107                 old_delay = iocg->delay;
2108
2109                 if (iocg->abs_vdebt)
2110                         iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111                 if (iocg->delay)
2112                         iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113
2114                 iocg_kick_waitq(iocg, true, now);
2115
2116                 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117                                 old_debt, iocg->abs_vdebt,
2118                                 old_delay, iocg->delay);
2119
2120                 spin_unlock(&iocg->waitq.lock);
2121         }
2122 }
2123
2124 /*
2125  * Check the active iocgs' state to avoid oversleeping and deactive
2126  * idle iocgs.
2127  *
2128  * Since waiters determine the sleep durations based on the vrate
2129  * they saw at the time of sleep, if vrate has increased, some
2130  * waiters could be sleeping for too long. Wake up tardy waiters
2131  * which should have woken up in the last period and expire idle
2132  * iocgs.
2133  */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136         int nr_debtors = 0;
2137         struct ioc_gq *iocg, *tiocg;
2138
2139         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140                 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141                     !iocg->delay && !iocg_is_idle(iocg))
2142                         continue;
2143
2144                 spin_lock(&iocg->waitq.lock);
2145
2146                 /* flush wait and indebt stat deltas */
2147                 if (iocg->wait_since) {
2148                         iocg->local_stat.wait_us += now->now - iocg->wait_since;
2149                         iocg->wait_since = now->now;
2150                 }
2151                 if (iocg->indebt_since) {
2152                         iocg->local_stat.indebt_us +=
2153                                 now->now - iocg->indebt_since;
2154                         iocg->indebt_since = now->now;
2155                 }
2156                 if (iocg->indelay_since) {
2157                         iocg->local_stat.indelay_us +=
2158                                 now->now - iocg->indelay_since;
2159                         iocg->indelay_since = now->now;
2160                 }
2161
2162                 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163                     iocg->delay) {
2164                         /* might be oversleeping vtime / hweight changes, kick */
2165                         iocg_kick_waitq(iocg, true, now);
2166                         if (iocg->abs_vdebt || iocg->delay)
2167                                 nr_debtors++;
2168                 } else if (iocg_is_idle(iocg)) {
2169                         /* no waiter and idle, deactivate */
2170                         u64 vtime = atomic64_read(&iocg->vtime);
2171                         s64 excess;
2172
2173                         /*
2174                          * @iocg has been inactive for a full duration and will
2175                          * have a high budget. Account anything above target as
2176                          * error and throw away. On reactivation, it'll start
2177                          * with the target budget.
2178                          */
2179                         excess = now->vnow - vtime - ioc->margins.target;
2180                         if (excess > 0) {
2181                                 u32 old_hwi;
2182
2183                                 current_hweight(iocg, NULL, &old_hwi);
2184                                 ioc->vtime_err -= div64_u64(excess * old_hwi,
2185                                                             WEIGHT_ONE);
2186                         }
2187
2188                         TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189                                         atomic64_read(&iocg->active_period),
2190                                         atomic64_read(&ioc->cur_period), vtime);
2191                         __propagate_weights(iocg, 0, 0, false, now);
2192                         list_del_init(&iocg->active_list);
2193                 }
2194
2195                 spin_unlock(&iocg->waitq.lock);
2196         }
2197
2198         commit_weights(ioc);
2199         return nr_debtors;
2200 }
2201
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204         struct ioc *ioc = container_of(timer, struct ioc, timer);
2205         struct ioc_gq *iocg, *tiocg;
2206         struct ioc_now now;
2207         LIST_HEAD(surpluses);
2208         int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209         u64 usage_us_sum = 0;
2210         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2211         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2212         u32 missed_ppm[2], rq_wait_pct;
2213         u64 period_vtime;
2214         int prev_busy_level;
2215
2216         /* how were the latencies during the period? */
2217         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218
2219         /* take care of active iocgs */
2220         spin_lock_irq(&ioc->lock);
2221
2222         ioc_now(ioc, &now);
2223
2224         period_vtime = now.vnow - ioc->period_at_vtime;
2225         if (WARN_ON_ONCE(!period_vtime)) {
2226                 spin_unlock_irq(&ioc->lock);
2227                 return;
2228         }
2229
2230         nr_debtors = ioc_check_iocgs(ioc, &now);
2231
2232         /*
2233          * Wait and indebt stat are flushed above and the donation calculation
2234          * below needs updated usage stat. Let's bring stat up-to-date.
2235          */
2236         iocg_flush_stat(&ioc->active_iocgs, &now);
2237
2238         /* calc usage and see whether some weights need to be moved around */
2239         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2240                 u64 vdone, vtime, usage_us;
2241                 u32 hw_active, hw_inuse;
2242
2243                 /*
2244                  * Collect unused and wind vtime closer to vnow to prevent
2245                  * iocgs from accumulating a large amount of budget.
2246                  */
2247                 vdone = atomic64_read(&iocg->done_vtime);
2248                 vtime = atomic64_read(&iocg->vtime);
2249                 current_hweight(iocg, &hw_active, &hw_inuse);
2250
2251                 /*
2252                  * Latency QoS detection doesn't account for IOs which are
2253                  * in-flight for longer than a period.  Detect them by
2254                  * comparing vdone against period start.  If lagging behind
2255                  * IOs from past periods, don't increase vrate.
2256                  */
2257                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2258                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2259                     time_after64(vtime, vdone) &&
2260                     time_after64(vtime, now.vnow -
2261                                  MAX_LAGGING_PERIODS * period_vtime) &&
2262                     time_before64(vdone, now.vnow - period_vtime))
2263                         nr_lagging++;
2264
2265                 /*
2266                  * Determine absolute usage factoring in in-flight IOs to avoid
2267                  * high-latency completions appearing as idle.
2268                  */
2269                 usage_us = iocg->usage_delta_us;
2270                 usage_us_sum += usage_us;
2271
2272                 /* see whether there's surplus vtime */
2273                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2274                 if (hw_inuse < hw_active ||
2275                     (!waitqueue_active(&iocg->waitq) &&
2276                      time_before64(vtime, now.vnow - ioc->margins.low))) {
2277                         u32 hwa, old_hwi, hwm, new_hwi, usage;
2278                         u64 usage_dur;
2279
2280                         if (vdone != vtime) {
2281                                 u64 inflight_us = DIV64_U64_ROUND_UP(
2282                                         cost_to_abs_cost(vtime - vdone, hw_inuse),
2283                                         ioc->vtime_base_rate);
2284
2285                                 usage_us = max(usage_us, inflight_us);
2286                         }
2287
2288                         /* convert to hweight based usage ratio */
2289                         if (time_after64(iocg->activated_at, ioc->period_at))
2290                                 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2291                         else
2292                                 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2293
2294                         usage = clamp_t(u32,
2295                                 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2296                                                    usage_dur),
2297                                 1, WEIGHT_ONE);
2298
2299                         /*
2300                          * Already donating or accumulated enough to start.
2301                          * Determine the donation amount.
2302                          */
2303                         current_hweight(iocg, &hwa, &old_hwi);
2304                         hwm = current_hweight_max(iocg);
2305                         new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2306                                                          usage, &now);
2307                         if (new_hwi < hwm) {
2308                                 iocg->hweight_donating = hwa;
2309                                 iocg->hweight_after_donation = new_hwi;
2310                                 list_add(&iocg->surplus_list, &surpluses);
2311                         } else {
2312                                 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2313                                                 iocg->inuse, iocg->active,
2314                                                 iocg->hweight_inuse, new_hwi);
2315
2316                                 __propagate_weights(iocg, iocg->active,
2317                                                     iocg->active, true, &now);
2318                                 nr_shortages++;
2319                         }
2320                 } else {
2321                         /* genuinely short on vtime */
2322                         nr_shortages++;
2323                 }
2324         }
2325
2326         if (!list_empty(&surpluses) && nr_shortages)
2327                 transfer_surpluses(&surpluses, &now);
2328
2329         commit_weights(ioc);
2330
2331         /* surplus list should be dissolved after use */
2332         list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2333                 list_del_init(&iocg->surplus_list);
2334
2335         /*
2336          * If q is getting clogged or we're missing too much, we're issuing
2337          * too much IO and should lower vtime rate.  If we're not missing
2338          * and experiencing shortages but not surpluses, we're too stingy
2339          * and should increase vtime rate.
2340          */
2341         prev_busy_level = ioc->busy_level;
2342         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2343             missed_ppm[READ] > ppm_rthr ||
2344             missed_ppm[WRITE] > ppm_wthr) {
2345                 /* clearly missing QoS targets, slow down vrate */
2346                 ioc->busy_level = max(ioc->busy_level, 0);
2347                 ioc->busy_level++;
2348         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2349                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2350                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2351                 /* QoS targets are being met with >25% margin */
2352                 if (nr_shortages) {
2353                         /*
2354                          * We're throttling while the device has spare
2355                          * capacity.  If vrate was being slowed down, stop.
2356                          */
2357                         ioc->busy_level = min(ioc->busy_level, 0);
2358
2359                         /*
2360                          * If there are IOs spanning multiple periods, wait
2361                          * them out before pushing the device harder.
2362                          */
2363                         if (!nr_lagging)
2364                                 ioc->busy_level--;
2365                 } else {
2366                         /*
2367                          * Nobody is being throttled and the users aren't
2368                          * issuing enough IOs to saturate the device.  We
2369                          * simply don't know how close the device is to
2370                          * saturation.  Coast.
2371                          */
2372                         ioc->busy_level = 0;
2373                 }
2374         } else {
2375                 /* inside the hysterisis margin, we're good */
2376                 ioc->busy_level = 0;
2377         }
2378
2379         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2380
2381         ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2382                               prev_busy_level, missed_ppm);
2383
2384         ioc_refresh_params(ioc, false);
2385
2386         ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2387
2388         /*
2389          * This period is done.  Move onto the next one.  If nothing's
2390          * going on with the device, stop the timer.
2391          */
2392         atomic64_inc(&ioc->cur_period);
2393
2394         if (ioc->running != IOC_STOP) {
2395                 if (!list_empty(&ioc->active_iocgs)) {
2396                         ioc_start_period(ioc, &now);
2397                 } else {
2398                         ioc->busy_level = 0;
2399                         ioc->vtime_err = 0;
2400                         ioc->running = IOC_IDLE;
2401                 }
2402
2403                 ioc_refresh_vrate(ioc, &now);
2404         }
2405
2406         spin_unlock_irq(&ioc->lock);
2407 }
2408
2409 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2410                                       u64 abs_cost, struct ioc_now *now)
2411 {
2412         struct ioc *ioc = iocg->ioc;
2413         struct ioc_margins *margins = &ioc->margins;
2414         u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2415         u32 hwi, adj_step;
2416         s64 margin;
2417         u64 cost, new_inuse;
2418
2419         current_hweight(iocg, NULL, &hwi);
2420         old_hwi = hwi;
2421         cost = abs_cost_to_cost(abs_cost, hwi);
2422         margin = now->vnow - vtime - cost;
2423
2424         /* debt handling owns inuse for debtors */
2425         if (iocg->abs_vdebt)
2426                 return cost;
2427
2428         /*
2429          * We only increase inuse during period and do so if the margin has
2430          * deteriorated since the previous adjustment.
2431          */
2432         if (margin >= iocg->saved_margin || margin >= margins->low ||
2433             iocg->inuse == iocg->active)
2434                 return cost;
2435
2436         spin_lock_irq(&ioc->lock);
2437
2438         /* we own inuse only when @iocg is in the normal active state */
2439         if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2440                 spin_unlock_irq(&ioc->lock);
2441                 return cost;
2442         }
2443
2444         /*
2445          * Bump up inuse till @abs_cost fits in the existing budget.
2446          * adj_step must be determined after acquiring ioc->lock - we might
2447          * have raced and lost to another thread for activation and could
2448          * be reading 0 iocg->active before ioc->lock which will lead to
2449          * infinite loop.
2450          */
2451         new_inuse = iocg->inuse;
2452         adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2453         do {
2454                 new_inuse = new_inuse + adj_step;
2455                 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2456                 current_hweight(iocg, NULL, &hwi);
2457                 cost = abs_cost_to_cost(abs_cost, hwi);
2458         } while (time_after64(vtime + cost, now->vnow) &&
2459                  iocg->inuse != iocg->active);
2460
2461         spin_unlock_irq(&ioc->lock);
2462
2463         TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2464                         old_inuse, iocg->inuse, old_hwi, hwi);
2465
2466         return cost;
2467 }
2468
2469 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2470                                     bool is_merge, u64 *costp)
2471 {
2472         struct ioc *ioc = iocg->ioc;
2473         u64 coef_seqio, coef_randio, coef_page;
2474         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2475         u64 seek_pages = 0;
2476         u64 cost = 0;
2477
2478         switch (bio_op(bio)) {
2479         case REQ_OP_READ:
2480                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
2481                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
2482                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
2483                 break;
2484         case REQ_OP_WRITE:
2485                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
2486                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
2487                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
2488                 break;
2489         default:
2490                 goto out;
2491         }
2492
2493         if (iocg->cursor) {
2494                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2495                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2496         }
2497
2498         if (!is_merge) {
2499                 if (seek_pages > LCOEF_RANDIO_PAGES) {
2500                         cost += coef_randio;
2501                 } else {
2502                         cost += coef_seqio;
2503                 }
2504         }
2505         cost += pages * coef_page;
2506 out:
2507         *costp = cost;
2508 }
2509
2510 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2511 {
2512         u64 cost;
2513
2514         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2515         return cost;
2516 }
2517
2518 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2519                                          u64 *costp)
2520 {
2521         unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2522
2523         switch (req_op(rq)) {
2524         case REQ_OP_READ:
2525                 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2526                 break;
2527         case REQ_OP_WRITE:
2528                 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2529                 break;
2530         default:
2531                 *costp = 0;
2532         }
2533 }
2534
2535 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2536 {
2537         u64 cost;
2538
2539         calc_size_vtime_cost_builtin(rq, ioc, &cost);
2540         return cost;
2541 }
2542
2543 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2544 {
2545         struct blkcg_gq *blkg = bio->bi_blkg;
2546         struct ioc *ioc = rqos_to_ioc(rqos);
2547         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2548         struct ioc_now now;
2549         struct iocg_wait wait;
2550         u64 abs_cost, cost, vtime;
2551         bool use_debt, ioc_locked;
2552         unsigned long flags;
2553
2554         /* bypass IOs if disabled, still initializing, or for root cgroup */
2555         if (!ioc->enabled || !iocg || !iocg->level)
2556                 return;
2557
2558         /* calculate the absolute vtime cost */
2559         abs_cost = calc_vtime_cost(bio, iocg, false);
2560         if (!abs_cost)
2561                 return;
2562
2563         if (!iocg_activate(iocg, &now))
2564                 return;
2565
2566         iocg->cursor = bio_end_sector(bio);
2567         vtime = atomic64_read(&iocg->vtime);
2568         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2569
2570         /*
2571          * If no one's waiting and within budget, issue right away.  The
2572          * tests are racy but the races aren't systemic - we only miss once
2573          * in a while which is fine.
2574          */
2575         if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2576             time_before_eq64(vtime + cost, now.vnow)) {
2577                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2578                 return;
2579         }
2580
2581         /*
2582          * We're over budget. This can be handled in two ways. IOs which may
2583          * cause priority inversions are punted to @ioc->aux_iocg and charged as
2584          * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2585          * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2586          * whether debt handling is needed and acquire locks accordingly.
2587          */
2588         use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2589         ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2590 retry_lock:
2591         iocg_lock(iocg, ioc_locked, &flags);
2592
2593         /*
2594          * @iocg must stay activated for debt and waitq handling. Deactivation
2595          * is synchronized against both ioc->lock and waitq.lock and we won't
2596          * get deactivated as long as we're waiting or has debt, so we're good
2597          * if we're activated here. In the unlikely cases that we aren't, just
2598          * issue the IO.
2599          */
2600         if (unlikely(list_empty(&iocg->active_list))) {
2601                 iocg_unlock(iocg, ioc_locked, &flags);
2602                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2603                 return;
2604         }
2605
2606         /*
2607          * We're over budget. If @bio has to be issued regardless, remember
2608          * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2609          * off the debt before waking more IOs.
2610          *
2611          * This way, the debt is continuously paid off each period with the
2612          * actual budget available to the cgroup. If we just wound vtime, we
2613          * would incorrectly use the current hw_inuse for the entire amount
2614          * which, for example, can lead to the cgroup staying blocked for a
2615          * long time even with substantially raised hw_inuse.
2616          *
2617          * An iocg with vdebt should stay online so that the timer can keep
2618          * deducting its vdebt and [de]activate use_delay mechanism
2619          * accordingly. We don't want to race against the timer trying to
2620          * clear them and leave @iocg inactive w/ dangling use_delay heavily
2621          * penalizing the cgroup and its descendants.
2622          */
2623         if (use_debt) {
2624                 iocg_incur_debt(iocg, abs_cost, &now);
2625                 if (iocg_kick_delay(iocg, &now))
2626                         blkcg_schedule_throttle(rqos->q,
2627                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2628                 iocg_unlock(iocg, ioc_locked, &flags);
2629                 return;
2630         }
2631
2632         /* guarantee that iocgs w/ waiters have maximum inuse */
2633         if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2634                 if (!ioc_locked) {
2635                         iocg_unlock(iocg, false, &flags);
2636                         ioc_locked = true;
2637                         goto retry_lock;
2638                 }
2639                 propagate_weights(iocg, iocg->active, iocg->active, true,
2640                                   &now);
2641         }
2642
2643         /*
2644          * Append self to the waitq and schedule the wakeup timer if we're
2645          * the first waiter.  The timer duration is calculated based on the
2646          * current vrate.  vtime and hweight changes can make it too short
2647          * or too long.  Each wait entry records the absolute cost it's
2648          * waiting for to allow re-evaluation using a custom wait entry.
2649          *
2650          * If too short, the timer simply reschedules itself.  If too long,
2651          * the period timer will notice and trigger wakeups.
2652          *
2653          * All waiters are on iocg->waitq and the wait states are
2654          * synchronized using waitq.lock.
2655          */
2656         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2657         wait.wait.private = current;
2658         wait.bio = bio;
2659         wait.abs_cost = abs_cost;
2660         wait.committed = false; /* will be set true by waker */
2661
2662         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2663         iocg_kick_waitq(iocg, ioc_locked, &now);
2664
2665         iocg_unlock(iocg, ioc_locked, &flags);
2666
2667         while (true) {
2668                 set_current_state(TASK_UNINTERRUPTIBLE);
2669                 if (wait.committed)
2670                         break;
2671                 io_schedule();
2672         }
2673
2674         /* waker already committed us, proceed */
2675         finish_wait(&iocg->waitq, &wait.wait);
2676 }
2677
2678 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2679                            struct bio *bio)
2680 {
2681         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2682         struct ioc *ioc = rqos_to_ioc(rqos);
2683         sector_t bio_end = bio_end_sector(bio);
2684         struct ioc_now now;
2685         u64 vtime, abs_cost, cost;
2686         unsigned long flags;
2687
2688         /* bypass if disabled, still initializing, or for root cgroup */
2689         if (!ioc->enabled || !iocg || !iocg->level)
2690                 return;
2691
2692         abs_cost = calc_vtime_cost(bio, iocg, true);
2693         if (!abs_cost)
2694                 return;
2695
2696         ioc_now(ioc, &now);
2697
2698         vtime = atomic64_read(&iocg->vtime);
2699         cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2700
2701         /* update cursor if backmerging into the request at the cursor */
2702         if (blk_rq_pos(rq) < bio_end &&
2703             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2704                 iocg->cursor = bio_end;
2705
2706         /*
2707          * Charge if there's enough vtime budget and the existing request has
2708          * cost assigned.
2709          */
2710         if (rq->bio && rq->bio->bi_iocost_cost &&
2711             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2712                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2713                 return;
2714         }
2715
2716         /*
2717          * Otherwise, account it as debt if @iocg is online, which it should
2718          * be for the vast majority of cases. See debt handling in
2719          * ioc_rqos_throttle() for details.
2720          */
2721         spin_lock_irqsave(&ioc->lock, flags);
2722         spin_lock(&iocg->waitq.lock);
2723
2724         if (likely(!list_empty(&iocg->active_list))) {
2725                 iocg_incur_debt(iocg, abs_cost, &now);
2726                 if (iocg_kick_delay(iocg, &now))
2727                         blkcg_schedule_throttle(rqos->q,
2728                                         (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2729         } else {
2730                 iocg_commit_bio(iocg, bio, abs_cost, cost);
2731         }
2732
2733         spin_unlock(&iocg->waitq.lock);
2734         spin_unlock_irqrestore(&ioc->lock, flags);
2735 }
2736
2737 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2738 {
2739         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2740
2741         if (iocg && bio->bi_iocost_cost)
2742                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2743 }
2744
2745 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2746 {
2747         struct ioc *ioc = rqos_to_ioc(rqos);
2748         struct ioc_pcpu_stat *ccs;
2749         u64 on_q_ns, rq_wait_ns, size_nsec;
2750         int pidx, rw;
2751
2752         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2753                 return;
2754
2755         switch (req_op(rq) & REQ_OP_MASK) {
2756         case REQ_OP_READ:
2757                 pidx = QOS_RLAT;
2758                 rw = READ;
2759                 break;
2760         case REQ_OP_WRITE:
2761                 pidx = QOS_WLAT;
2762                 rw = WRITE;
2763                 break;
2764         default:
2765                 return;
2766         }
2767
2768         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2769         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2770         size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2771
2772         ccs = get_cpu_ptr(ioc->pcpu_stat);
2773
2774         if (on_q_ns <= size_nsec ||
2775             on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2776                 local_inc(&ccs->missed[rw].nr_met);
2777         else
2778                 local_inc(&ccs->missed[rw].nr_missed);
2779
2780         local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2781
2782         put_cpu_ptr(ccs);
2783 }
2784
2785 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2786 {
2787         struct ioc *ioc = rqos_to_ioc(rqos);
2788
2789         spin_lock_irq(&ioc->lock);
2790         ioc_refresh_params(ioc, false);
2791         spin_unlock_irq(&ioc->lock);
2792 }
2793
2794 static void ioc_rqos_exit(struct rq_qos *rqos)
2795 {
2796         struct ioc *ioc = rqos_to_ioc(rqos);
2797
2798         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2799
2800         spin_lock_irq(&ioc->lock);
2801         ioc->running = IOC_STOP;
2802         spin_unlock_irq(&ioc->lock);
2803
2804         del_timer_sync(&ioc->timer);
2805         free_percpu(ioc->pcpu_stat);
2806         kfree(ioc);
2807 }
2808
2809 static struct rq_qos_ops ioc_rqos_ops = {
2810         .throttle = ioc_rqos_throttle,
2811         .merge = ioc_rqos_merge,
2812         .done_bio = ioc_rqos_done_bio,
2813         .done = ioc_rqos_done,
2814         .queue_depth_changed = ioc_rqos_queue_depth_changed,
2815         .exit = ioc_rqos_exit,
2816 };
2817
2818 static int blk_iocost_init(struct request_queue *q)
2819 {
2820         struct ioc *ioc;
2821         struct rq_qos *rqos;
2822         int i, cpu, ret;
2823
2824         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2825         if (!ioc)
2826                 return -ENOMEM;
2827
2828         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2829         if (!ioc->pcpu_stat) {
2830                 kfree(ioc);
2831                 return -ENOMEM;
2832         }
2833
2834         for_each_possible_cpu(cpu) {
2835                 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2836
2837                 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2838                         local_set(&ccs->missed[i].nr_met, 0);
2839                         local_set(&ccs->missed[i].nr_missed, 0);
2840                 }
2841                 local64_set(&ccs->rq_wait_ns, 0);
2842         }
2843
2844         rqos = &ioc->rqos;
2845         rqos->id = RQ_QOS_COST;
2846         rqos->ops = &ioc_rqos_ops;
2847         rqos->q = q;
2848
2849         spin_lock_init(&ioc->lock);
2850         timer_setup(&ioc->timer, ioc_timer_fn, 0);
2851         INIT_LIST_HEAD(&ioc->active_iocgs);
2852
2853         ioc->running = IOC_IDLE;
2854         ioc->vtime_base_rate = VTIME_PER_USEC;
2855         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2856         seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2857         ioc->period_at = ktime_to_us(ktime_get());
2858         atomic64_set(&ioc->cur_period, 0);
2859         atomic_set(&ioc->hweight_gen, 0);
2860
2861         spin_lock_irq(&ioc->lock);
2862         ioc->autop_idx = AUTOP_INVALID;
2863         ioc_refresh_params(ioc, true);
2864         spin_unlock_irq(&ioc->lock);
2865
2866         /*
2867          * rqos must be added before activation to allow iocg_pd_init() to
2868          * lookup the ioc from q. This means that the rqos methods may get
2869          * called before policy activation completion, can't assume that the
2870          * target bio has an iocg associated and need to test for NULL iocg.
2871          */
2872         rq_qos_add(q, rqos);
2873         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2874         if (ret) {
2875                 rq_qos_del(q, rqos);
2876                 free_percpu(ioc->pcpu_stat);
2877                 kfree(ioc);
2878                 return ret;
2879         }
2880         return 0;
2881 }
2882
2883 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2884 {
2885         struct ioc_cgrp *iocc;
2886
2887         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2888         if (!iocc)
2889                 return NULL;
2890
2891         iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2892         return &iocc->cpd;
2893 }
2894
2895 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2896 {
2897         kfree(container_of(cpd, struct ioc_cgrp, cpd));
2898 }
2899
2900 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2901                                              struct blkcg *blkcg)
2902 {
2903         int levels = blkcg->css.cgroup->level + 1;
2904         struct ioc_gq *iocg;
2905
2906         iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2907         if (!iocg)
2908                 return NULL;
2909
2910         iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2911         if (!iocg->pcpu_stat) {
2912                 kfree(iocg);
2913                 return NULL;
2914         }
2915
2916         return &iocg->pd;
2917 }
2918
2919 static void ioc_pd_init(struct blkg_policy_data *pd)
2920 {
2921         struct ioc_gq *iocg = pd_to_iocg(pd);
2922         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2923         struct ioc *ioc = q_to_ioc(blkg->q);
2924         struct ioc_now now;
2925         struct blkcg_gq *tblkg;
2926         unsigned long flags;
2927
2928         ioc_now(ioc, &now);
2929
2930         iocg->ioc = ioc;
2931         atomic64_set(&iocg->vtime, now.vnow);
2932         atomic64_set(&iocg->done_vtime, now.vnow);
2933         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2934         INIT_LIST_HEAD(&iocg->active_list);
2935         INIT_LIST_HEAD(&iocg->walk_list);
2936         INIT_LIST_HEAD(&iocg->surplus_list);
2937         iocg->hweight_active = WEIGHT_ONE;
2938         iocg->hweight_inuse = WEIGHT_ONE;
2939
2940         init_waitqueue_head(&iocg->waitq);
2941         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2942         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2943
2944         iocg->level = blkg->blkcg->css.cgroup->level;
2945
2946         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2947                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2948                 iocg->ancestors[tiocg->level] = tiocg;
2949         }
2950
2951         spin_lock_irqsave(&ioc->lock, flags);
2952         weight_updated(iocg, &now);
2953         spin_unlock_irqrestore(&ioc->lock, flags);
2954 }
2955
2956 static void ioc_pd_free(struct blkg_policy_data *pd)
2957 {
2958         struct ioc_gq *iocg = pd_to_iocg(pd);
2959         struct ioc *ioc = iocg->ioc;
2960         unsigned long flags;
2961
2962         if (ioc) {
2963                 spin_lock_irqsave(&ioc->lock, flags);
2964
2965                 if (!list_empty(&iocg->active_list)) {
2966                         struct ioc_now now;
2967
2968                         ioc_now(ioc, &now);
2969                         propagate_weights(iocg, 0, 0, false, &now);
2970                         list_del_init(&iocg->active_list);
2971                 }
2972
2973                 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2974                 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2975
2976                 spin_unlock_irqrestore(&ioc->lock, flags);
2977
2978                 hrtimer_cancel(&iocg->waitq_timer);
2979         }
2980         free_percpu(iocg->pcpu_stat);
2981         kfree(iocg);
2982 }
2983
2984 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2985 {
2986         struct ioc_gq *iocg = pd_to_iocg(pd);
2987         struct ioc *ioc = iocg->ioc;
2988         size_t pos = 0;
2989
2990         if (!ioc->enabled)
2991                 return 0;
2992
2993         if (iocg->level == 0) {
2994                 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
2995                         ioc->vtime_base_rate * 10000,
2996                         VTIME_PER_USEC);
2997                 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2998                                   vp10k / 100, vp10k % 100);
2999         }
3000
3001         pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3002                          iocg->last_stat.usage_us);
3003
3004         if (blkcg_debug_stats)
3005                 pos += scnprintf(buf + pos, size - pos,
3006                                  " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3007                                  iocg->last_stat.wait_us,
3008                                  iocg->last_stat.indebt_us,
3009                                  iocg->last_stat.indelay_us);
3010
3011         return pos;
3012 }
3013
3014 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3015                              int off)
3016 {
3017         const char *dname = blkg_dev_name(pd->blkg);
3018         struct ioc_gq *iocg = pd_to_iocg(pd);
3019
3020         if (dname && iocg->cfg_weight)
3021                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3022         return 0;
3023 }
3024
3025
3026 static int ioc_weight_show(struct seq_file *sf, void *v)
3027 {
3028         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3029         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3030
3031         seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3032         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3033                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3034         return 0;
3035 }
3036
3037 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3038                                 size_t nbytes, loff_t off)
3039 {
3040         struct blkcg *blkcg = css_to_blkcg(of_css(of));
3041         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3042         struct blkg_conf_ctx ctx;
3043         struct ioc_now now;
3044         struct ioc_gq *iocg;
3045         u32 v;
3046         int ret;
3047
3048         if (!strchr(buf, ':')) {
3049                 struct blkcg_gq *blkg;
3050
3051                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3052                         return -EINVAL;
3053
3054                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3055                         return -EINVAL;
3056
3057                 spin_lock(&blkcg->lock);
3058                 iocc->dfl_weight = v * WEIGHT_ONE;
3059                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3060                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
3061
3062                         if (iocg) {
3063                                 spin_lock_irq(&iocg->ioc->lock);
3064                                 ioc_now(iocg->ioc, &now);
3065                                 weight_updated(iocg, &now);
3066                                 spin_unlock_irq(&iocg->ioc->lock);
3067                         }
3068                 }
3069                 spin_unlock(&blkcg->lock);
3070
3071                 return nbytes;
3072         }
3073
3074         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3075         if (ret)
3076                 return ret;
3077
3078         iocg = blkg_to_iocg(ctx.blkg);
3079
3080         if (!strncmp(ctx.body, "default", 7)) {
3081                 v = 0;
3082         } else {
3083                 if (!sscanf(ctx.body, "%u", &v))
3084                         goto einval;
3085                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3086                         goto einval;
3087         }
3088
3089         spin_lock(&iocg->ioc->lock);
3090         iocg->cfg_weight = v * WEIGHT_ONE;
3091         ioc_now(iocg->ioc, &now);
3092         weight_updated(iocg, &now);
3093         spin_unlock(&iocg->ioc->lock);
3094
3095         blkg_conf_finish(&ctx);
3096         return nbytes;
3097
3098 einval:
3099         blkg_conf_finish(&ctx);
3100         return -EINVAL;
3101 }
3102
3103 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3104                           int off)
3105 {
3106         const char *dname = blkg_dev_name(pd->blkg);
3107         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3108
3109         if (!dname)
3110                 return 0;
3111
3112         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3113                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3114                    ioc->params.qos[QOS_RPPM] / 10000,
3115                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
3116                    ioc->params.qos[QOS_RLAT],
3117                    ioc->params.qos[QOS_WPPM] / 10000,
3118                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
3119                    ioc->params.qos[QOS_WLAT],
3120                    ioc->params.qos[QOS_MIN] / 10000,
3121                    ioc->params.qos[QOS_MIN] % 10000 / 100,
3122                    ioc->params.qos[QOS_MAX] / 10000,
3123                    ioc->params.qos[QOS_MAX] % 10000 / 100);
3124         return 0;
3125 }
3126
3127 static int ioc_qos_show(struct seq_file *sf, void *v)
3128 {
3129         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3130
3131         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3132                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3133         return 0;
3134 }
3135
3136 static const match_table_t qos_ctrl_tokens = {
3137         { QOS_ENABLE,           "enable=%u"     },
3138         { QOS_CTRL,             "ctrl=%s"       },
3139         { NR_QOS_CTRL_PARAMS,   NULL            },
3140 };
3141
3142 static const match_table_t qos_tokens = {
3143         { QOS_RPPM,             "rpct=%s"       },
3144         { QOS_RLAT,             "rlat=%u"       },
3145         { QOS_WPPM,             "wpct=%s"       },
3146         { QOS_WLAT,             "wlat=%u"       },
3147         { QOS_MIN,              "min=%s"        },
3148         { QOS_MAX,              "max=%s"        },
3149         { NR_QOS_PARAMS,        NULL            },
3150 };
3151
3152 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3153                              size_t nbytes, loff_t off)
3154 {
3155         struct block_device *bdev;
3156         struct ioc *ioc;
3157         u32 qos[NR_QOS_PARAMS];
3158         bool enable, user;
3159         char *p;
3160         int ret;
3161
3162         bdev = blkcg_conf_open_bdev(&input);
3163         if (IS_ERR(bdev))
3164                 return PTR_ERR(bdev);
3165
3166         ioc = q_to_ioc(bdev->bd_disk->queue);
3167         if (!ioc) {
3168                 ret = blk_iocost_init(bdev->bd_disk->queue);
3169                 if (ret)
3170                         goto err;
3171                 ioc = q_to_ioc(bdev->bd_disk->queue);
3172         }
3173
3174         spin_lock_irq(&ioc->lock);
3175         memcpy(qos, ioc->params.qos, sizeof(qos));
3176         enable = ioc->enabled;
3177         user = ioc->user_qos_params;
3178         spin_unlock_irq(&ioc->lock);
3179
3180         while ((p = strsep(&input, " \t\n"))) {
3181                 substring_t args[MAX_OPT_ARGS];
3182                 char buf[32];
3183                 int tok;
3184                 s64 v;
3185
3186                 if (!*p)
3187                         continue;
3188
3189                 switch (match_token(p, qos_ctrl_tokens, args)) {
3190                 case QOS_ENABLE:
3191                         match_u64(&args[0], &v);
3192                         enable = v;
3193                         continue;
3194                 case QOS_CTRL:
3195                         match_strlcpy(buf, &args[0], sizeof(buf));
3196                         if (!strcmp(buf, "auto"))
3197                                 user = false;
3198                         else if (!strcmp(buf, "user"))
3199                                 user = true;
3200                         else
3201                                 goto einval;
3202                         continue;
3203                 }
3204
3205                 tok = match_token(p, qos_tokens, args);
3206                 switch (tok) {
3207                 case QOS_RPPM:
3208                 case QOS_WPPM:
3209                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3210                             sizeof(buf))
3211                                 goto einval;
3212                         if (cgroup_parse_float(buf, 2, &v))
3213                                 goto einval;
3214                         if (v < 0 || v > 10000)
3215                                 goto einval;
3216                         qos[tok] = v * 100;
3217                         break;
3218                 case QOS_RLAT:
3219                 case QOS_WLAT:
3220                         if (match_u64(&args[0], &v))
3221                                 goto einval;
3222                         qos[tok] = v;
3223                         break;
3224                 case QOS_MIN:
3225                 case QOS_MAX:
3226                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3227                             sizeof(buf))
3228                                 goto einval;
3229                         if (cgroup_parse_float(buf, 2, &v))
3230                                 goto einval;
3231                         if (v < 0)
3232                                 goto einval;
3233                         qos[tok] = clamp_t(s64, v * 100,
3234                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
3235                         break;
3236                 default:
3237                         goto einval;
3238                 }
3239                 user = true;
3240         }
3241
3242         if (qos[QOS_MIN] > qos[QOS_MAX])
3243                 goto einval;
3244
3245         spin_lock_irq(&ioc->lock);
3246
3247         if (enable) {
3248                 blk_stat_enable_accounting(ioc->rqos.q);
3249                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3250                 ioc->enabled = true;
3251         } else {
3252                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3253                 ioc->enabled = false;
3254         }
3255
3256         if (user) {
3257                 memcpy(ioc->params.qos, qos, sizeof(qos));
3258                 ioc->user_qos_params = true;
3259         } else {
3260                 ioc->user_qos_params = false;
3261         }
3262
3263         ioc_refresh_params(ioc, true);
3264         spin_unlock_irq(&ioc->lock);
3265
3266         blkdev_put_no_open(bdev);
3267         return nbytes;
3268 einval:
3269         ret = -EINVAL;
3270 err:
3271         blkdev_put_no_open(bdev);
3272         return ret;
3273 }
3274
3275 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3276                                  struct blkg_policy_data *pd, int off)
3277 {
3278         const char *dname = blkg_dev_name(pd->blkg);
3279         struct ioc *ioc = pd_to_iocg(pd)->ioc;
3280         u64 *u = ioc->params.i_lcoefs;
3281
3282         if (!dname)
3283                 return 0;
3284
3285         seq_printf(sf, "%s ctrl=%s model=linear "
3286                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
3287                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3288                    dname, ioc->user_cost_model ? "user" : "auto",
3289                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3290                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3291         return 0;
3292 }
3293
3294 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3295 {
3296         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3297
3298         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3299                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
3300         return 0;
3301 }
3302
3303 static const match_table_t cost_ctrl_tokens = {
3304         { COST_CTRL,            "ctrl=%s"       },
3305         { COST_MODEL,           "model=%s"      },
3306         { NR_COST_CTRL_PARAMS,  NULL            },
3307 };
3308
3309 static const match_table_t i_lcoef_tokens = {
3310         { I_LCOEF_RBPS,         "rbps=%u"       },
3311         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
3312         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
3313         { I_LCOEF_WBPS,         "wbps=%u"       },
3314         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
3315         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
3316         { NR_I_LCOEFS,          NULL            },
3317 };
3318
3319 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3320                                     size_t nbytes, loff_t off)
3321 {
3322         struct block_device *bdev;
3323         struct ioc *ioc;
3324         u64 u[NR_I_LCOEFS];
3325         bool user;
3326         char *p;
3327         int ret;
3328
3329         bdev = blkcg_conf_open_bdev(&input);
3330         if (IS_ERR(bdev))
3331                 return PTR_ERR(bdev);
3332
3333         ioc = q_to_ioc(bdev->bd_disk->queue);
3334         if (!ioc) {
3335                 ret = blk_iocost_init(bdev->bd_disk->queue);
3336                 if (ret)
3337                         goto err;
3338                 ioc = q_to_ioc(bdev->bd_disk->queue);
3339         }
3340
3341         spin_lock_irq(&ioc->lock);
3342         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3343         user = ioc->user_cost_model;
3344         spin_unlock_irq(&ioc->lock);
3345
3346         while ((p = strsep(&input, " \t\n"))) {
3347                 substring_t args[MAX_OPT_ARGS];
3348                 char buf[32];
3349                 int tok;
3350                 u64 v;
3351
3352                 if (!*p)
3353                         continue;
3354
3355                 switch (match_token(p, cost_ctrl_tokens, args)) {
3356                 case COST_CTRL:
3357                         match_strlcpy(buf, &args[0], sizeof(buf));
3358                         if (!strcmp(buf, "auto"))
3359                                 user = false;
3360                         else if (!strcmp(buf, "user"))
3361                                 user = true;
3362                         else
3363                                 goto einval;
3364                         continue;
3365                 case COST_MODEL:
3366                         match_strlcpy(buf, &args[0], sizeof(buf));
3367                         if (strcmp(buf, "linear"))
3368                                 goto einval;
3369                         continue;
3370                 }
3371
3372                 tok = match_token(p, i_lcoef_tokens, args);
3373                 if (tok == NR_I_LCOEFS)
3374                         goto einval;
3375                 if (match_u64(&args[0], &v))
3376                         goto einval;
3377                 u[tok] = v;
3378                 user = true;
3379         }
3380
3381         spin_lock_irq(&ioc->lock);
3382         if (user) {
3383                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3384                 ioc->user_cost_model = true;
3385         } else {
3386                 ioc->user_cost_model = false;
3387         }
3388         ioc_refresh_params(ioc, true);
3389         spin_unlock_irq(&ioc->lock);
3390
3391         blkdev_put_no_open(bdev);
3392         return nbytes;
3393
3394 einval:
3395         ret = -EINVAL;
3396 err:
3397         blkdev_put_no_open(bdev);
3398         return ret;
3399 }
3400
3401 static struct cftype ioc_files[] = {
3402         {
3403                 .name = "weight",
3404                 .flags = CFTYPE_NOT_ON_ROOT,
3405                 .seq_show = ioc_weight_show,
3406                 .write = ioc_weight_write,
3407         },
3408         {
3409                 .name = "cost.qos",
3410                 .flags = CFTYPE_ONLY_ON_ROOT,
3411                 .seq_show = ioc_qos_show,
3412                 .write = ioc_qos_write,
3413         },
3414         {
3415                 .name = "cost.model",
3416                 .flags = CFTYPE_ONLY_ON_ROOT,
3417                 .seq_show = ioc_cost_model_show,
3418                 .write = ioc_cost_model_write,
3419         },
3420         {}
3421 };
3422
3423 static struct blkcg_policy blkcg_policy_iocost = {
3424         .dfl_cftypes    = ioc_files,
3425         .cpd_alloc_fn   = ioc_cpd_alloc,
3426         .cpd_free_fn    = ioc_cpd_free,
3427         .pd_alloc_fn    = ioc_pd_alloc,
3428         .pd_init_fn     = ioc_pd_init,
3429         .pd_free_fn     = ioc_pd_free,
3430         .pd_stat_fn     = ioc_pd_stat,
3431 };
3432
3433 static int __init ioc_init(void)
3434 {
3435         return blkcg_policy_register(&blkcg_policy_iocost);
3436 }
3437
3438 static void __exit ioc_exit(void)
3439 {
3440         blkcg_policy_unregister(&blkcg_policy_iocost);
3441 }
3442
3443 module_init(ioc_init);
3444 module_exit(ioc_exit);