1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, solely depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
186 #include "blk-cgroup.h"
188 #ifdef CONFIG_TRACEPOINTS
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
226 MARGIN_TARGET_PCT = 50,
228 INUSE_ADJ_STEP_PCT = 25,
230 /* Have some play in timer operations */
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
269 /* unbusy hysterisis */
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
297 /* halve debts if avg usage over 100ms is under 50% */
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
323 /* io.cost.qos controls including per-dev enable of the whole controller */
330 /* io.cost.qos params */
341 /* io.cost.model controls */
348 /* builtin linear cost model coefficients */
378 u32 qos[NR_QOS_PARAMS];
379 u64 i_lcoefs[NR_I_LCOEFS];
380 u64 lcoefs[NR_LCOEFS];
381 u32 too_fast_vrate_pct;
382 u32 too_slow_vrate_pct;
398 struct ioc_pcpu_stat {
399 struct ioc_missed missed[2];
401 local64_t rq_wait_ns;
411 struct ioc_params params;
412 struct ioc_margins margins;
419 struct timer_list timer;
420 struct list_head active_iocgs; /* active cgroups */
421 struct ioc_pcpu_stat __percpu *pcpu_stat;
423 enum ioc_running running;
424 atomic64_t vtime_rate;
428 seqcount_spinlock_t period_seqcount;
429 u64 period_at; /* wallclock starttime */
430 u64 period_at_vtime; /* vtime starttime */
432 atomic64_t cur_period; /* inc'd each period */
433 int busy_level; /* saturation history */
435 bool weights_updated;
436 atomic_t hweight_gen; /* for lazy hweights */
438 /* debt forgivness */
441 u64 dfgv_usage_us_sum;
443 u64 autop_too_fast_at;
444 u64 autop_too_slow_at;
446 bool user_qos_params:1;
447 bool user_cost_model:1;
450 struct iocg_pcpu_stat {
451 local64_t abs_vusage;
461 /* per device-cgroup pair */
463 struct blkg_policy_data pd;
467 * A iocg can get its weight from two sources - an explicit
468 * per-device-cgroup configuration or the default weight of the
469 * cgroup. `cfg_weight` is the explicit per-device-cgroup
470 * configuration. `weight` is the effective considering both
473 * When an idle cgroup becomes active its `active` goes from 0 to
474 * `weight`. `inuse` is the surplus adjusted active weight.
475 * `active` and `inuse` are used to calculate `hweight_active` and
478 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 * surplus adjustments.
481 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 * to determine and track adjustments.
492 sector_t cursor; /* to detect randio */
495 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 * issued. If lagging behind device vtime, the delta represents
497 * the currently available IO budget. If running ahead, the
500 * `vtime_done` is the same but progressed on completion rather
501 * than issue. The delta behind `vtime` represents the cost of
502 * currently in-flight IOs.
505 atomic64_t done_vtime;
508 /* current delay in effect and when it started */
513 * The period this iocg was last active in. Used for deactivation
514 * and invalidating `vtime`.
516 atomic64_t active_period;
517 struct list_head active_list;
519 /* see __propagate_weights() and current_hweight() for details */
520 u64 child_active_sum;
522 u64 child_adjusted_sum;
526 u32 hweight_donating;
527 u32 hweight_after_donation;
529 struct list_head walk_list;
530 struct list_head surplus_list;
532 struct wait_queue_head waitq;
533 struct hrtimer waitq_timer;
535 /* timestamp at the latest activation */
539 struct iocg_pcpu_stat __percpu *pcpu_stat;
540 struct iocg_stat stat;
541 struct iocg_stat last_stat;
542 u64 last_stat_abs_vusage;
548 /* this iocg's depth in the hierarchy and ancestors including self */
550 struct ioc_gq *ancestors[];
555 struct blkcg_policy_data cpd;
556 unsigned int dfl_weight;
566 struct wait_queue_entry wait;
572 struct iocg_wake_ctx {
578 static const struct ioc_params autop[] = {
581 [QOS_RLAT] = 250000, /* 250ms */
583 [QOS_MIN] = VRATE_MIN_PPM,
584 [QOS_MAX] = VRATE_MAX_PPM,
587 [I_LCOEF_RBPS] = 174019176,
588 [I_LCOEF_RSEQIOPS] = 41708,
589 [I_LCOEF_RRANDIOPS] = 370,
590 [I_LCOEF_WBPS] = 178075866,
591 [I_LCOEF_WSEQIOPS] = 42705,
592 [I_LCOEF_WRANDIOPS] = 378,
597 [QOS_RLAT] = 25000, /* 25ms */
599 [QOS_MIN] = VRATE_MIN_PPM,
600 [QOS_MAX] = VRATE_MAX_PPM,
603 [I_LCOEF_RBPS] = 245855193,
604 [I_LCOEF_RSEQIOPS] = 61575,
605 [I_LCOEF_RRANDIOPS] = 6946,
606 [I_LCOEF_WBPS] = 141365009,
607 [I_LCOEF_WSEQIOPS] = 33716,
608 [I_LCOEF_WRANDIOPS] = 26796,
613 [QOS_RLAT] = 25000, /* 25ms */
615 [QOS_MIN] = VRATE_MIN_PPM,
616 [QOS_MAX] = VRATE_MAX_PPM,
619 [I_LCOEF_RBPS] = 488636629,
620 [I_LCOEF_RSEQIOPS] = 8932,
621 [I_LCOEF_RRANDIOPS] = 8518,
622 [I_LCOEF_WBPS] = 427891549,
623 [I_LCOEF_WSEQIOPS] = 28755,
624 [I_LCOEF_WRANDIOPS] = 21940,
626 .too_fast_vrate_pct = 500,
630 [QOS_RLAT] = 5000, /* 5ms */
632 [QOS_MIN] = VRATE_MIN_PPM,
633 [QOS_MAX] = VRATE_MAX_PPM,
636 [I_LCOEF_RBPS] = 3102524156LLU,
637 [I_LCOEF_RSEQIOPS] = 724816,
638 [I_LCOEF_RRANDIOPS] = 778122,
639 [I_LCOEF_WBPS] = 1742780862LLU,
640 [I_LCOEF_WSEQIOPS] = 425702,
641 [I_LCOEF_WRANDIOPS] = 443193,
643 .too_slow_vrate_pct = 10,
648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
649 * vtime credit shortage and down on device saturation.
651 static u32 vrate_adj_pct[] =
653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657 static struct blkcg_policy blkcg_policy_iocost;
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662 return container_of(rqos, struct ioc, rqos);
665 static struct ioc *q_to_ioc(struct request_queue *q)
667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
672 struct gendisk *disk = ioc->rqos.disk;
676 return disk->disk_name;
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
691 return pd_to_blkg(&iocg->pd);
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697 struct ioc_cgrp, cpd);
701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
702 * weight, the more expensive each IO. Must round up.
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
710 * The inverse of abs_cost_to_cost(). Must round up.
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718 u64 abs_cost, u64 cost)
720 struct iocg_pcpu_stat *gcs;
722 bio->bi_iocost_cost = cost;
723 atomic64_add(cost, &iocg->vtime);
725 gcs = get_cpu_ptr(iocg->pcpu_stat);
726 local64_add(abs_cost, &gcs->abs_vusage);
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 spin_lock_irqsave(&iocg->ioc->lock, *flags);
734 spin_lock(&iocg->waitq.lock);
736 spin_lock_irqsave(&iocg->waitq.lock, *flags);
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 spin_unlock(&iocg->waitq.lock);
744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
753 static void ioc_refresh_margins(struct ioc *ioc)
755 struct ioc_margins *margins = &ioc->margins;
756 u32 period_us = ioc->period_us;
757 u64 vrate = ioc->vtime_base_rate;
759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
767 u32 ppm, lat, multi, period_us;
769 lockdep_assert_held(&ioc->lock);
771 /* pick the higher latency target */
772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773 ppm = ioc->params.qos[QOS_RPPM];
774 lat = ioc->params.qos[QOS_RLAT];
776 ppm = ioc->params.qos[QOS_WPPM];
777 lat = ioc->params.qos[QOS_WLAT];
781 * We want the period to be long enough to contain a healthy number
782 * of IOs while short enough for granular control. Define it as a
783 * multiple of the latency target. Ideally, the multiplier should
784 * be scaled according to the percentile so that it would nominally
785 * contain a certain number of requests. Let's be simpler and
786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792 period_us = multi * lat;
793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
795 /* calculate dependent params */
796 ioc->period_us = period_us;
797 ioc->timer_slack_ns = div64_u64(
798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
800 ioc_refresh_margins(ioc);
804 * ioc->rqos.disk isn't initialized when this function is called from
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
809 int idx = ioc->autop_idx;
810 const struct ioc_params *p = &autop[idx];
815 if (!blk_queue_nonrot(disk->queue))
818 /* handle SATA SSDs w/ broken NCQ */
819 if (blk_queue_depth(disk->queue) == 1)
820 return AUTOP_SSD_QD1;
822 /* use one of the normal ssd sets */
823 if (idx < AUTOP_SSD_DFL)
824 return AUTOP_SSD_DFL;
826 /* if user is overriding anything, maintain what was there */
827 if (ioc->user_qos_params || ioc->user_cost_model)
830 /* step up/down based on the vrate */
831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 now_ns = blk_time_get_ns();
834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 if (!ioc->autop_too_fast_at)
836 ioc->autop_too_fast_at = now_ns;
837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
840 ioc->autop_too_fast_at = 0;
843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 if (!ioc->autop_too_slow_at)
845 ioc->autop_too_slow_at = now_ns;
846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
849 ioc->autop_too_slow_at = 0;
856 * Take the followings as input
858 * @bps maximum sequential throughput
859 * @seqiops maximum sequential 4k iops
860 * @randiops maximum random 4k iops
862 * and calculate the linear model cost coefficients.
864 * *@page per-page cost 1s / (@bps / 4096)
865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 u64 *page, u64 *seqio, u64 *randio)
873 *page = *seqio = *randio = 0;
876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
899 u64 *u = ioc->params.i_lcoefs;
900 u64 *c = ioc->params.lcoefs;
902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
909 * struct gendisk is required as an argument because ioc->rqos.disk
910 * is not properly initialized when called from the init path.
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913 struct gendisk *disk)
915 const struct ioc_params *p;
918 lockdep_assert_held(&ioc->lock);
920 idx = ioc_autop_idx(ioc, disk);
923 if (idx == ioc->autop_idx && !force)
926 if (idx != ioc->autop_idx) {
927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928 ioc->vtime_base_rate = VTIME_PER_USEC;
931 ioc->autop_idx = idx;
932 ioc->autop_too_fast_at = 0;
933 ioc->autop_too_slow_at = 0;
935 if (!ioc->user_qos_params)
936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937 if (!ioc->user_cost_model)
938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
940 ioc_refresh_period_us(ioc);
941 ioc_refresh_lcoefs(ioc);
943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944 VTIME_PER_USEC, MILLION);
945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946 VTIME_PER_USEC, MILLION);
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
957 * When an iocg accumulates too much vtime or gets deactivated, we throw away
958 * some vtime, which lowers the overall device utilization. As the exact amount
959 * which is being thrown away is known, we can compensate by accelerating the
960 * vrate accordingly so that the extra vtime generated in the current period
961 * matches what got lost.
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
965 s64 pleft = ioc->period_at + ioc->period_us - now->now;
966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967 s64 vcomp, vcomp_min, vcomp_max;
969 lockdep_assert_held(&ioc->lock);
971 /* we need some time left in this period */
976 * Calculate how much vrate should be adjusted to offset the error.
977 * Limit the amount of adjustment and deduct the adjusted amount from
980 vcomp = -div64_s64(ioc->vtime_err, pleft);
981 vcomp_min = -(ioc->vtime_base_rate >> 1);
982 vcomp_max = ioc->vtime_base_rate;
983 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
985 ioc->vtime_err += vcomp * pleft;
987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
989 /* bound how much error can accumulate */
990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994 int nr_lagging, int nr_shortages,
995 int prev_busy_level, u32 *missed_ppm)
997 u64 vrate = ioc->vtime_base_rate;
998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001 if (ioc->busy_level != prev_busy_level || nr_lagging)
1002 trace_iocost_ioc_vrate_adj(ioc, vrate,
1003 missed_ppm, rq_wait_pct,
1004 nr_lagging, nr_shortages);
1010 * If vrate is out of bounds, apply clamp gradually as the
1011 * bounds can change abruptly. Otherwise, apply busy_level
1014 if (vrate < vrate_min) {
1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016 vrate = min(vrate, vrate_min);
1017 } else if (vrate > vrate_max) {
1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019 vrate = max(vrate, vrate_max);
1021 int idx = min_t(int, abs(ioc->busy_level),
1022 ARRAY_SIZE(vrate_adj_pct) - 1);
1023 u32 adj_pct = vrate_adj_pct[idx];
1025 if (ioc->busy_level > 0)
1026 adj_pct = 100 - adj_pct;
1028 adj_pct = 100 + adj_pct;
1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031 vrate_min, vrate_max);
1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035 nr_lagging, nr_shortages);
1037 ioc->vtime_base_rate = vrate;
1038 ioc_refresh_margins(ioc);
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1047 now->now_ns = blk_time_get_ns();
1048 now->now = ktime_to_us(now->now_ns);
1049 vrate = atomic64_read(&ioc->vtime_rate);
1052 * The current vtime is
1054 * vtime at period start + (wallclock time since the start) * vrate
1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057 * needed, they're seqcount protected.
1060 seq = read_seqcount_begin(&ioc->period_seqcount);
1061 now->vnow = ioc->period_at_vtime +
1062 (now->now - ioc->period_at) * vrate;
1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1070 write_seqcount_begin(&ioc->period_seqcount);
1071 ioc->period_at = now->now;
1072 ioc->period_at_vtime = now->vnow;
1073 write_seqcount_end(&ioc->period_seqcount);
1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076 add_timer(&ioc->timer);
1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081 * weight sums and propagate upwards accordingly. If @save, the current margin
1082 * is saved to be used as reference for later inuse in-period adjustments.
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 bool save, struct ioc_now *now)
1087 struct ioc *ioc = iocg->ioc;
1090 lockdep_assert_held(&ioc->lock);
1093 * For an active leaf node, its inuse shouldn't be zero or exceed
1094 * @active. An active internal node's inuse is solely determined by the
1095 * inuse to active ratio of its children regardless of @inuse.
1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099 iocg->child_active_sum);
1101 inuse = clamp_t(u32, inuse, 1, active);
1104 iocg->last_inuse = iocg->inuse;
1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1108 if (active == iocg->active && inuse == iocg->inuse)
1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112 struct ioc_gq *parent = iocg->ancestors[lvl];
1113 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114 u32 parent_active = 0, parent_inuse = 0;
1116 /* update the level sums */
1117 parent->child_active_sum += (s32)(active - child->active);
1118 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119 /* apply the updates */
1120 child->active = active;
1121 child->inuse = inuse;
1124 * The delta between inuse and active sums indicates that
1125 * much of weight is being given away. Parent's inuse
1126 * and active should reflect the ratio.
1128 if (parent->child_active_sum) {
1129 parent_active = parent->weight;
1130 parent_inuse = DIV64_U64_ROUND_UP(
1131 parent_active * parent->child_inuse_sum,
1132 parent->child_active_sum);
1135 /* do we need to keep walking up? */
1136 if (parent_active == parent->active &&
1137 parent_inuse == parent->inuse)
1140 active = parent_active;
1141 inuse = parent_inuse;
1144 ioc->weights_updated = true;
1147 static void commit_weights(struct ioc *ioc)
1149 lockdep_assert_held(&ioc->lock);
1151 if (ioc->weights_updated) {
1152 /* paired with rmb in current_hweight(), see there */
1154 atomic_inc(&ioc->hweight_gen);
1155 ioc->weights_updated = false;
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160 bool save, struct ioc_now *now)
1162 __propagate_weights(iocg, active, inuse, save, now);
1163 commit_weights(iocg->ioc);
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1168 struct ioc *ioc = iocg->ioc;
1173 /* hot path - if uptodate, use cached */
1174 ioc_gen = atomic_read(&ioc->hweight_gen);
1175 if (ioc_gen == iocg->hweight_gen)
1179 * Paired with wmb in commit_weights(). If we saw the updated
1180 * hweight_gen, all the weight updates from __propagate_weights() are
1183 * We can race with weight updates during calculation and get it
1184 * wrong. However, hweight_gen would have changed and a future
1185 * reader will recalculate and we're guaranteed to discard the
1186 * wrong result soon.
1190 hwa = hwi = WEIGHT_ONE;
1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192 struct ioc_gq *parent = iocg->ancestors[lvl];
1193 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194 u64 active_sum = READ_ONCE(parent->child_active_sum);
1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196 u32 active = READ_ONCE(child->active);
1197 u32 inuse = READ_ONCE(child->inuse);
1199 /* we can race with deactivations and either may read as zero */
1200 if (!active_sum || !inuse_sum)
1203 active_sum = max_t(u64, active, active_sum);
1204 hwa = div64_u64((u64)hwa * active, active_sum);
1206 inuse_sum = max_t(u64, inuse, inuse_sum);
1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1210 iocg->hweight_active = max_t(u32, hwa, 1);
1211 iocg->hweight_inuse = max_t(u32, hwi, 1);
1212 iocg->hweight_gen = ioc_gen;
1215 *hw_activep = iocg->hweight_active;
1217 *hw_inusep = iocg->hweight_inuse;
1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222 * other weights stay unchanged.
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1226 u32 hwm = WEIGHT_ONE;
1227 u32 inuse = iocg->active;
1228 u64 child_inuse_sum;
1231 lockdep_assert_held(&iocg->ioc->lock);
1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234 struct ioc_gq *parent = iocg->ancestors[lvl];
1235 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240 parent->child_active_sum);
1243 return max_t(u32, hwm, 1);
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1248 struct ioc *ioc = iocg->ioc;
1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1253 lockdep_assert_held(&ioc->lock);
1255 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256 if (weight != iocg->weight && iocg->active)
1257 propagate_weights(iocg, weight, iocg->inuse, true, now);
1258 iocg->weight = weight;
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1263 struct ioc *ioc = iocg->ioc;
1264 u64 __maybe_unused last_period, cur_period;
1269 * If seem to be already active, just update the stamp to tell the
1270 * timer that we're still active. We don't mind occassional races.
1272 if (!list_empty(&iocg->active_list)) {
1274 cur_period = atomic64_read(&ioc->cur_period);
1275 if (atomic64_read(&iocg->active_period) != cur_period)
1276 atomic64_set(&iocg->active_period, cur_period);
1280 /* racy check on internal node IOs, treat as root level IOs */
1281 if (iocg->child_active_sum)
1284 spin_lock_irq(&ioc->lock);
1289 cur_period = atomic64_read(&ioc->cur_period);
1290 last_period = atomic64_read(&iocg->active_period);
1291 atomic64_set(&iocg->active_period, cur_period);
1293 /* already activated or breaking leaf-only constraint? */
1294 if (!list_empty(&iocg->active_list))
1295 goto succeed_unlock;
1296 for (i = iocg->level - 1; i > 0; i--)
1297 if (!list_empty(&iocg->ancestors[i]->active_list))
1300 if (iocg->child_active_sum)
1304 * Always start with the target budget. On deactivation, we throw away
1305 * anything above it.
1307 vtarget = now->vnow - ioc->margins.target;
1308 vtime = atomic64_read(&iocg->vtime);
1310 atomic64_add(vtarget - vtime, &iocg->vtime);
1311 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1315 * Activate, propagate weight and start period timer if not
1316 * running. Reset hweight_gen to avoid accidental match from
1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320 list_add(&iocg->active_list, &ioc->active_iocgs);
1322 propagate_weights(iocg, iocg->weight,
1323 iocg->last_inuse ?: iocg->weight, true, now);
1325 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326 last_period, cur_period, vtime);
1328 iocg->activated_at = now->now;
1330 if (ioc->running == IOC_IDLE) {
1331 ioc->running = IOC_RUNNING;
1332 ioc->dfgv_period_at = now->now;
1333 ioc->dfgv_period_rem = 0;
1334 ioc_start_period(ioc, now);
1338 spin_unlock_irq(&ioc->lock);
1342 spin_unlock_irq(&ioc->lock);
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1348 struct ioc *ioc = iocg->ioc;
1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350 u64 tdelta, delay, new_delay;
1351 s64 vover, vover_pct;
1354 lockdep_assert_held(&iocg->waitq.lock);
1357 * If the delay is set by another CPU, we may be in the past. No need to
1358 * change anything if so. This avoids decay calculation underflow.
1360 if (time_before64(now->now, iocg->delay_at))
1363 /* calculate the current delay in effect - 1/2 every second */
1364 tdelta = now->now - iocg->delay_at;
1366 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1370 /* calculate the new delay from the debt amount */
1371 current_hweight(iocg, &hwa, NULL);
1372 vover = atomic64_read(&iocg->vtime) +
1373 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1374 vover_pct = div64_s64(100 * vover,
1375 ioc->period_us * ioc->vtime_base_rate);
1377 if (vover_pct <= MIN_DELAY_THR_PCT)
1379 else if (vover_pct >= MAX_DELAY_THR_PCT)
1380 new_delay = MAX_DELAY;
1382 new_delay = MIN_DELAY +
1383 div_u64((MAX_DELAY - MIN_DELAY) *
1384 (vover_pct - MIN_DELAY_THR_PCT),
1385 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1387 /* pick the higher one and apply */
1388 if (new_delay > delay) {
1389 iocg->delay = new_delay;
1390 iocg->delay_at = now->now;
1394 if (delay >= MIN_DELAY) {
1395 if (!iocg->indelay_since)
1396 iocg->indelay_since = now->now;
1397 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1400 if (iocg->indelay_since) {
1401 iocg->stat.indelay_us += now->now - iocg->indelay_since;
1402 iocg->indelay_since = 0;
1405 blkcg_clear_delay(blkg);
1410 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1411 struct ioc_now *now)
1413 struct iocg_pcpu_stat *gcs;
1415 lockdep_assert_held(&iocg->ioc->lock);
1416 lockdep_assert_held(&iocg->waitq.lock);
1417 WARN_ON_ONCE(list_empty(&iocg->active_list));
1420 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1421 * inuse donating all of it share to others until its debt is paid off.
1423 if (!iocg->abs_vdebt && abs_cost) {
1424 iocg->indebt_since = now->now;
1425 propagate_weights(iocg, iocg->active, 0, false, now);
1428 iocg->abs_vdebt += abs_cost;
1430 gcs = get_cpu_ptr(iocg->pcpu_stat);
1431 local64_add(abs_cost, &gcs->abs_vusage);
1435 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1436 struct ioc_now *now)
1438 lockdep_assert_held(&iocg->ioc->lock);
1439 lockdep_assert_held(&iocg->waitq.lock);
1441 /* make sure that nobody messed with @iocg */
1442 WARN_ON_ONCE(list_empty(&iocg->active_list));
1443 WARN_ON_ONCE(iocg->inuse > 1);
1445 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1447 /* if debt is paid in full, restore inuse */
1448 if (!iocg->abs_vdebt) {
1449 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1450 iocg->indebt_since = 0;
1452 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1457 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1458 int flags, void *key)
1460 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1461 struct iocg_wake_ctx *ctx = key;
1462 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1464 ctx->vbudget -= cost;
1466 if (ctx->vbudget < 0)
1469 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1470 wait->committed = true;
1473 * autoremove_wake_function() removes the wait entry only when it
1474 * actually changed the task state. We want the wait always removed.
1475 * Remove explicitly and use default_wake_function(). Note that the
1476 * order of operations is important as finish_wait() tests whether
1477 * @wq_entry is removed without grabbing the lock.
1479 default_wake_function(wq_entry, mode, flags, key);
1480 list_del_init_careful(&wq_entry->entry);
1485 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1486 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1487 * addition to iocg->waitq.lock.
1489 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1490 struct ioc_now *now)
1492 struct ioc *ioc = iocg->ioc;
1493 struct iocg_wake_ctx ctx = { .iocg = iocg };
1494 u64 vshortage, expires, oexpires;
1498 lockdep_assert_held(&iocg->waitq.lock);
1500 current_hweight(iocg, &hwa, NULL);
1501 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1504 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1505 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1506 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1507 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1509 lockdep_assert_held(&ioc->lock);
1511 atomic64_add(vpay, &iocg->vtime);
1512 atomic64_add(vpay, &iocg->done_vtime);
1513 iocg_pay_debt(iocg, abs_vpay, now);
1517 if (iocg->abs_vdebt || iocg->delay)
1518 iocg_kick_delay(iocg, now);
1521 * Debt can still be outstanding if we haven't paid all yet or the
1522 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1523 * under debt. Make sure @vbudget reflects the outstanding amount and is
1526 if (iocg->abs_vdebt) {
1527 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1528 vbudget = min_t(s64, 0, vbudget - vdebt);
1532 * Wake up the ones which are due and see how much vtime we'll need for
1533 * the next one. As paying off debt restores hw_inuse, it must be read
1534 * after the above debt payment.
1536 ctx.vbudget = vbudget;
1537 current_hweight(iocg, NULL, &ctx.hw_inuse);
1539 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1541 if (!waitqueue_active(&iocg->waitq)) {
1542 if (iocg->wait_since) {
1543 iocg->stat.wait_us += now->now - iocg->wait_since;
1544 iocg->wait_since = 0;
1549 if (!iocg->wait_since)
1550 iocg->wait_since = now->now;
1552 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1555 /* determine next wakeup, add a timer margin to guarantee chunking */
1556 vshortage = -ctx.vbudget;
1557 expires = now->now_ns +
1558 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1560 expires += ioc->timer_slack_ns;
1562 /* if already active and close enough, don't bother */
1563 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1564 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1565 abs(oexpires - expires) <= ioc->timer_slack_ns)
1568 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1569 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1572 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1574 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1575 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1577 unsigned long flags;
1579 ioc_now(iocg->ioc, &now);
1581 iocg_lock(iocg, pay_debt, &flags);
1582 iocg_kick_waitq(iocg, pay_debt, &now);
1583 iocg_unlock(iocg, pay_debt, &flags);
1585 return HRTIMER_NORESTART;
1588 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1590 u32 nr_met[2] = { };
1591 u32 nr_missed[2] = { };
1595 for_each_online_cpu(cpu) {
1596 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1597 u64 this_rq_wait_ns;
1599 for (rw = READ; rw <= WRITE; rw++) {
1600 u32 this_met = local_read(&stat->missed[rw].nr_met);
1601 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1603 nr_met[rw] += this_met - stat->missed[rw].last_met;
1604 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1605 stat->missed[rw].last_met = this_met;
1606 stat->missed[rw].last_missed = this_missed;
1609 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1610 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1611 stat->last_rq_wait_ns = this_rq_wait_ns;
1614 for (rw = READ; rw <= WRITE; rw++) {
1615 if (nr_met[rw] + nr_missed[rw])
1617 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1618 nr_met[rw] + nr_missed[rw]);
1620 missed_ppm_ar[rw] = 0;
1623 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1624 ioc->period_us * NSEC_PER_USEC);
1627 /* was iocg idle this period? */
1628 static bool iocg_is_idle(struct ioc_gq *iocg)
1630 struct ioc *ioc = iocg->ioc;
1632 /* did something get issued this period? */
1633 if (atomic64_read(&iocg->active_period) ==
1634 atomic64_read(&ioc->cur_period))
1637 /* is something in flight? */
1638 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1645 * Call this function on the target leaf @iocg's to build pre-order traversal
1646 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1647 * ->walk_list and the caller is responsible for dissolving the list after use.
1649 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1650 struct list_head *inner_walk)
1654 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1656 /* find the first ancestor which hasn't been visited yet */
1657 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1658 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1662 /* walk down and visit the inner nodes to get pre-order traversal */
1663 while (++lvl <= iocg->level - 1) {
1664 struct ioc_gq *inner = iocg->ancestors[lvl];
1666 /* record traversal order */
1667 list_add_tail(&inner->walk_list, inner_walk);
1671 /* propagate the deltas to the parent */
1672 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1674 if (iocg->level > 0) {
1675 struct iocg_stat *parent_stat =
1676 &iocg->ancestors[iocg->level - 1]->stat;
1678 parent_stat->usage_us +=
1679 iocg->stat.usage_us - iocg->last_stat.usage_us;
1680 parent_stat->wait_us +=
1681 iocg->stat.wait_us - iocg->last_stat.wait_us;
1682 parent_stat->indebt_us +=
1683 iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1684 parent_stat->indelay_us +=
1685 iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1688 iocg->last_stat = iocg->stat;
1691 /* collect per-cpu counters and propagate the deltas to the parent */
1692 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1694 struct ioc *ioc = iocg->ioc;
1699 lockdep_assert_held(&iocg->ioc->lock);
1701 /* collect per-cpu counters */
1702 for_each_possible_cpu(cpu) {
1703 abs_vusage += local64_read(
1704 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1706 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1707 iocg->last_stat_abs_vusage = abs_vusage;
1709 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1710 iocg->stat.usage_us += iocg->usage_delta_us;
1712 iocg_flush_stat_upward(iocg);
1715 /* get stat counters ready for reading on all active iocgs */
1716 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1718 LIST_HEAD(inner_walk);
1719 struct ioc_gq *iocg, *tiocg;
1721 /* flush leaves and build inner node walk list */
1722 list_for_each_entry(iocg, target_iocgs, active_list) {
1723 iocg_flush_stat_leaf(iocg, now);
1724 iocg_build_inner_walk(iocg, &inner_walk);
1727 /* keep flushing upwards by walking the inner list backwards */
1728 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1729 iocg_flush_stat_upward(iocg);
1730 list_del_init(&iocg->walk_list);
1735 * Determine what @iocg's hweight_inuse should be after donating unused
1736 * capacity. @hwm is the upper bound and used to signal no donation. This
1737 * function also throws away @iocg's excess budget.
1739 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1740 u32 usage, struct ioc_now *now)
1742 struct ioc *ioc = iocg->ioc;
1743 u64 vtime = atomic64_read(&iocg->vtime);
1744 s64 excess, delta, target, new_hwi;
1746 /* debt handling owns inuse for debtors */
1747 if (iocg->abs_vdebt)
1750 /* see whether minimum margin requirement is met */
1751 if (waitqueue_active(&iocg->waitq) ||
1752 time_after64(vtime, now->vnow - ioc->margins.min))
1755 /* throw away excess above target */
1756 excess = now->vnow - vtime - ioc->margins.target;
1758 atomic64_add(excess, &iocg->vtime);
1759 atomic64_add(excess, &iocg->done_vtime);
1761 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1765 * Let's say the distance between iocg's and device's vtimes as a
1766 * fraction of period duration is delta. Assuming that the iocg will
1767 * consume the usage determined above, we want to determine new_hwi so
1768 * that delta equals MARGIN_TARGET at the end of the next period.
1770 * We need to execute usage worth of IOs while spending the sum of the
1771 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1774 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1776 * Therefore, the new_hwi is:
1778 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1780 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1781 now->vnow - ioc->period_at_vtime);
1782 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1783 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1785 return clamp_t(s64, new_hwi, 1, hwm);
1789 * For work-conservation, an iocg which isn't using all of its share should
1790 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1791 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1793 * #1 is mathematically simpler but has the drawback of requiring synchronous
1794 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1795 * change due to donation snapbacks as it has the possibility of grossly
1796 * overshooting what's allowed by the model and vrate.
1798 * #2 is inherently safe with local operations. The donating iocg can easily
1799 * snap back to higher weights when needed without worrying about impacts on
1800 * other nodes as the impacts will be inherently correct. This also makes idle
1801 * iocg activations safe. The only effect activations have is decreasing
1802 * hweight_inuse of others, the right solution to which is for those iocgs to
1803 * snap back to higher weights.
1805 * So, we go with #2. The challenge is calculating how each donating iocg's
1806 * inuse should be adjusted to achieve the target donation amounts. This is done
1807 * using Andy's method described in the following pdf.
1809 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1811 * Given the weights and target after-donation hweight_inuse values, Andy's
1812 * method determines how the proportional distribution should look like at each
1813 * sibling level to maintain the relative relationship between all non-donating
1814 * pairs. To roughly summarize, it divides the tree into donating and
1815 * non-donating parts, calculates global donation rate which is used to
1816 * determine the target hweight_inuse for each node, and then derives per-level
1819 * The following pdf shows that global distribution calculated this way can be
1820 * achieved by scaling inuse weights of donating leaves and propagating the
1821 * adjustments upwards proportionally.
1823 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1825 * Combining the above two, we can determine how each leaf iocg's inuse should
1826 * be adjusted to achieve the target donation.
1828 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1830 * The inline comments use symbols from the last pdf.
1832 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1833 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1834 * t is the sum of the absolute budgets of donating nodes in the subtree.
1835 * w is the weight of the node. w = w_f + w_t
1836 * w_f is the non-donating portion of w. w_f = w * f / b
1837 * w_b is the donating portion of w. w_t = w * t / b
1838 * s is the sum of all sibling weights. s = Sum(w) for siblings
1839 * s_f and s_t are the non-donating and donating portions of s.
1841 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1842 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1843 * after adjustments. Subscript r denotes the root node's values.
1845 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1847 LIST_HEAD(over_hwa);
1848 LIST_HEAD(inner_walk);
1849 struct ioc_gq *iocg, *tiocg, *root_iocg;
1850 u32 after_sum, over_sum, over_target, gamma;
1853 * It's pretty unlikely but possible for the total sum of
1854 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1855 * confuse the following calculations. If such condition is detected,
1856 * scale down everyone over its full share equally to keep the sum below
1861 list_for_each_entry(iocg, surpluses, surplus_list) {
1864 current_hweight(iocg, &hwa, NULL);
1865 after_sum += iocg->hweight_after_donation;
1867 if (iocg->hweight_after_donation > hwa) {
1868 over_sum += iocg->hweight_after_donation;
1869 list_add(&iocg->walk_list, &over_hwa);
1873 if (after_sum >= WEIGHT_ONE) {
1875 * The delta should be deducted from the over_sum, calculate
1876 * target over_sum value.
1878 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1879 WARN_ON_ONCE(over_sum <= over_delta);
1880 over_target = over_sum - over_delta;
1885 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1887 iocg->hweight_after_donation =
1888 div_u64((u64)iocg->hweight_after_donation *
1889 over_target, over_sum);
1890 list_del_init(&iocg->walk_list);
1894 * Build pre-order inner node walk list and prepare for donation
1895 * adjustment calculations.
1897 list_for_each_entry(iocg, surpluses, surplus_list) {
1898 iocg_build_inner_walk(iocg, &inner_walk);
1901 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1902 WARN_ON_ONCE(root_iocg->level > 0);
1904 list_for_each_entry(iocg, &inner_walk, walk_list) {
1905 iocg->child_adjusted_sum = 0;
1906 iocg->hweight_donating = 0;
1907 iocg->hweight_after_donation = 0;
1911 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1914 list_for_each_entry(iocg, surpluses, surplus_list) {
1915 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1917 parent->hweight_donating += iocg->hweight_donating;
1918 parent->hweight_after_donation += iocg->hweight_after_donation;
1921 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1922 if (iocg->level > 0) {
1923 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1925 parent->hweight_donating += iocg->hweight_donating;
1926 parent->hweight_after_donation += iocg->hweight_after_donation;
1931 * Calculate inner hwa's (b) and make sure the donation values are
1932 * within the accepted ranges as we're doing low res calculations with
1935 list_for_each_entry(iocg, &inner_walk, walk_list) {
1937 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1939 iocg->hweight_active = DIV64_U64_ROUND_UP(
1940 (u64)parent->hweight_active * iocg->active,
1941 parent->child_active_sum);
1945 iocg->hweight_donating = min(iocg->hweight_donating,
1946 iocg->hweight_active);
1947 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1948 iocg->hweight_donating - 1);
1949 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1950 iocg->hweight_donating <= 1 ||
1951 iocg->hweight_after_donation == 0)) {
1952 pr_warn("iocg: invalid donation weights in ");
1953 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1954 pr_cont(": active=%u donating=%u after=%u\n",
1955 iocg->hweight_active, iocg->hweight_donating,
1956 iocg->hweight_after_donation);
1961 * Calculate the global donation rate (gamma) - the rate to adjust
1962 * non-donating budgets by.
1964 * No need to use 64bit multiplication here as the first operand is
1965 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1967 * We know that there are beneficiary nodes and the sum of the donating
1968 * hweights can't be whole; however, due to the round-ups during hweight
1969 * calculations, root_iocg->hweight_donating might still end up equal to
1970 * or greater than whole. Limit the range when calculating the divider.
1972 * gamma = (1 - t_r') / (1 - t_r)
1974 gamma = DIV_ROUND_UP(
1975 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1976 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1979 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1982 list_for_each_entry(iocg, &inner_walk, walk_list) {
1983 struct ioc_gq *parent;
1984 u32 inuse, wpt, wptp;
1987 if (iocg->level == 0) {
1988 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1989 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1990 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1991 WEIGHT_ONE - iocg->hweight_after_donation);
1995 parent = iocg->ancestors[iocg->level - 1];
1997 /* b' = gamma * b_f + b_t' */
1998 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1999 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2000 WEIGHT_ONE) + iocg->hweight_after_donation;
2002 /* w' = s' * b' / b'_p */
2003 inuse = DIV64_U64_ROUND_UP(
2004 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2005 parent->hweight_inuse);
2007 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2008 st = DIV64_U64_ROUND_UP(
2009 iocg->child_active_sum * iocg->hweight_donating,
2010 iocg->hweight_active);
2011 sf = iocg->child_active_sum - st;
2012 wpt = DIV64_U64_ROUND_UP(
2013 (u64)iocg->active * iocg->hweight_donating,
2014 iocg->hweight_active);
2015 wptp = DIV64_U64_ROUND_UP(
2016 (u64)inuse * iocg->hweight_after_donation,
2017 iocg->hweight_inuse);
2019 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2023 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2024 * we can finally determine leaf adjustments.
2026 list_for_each_entry(iocg, surpluses, surplus_list) {
2027 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2031 * In-debt iocgs participated in the donation calculation with
2032 * the minimum target hweight_inuse. Configuring inuse
2033 * accordingly would work fine but debt handling expects
2034 * @iocg->inuse stay at the minimum and we don't wanna
2037 if (iocg->abs_vdebt) {
2038 WARN_ON_ONCE(iocg->inuse > 1);
2042 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2043 inuse = DIV64_U64_ROUND_UP(
2044 parent->child_adjusted_sum * iocg->hweight_after_donation,
2045 parent->hweight_inuse);
2047 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2049 iocg->hweight_inuse,
2050 iocg->hweight_after_donation);
2052 __propagate_weights(iocg, iocg->active, inuse, true, now);
2055 /* walk list should be dissolved after use */
2056 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2057 list_del_init(&iocg->walk_list);
2061 * A low weight iocg can amass a large amount of debt, for example, when
2062 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2063 * memory paired with a slow IO device, the debt can span multiple seconds or
2064 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2065 * up blocked paying its debt while the IO device is idle.
2067 * The following protects against such cases. If the device has been
2068 * sufficiently idle for a while, the debts are halved and delays are
2071 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2072 struct ioc_now *now)
2074 struct ioc_gq *iocg;
2075 u64 dur, usage_pct, nr_cycles;
2077 /* if no debtor, reset the cycle */
2079 ioc->dfgv_period_at = now->now;
2080 ioc->dfgv_period_rem = 0;
2081 ioc->dfgv_usage_us_sum = 0;
2086 * Debtors can pass through a lot of writes choking the device and we
2087 * don't want to be forgiving debts while the device is struggling from
2088 * write bursts. If we're missing latency targets, consider the device
2091 if (ioc->busy_level > 0)
2092 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2094 ioc->dfgv_usage_us_sum += usage_us_sum;
2095 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2099 * At least DFGV_PERIOD has passed since the last period. Calculate the
2100 * average usage and reset the period counters.
2102 dur = now->now - ioc->dfgv_period_at;
2103 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2105 ioc->dfgv_period_at = now->now;
2106 ioc->dfgv_usage_us_sum = 0;
2108 /* if was too busy, reset everything */
2109 if (usage_pct > DFGV_USAGE_PCT) {
2110 ioc->dfgv_period_rem = 0;
2115 * Usage is lower than threshold. Let's forgive some debts. Debt
2116 * forgiveness runs off of the usual ioc timer but its period usually
2117 * doesn't match ioc's. Compensate the difference by performing the
2118 * reduction as many times as would fit in the duration since the last
2119 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2120 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2121 * reductions is doubled.
2123 nr_cycles = dur + ioc->dfgv_period_rem;
2124 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2126 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2127 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2129 if (!iocg->abs_vdebt && !iocg->delay)
2132 spin_lock(&iocg->waitq.lock);
2134 old_debt = iocg->abs_vdebt;
2135 old_delay = iocg->delay;
2137 if (iocg->abs_vdebt)
2138 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2140 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2142 iocg_kick_waitq(iocg, true, now);
2144 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2145 old_debt, iocg->abs_vdebt,
2146 old_delay, iocg->delay);
2148 spin_unlock(&iocg->waitq.lock);
2153 * Check the active iocgs' state to avoid oversleeping and deactive
2156 * Since waiters determine the sleep durations based on the vrate
2157 * they saw at the time of sleep, if vrate has increased, some
2158 * waiters could be sleeping for too long. Wake up tardy waiters
2159 * which should have woken up in the last period and expire idle
2162 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2165 struct ioc_gq *iocg, *tiocg;
2167 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2168 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2169 !iocg->delay && !iocg_is_idle(iocg))
2172 spin_lock(&iocg->waitq.lock);
2174 /* flush wait and indebt stat deltas */
2175 if (iocg->wait_since) {
2176 iocg->stat.wait_us += now->now - iocg->wait_since;
2177 iocg->wait_since = now->now;
2179 if (iocg->indebt_since) {
2180 iocg->stat.indebt_us +=
2181 now->now - iocg->indebt_since;
2182 iocg->indebt_since = now->now;
2184 if (iocg->indelay_since) {
2185 iocg->stat.indelay_us +=
2186 now->now - iocg->indelay_since;
2187 iocg->indelay_since = now->now;
2190 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2192 /* might be oversleeping vtime / hweight changes, kick */
2193 iocg_kick_waitq(iocg, true, now);
2194 if (iocg->abs_vdebt || iocg->delay)
2196 } else if (iocg_is_idle(iocg)) {
2197 /* no waiter and idle, deactivate */
2198 u64 vtime = atomic64_read(&iocg->vtime);
2202 * @iocg has been inactive for a full duration and will
2203 * have a high budget. Account anything above target as
2204 * error and throw away. On reactivation, it'll start
2205 * with the target budget.
2207 excess = now->vnow - vtime - ioc->margins.target;
2211 current_hweight(iocg, NULL, &old_hwi);
2212 ioc->vtime_err -= div64_u64(excess * old_hwi,
2216 TRACE_IOCG_PATH(iocg_idle, iocg, now,
2217 atomic64_read(&iocg->active_period),
2218 atomic64_read(&ioc->cur_period), vtime);
2219 __propagate_weights(iocg, 0, 0, false, now);
2220 list_del_init(&iocg->active_list);
2223 spin_unlock(&iocg->waitq.lock);
2226 commit_weights(ioc);
2230 static void ioc_timer_fn(struct timer_list *timer)
2232 struct ioc *ioc = container_of(timer, struct ioc, timer);
2233 struct ioc_gq *iocg, *tiocg;
2235 LIST_HEAD(surpluses);
2236 int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2237 u64 usage_us_sum = 0;
2240 u32 missed_ppm[2], rq_wait_pct;
2242 int prev_busy_level;
2244 /* how were the latencies during the period? */
2245 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2247 /* take care of active iocgs */
2248 spin_lock_irq(&ioc->lock);
2250 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2251 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2254 period_vtime = now.vnow - ioc->period_at_vtime;
2255 if (WARN_ON_ONCE(!period_vtime)) {
2256 spin_unlock_irq(&ioc->lock);
2260 nr_debtors = ioc_check_iocgs(ioc, &now);
2263 * Wait and indebt stat are flushed above and the donation calculation
2264 * below needs updated usage stat. Let's bring stat up-to-date.
2266 iocg_flush_stat(&ioc->active_iocgs, &now);
2268 /* calc usage and see whether some weights need to be moved around */
2269 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2270 u64 vdone, vtime, usage_us;
2271 u32 hw_active, hw_inuse;
2274 * Collect unused and wind vtime closer to vnow to prevent
2275 * iocgs from accumulating a large amount of budget.
2277 vdone = atomic64_read(&iocg->done_vtime);
2278 vtime = atomic64_read(&iocg->vtime);
2279 current_hweight(iocg, &hw_active, &hw_inuse);
2282 * Latency QoS detection doesn't account for IOs which are
2283 * in-flight for longer than a period. Detect them by
2284 * comparing vdone against period start. If lagging behind
2285 * IOs from past periods, don't increase vrate.
2287 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2288 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2289 time_after64(vtime, vdone) &&
2290 time_after64(vtime, now.vnow -
2291 MAX_LAGGING_PERIODS * period_vtime) &&
2292 time_before64(vdone, now.vnow - period_vtime))
2296 * Determine absolute usage factoring in in-flight IOs to avoid
2297 * high-latency completions appearing as idle.
2299 usage_us = iocg->usage_delta_us;
2300 usage_us_sum += usage_us;
2302 /* see whether there's surplus vtime */
2303 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2304 if (hw_inuse < hw_active ||
2305 (!waitqueue_active(&iocg->waitq) &&
2306 time_before64(vtime, now.vnow - ioc->margins.low))) {
2307 u32 hwa, old_hwi, hwm, new_hwi, usage;
2310 if (vdone != vtime) {
2311 u64 inflight_us = DIV64_U64_ROUND_UP(
2312 cost_to_abs_cost(vtime - vdone, hw_inuse),
2313 ioc->vtime_base_rate);
2315 usage_us = max(usage_us, inflight_us);
2318 /* convert to hweight based usage ratio */
2319 if (time_after64(iocg->activated_at, ioc->period_at))
2320 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2322 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2324 usage = clamp_t(u32,
2325 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2330 * Already donating or accumulated enough to start.
2331 * Determine the donation amount.
2333 current_hweight(iocg, &hwa, &old_hwi);
2334 hwm = current_hweight_max(iocg);
2335 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2338 * Donation calculation assumes hweight_after_donation
2339 * to be positive, a condition that a donor w/ hwa < 2
2340 * can't meet. Don't bother with donation if hwa is
2341 * below 2. It's not gonna make a meaningful difference
2344 if (new_hwi < hwm && hwa >= 2) {
2345 iocg->hweight_donating = hwa;
2346 iocg->hweight_after_donation = new_hwi;
2347 list_add(&iocg->surplus_list, &surpluses);
2348 } else if (!iocg->abs_vdebt) {
2350 * @iocg doesn't have enough to donate. Reset
2351 * its inuse to active.
2353 * Don't reset debtors as their inuse's are
2354 * owned by debt handling. This shouldn't affect
2355 * donation calculuation in any meaningful way
2356 * as @iocg doesn't have a meaningful amount of
2359 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2360 iocg->inuse, iocg->active,
2361 iocg->hweight_inuse, new_hwi);
2363 __propagate_weights(iocg, iocg->active,
2364 iocg->active, true, &now);
2368 /* genuinely short on vtime */
2373 if (!list_empty(&surpluses) && nr_shortages)
2374 transfer_surpluses(&surpluses, &now);
2376 commit_weights(ioc);
2378 /* surplus list should be dissolved after use */
2379 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2380 list_del_init(&iocg->surplus_list);
2383 * If q is getting clogged or we're missing too much, we're issuing
2384 * too much IO and should lower vtime rate. If we're not missing
2385 * and experiencing shortages but not surpluses, we're too stingy
2386 * and should increase vtime rate.
2388 prev_busy_level = ioc->busy_level;
2389 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2390 missed_ppm[READ] > ppm_rthr ||
2391 missed_ppm[WRITE] > ppm_wthr) {
2392 /* clearly missing QoS targets, slow down vrate */
2393 ioc->busy_level = max(ioc->busy_level, 0);
2395 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2396 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2397 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2398 /* QoS targets are being met with >25% margin */
2401 * We're throttling while the device has spare
2402 * capacity. If vrate was being slowed down, stop.
2404 ioc->busy_level = min(ioc->busy_level, 0);
2407 * If there are IOs spanning multiple periods, wait
2408 * them out before pushing the device harder.
2414 * Nobody is being throttled and the users aren't
2415 * issuing enough IOs to saturate the device. We
2416 * simply don't know how close the device is to
2417 * saturation. Coast.
2419 ioc->busy_level = 0;
2422 /* inside the hysterisis margin, we're good */
2423 ioc->busy_level = 0;
2426 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2428 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2429 prev_busy_level, missed_ppm);
2431 ioc_refresh_params(ioc, false);
2433 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2436 * This period is done. Move onto the next one. If nothing's
2437 * going on with the device, stop the timer.
2439 atomic64_inc(&ioc->cur_period);
2441 if (ioc->running != IOC_STOP) {
2442 if (!list_empty(&ioc->active_iocgs)) {
2443 ioc_start_period(ioc, &now);
2445 ioc->busy_level = 0;
2447 ioc->running = IOC_IDLE;
2450 ioc_refresh_vrate(ioc, &now);
2453 spin_unlock_irq(&ioc->lock);
2456 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2457 u64 abs_cost, struct ioc_now *now)
2459 struct ioc *ioc = iocg->ioc;
2460 struct ioc_margins *margins = &ioc->margins;
2461 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2464 u64 cost, new_inuse;
2465 unsigned long flags;
2467 current_hweight(iocg, NULL, &hwi);
2469 cost = abs_cost_to_cost(abs_cost, hwi);
2470 margin = now->vnow - vtime - cost;
2472 /* debt handling owns inuse for debtors */
2473 if (iocg->abs_vdebt)
2477 * We only increase inuse during period and do so if the margin has
2478 * deteriorated since the previous adjustment.
2480 if (margin >= iocg->saved_margin || margin >= margins->low ||
2481 iocg->inuse == iocg->active)
2484 spin_lock_irqsave(&ioc->lock, flags);
2486 /* we own inuse only when @iocg is in the normal active state */
2487 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2488 spin_unlock_irqrestore(&ioc->lock, flags);
2493 * Bump up inuse till @abs_cost fits in the existing budget.
2494 * adj_step must be determined after acquiring ioc->lock - we might
2495 * have raced and lost to another thread for activation and could
2496 * be reading 0 iocg->active before ioc->lock which will lead to
2499 new_inuse = iocg->inuse;
2500 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2502 new_inuse = new_inuse + adj_step;
2503 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2504 current_hweight(iocg, NULL, &hwi);
2505 cost = abs_cost_to_cost(abs_cost, hwi);
2506 } while (time_after64(vtime + cost, now->vnow) &&
2507 iocg->inuse != iocg->active);
2509 spin_unlock_irqrestore(&ioc->lock, flags);
2511 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2512 old_inuse, iocg->inuse, old_hwi, hwi);
2517 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2518 bool is_merge, u64 *costp)
2520 struct ioc *ioc = iocg->ioc;
2521 u64 coef_seqio, coef_randio, coef_page;
2522 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2526 /* Can't calculate cost for empty bio */
2527 if (!bio->bi_iter.bi_size)
2530 switch (bio_op(bio)) {
2532 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2533 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2534 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2537 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2538 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2539 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2546 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2547 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2551 if (seek_pages > LCOEF_RANDIO_PAGES) {
2552 cost += coef_randio;
2557 cost += pages * coef_page;
2562 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2566 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2570 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2573 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2575 switch (req_op(rq)) {
2577 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2580 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2587 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2591 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2595 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2597 struct blkcg_gq *blkg = bio->bi_blkg;
2598 struct ioc *ioc = rqos_to_ioc(rqos);
2599 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2601 struct iocg_wait wait;
2602 u64 abs_cost, cost, vtime;
2603 bool use_debt, ioc_locked;
2604 unsigned long flags;
2606 /* bypass IOs if disabled, still initializing, or for root cgroup */
2607 if (!ioc->enabled || !iocg || !iocg->level)
2610 /* calculate the absolute vtime cost */
2611 abs_cost = calc_vtime_cost(bio, iocg, false);
2615 if (!iocg_activate(iocg, &now))
2618 iocg->cursor = bio_end_sector(bio);
2619 vtime = atomic64_read(&iocg->vtime);
2620 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2623 * If no one's waiting and within budget, issue right away. The
2624 * tests are racy but the races aren't systemic - we only miss once
2625 * in a while which is fine.
2627 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2628 time_before_eq64(vtime + cost, now.vnow)) {
2629 iocg_commit_bio(iocg, bio, abs_cost, cost);
2634 * We're over budget. This can be handled in two ways. IOs which may
2635 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2636 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2637 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2638 * whether debt handling is needed and acquire locks accordingly.
2640 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2641 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2643 iocg_lock(iocg, ioc_locked, &flags);
2646 * @iocg must stay activated for debt and waitq handling. Deactivation
2647 * is synchronized against both ioc->lock and waitq.lock and we won't
2648 * get deactivated as long as we're waiting or has debt, so we're good
2649 * if we're activated here. In the unlikely cases that we aren't, just
2652 if (unlikely(list_empty(&iocg->active_list))) {
2653 iocg_unlock(iocg, ioc_locked, &flags);
2654 iocg_commit_bio(iocg, bio, abs_cost, cost);
2659 * We're over budget. If @bio has to be issued regardless, remember
2660 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2661 * off the debt before waking more IOs.
2663 * This way, the debt is continuously paid off each period with the
2664 * actual budget available to the cgroup. If we just wound vtime, we
2665 * would incorrectly use the current hw_inuse for the entire amount
2666 * which, for example, can lead to the cgroup staying blocked for a
2667 * long time even with substantially raised hw_inuse.
2669 * An iocg with vdebt should stay online so that the timer can keep
2670 * deducting its vdebt and [de]activate use_delay mechanism
2671 * accordingly. We don't want to race against the timer trying to
2672 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2673 * penalizing the cgroup and its descendants.
2676 iocg_incur_debt(iocg, abs_cost, &now);
2677 if (iocg_kick_delay(iocg, &now))
2678 blkcg_schedule_throttle(rqos->disk,
2679 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2680 iocg_unlock(iocg, ioc_locked, &flags);
2684 /* guarantee that iocgs w/ waiters have maximum inuse */
2685 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2687 iocg_unlock(iocg, false, &flags);
2691 propagate_weights(iocg, iocg->active, iocg->active, true,
2696 * Append self to the waitq and schedule the wakeup timer if we're
2697 * the first waiter. The timer duration is calculated based on the
2698 * current vrate. vtime and hweight changes can make it too short
2699 * or too long. Each wait entry records the absolute cost it's
2700 * waiting for to allow re-evaluation using a custom wait entry.
2702 * If too short, the timer simply reschedules itself. If too long,
2703 * the period timer will notice and trigger wakeups.
2705 * All waiters are on iocg->waitq and the wait states are
2706 * synchronized using waitq.lock.
2708 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2709 wait.wait.private = current;
2711 wait.abs_cost = abs_cost;
2712 wait.committed = false; /* will be set true by waker */
2714 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2715 iocg_kick_waitq(iocg, ioc_locked, &now);
2717 iocg_unlock(iocg, ioc_locked, &flags);
2720 set_current_state(TASK_UNINTERRUPTIBLE);
2726 /* waker already committed us, proceed */
2727 finish_wait(&iocg->waitq, &wait.wait);
2730 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2733 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2734 struct ioc *ioc = rqos_to_ioc(rqos);
2735 sector_t bio_end = bio_end_sector(bio);
2737 u64 vtime, abs_cost, cost;
2738 unsigned long flags;
2740 /* bypass if disabled, still initializing, or for root cgroup */
2741 if (!ioc->enabled || !iocg || !iocg->level)
2744 abs_cost = calc_vtime_cost(bio, iocg, true);
2750 vtime = atomic64_read(&iocg->vtime);
2751 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2753 /* update cursor if backmerging into the request at the cursor */
2754 if (blk_rq_pos(rq) < bio_end &&
2755 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2756 iocg->cursor = bio_end;
2759 * Charge if there's enough vtime budget and the existing request has
2762 if (rq->bio && rq->bio->bi_iocost_cost &&
2763 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2764 iocg_commit_bio(iocg, bio, abs_cost, cost);
2769 * Otherwise, account it as debt if @iocg is online, which it should
2770 * be for the vast majority of cases. See debt handling in
2771 * ioc_rqos_throttle() for details.
2773 spin_lock_irqsave(&ioc->lock, flags);
2774 spin_lock(&iocg->waitq.lock);
2776 if (likely(!list_empty(&iocg->active_list))) {
2777 iocg_incur_debt(iocg, abs_cost, &now);
2778 if (iocg_kick_delay(iocg, &now))
2779 blkcg_schedule_throttle(rqos->disk,
2780 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2782 iocg_commit_bio(iocg, bio, abs_cost, cost);
2785 spin_unlock(&iocg->waitq.lock);
2786 spin_unlock_irqrestore(&ioc->lock, flags);
2789 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2791 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2793 if (iocg && bio->bi_iocost_cost)
2794 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2797 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2799 struct ioc *ioc = rqos_to_ioc(rqos);
2800 struct ioc_pcpu_stat *ccs;
2801 u64 on_q_ns, rq_wait_ns, size_nsec;
2804 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2807 switch (req_op(rq)) {
2820 on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2821 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2822 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2824 ccs = get_cpu_ptr(ioc->pcpu_stat);
2826 if (on_q_ns <= size_nsec ||
2827 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2828 local_inc(&ccs->missed[rw].nr_met);
2830 local_inc(&ccs->missed[rw].nr_missed);
2832 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2837 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2839 struct ioc *ioc = rqos_to_ioc(rqos);
2841 spin_lock_irq(&ioc->lock);
2842 ioc_refresh_params(ioc, false);
2843 spin_unlock_irq(&ioc->lock);
2846 static void ioc_rqos_exit(struct rq_qos *rqos)
2848 struct ioc *ioc = rqos_to_ioc(rqos);
2850 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2852 spin_lock_irq(&ioc->lock);
2853 ioc->running = IOC_STOP;
2854 spin_unlock_irq(&ioc->lock);
2856 timer_shutdown_sync(&ioc->timer);
2857 free_percpu(ioc->pcpu_stat);
2861 static const struct rq_qos_ops ioc_rqos_ops = {
2862 .throttle = ioc_rqos_throttle,
2863 .merge = ioc_rqos_merge,
2864 .done_bio = ioc_rqos_done_bio,
2865 .done = ioc_rqos_done,
2866 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2867 .exit = ioc_rqos_exit,
2870 static int blk_iocost_init(struct gendisk *disk)
2875 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2879 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2880 if (!ioc->pcpu_stat) {
2885 for_each_possible_cpu(cpu) {
2886 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2888 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2889 local_set(&ccs->missed[i].nr_met, 0);
2890 local_set(&ccs->missed[i].nr_missed, 0);
2892 local64_set(&ccs->rq_wait_ns, 0);
2895 spin_lock_init(&ioc->lock);
2896 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2897 INIT_LIST_HEAD(&ioc->active_iocgs);
2899 ioc->running = IOC_IDLE;
2900 ioc->vtime_base_rate = VTIME_PER_USEC;
2901 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2902 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2903 ioc->period_at = ktime_to_us(blk_time_get());
2904 atomic64_set(&ioc->cur_period, 0);
2905 atomic_set(&ioc->hweight_gen, 0);
2907 spin_lock_irq(&ioc->lock);
2908 ioc->autop_idx = AUTOP_INVALID;
2909 ioc_refresh_params_disk(ioc, true, disk);
2910 spin_unlock_irq(&ioc->lock);
2913 * rqos must be added before activation to allow ioc_pd_init() to
2914 * lookup the ioc from q. This means that the rqos methods may get
2915 * called before policy activation completion, can't assume that the
2916 * target bio has an iocg associated and need to test for NULL iocg.
2918 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2922 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2928 rq_qos_del(&ioc->rqos);
2930 free_percpu(ioc->pcpu_stat);
2935 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2937 struct ioc_cgrp *iocc;
2939 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2943 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2947 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2949 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2952 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2953 struct blkcg *blkcg, gfp_t gfp)
2955 int levels = blkcg->css.cgroup->level + 1;
2956 struct ioc_gq *iocg;
2958 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2963 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2964 if (!iocg->pcpu_stat) {
2972 static void ioc_pd_init(struct blkg_policy_data *pd)
2974 struct ioc_gq *iocg = pd_to_iocg(pd);
2975 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2976 struct ioc *ioc = q_to_ioc(blkg->q);
2978 struct blkcg_gq *tblkg;
2979 unsigned long flags;
2984 atomic64_set(&iocg->vtime, now.vnow);
2985 atomic64_set(&iocg->done_vtime, now.vnow);
2986 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2987 INIT_LIST_HEAD(&iocg->active_list);
2988 INIT_LIST_HEAD(&iocg->walk_list);
2989 INIT_LIST_HEAD(&iocg->surplus_list);
2990 iocg->hweight_active = WEIGHT_ONE;
2991 iocg->hweight_inuse = WEIGHT_ONE;
2993 init_waitqueue_head(&iocg->waitq);
2994 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2995 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2997 iocg->level = blkg->blkcg->css.cgroup->level;
2999 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3000 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3001 iocg->ancestors[tiocg->level] = tiocg;
3004 spin_lock_irqsave(&ioc->lock, flags);
3005 weight_updated(iocg, &now);
3006 spin_unlock_irqrestore(&ioc->lock, flags);
3009 static void ioc_pd_free(struct blkg_policy_data *pd)
3011 struct ioc_gq *iocg = pd_to_iocg(pd);
3012 struct ioc *ioc = iocg->ioc;
3013 unsigned long flags;
3016 spin_lock_irqsave(&ioc->lock, flags);
3018 if (!list_empty(&iocg->active_list)) {
3022 propagate_weights(iocg, 0, 0, false, &now);
3023 list_del_init(&iocg->active_list);
3026 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3027 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3029 spin_unlock_irqrestore(&ioc->lock, flags);
3031 hrtimer_cancel(&iocg->waitq_timer);
3033 free_percpu(iocg->pcpu_stat);
3037 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3039 struct ioc_gq *iocg = pd_to_iocg(pd);
3040 struct ioc *ioc = iocg->ioc;
3045 if (iocg->level == 0) {
3046 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3047 ioc->vtime_base_rate * 10000,
3049 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3052 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3054 if (blkcg_debug_stats)
3055 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3056 iocg->last_stat.wait_us,
3057 iocg->last_stat.indebt_us,
3058 iocg->last_stat.indelay_us);
3061 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3064 const char *dname = blkg_dev_name(pd->blkg);
3065 struct ioc_gq *iocg = pd_to_iocg(pd);
3067 if (dname && iocg->cfg_weight)
3068 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3073 static int ioc_weight_show(struct seq_file *sf, void *v)
3075 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3076 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3078 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3079 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3080 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3084 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3085 size_t nbytes, loff_t off)
3087 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3088 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3089 struct blkg_conf_ctx ctx;
3091 struct ioc_gq *iocg;
3095 if (!strchr(buf, ':')) {
3096 struct blkcg_gq *blkg;
3098 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3101 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3104 spin_lock_irq(&blkcg->lock);
3105 iocc->dfl_weight = v * WEIGHT_ONE;
3106 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3107 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3110 spin_lock(&iocg->ioc->lock);
3111 ioc_now(iocg->ioc, &now);
3112 weight_updated(iocg, &now);
3113 spin_unlock(&iocg->ioc->lock);
3116 spin_unlock_irq(&blkcg->lock);
3121 blkg_conf_init(&ctx, buf);
3123 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3127 iocg = blkg_to_iocg(ctx.blkg);
3129 if (!strncmp(ctx.body, "default", 7)) {
3132 if (!sscanf(ctx.body, "%u", &v))
3134 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3138 spin_lock(&iocg->ioc->lock);
3139 iocg->cfg_weight = v * WEIGHT_ONE;
3140 ioc_now(iocg->ioc, &now);
3141 weight_updated(iocg, &now);
3142 spin_unlock(&iocg->ioc->lock);
3144 blkg_conf_exit(&ctx);
3150 blkg_conf_exit(&ctx);
3154 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3157 const char *dname = blkg_dev_name(pd->blkg);
3158 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3163 spin_lock_irq(&ioc->lock);
3164 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3165 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3166 ioc->params.qos[QOS_RPPM] / 10000,
3167 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3168 ioc->params.qos[QOS_RLAT],
3169 ioc->params.qos[QOS_WPPM] / 10000,
3170 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3171 ioc->params.qos[QOS_WLAT],
3172 ioc->params.qos[QOS_MIN] / 10000,
3173 ioc->params.qos[QOS_MIN] % 10000 / 100,
3174 ioc->params.qos[QOS_MAX] / 10000,
3175 ioc->params.qos[QOS_MAX] % 10000 / 100);
3176 spin_unlock_irq(&ioc->lock);
3180 static int ioc_qos_show(struct seq_file *sf, void *v)
3182 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3184 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3185 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3189 static const match_table_t qos_ctrl_tokens = {
3190 { QOS_ENABLE, "enable=%u" },
3191 { QOS_CTRL, "ctrl=%s" },
3192 { NR_QOS_CTRL_PARAMS, NULL },
3195 static const match_table_t qos_tokens = {
3196 { QOS_RPPM, "rpct=%s" },
3197 { QOS_RLAT, "rlat=%u" },
3198 { QOS_WPPM, "wpct=%s" },
3199 { QOS_WLAT, "wlat=%u" },
3200 { QOS_MIN, "min=%s" },
3201 { QOS_MAX, "max=%s" },
3202 { NR_QOS_PARAMS, NULL },
3205 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3206 size_t nbytes, loff_t off)
3208 struct blkg_conf_ctx ctx;
3209 struct gendisk *disk;
3211 u32 qos[NR_QOS_PARAMS];
3216 blkg_conf_init(&ctx, input);
3218 ret = blkg_conf_open_bdev(&ctx);
3223 disk = ctx.bdev->bd_disk;
3224 if (!queue_is_mq(disk->queue)) {
3229 ioc = q_to_ioc(disk->queue);
3231 ret = blk_iocost_init(disk);
3234 ioc = q_to_ioc(disk->queue);
3237 blk_mq_freeze_queue(disk->queue);
3238 blk_mq_quiesce_queue(disk->queue);
3240 spin_lock_irq(&ioc->lock);
3241 memcpy(qos, ioc->params.qos, sizeof(qos));
3242 enable = ioc->enabled;
3243 user = ioc->user_qos_params;
3245 while ((p = strsep(&body, " \t\n"))) {
3246 substring_t args[MAX_OPT_ARGS];
3254 switch (match_token(p, qos_ctrl_tokens, args)) {
3256 if (match_u64(&args[0], &v))
3261 match_strlcpy(buf, &args[0], sizeof(buf));
3262 if (!strcmp(buf, "auto"))
3264 else if (!strcmp(buf, "user"))
3271 tok = match_token(p, qos_tokens, args);
3275 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3278 if (cgroup_parse_float(buf, 2, &v))
3280 if (v < 0 || v > 10000)
3286 if (match_u64(&args[0], &v))
3292 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3295 if (cgroup_parse_float(buf, 2, &v))
3299 qos[tok] = clamp_t(s64, v * 100,
3300 VRATE_MIN_PPM, VRATE_MAX_PPM);
3308 if (qos[QOS_MIN] > qos[QOS_MAX])
3311 if (enable && !ioc->enabled) {
3312 blk_stat_enable_accounting(disk->queue);
3313 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3314 ioc->enabled = true;
3315 } else if (!enable && ioc->enabled) {
3316 blk_stat_disable_accounting(disk->queue);
3317 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3318 ioc->enabled = false;
3322 memcpy(ioc->params.qos, qos, sizeof(qos));
3323 ioc->user_qos_params = true;
3325 ioc->user_qos_params = false;
3328 ioc_refresh_params(ioc, true);
3329 spin_unlock_irq(&ioc->lock);
3332 wbt_disable_default(disk);
3334 wbt_enable_default(disk);
3336 blk_mq_unquiesce_queue(disk->queue);
3337 blk_mq_unfreeze_queue(disk->queue);
3339 blkg_conf_exit(&ctx);
3342 spin_unlock_irq(&ioc->lock);
3344 blk_mq_unquiesce_queue(disk->queue);
3345 blk_mq_unfreeze_queue(disk->queue);
3349 blkg_conf_exit(&ctx);
3353 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3354 struct blkg_policy_data *pd, int off)
3356 const char *dname = blkg_dev_name(pd->blkg);
3357 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3358 u64 *u = ioc->params.i_lcoefs;
3363 spin_lock_irq(&ioc->lock);
3364 seq_printf(sf, "%s ctrl=%s model=linear "
3365 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3366 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3367 dname, ioc->user_cost_model ? "user" : "auto",
3368 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3369 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3370 spin_unlock_irq(&ioc->lock);
3374 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3376 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3378 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3379 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3383 static const match_table_t cost_ctrl_tokens = {
3384 { COST_CTRL, "ctrl=%s" },
3385 { COST_MODEL, "model=%s" },
3386 { NR_COST_CTRL_PARAMS, NULL },
3389 static const match_table_t i_lcoef_tokens = {
3390 { I_LCOEF_RBPS, "rbps=%u" },
3391 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3392 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3393 { I_LCOEF_WBPS, "wbps=%u" },
3394 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3395 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3396 { NR_I_LCOEFS, NULL },
3399 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3400 size_t nbytes, loff_t off)
3402 struct blkg_conf_ctx ctx;
3403 struct request_queue *q;
3410 blkg_conf_init(&ctx, input);
3412 ret = blkg_conf_open_bdev(&ctx);
3417 q = bdev_get_queue(ctx.bdev);
3418 if (!queue_is_mq(q)) {
3425 ret = blk_iocost_init(ctx.bdev->bd_disk);
3431 blk_mq_freeze_queue(q);
3432 blk_mq_quiesce_queue(q);
3434 spin_lock_irq(&ioc->lock);
3435 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3436 user = ioc->user_cost_model;
3438 while ((p = strsep(&body, " \t\n"))) {
3439 substring_t args[MAX_OPT_ARGS];
3447 switch (match_token(p, cost_ctrl_tokens, args)) {
3449 match_strlcpy(buf, &args[0], sizeof(buf));
3450 if (!strcmp(buf, "auto"))
3452 else if (!strcmp(buf, "user"))
3458 match_strlcpy(buf, &args[0], sizeof(buf));
3459 if (strcmp(buf, "linear"))
3464 tok = match_token(p, i_lcoef_tokens, args);
3465 if (tok == NR_I_LCOEFS)
3467 if (match_u64(&args[0], &v))
3474 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3475 ioc->user_cost_model = true;
3477 ioc->user_cost_model = false;
3479 ioc_refresh_params(ioc, true);
3480 spin_unlock_irq(&ioc->lock);
3482 blk_mq_unquiesce_queue(q);
3483 blk_mq_unfreeze_queue(q);
3485 blkg_conf_exit(&ctx);
3489 spin_unlock_irq(&ioc->lock);
3491 blk_mq_unquiesce_queue(q);
3492 blk_mq_unfreeze_queue(q);
3496 blkg_conf_exit(&ctx);
3500 static struct cftype ioc_files[] = {
3503 .flags = CFTYPE_NOT_ON_ROOT,
3504 .seq_show = ioc_weight_show,
3505 .write = ioc_weight_write,
3509 .flags = CFTYPE_ONLY_ON_ROOT,
3510 .seq_show = ioc_qos_show,
3511 .write = ioc_qos_write,
3514 .name = "cost.model",
3515 .flags = CFTYPE_ONLY_ON_ROOT,
3516 .seq_show = ioc_cost_model_show,
3517 .write = ioc_cost_model_write,
3522 static struct blkcg_policy blkcg_policy_iocost = {
3523 .dfl_cftypes = ioc_files,
3524 .cpd_alloc_fn = ioc_cpd_alloc,
3525 .cpd_free_fn = ioc_cpd_free,
3526 .pd_alloc_fn = ioc_pd_alloc,
3527 .pd_init_fn = ioc_pd_init,
3528 .pd_free_fn = ioc_pd_free,
3529 .pd_stat_fn = ioc_pd_stat,
3532 static int __init ioc_init(void)
3534 return blkcg_policy_register(&blkcg_policy_iocost);
3537 static void __exit ioc_exit(void)
3539 blkcg_policy_unregister(&blkcg_policy_iocost);
3542 module_init(ioc_init);
3543 module_exit(ioc_exit);