Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50  * device-specific coefficients.
51  *
52  * 2. Control Strategy
53  *
54  * The device virtual time (vtime) is used as the primary control metric.
55  * The control strategy is composed of the following three parts.
56  *
57  * 2-1. Vtime Distribution
58  *
59  * When a cgroup becomes active in terms of IOs, its hierarchical share is
60  * calculated.  Please consider the following hierarchy where the numbers
61  * inside parentheses denote the configured weights.
62  *
63  *           root
64  *         /       \
65  *      A (w:100)  B (w:300)
66  *      /       \
67  *  A0 (w:100)  A1 (w:100)
68  *
69  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
71  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72  * 12.5% each.  The distribution mechanism only cares about these flattened
73  * shares.  They're called hweights (hierarchical weights) and always add
74  * upto 1 (HWEIGHT_WHOLE).
75  *
76  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78  * against the device vtime - an IO which takes 10ms on the underlying
79  * device is considered to take 80ms on A0.
80  *
81  * This constitutes the basis of IO capacity distribution.  Each cgroup's
82  * vtime is running at a rate determined by its hweight.  A cgroup tracks
83  * the vtime consumed by past IOs and can issue a new IO iff doing so
84  * wouldn't outrun the current device vtime.  Otherwise, the IO is
85  * suspended until the vtime has progressed enough to cover it.
86  *
87  * 2-2. Vrate Adjustment
88  *
89  * It's unrealistic to expect the cost model to be perfect.  There are too
90  * many devices and even on the same device the overall performance
91  * fluctuates depending on numerous factors such as IO mixture and device
92  * internal garbage collection.  The controller needs to adapt dynamically.
93  *
94  * This is achieved by adjusting the overall IO rate according to how busy
95  * the device is.  If the device becomes overloaded, we're sending down too
96  * many IOs and should generally slow down.  If there are waiting issuers
97  * but the device isn't saturated, we're issuing too few and should
98  * generally speed up.
99  *
100  * To slow down, we lower the vrate - the rate at which the device vtime
101  * passes compared to the wall clock.  For example, if the vtime is running
102  * at the vrate of 75%, all cgroups added up would only be able to issue
103  * 750ms worth of IOs per second, and vice-versa for speeding up.
104  *
105  * Device business is determined using two criteria - rq wait and
106  * completion latencies.
107  *
108  * When a device gets saturated, the on-device and then the request queues
109  * fill up and a bio which is ready to be issued has to wait for a request
110  * to become available.  When this delay becomes noticeable, it's a clear
111  * indication that the device is saturated and we lower the vrate.  This
112  * saturation signal is fairly conservative as it only triggers when both
113  * hardware and software queues are filled up, and is used as the default
114  * busy signal.
115  *
116  * As devices can have deep queues and be unfair in how the queued commands
117  * are executed, soley depending on rq wait may not result in satisfactory
118  * control quality.  For a better control quality, completion latency QoS
119  * parameters can be configured so that the device is considered saturated
120  * if N'th percentile completion latency rises above the set point.
121  *
122  * The completion latency requirements are a function of both the
123  * underlying device characteristics and the desired IO latency quality of
124  * service.  There is an inherent trade-off - the tighter the latency QoS,
125  * the higher the bandwidth lossage.  Latency QoS is disabled by default
126  * and can be set through /sys/fs/cgroup/io.cost.qos.
127  *
128  * 2-3. Work Conservation
129  *
130  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
131  * periodically while B is sending out enough parallel IOs to saturate the
132  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
133  * cost per second, i.e., 10% of the device capacity.  The naive
134  * distribution of half and half would lead to 60% utilization of the
135  * device, a significant reduction in the total amount of work done
136  * compared to free-for-all competition.  This is too high a cost to pay
137  * for IO control.
138  *
139  * To conserve the total amount of work done, we keep track of how much
140  * each active cgroup is actually using and yield part of its weight if
141  * there are other cgroups which can make use of it.  In the above case,
142  * A's weight will be lowered so that it hovers above the actual usage and
143  * B would be able to use the rest.
144  *
145  * As we don't want to penalize a cgroup for donating its weight, the
146  * surplus weight adjustment factors in a margin and has an immediate
147  * snapback mechanism in case the cgroup needs more IO vtime for itself.
148  *
149  * Note that adjusting down surplus weights has the same effects as
150  * accelerating vtime for other cgroups and work conservation can also be
151  * implemented by adjusting vrate dynamically.  However, squaring who can
152  * donate and should take back how much requires hweight propagations
153  * anyway making it easier to implement and understand as a separate
154  * mechanism.
155  *
156  * 3. Monitoring
157  *
158  * Instead of debugfs or other clumsy monitoring mechanisms, this
159  * controller uses a drgn based monitoring script -
160  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
161  * https://github.com/osandov/drgn.  The ouput looks like the following.
162  *
163  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164  *                 active      weight      hweight% inflt% dbt  delay usages%
165  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
166  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
167  *
168  * - per        : Timer period
169  * - cur_per    : Internal wall and device vtime clock
170  * - vrate      : Device virtual time rate against wall clock
171  * - weight     : Surplus-adjusted and configured weights
172  * - hweight    : Surplus-adjusted and configured hierarchical weights
173  * - inflt      : The percentage of in-flight IO cost at the end of last period
174  * - del_ms     : Deferred issuer delay induction level and duration
175  * - usages     : Usage history
176  */
177
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
187 #include "blk-wbt.h"
188
189 #ifdef CONFIG_TRACEPOINTS
190
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195
196 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
197         do {                                                                    \
198                 unsigned long flags;                                            \
199                 if (trace_iocost_##type##_enabled()) {                          \
200                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
201                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
202                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
203                         trace_iocost_##type(iocg, trace_iocg_path,              \
204                                               ##__VA_ARGS__);                   \
205                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
206                 }                                                               \
207         } while (0)
208
209 #else   /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
211 #endif  /* CONFIG_TRACE_POINTS */
212
213 enum {
214         MILLION                 = 1000000,
215
216         /* timer period is calculated from latency requirements, bound it */
217         MIN_PERIOD              = USEC_PER_MSEC,
218         MAX_PERIOD              = USEC_PER_SEC,
219
220         /*
221          * A cgroup's vtime can run 50% behind the device vtime, which
222          * serves as its IO credit buffer.  Surplus weight adjustment is
223          * immediately canceled if the vtime margin runs below 10%.
224          */
225         MARGIN_PCT              = 50,
226         INUSE_MARGIN_PCT        = 10,
227
228         /* Have some play in waitq timer operations */
229         WAITQ_TIMER_MARGIN_PCT  = 5,
230
231         /*
232          * vtime can wrap well within a reasonable uptime when vrate is
233          * consistently raised.  Don't trust recorded cgroup vtime if the
234          * period counter indicates that it's older than 5mins.
235          */
236         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
237
238         /*
239          * Remember the past three non-zero usages and use the max for
240          * surplus calculation.  Three slots guarantee that we remember one
241          * full period usage from the last active stretch even after
242          * partial deactivation and re-activation periods.  Don't start
243          * giving away weight before collecting two data points to prevent
244          * hweight adjustments based on one partial activation period.
245          */
246         NR_USAGE_SLOTS          = 3,
247         MIN_VALID_USAGES        = 2,
248
249         /* 1/64k is granular enough and can easily be handled w/ u32 */
250         HWEIGHT_WHOLE           = 1 << 16,
251
252         /*
253          * As vtime is used to calculate the cost of each IO, it needs to
254          * be fairly high precision.  For example, it should be able to
255          * represent the cost of a single page worth of discard with
256          * suffificient accuracy.  At the same time, it should be able to
257          * represent reasonably long enough durations to be useful and
258          * convenient during operation.
259          *
260          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
261          * granularity and days of wrap-around time even at extreme vrates.
262          */
263         VTIME_PER_SEC_SHIFT     = 37,
264         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
265         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
266
267         /* bound vrate adjustments within two orders of magnitude */
268         VRATE_MIN_PPM           = 10000,        /* 1% */
269         VRATE_MAX_PPM           = 100000000,    /* 10000% */
270
271         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272         VRATE_CLAMP_ADJ_PCT     = 4,
273
274         /* if IOs end up waiting for requests, issue less */
275         RQ_WAIT_BUSY_PCT        = 5,
276
277         /* unbusy hysterisis */
278         UNBUSY_THR_PCT          = 75,
279
280         /* don't let cmds which take a very long time pin lagging for too long */
281         MAX_LAGGING_PERIODS     = 10,
282
283         /*
284          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285          * donate the surplus.
286          */
287         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
288         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
289         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
290
291         /* switch iff the conditions are met for longer than this */
292         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
293
294         /*
295          * Count IO size in 4k pages.  The 12bit shift helps keeping
296          * size-proportional components of cost calculation in closer
297          * numbers of digits to per-IO cost components.
298          */
299         IOC_PAGE_SHIFT          = 12,
300         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
301         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303         /* if apart further than 16M, consider randio for linear model */
304         LCOEF_RANDIO_PAGES      = 4096,
305 };
306
307 enum ioc_running {
308         IOC_IDLE,
309         IOC_RUNNING,
310         IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315         QOS_ENABLE,
316         QOS_CTRL,
317         NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322         QOS_RPPM,
323         QOS_RLAT,
324         QOS_WPPM,
325         QOS_WLAT,
326         QOS_MIN,
327         QOS_MAX,
328         NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333         COST_CTRL,
334         COST_MODEL,
335         NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340         I_LCOEF_RBPS,
341         I_LCOEF_RSEQIOPS,
342         I_LCOEF_RRANDIOPS,
343         I_LCOEF_WBPS,
344         I_LCOEF_WSEQIOPS,
345         I_LCOEF_WRANDIOPS,
346         NR_I_LCOEFS,
347 };
348
349 enum {
350         LCOEF_RPAGE,
351         LCOEF_RSEQIO,
352         LCOEF_RRANDIO,
353         LCOEF_WPAGE,
354         LCOEF_WSEQIO,
355         LCOEF_WRANDIO,
356         NR_LCOEFS,
357 };
358
359 enum {
360         AUTOP_INVALID,
361         AUTOP_HDD,
362         AUTOP_SSD_QD1,
363         AUTOP_SSD_DFL,
364         AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370         u32                             qos[NR_QOS_PARAMS];
371         u64                             i_lcoefs[NR_I_LCOEFS];
372         u64                             lcoefs[NR_LCOEFS];
373         u32                             too_fast_vrate_pct;
374         u32                             too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378         u32                             nr_met;
379         u32                             nr_missed;
380         u32                             last_met;
381         u32                             last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385         struct ioc_missed               missed[2];
386
387         u64                             rq_wait_ns;
388         u64                             last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393         struct rq_qos                   rqos;
394
395         bool                            enabled;
396
397         struct ioc_params               params;
398         u32                             period_us;
399         u32                             margin_us;
400         u64                             vrate_min;
401         u64                             vrate_max;
402
403         spinlock_t                      lock;
404         struct timer_list               timer;
405         struct list_head                active_iocgs;   /* active cgroups */
406         struct ioc_pcpu_stat __percpu   *pcpu_stat;
407
408         enum ioc_running                running;
409         atomic64_t                      vtime_rate;
410
411         seqcount_t                      period_seqcount;
412         u32                             period_at;      /* wallclock starttime */
413         u64                             period_at_vtime; /* vtime starttime */
414
415         atomic64_t                      cur_period;     /* inc'd each period */
416         int                             busy_level;     /* saturation history */
417
418         u64                             inuse_margin_vtime;
419         bool                            weights_updated;
420         atomic_t                        hweight_gen;    /* for lazy hweights */
421
422         u64                             autop_too_fast_at;
423         u64                             autop_too_slow_at;
424         int                             autop_idx;
425         bool                            user_qos_params:1;
426         bool                            user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431         struct blkg_policy_data         pd;
432         struct ioc                      *ioc;
433
434         /*
435          * A iocg can get its weight from two sources - an explicit
436          * per-device-cgroup configuration or the default weight of the
437          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
438          * configuration.  `weight` is the effective considering both
439          * sources.
440          *
441          * When an idle cgroup becomes active its `active` goes from 0 to
442          * `weight`.  `inuse` is the surplus adjusted active weight.
443          * `active` and `inuse` are used to calculate `hweight_active` and
444          * `hweight_inuse`.
445          *
446          * `last_inuse` remembers `inuse` while an iocg is idle to persist
447          * surplus adjustments.
448          */
449         u32                             cfg_weight;
450         u32                             weight;
451         u32                             active;
452         u32                             inuse;
453         u32                             last_inuse;
454
455         sector_t                        cursor;         /* to detect randio */
456
457         /*
458          * `vtime` is this iocg's vtime cursor which progresses as IOs are
459          * issued.  If lagging behind device vtime, the delta represents
460          * the currently available IO budget.  If runnning ahead, the
461          * overage.
462          *
463          * `vtime_done` is the same but progressed on completion rather
464          * than issue.  The delta behind `vtime` represents the cost of
465          * currently in-flight IOs.
466          *
467          * `last_vtime` is used to remember `vtime` at the end of the last
468          * period to calculate utilization.
469          */
470         atomic64_t                      vtime;
471         atomic64_t                      done_vtime;
472         atomic64_t                      abs_vdebt;
473         u64                             last_vtime;
474
475         /*
476          * The period this iocg was last active in.  Used for deactivation
477          * and invalidating `vtime`.
478          */
479         atomic64_t                      active_period;
480         struct list_head                active_list;
481
482         /* see __propagate_active_weight() and current_hweight() for details */
483         u64                             child_active_sum;
484         u64                             child_inuse_sum;
485         int                             hweight_gen;
486         u32                             hweight_active;
487         u32                             hweight_inuse;
488         bool                            has_surplus;
489
490         struct wait_queue_head          waitq;
491         struct hrtimer                  waitq_timer;
492         struct hrtimer                  delay_timer;
493
494         /* usage is recorded as fractions of HWEIGHT_WHOLE */
495         int                             usage_idx;
496         u32                             usages[NR_USAGE_SLOTS];
497
498         /* this iocg's depth in the hierarchy and ancestors including self */
499         int                             level;
500         struct ioc_gq                   *ancestors[];
501 };
502
503 /* per cgroup */
504 struct ioc_cgrp {
505         struct blkcg_policy_data        cpd;
506         unsigned int                    dfl_weight;
507 };
508
509 struct ioc_now {
510         u64                             now_ns;
511         u32                             now;
512         u64                             vnow;
513         u64                             vrate;
514 };
515
516 struct iocg_wait {
517         struct wait_queue_entry         wait;
518         struct bio                      *bio;
519         u64                             abs_cost;
520         bool                            committed;
521 };
522
523 struct iocg_wake_ctx {
524         struct ioc_gq                   *iocg;
525         u32                             hw_inuse;
526         s64                             vbudget;
527 };
528
529 static const struct ioc_params autop[] = {
530         [AUTOP_HDD] = {
531                 .qos                            = {
532                         [QOS_RLAT]              =        250000, /* 250ms */
533                         [QOS_WLAT]              =        250000,
534                         [QOS_MIN]               = VRATE_MIN_PPM,
535                         [QOS_MAX]               = VRATE_MAX_PPM,
536                 },
537                 .i_lcoefs                       = {
538                         [I_LCOEF_RBPS]          =     174019176,
539                         [I_LCOEF_RSEQIOPS]      =         41708,
540                         [I_LCOEF_RRANDIOPS]     =           370,
541                         [I_LCOEF_WBPS]          =     178075866,
542                         [I_LCOEF_WSEQIOPS]      =         42705,
543                         [I_LCOEF_WRANDIOPS]     =           378,
544                 },
545         },
546         [AUTOP_SSD_QD1] = {
547                 .qos                            = {
548                         [QOS_RLAT]              =         25000, /* 25ms */
549                         [QOS_WLAT]              =         25000,
550                         [QOS_MIN]               = VRATE_MIN_PPM,
551                         [QOS_MAX]               = VRATE_MAX_PPM,
552                 },
553                 .i_lcoefs                       = {
554                         [I_LCOEF_RBPS]          =     245855193,
555                         [I_LCOEF_RSEQIOPS]      =         61575,
556                         [I_LCOEF_RRANDIOPS]     =          6946,
557                         [I_LCOEF_WBPS]          =     141365009,
558                         [I_LCOEF_WSEQIOPS]      =         33716,
559                         [I_LCOEF_WRANDIOPS]     =         26796,
560                 },
561         },
562         [AUTOP_SSD_DFL] = {
563                 .qos                            = {
564                         [QOS_RLAT]              =         25000, /* 25ms */
565                         [QOS_WLAT]              =         25000,
566                         [QOS_MIN]               = VRATE_MIN_PPM,
567                         [QOS_MAX]               = VRATE_MAX_PPM,
568                 },
569                 .i_lcoefs                       = {
570                         [I_LCOEF_RBPS]          =     488636629,
571                         [I_LCOEF_RSEQIOPS]      =          8932,
572                         [I_LCOEF_RRANDIOPS]     =          8518,
573                         [I_LCOEF_WBPS]          =     427891549,
574                         [I_LCOEF_WSEQIOPS]      =         28755,
575                         [I_LCOEF_WRANDIOPS]     =         21940,
576                 },
577                 .too_fast_vrate_pct             =           500,
578         },
579         [AUTOP_SSD_FAST] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =          5000, /* 5ms */
582                         [QOS_WLAT]              =          5000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =    3102524156LLU,
588                         [I_LCOEF_RSEQIOPS]      =        724816,
589                         [I_LCOEF_RRANDIOPS]     =        778122,
590                         [I_LCOEF_WBPS]          =    1742780862LLU,
591                         [I_LCOEF_WSEQIOPS]      =        425702,
592                         [I_LCOEF_WRANDIOPS]     =        443193,
593                 },
594                 .too_slow_vrate_pct             =            10,
595         },
596 };
597
598 /*
599  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
600  * vtime credit shortage and down on device saturation.
601  */
602 static u32 vrate_adj_pct[] =
603         { 0, 0, 0, 0,
604           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
607
608 static struct blkcg_policy blkcg_policy_iocost;
609
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
612 {
613         return container_of(rqos, struct ioc, rqos);
614 }
615
616 static struct ioc *q_to_ioc(struct request_queue *q)
617 {
618         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 }
620
621 static const char *q_name(struct request_queue *q)
622 {
623         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624                 return kobject_name(q->kobj.parent);
625         else
626                 return "<unknown>";
627 }
628
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
630 {
631         return q_name(ioc->rqos.q);
632 }
633
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
635 {
636         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 }
638
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
640 {
641         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 }
643
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
645 {
646         return pd_to_blkg(&iocg->pd);
647 }
648
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
650 {
651         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652                             struct ioc_cgrp, cpd);
653 }
654
655 /*
656  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
657  * weight, the more expensive each IO.  Must round up.
658  */
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
660 {
661         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
662 }
663
664 /*
665  * The inverse of abs_cost_to_cost().  Must round up.
666  */
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
668 {
669         return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 }
671
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
673 {
674         bio->bi_iocost_cost = cost;
675         atomic64_add(cost, &iocg->vtime);
676 }
677
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
680
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
683 {
684         u32 ppm, lat, multi, period_us;
685
686         lockdep_assert_held(&ioc->lock);
687
688         /* pick the higher latency target */
689         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690                 ppm = ioc->params.qos[QOS_RPPM];
691                 lat = ioc->params.qos[QOS_RLAT];
692         } else {
693                 ppm = ioc->params.qos[QOS_WPPM];
694                 lat = ioc->params.qos[QOS_WLAT];
695         }
696
697         /*
698          * We want the period to be long enough to contain a healthy number
699          * of IOs while short enough for granular control.  Define it as a
700          * multiple of the latency target.  Ideally, the multiplier should
701          * be scaled according to the percentile so that it would nominally
702          * contain a certain number of requests.  Let's be simpler and
703          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704          */
705         if (ppm)
706                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707         else
708                 multi = 2;
709         period_us = multi * lat;
710         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
711
712         /* calculate dependent params */
713         ioc->period_us = period_us;
714         ioc->margin_us = period_us * MARGIN_PCT / 100;
715         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 }
718
719 static int ioc_autop_idx(struct ioc *ioc)
720 {
721         int idx = ioc->autop_idx;
722         const struct ioc_params *p = &autop[idx];
723         u32 vrate_pct;
724         u64 now_ns;
725
726         /* rotational? */
727         if (!blk_queue_nonrot(ioc->rqos.q))
728                 return AUTOP_HDD;
729
730         /* handle SATA SSDs w/ broken NCQ */
731         if (blk_queue_depth(ioc->rqos.q) == 1)
732                 return AUTOP_SSD_QD1;
733
734         /* use one of the normal ssd sets */
735         if (idx < AUTOP_SSD_DFL)
736                 return AUTOP_SSD_DFL;
737
738         /* if user is overriding anything, maintain what was there */
739         if (ioc->user_qos_params || ioc->user_cost_model)
740                 return idx;
741
742         /* step up/down based on the vrate */
743         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
744                               VTIME_PER_USEC);
745         now_ns = ktime_get_ns();
746
747         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748                 if (!ioc->autop_too_fast_at)
749                         ioc->autop_too_fast_at = now_ns;
750                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751                         return idx + 1;
752         } else {
753                 ioc->autop_too_fast_at = 0;
754         }
755
756         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757                 if (!ioc->autop_too_slow_at)
758                         ioc->autop_too_slow_at = now_ns;
759                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760                         return idx - 1;
761         } else {
762                 ioc->autop_too_slow_at = 0;
763         }
764
765         return idx;
766 }
767
768 /*
769  * Take the followings as input
770  *
771  *  @bps        maximum sequential throughput
772  *  @seqiops    maximum sequential 4k iops
773  *  @randiops   maximum random 4k iops
774  *
775  * and calculate the linear model cost coefficients.
776  *
777  *  *@page      per-page cost           1s / (@bps / 4096)
778  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
779  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
780  */
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782                         u64 *page, u64 *seqio, u64 *randio)
783 {
784         u64 v;
785
786         *page = *seqio = *randio = 0;
787
788         if (bps)
789                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791
792         if (seqiops) {
793                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
794                 if (v > *page)
795                         *seqio = v - *page;
796         }
797
798         if (randiops) {
799                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
800                 if (v > *page)
801                         *randio = v - *page;
802         }
803 }
804
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
806 {
807         u64 *u = ioc->params.i_lcoefs;
808         u64 *c = ioc->params.lcoefs;
809
810         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 }
815
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
817 {
818         const struct ioc_params *p;
819         int idx;
820
821         lockdep_assert_held(&ioc->lock);
822
823         idx = ioc_autop_idx(ioc);
824         p = &autop[idx];
825
826         if (idx == ioc->autop_idx && !force)
827                 return false;
828
829         if (idx != ioc->autop_idx)
830                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
831
832         ioc->autop_idx = idx;
833         ioc->autop_too_fast_at = 0;
834         ioc->autop_too_slow_at = 0;
835
836         if (!ioc->user_qos_params)
837                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838         if (!ioc->user_cost_model)
839                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
840
841         ioc_refresh_period_us(ioc);
842         ioc_refresh_lcoefs(ioc);
843
844         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845                                             VTIME_PER_USEC, MILLION);
846         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847                                    VTIME_PER_USEC, MILLION);
848
849         return true;
850 }
851
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
854 {
855         unsigned seq;
856
857         now->now_ns = ktime_get();
858         now->now = ktime_to_us(now->now_ns);
859         now->vrate = atomic64_read(&ioc->vtime_rate);
860
861         /*
862          * The current vtime is
863          *
864          *   vtime at period start + (wallclock time since the start) * vrate
865          *
866          * As a consistent snapshot of `period_at_vtime` and `period_at` is
867          * needed, they're seqcount protected.
868          */
869         do {
870                 seq = read_seqcount_begin(&ioc->period_seqcount);
871                 now->vnow = ioc->period_at_vtime +
872                         (now->now - ioc->period_at) * now->vrate;
873         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 }
875
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
877 {
878         lockdep_assert_held(&ioc->lock);
879         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
880
881         write_seqcount_begin(&ioc->period_seqcount);
882         ioc->period_at = now->now;
883         ioc->period_at_vtime = now->vnow;
884         write_seqcount_end(&ioc->period_seqcount);
885
886         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887         add_timer(&ioc->timer);
888 }
889
890 /*
891  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892  * weight sums and propagate upwards accordingly.
893  */
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
895 {
896         struct ioc *ioc = iocg->ioc;
897         int lvl;
898
899         lockdep_assert_held(&ioc->lock);
900
901         inuse = min(active, inuse);
902
903         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904                 struct ioc_gq *parent = iocg->ancestors[lvl];
905                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906                 u32 parent_active = 0, parent_inuse = 0;
907
908                 /* update the level sums */
909                 parent->child_active_sum += (s32)(active - child->active);
910                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911                 /* apply the udpates */
912                 child->active = active;
913                 child->inuse = inuse;
914
915                 /*
916                  * The delta between inuse and active sums indicates that
917                  * that much of weight is being given away.  Parent's inuse
918                  * and active should reflect the ratio.
919                  */
920                 if (parent->child_active_sum) {
921                         parent_active = parent->weight;
922                         parent_inuse = DIV64_U64_ROUND_UP(
923                                 parent_active * parent->child_inuse_sum,
924                                 parent->child_active_sum);
925                 }
926
927                 /* do we need to keep walking up? */
928                 if (parent_active == parent->active &&
929                     parent_inuse == parent->inuse)
930                         break;
931
932                 active = parent_active;
933                 inuse = parent_inuse;
934         }
935
936         ioc->weights_updated = true;
937 }
938
939 static void commit_active_weights(struct ioc *ioc)
940 {
941         lockdep_assert_held(&ioc->lock);
942
943         if (ioc->weights_updated) {
944                 /* paired with rmb in current_hweight(), see there */
945                 smp_wmb();
946                 atomic_inc(&ioc->hweight_gen);
947                 ioc->weights_updated = false;
948         }
949 }
950
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
952 {
953         __propagate_active_weight(iocg, active, inuse);
954         commit_active_weights(iocg->ioc);
955 }
956
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
958 {
959         struct ioc *ioc = iocg->ioc;
960         int lvl;
961         u32 hwa, hwi;
962         int ioc_gen;
963
964         /* hot path - if uptodate, use cached */
965         ioc_gen = atomic_read(&ioc->hweight_gen);
966         if (ioc_gen == iocg->hweight_gen)
967                 goto out;
968
969         /*
970          * Paired with wmb in commit_active_weights().  If we saw the
971          * updated hweight_gen, all the weight updates from
972          * __propagate_active_weight() are visible too.
973          *
974          * We can race with weight updates during calculation and get it
975          * wrong.  However, hweight_gen would have changed and a future
976          * reader will recalculate and we're guaranteed to discard the
977          * wrong result soon.
978          */
979         smp_rmb();
980
981         hwa = hwi = HWEIGHT_WHOLE;
982         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983                 struct ioc_gq *parent = iocg->ancestors[lvl];
984                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985                 u32 active_sum = READ_ONCE(parent->child_active_sum);
986                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987                 u32 active = READ_ONCE(child->active);
988                 u32 inuse = READ_ONCE(child->inuse);
989
990                 /* we can race with deactivations and either may read as zero */
991                 if (!active_sum || !inuse_sum)
992                         continue;
993
994                 active_sum = max(active, active_sum);
995                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
996
997                 inuse_sum = max(inuse, inuse_sum);
998                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
999         }
1000
1001         iocg->hweight_active = max_t(u32, hwa, 1);
1002         iocg->hweight_inuse = max_t(u32, hwi, 1);
1003         iocg->hweight_gen = ioc_gen;
1004 out:
1005         if (hw_activep)
1006                 *hw_activep = iocg->hweight_active;
1007         if (hw_inusep)
1008                 *hw_inusep = iocg->hweight_inuse;
1009 }
1010
1011 static void weight_updated(struct ioc_gq *iocg)
1012 {
1013         struct ioc *ioc = iocg->ioc;
1014         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1016         u32 weight;
1017
1018         lockdep_assert_held(&ioc->lock);
1019
1020         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021         if (weight != iocg->weight && iocg->active)
1022                 propagate_active_weight(iocg, weight,
1023                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024         iocg->weight = weight;
1025 }
1026
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1028 {
1029         struct ioc *ioc = iocg->ioc;
1030         u64 last_period, cur_period, max_period_delta;
1031         u64 vtime, vmargin, vmin;
1032         int i;
1033
1034         /*
1035          * If seem to be already active, just update the stamp to tell the
1036          * timer that we're still active.  We don't mind occassional races.
1037          */
1038         if (!list_empty(&iocg->active_list)) {
1039                 ioc_now(ioc, now);
1040                 cur_period = atomic64_read(&ioc->cur_period);
1041                 if (atomic64_read(&iocg->active_period) != cur_period)
1042                         atomic64_set(&iocg->active_period, cur_period);
1043                 return true;
1044         }
1045
1046         /* racy check on internal node IOs, treat as root level IOs */
1047         if (iocg->child_active_sum)
1048                 return false;
1049
1050         spin_lock_irq(&ioc->lock);
1051
1052         ioc_now(ioc, now);
1053
1054         /* update period */
1055         cur_period = atomic64_read(&ioc->cur_period);
1056         last_period = atomic64_read(&iocg->active_period);
1057         atomic64_set(&iocg->active_period, cur_period);
1058
1059         /* already activated or breaking leaf-only constraint? */
1060         if (!list_empty(&iocg->active_list))
1061                 goto succeed_unlock;
1062         for (i = iocg->level - 1; i > 0; i--)
1063                 if (!list_empty(&iocg->ancestors[i]->active_list))
1064                         goto fail_unlock;
1065
1066         if (iocg->child_active_sum)
1067                 goto fail_unlock;
1068
1069         /*
1070          * vtime may wrap when vrate is raised substantially due to
1071          * underestimated IO costs.  Look at the period and ignore its
1072          * vtime if the iocg has been idle for too long.  Also, cap the
1073          * budget it can start with to the margin.
1074          */
1075         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1076         vtime = atomic64_read(&iocg->vtime);
1077         vmargin = ioc->margin_us * now->vrate;
1078         vmin = now->vnow - vmargin;
1079
1080         if (last_period + max_period_delta < cur_period ||
1081             time_before64(vtime, vmin)) {
1082                 atomic64_add(vmin - vtime, &iocg->vtime);
1083                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1084                 vtime = vmin;
1085         }
1086
1087         /*
1088          * Activate, propagate weight and start period timer if not
1089          * running.  Reset hweight_gen to avoid accidental match from
1090          * wrapping.
1091          */
1092         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1093         list_add(&iocg->active_list, &ioc->active_iocgs);
1094         propagate_active_weight(iocg, iocg->weight,
1095                                 iocg->last_inuse ?: iocg->weight);
1096
1097         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1098                         last_period, cur_period, vtime);
1099
1100         iocg->last_vtime = vtime;
1101
1102         if (ioc->running == IOC_IDLE) {
1103                 ioc->running = IOC_RUNNING;
1104                 ioc_start_period(ioc, now);
1105         }
1106
1107 succeed_unlock:
1108         spin_unlock_irq(&ioc->lock);
1109         return true;
1110
1111 fail_unlock:
1112         spin_unlock_irq(&ioc->lock);
1113         return false;
1114 }
1115
1116 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1117                         int flags, void *key)
1118 {
1119         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1120         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1121         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1122
1123         ctx->vbudget -= cost;
1124
1125         if (ctx->vbudget < 0)
1126                 return -1;
1127
1128         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1129
1130         /*
1131          * autoremove_wake_function() removes the wait entry only when it
1132          * actually changed the task state.  We want the wait always
1133          * removed.  Remove explicitly and use default_wake_function().
1134          */
1135         list_del_init(&wq_entry->entry);
1136         wait->committed = true;
1137
1138         default_wake_function(wq_entry, mode, flags, key);
1139         return 0;
1140 }
1141
1142 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1143 {
1144         struct ioc *ioc = iocg->ioc;
1145         struct iocg_wake_ctx ctx = { .iocg = iocg };
1146         u64 margin_ns = (u64)(ioc->period_us *
1147                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1148         u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1149         s64 vbudget;
1150         u32 hw_inuse;
1151
1152         lockdep_assert_held(&iocg->waitq.lock);
1153
1154         current_hweight(iocg, NULL, &hw_inuse);
1155         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1156
1157         /* pay off debt */
1158         abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1159         vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1160         if (vdebt && vbudget > 0) {
1161                 u64 delta = min_t(u64, vbudget, vdebt);
1162                 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1163                                     abs_vdebt);
1164
1165                 atomic64_add(delta, &iocg->vtime);
1166                 atomic64_add(delta, &iocg->done_vtime);
1167                 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1168                 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1169                         atomic64_set(&iocg->abs_vdebt, 0);
1170         }
1171
1172         /*
1173          * Wake up the ones which are due and see how much vtime we'll need
1174          * for the next one.
1175          */
1176         ctx.hw_inuse = hw_inuse;
1177         ctx.vbudget = vbudget - vdebt;
1178         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1179         if (!waitqueue_active(&iocg->waitq))
1180                 return;
1181         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1182                 return;
1183
1184         /* determine next wakeup, add a quarter margin to guarantee chunking */
1185         vshortage = -ctx.vbudget;
1186         expires = now->now_ns +
1187                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1188         expires += margin_ns / 4;
1189
1190         /* if already active and close enough, don't bother */
1191         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1192         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1193             abs(oexpires - expires) <= margin_ns / 4)
1194                 return;
1195
1196         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1197                                margin_ns / 4, HRTIMER_MODE_ABS);
1198 }
1199
1200 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1201 {
1202         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1203         struct ioc_now now;
1204         unsigned long flags;
1205
1206         ioc_now(iocg->ioc, &now);
1207
1208         spin_lock_irqsave(&iocg->waitq.lock, flags);
1209         iocg_kick_waitq(iocg, &now);
1210         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1211
1212         return HRTIMER_NORESTART;
1213 }
1214
1215 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1216 {
1217         struct ioc *ioc = iocg->ioc;
1218         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1219         u64 vtime = atomic64_read(&iocg->vtime);
1220         u64 vmargin = ioc->margin_us * now->vrate;
1221         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1222         u64 expires, oexpires;
1223         u32 hw_inuse;
1224
1225         /* debt-adjust vtime */
1226         current_hweight(iocg, NULL, &hw_inuse);
1227         vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
1228
1229         /* clear or maintain depending on the overage */
1230         if (time_before_eq64(vtime, now->vnow)) {
1231                 blkcg_clear_delay(blkg);
1232                 return;
1233         }
1234         if (!atomic_read(&blkg->use_delay) &&
1235             time_before_eq64(vtime, now->vnow + vmargin))
1236                 return;
1237
1238         /* use delay */
1239         if (cost) {
1240                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1241                                                  now->vrate);
1242                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1243         }
1244         blkcg_use_delay(blkg);
1245
1246         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1247                                                    now->vrate) * NSEC_PER_USEC;
1248
1249         /* if already active and close enough, don't bother */
1250         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1251         if (hrtimer_is_queued(&iocg->delay_timer) &&
1252             abs(oexpires - expires) <= margin_ns / 4)
1253                 return;
1254
1255         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1256                                margin_ns / 4, HRTIMER_MODE_ABS);
1257 }
1258
1259 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1260 {
1261         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1262         struct ioc_now now;
1263
1264         ioc_now(iocg->ioc, &now);
1265         iocg_kick_delay(iocg, &now, 0);
1266
1267         return HRTIMER_NORESTART;
1268 }
1269
1270 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1271 {
1272         u32 nr_met[2] = { };
1273         u32 nr_missed[2] = { };
1274         u64 rq_wait_ns = 0;
1275         int cpu, rw;
1276
1277         for_each_online_cpu(cpu) {
1278                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1279                 u64 this_rq_wait_ns;
1280
1281                 for (rw = READ; rw <= WRITE; rw++) {
1282                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1283                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1284
1285                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1286                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1287                         stat->missed[rw].last_met = this_met;
1288                         stat->missed[rw].last_missed = this_missed;
1289                 }
1290
1291                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1292                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1293                 stat->last_rq_wait_ns = this_rq_wait_ns;
1294         }
1295
1296         for (rw = READ; rw <= WRITE; rw++) {
1297                 if (nr_met[rw] + nr_missed[rw])
1298                         missed_ppm_ar[rw] =
1299                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1300                                                    nr_met[rw] + nr_missed[rw]);
1301                 else
1302                         missed_ppm_ar[rw] = 0;
1303         }
1304
1305         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1306                                    ioc->period_us * NSEC_PER_USEC);
1307 }
1308
1309 /* was iocg idle this period? */
1310 static bool iocg_is_idle(struct ioc_gq *iocg)
1311 {
1312         struct ioc *ioc = iocg->ioc;
1313
1314         /* did something get issued this period? */
1315         if (atomic64_read(&iocg->active_period) ==
1316             atomic64_read(&ioc->cur_period))
1317                 return false;
1318
1319         /* is something in flight? */
1320         if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1321                 return false;
1322
1323         return true;
1324 }
1325
1326 /* returns usage with margin added if surplus is large enough */
1327 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1328 {
1329         /* add margin */
1330         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1331         usage += SURPLUS_SCALE_ABS;
1332
1333         /* don't bother if the surplus is too small */
1334         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1335                 return 0;
1336
1337         return usage;
1338 }
1339
1340 static void ioc_timer_fn(struct timer_list *timer)
1341 {
1342         struct ioc *ioc = container_of(timer, struct ioc, timer);
1343         struct ioc_gq *iocg, *tiocg;
1344         struct ioc_now now;
1345         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1346         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1347         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1348         u32 missed_ppm[2], rq_wait_pct;
1349         u64 period_vtime;
1350         int prev_busy_level, i;
1351
1352         /* how were the latencies during the period? */
1353         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1354
1355         /* take care of active iocgs */
1356         spin_lock_irq(&ioc->lock);
1357
1358         ioc_now(ioc, &now);
1359
1360         period_vtime = now.vnow - ioc->period_at_vtime;
1361         if (WARN_ON_ONCE(!period_vtime)) {
1362                 spin_unlock_irq(&ioc->lock);
1363                 return;
1364         }
1365
1366         /*
1367          * Waiters determine the sleep durations based on the vrate they
1368          * saw at the time of sleep.  If vrate has increased, some waiters
1369          * could be sleeping for too long.  Wake up tardy waiters which
1370          * should have woken up in the last period and expire idle iocgs.
1371          */
1372         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1373                 if (!waitqueue_active(&iocg->waitq) &&
1374                     !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
1375                         continue;
1376
1377                 spin_lock(&iocg->waitq.lock);
1378
1379                 if (waitqueue_active(&iocg->waitq) ||
1380                     atomic64_read(&iocg->abs_vdebt)) {
1381                         /* might be oversleeping vtime / hweight changes, kick */
1382                         iocg_kick_waitq(iocg, &now);
1383                         iocg_kick_delay(iocg, &now, 0);
1384                 } else if (iocg_is_idle(iocg)) {
1385                         /* no waiter and idle, deactivate */
1386                         iocg->last_inuse = iocg->inuse;
1387                         __propagate_active_weight(iocg, 0, 0);
1388                         list_del_init(&iocg->active_list);
1389                 }
1390
1391                 spin_unlock(&iocg->waitq.lock);
1392         }
1393         commit_active_weights(ioc);
1394
1395         /* calc usages and see whether some weights need to be moved around */
1396         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1397                 u64 vdone, vtime, vusage, vmargin, vmin;
1398                 u32 hw_active, hw_inuse, usage;
1399
1400                 /*
1401                  * Collect unused and wind vtime closer to vnow to prevent
1402                  * iocgs from accumulating a large amount of budget.
1403                  */
1404                 vdone = atomic64_read(&iocg->done_vtime);
1405                 vtime = atomic64_read(&iocg->vtime);
1406                 current_hweight(iocg, &hw_active, &hw_inuse);
1407
1408                 /*
1409                  * Latency QoS detection doesn't account for IOs which are
1410                  * in-flight for longer than a period.  Detect them by
1411                  * comparing vdone against period start.  If lagging behind
1412                  * IOs from past periods, don't increase vrate.
1413                  */
1414                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1415                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1416                     time_after64(vtime, vdone) &&
1417                     time_after64(vtime, now.vnow -
1418                                  MAX_LAGGING_PERIODS * period_vtime) &&
1419                     time_before64(vdone, now.vnow - period_vtime))
1420                         nr_lagging++;
1421
1422                 if (waitqueue_active(&iocg->waitq))
1423                         vusage = now.vnow - iocg->last_vtime;
1424                 else if (time_before64(iocg->last_vtime, vtime))
1425                         vusage = vtime - iocg->last_vtime;
1426                 else
1427                         vusage = 0;
1428
1429                 iocg->last_vtime += vusage;
1430                 /*
1431                  * Factor in in-flight vtime into vusage to avoid
1432                  * high-latency completions appearing as idle.  This should
1433                  * be done after the above ->last_time adjustment.
1434                  */
1435                 vusage = max(vusage, vtime - vdone);
1436
1437                 /* calculate hweight based usage ratio and record */
1438                 if (vusage) {
1439                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1440                                                    period_vtime);
1441                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1442                         iocg->usages[iocg->usage_idx] = usage;
1443                 } else {
1444                         usage = 0;
1445                 }
1446
1447                 /* see whether there's surplus vtime */
1448                 vmargin = ioc->margin_us * now.vrate;
1449                 vmin = now.vnow - vmargin;
1450
1451                 iocg->has_surplus = false;
1452
1453                 if (!waitqueue_active(&iocg->waitq) &&
1454                     time_before64(vtime, vmin)) {
1455                         u64 delta = vmin - vtime;
1456
1457                         /* throw away surplus vtime */
1458                         atomic64_add(delta, &iocg->vtime);
1459                         atomic64_add(delta, &iocg->done_vtime);
1460                         iocg->last_vtime += delta;
1461                         /* if usage is sufficiently low, maybe it can donate */
1462                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1463                                 iocg->has_surplus = true;
1464                                 nr_surpluses++;
1465                         }
1466                 } else if (hw_inuse < hw_active) {
1467                         u32 new_hwi, new_inuse;
1468
1469                         /* was donating but might need to take back some */
1470                         if (waitqueue_active(&iocg->waitq)) {
1471                                 new_hwi = hw_active;
1472                         } else {
1473                                 new_hwi = max(hw_inuse,
1474                                               usage * SURPLUS_SCALE_PCT / 100 +
1475                                               SURPLUS_SCALE_ABS);
1476                         }
1477
1478                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1479                                               hw_inuse);
1480                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1481
1482                         if (new_inuse > iocg->inuse) {
1483                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1484                                                 iocg->inuse, new_inuse,
1485                                                 hw_inuse, new_hwi);
1486                                 __propagate_active_weight(iocg, iocg->weight,
1487                                                           new_inuse);
1488                         }
1489                 } else {
1490                         /* genuninely out of vtime */
1491                         nr_shortages++;
1492                 }
1493         }
1494
1495         if (!nr_shortages || !nr_surpluses)
1496                 goto skip_surplus_transfers;
1497
1498         /* there are both shortages and surpluses, transfer surpluses */
1499         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1500                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1501                 int nr_valid = 0;
1502
1503                 if (!iocg->has_surplus)
1504                         continue;
1505
1506                 /* base the decision on max historical usage */
1507                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1508                         if (iocg->usages[i]) {
1509                                 usage = max(usage, iocg->usages[i]);
1510                                 nr_valid++;
1511                         }
1512                 }
1513                 if (nr_valid < MIN_VALID_USAGES)
1514                         continue;
1515
1516                 current_hweight(iocg, &hw_active, &hw_inuse);
1517                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1518                 if (!new_hwi)
1519                         continue;
1520
1521                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1522                                                hw_inuse);
1523                 if (new_inuse < iocg->inuse) {
1524                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1525                                         iocg->inuse, new_inuse,
1526                                         hw_inuse, new_hwi);
1527                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1528                 }
1529         }
1530 skip_surplus_transfers:
1531         commit_active_weights(ioc);
1532
1533         /*
1534          * If q is getting clogged or we're missing too much, we're issuing
1535          * too much IO and should lower vtime rate.  If we're not missing
1536          * and experiencing shortages but not surpluses, we're too stingy
1537          * and should increase vtime rate.
1538          */
1539         prev_busy_level = ioc->busy_level;
1540         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1541             missed_ppm[READ] > ppm_rthr ||
1542             missed_ppm[WRITE] > ppm_wthr) {
1543                 ioc->busy_level = max(ioc->busy_level, 0);
1544                 ioc->busy_level++;
1545         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1546                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1547                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1548                 /* take action iff there is contention */
1549                 if (nr_shortages && !nr_lagging) {
1550                         ioc->busy_level = min(ioc->busy_level, 0);
1551                         /* redistribute surpluses first */
1552                         if (!nr_surpluses)
1553                                 ioc->busy_level--;
1554                 }
1555         } else {
1556                 ioc->busy_level = 0;
1557         }
1558
1559         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1560
1561         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1562                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1563                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1564
1565                 /* rq_wait signal is always reliable, ignore user vrate_min */
1566                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1567                         vrate_min = VRATE_MIN;
1568
1569                 /*
1570                  * If vrate is out of bounds, apply clamp gradually as the
1571                  * bounds can change abruptly.  Otherwise, apply busy_level
1572                  * based adjustment.
1573                  */
1574                 if (vrate < vrate_min) {
1575                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1576                                           100);
1577                         vrate = min(vrate, vrate_min);
1578                 } else if (vrate > vrate_max) {
1579                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1580                                           100);
1581                         vrate = max(vrate, vrate_max);
1582                 } else {
1583                         int idx = min_t(int, abs(ioc->busy_level),
1584                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1585                         u32 adj_pct = vrate_adj_pct[idx];
1586
1587                         if (ioc->busy_level > 0)
1588                                 adj_pct = 100 - adj_pct;
1589                         else
1590                                 adj_pct = 100 + adj_pct;
1591
1592                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1593                                       vrate_min, vrate_max);
1594                 }
1595
1596                 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1597                                            nr_lagging, nr_shortages,
1598                                            nr_surpluses);
1599
1600                 atomic64_set(&ioc->vtime_rate, vrate);
1601                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1602                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1603         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1604                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1605                                            &missed_ppm, rq_wait_pct, nr_lagging,
1606                                            nr_shortages, nr_surpluses);
1607         }
1608
1609         ioc_refresh_params(ioc, false);
1610
1611         /*
1612          * This period is done.  Move onto the next one.  If nothing's
1613          * going on with the device, stop the timer.
1614          */
1615         atomic64_inc(&ioc->cur_period);
1616
1617         if (ioc->running != IOC_STOP) {
1618                 if (!list_empty(&ioc->active_iocgs)) {
1619                         ioc_start_period(ioc, &now);
1620                 } else {
1621                         ioc->busy_level = 0;
1622                         ioc->running = IOC_IDLE;
1623                 }
1624         }
1625
1626         spin_unlock_irq(&ioc->lock);
1627 }
1628
1629 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1630                                     bool is_merge, u64 *costp)
1631 {
1632         struct ioc *ioc = iocg->ioc;
1633         u64 coef_seqio, coef_randio, coef_page;
1634         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1635         u64 seek_pages = 0;
1636         u64 cost = 0;
1637
1638         switch (bio_op(bio)) {
1639         case REQ_OP_READ:
1640                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1641                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1642                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1643                 break;
1644         case REQ_OP_WRITE:
1645                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1646                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1647                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1648                 break;
1649         default:
1650                 goto out;
1651         }
1652
1653         if (iocg->cursor) {
1654                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1655                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1656         }
1657
1658         if (!is_merge) {
1659                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1660                         cost += coef_randio;
1661                 } else {
1662                         cost += coef_seqio;
1663                 }
1664         }
1665         cost += pages * coef_page;
1666 out:
1667         *costp = cost;
1668 }
1669
1670 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1671 {
1672         u64 cost;
1673
1674         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1675         return cost;
1676 }
1677
1678 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1679 {
1680         struct blkcg_gq *blkg = bio->bi_blkg;
1681         struct ioc *ioc = rqos_to_ioc(rqos);
1682         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1683         struct ioc_now now;
1684         struct iocg_wait wait;
1685         u32 hw_active, hw_inuse;
1686         u64 abs_cost, cost, vtime;
1687
1688         /* bypass IOs if disabled or for root cgroup */
1689         if (!ioc->enabled || !iocg->level)
1690                 return;
1691
1692         /* always activate so that even 0 cost IOs get protected to some level */
1693         if (!iocg_activate(iocg, &now))
1694                 return;
1695
1696         /* calculate the absolute vtime cost */
1697         abs_cost = calc_vtime_cost(bio, iocg, false);
1698         if (!abs_cost)
1699                 return;
1700
1701         iocg->cursor = bio_end_sector(bio);
1702
1703         vtime = atomic64_read(&iocg->vtime);
1704         current_hweight(iocg, &hw_active, &hw_inuse);
1705
1706         if (hw_inuse < hw_active &&
1707             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1708                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1709                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1710                 spin_lock_irq(&ioc->lock);
1711                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1712                 spin_unlock_irq(&ioc->lock);
1713                 current_hweight(iocg, &hw_active, &hw_inuse);
1714         }
1715
1716         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1717
1718         /*
1719          * If no one's waiting and within budget, issue right away.  The
1720          * tests are racy but the races aren't systemic - we only miss once
1721          * in a while which is fine.
1722          */
1723         if (!waitqueue_active(&iocg->waitq) &&
1724             !atomic64_read(&iocg->abs_vdebt) &&
1725             time_before_eq64(vtime + cost, now.vnow)) {
1726                 iocg_commit_bio(iocg, bio, cost);
1727                 return;
1728         }
1729
1730         /*
1731          * We're over budget.  If @bio has to be issued regardless,
1732          * remember the abs_cost instead of advancing vtime.
1733          * iocg_kick_waitq() will pay off the debt before waking more IOs.
1734          * This way, the debt is continuously paid off each period with the
1735          * actual budget available to the cgroup.  If we just wound vtime,
1736          * we would incorrectly use the current hw_inuse for the entire
1737          * amount which, for example, can lead to the cgroup staying
1738          * blocked for a long time even with substantially raised hw_inuse.
1739          */
1740         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1741                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1742                 iocg_kick_delay(iocg, &now, cost);
1743                 return;
1744         }
1745
1746         /*
1747          * Append self to the waitq and schedule the wakeup timer if we're
1748          * the first waiter.  The timer duration is calculated based on the
1749          * current vrate.  vtime and hweight changes can make it too short
1750          * or too long.  Each wait entry records the absolute cost it's
1751          * waiting for to allow re-evaluation using a custom wait entry.
1752          *
1753          * If too short, the timer simply reschedules itself.  If too long,
1754          * the period timer will notice and trigger wakeups.
1755          *
1756          * All waiters are on iocg->waitq and the wait states are
1757          * synchronized using waitq.lock.
1758          */
1759         spin_lock_irq(&iocg->waitq.lock);
1760
1761         /*
1762          * We activated above but w/o any synchronization.  Deactivation is
1763          * synchronized with waitq.lock and we won't get deactivated as
1764          * long as we're waiting, so we're good if we're activated here.
1765          * In the unlikely case that we are deactivated, just issue the IO.
1766          */
1767         if (unlikely(list_empty(&iocg->active_list))) {
1768                 spin_unlock_irq(&iocg->waitq.lock);
1769                 iocg_commit_bio(iocg, bio, cost);
1770                 return;
1771         }
1772
1773         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1774         wait.wait.private = current;
1775         wait.bio = bio;
1776         wait.abs_cost = abs_cost;
1777         wait.committed = false; /* will be set true by waker */
1778
1779         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1780         iocg_kick_waitq(iocg, &now);
1781
1782         spin_unlock_irq(&iocg->waitq.lock);
1783
1784         while (true) {
1785                 set_current_state(TASK_UNINTERRUPTIBLE);
1786                 if (wait.committed)
1787                         break;
1788                 io_schedule();
1789         }
1790
1791         /* waker already committed us, proceed */
1792         finish_wait(&iocg->waitq, &wait.wait);
1793 }
1794
1795 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1796                            struct bio *bio)
1797 {
1798         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1799         struct ioc *ioc = iocg->ioc;
1800         sector_t bio_end = bio_end_sector(bio);
1801         struct ioc_now now;
1802         u32 hw_inuse;
1803         u64 abs_cost, cost;
1804
1805         /* bypass if disabled or for root cgroup */
1806         if (!ioc->enabled || !iocg->level)
1807                 return;
1808
1809         abs_cost = calc_vtime_cost(bio, iocg, true);
1810         if (!abs_cost)
1811                 return;
1812
1813         ioc_now(ioc, &now);
1814         current_hweight(iocg, NULL, &hw_inuse);
1815         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1816
1817         /* update cursor if backmerging into the request at the cursor */
1818         if (blk_rq_pos(rq) < bio_end &&
1819             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1820                 iocg->cursor = bio_end;
1821
1822         /*
1823          * Charge if there's enough vtime budget and the existing request
1824          * has cost assigned.  Otherwise, account it as debt.  See debt
1825          * handling in ioc_rqos_throttle() for details.
1826          */
1827         if (rq->bio && rq->bio->bi_iocost_cost &&
1828             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1829                 iocg_commit_bio(iocg, bio, cost);
1830         else
1831                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1832 }
1833
1834 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1835 {
1836         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1837
1838         if (iocg && bio->bi_iocost_cost)
1839                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1840 }
1841
1842 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1843 {
1844         struct ioc *ioc = rqos_to_ioc(rqos);
1845         u64 on_q_ns, rq_wait_ns;
1846         int pidx, rw;
1847
1848         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1849                 return;
1850
1851         switch (req_op(rq) & REQ_OP_MASK) {
1852         case REQ_OP_READ:
1853                 pidx = QOS_RLAT;
1854                 rw = READ;
1855                 break;
1856         case REQ_OP_WRITE:
1857                 pidx = QOS_WLAT;
1858                 rw = WRITE;
1859                 break;
1860         default:
1861                 return;
1862         }
1863
1864         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1865         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1866
1867         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1868                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1869         else
1870                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1871
1872         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1873 }
1874
1875 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1876 {
1877         struct ioc *ioc = rqos_to_ioc(rqos);
1878
1879         spin_lock_irq(&ioc->lock);
1880         ioc_refresh_params(ioc, false);
1881         spin_unlock_irq(&ioc->lock);
1882 }
1883
1884 static void ioc_rqos_exit(struct rq_qos *rqos)
1885 {
1886         struct ioc *ioc = rqos_to_ioc(rqos);
1887
1888         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1889
1890         spin_lock_irq(&ioc->lock);
1891         ioc->running = IOC_STOP;
1892         spin_unlock_irq(&ioc->lock);
1893
1894         del_timer_sync(&ioc->timer);
1895         free_percpu(ioc->pcpu_stat);
1896         kfree(ioc);
1897 }
1898
1899 static struct rq_qos_ops ioc_rqos_ops = {
1900         .throttle = ioc_rqos_throttle,
1901         .merge = ioc_rqos_merge,
1902         .done_bio = ioc_rqos_done_bio,
1903         .done = ioc_rqos_done,
1904         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1905         .exit = ioc_rqos_exit,
1906 };
1907
1908 static int blk_iocost_init(struct request_queue *q)
1909 {
1910         struct ioc *ioc;
1911         struct rq_qos *rqos;
1912         int ret;
1913
1914         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1915         if (!ioc)
1916                 return -ENOMEM;
1917
1918         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1919         if (!ioc->pcpu_stat) {
1920                 kfree(ioc);
1921                 return -ENOMEM;
1922         }
1923
1924         rqos = &ioc->rqos;
1925         rqos->id = RQ_QOS_COST;
1926         rqos->ops = &ioc_rqos_ops;
1927         rqos->q = q;
1928
1929         spin_lock_init(&ioc->lock);
1930         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1931         INIT_LIST_HEAD(&ioc->active_iocgs);
1932
1933         ioc->running = IOC_IDLE;
1934         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1935         seqcount_init(&ioc->period_seqcount);
1936         ioc->period_at = ktime_to_us(ktime_get());
1937         atomic64_set(&ioc->cur_period, 0);
1938         atomic_set(&ioc->hweight_gen, 0);
1939
1940         spin_lock_irq(&ioc->lock);
1941         ioc->autop_idx = AUTOP_INVALID;
1942         ioc_refresh_params(ioc, true);
1943         spin_unlock_irq(&ioc->lock);
1944
1945         rq_qos_add(q, rqos);
1946         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1947         if (ret) {
1948                 rq_qos_del(q, rqos);
1949                 free_percpu(ioc->pcpu_stat);
1950                 kfree(ioc);
1951                 return ret;
1952         }
1953         return 0;
1954 }
1955
1956 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1957 {
1958         struct ioc_cgrp *iocc;
1959
1960         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1961         if (!iocc)
1962                 return NULL;
1963
1964         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1965         return &iocc->cpd;
1966 }
1967
1968 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1969 {
1970         kfree(container_of(cpd, struct ioc_cgrp, cpd));
1971 }
1972
1973 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1974                                              struct blkcg *blkcg)
1975 {
1976         int levels = blkcg->css.cgroup->level + 1;
1977         struct ioc_gq *iocg;
1978
1979         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1980                             gfp, q->node);
1981         if (!iocg)
1982                 return NULL;
1983
1984         return &iocg->pd;
1985 }
1986
1987 static void ioc_pd_init(struct blkg_policy_data *pd)
1988 {
1989         struct ioc_gq *iocg = pd_to_iocg(pd);
1990         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1991         struct ioc *ioc = q_to_ioc(blkg->q);
1992         struct ioc_now now;
1993         struct blkcg_gq *tblkg;
1994         unsigned long flags;
1995
1996         ioc_now(ioc, &now);
1997
1998         iocg->ioc = ioc;
1999         atomic64_set(&iocg->vtime, now.vnow);
2000         atomic64_set(&iocg->done_vtime, now.vnow);
2001         atomic64_set(&iocg->abs_vdebt, 0);
2002         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2003         INIT_LIST_HEAD(&iocg->active_list);
2004         iocg->hweight_active = HWEIGHT_WHOLE;
2005         iocg->hweight_inuse = HWEIGHT_WHOLE;
2006
2007         init_waitqueue_head(&iocg->waitq);
2008         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2009         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2010         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2011         iocg->delay_timer.function = iocg_delay_timer_fn;
2012
2013         iocg->level = blkg->blkcg->css.cgroup->level;
2014
2015         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2016                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2017                 iocg->ancestors[tiocg->level] = tiocg;
2018         }
2019
2020         spin_lock_irqsave(&ioc->lock, flags);
2021         weight_updated(iocg);
2022         spin_unlock_irqrestore(&ioc->lock, flags);
2023 }
2024
2025 static void ioc_pd_free(struct blkg_policy_data *pd)
2026 {
2027         struct ioc_gq *iocg = pd_to_iocg(pd);
2028         struct ioc *ioc = iocg->ioc;
2029
2030         if (ioc) {
2031                 spin_lock(&ioc->lock);
2032                 if (!list_empty(&iocg->active_list)) {
2033                         propagate_active_weight(iocg, 0, 0);
2034                         list_del_init(&iocg->active_list);
2035                 }
2036                 spin_unlock(&ioc->lock);
2037
2038                 hrtimer_cancel(&iocg->waitq_timer);
2039                 hrtimer_cancel(&iocg->delay_timer);
2040         }
2041         kfree(iocg);
2042 }
2043
2044 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2045                              int off)
2046 {
2047         const char *dname = blkg_dev_name(pd->blkg);
2048         struct ioc_gq *iocg = pd_to_iocg(pd);
2049
2050         if (dname && iocg->cfg_weight)
2051                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2052         return 0;
2053 }
2054
2055
2056 static int ioc_weight_show(struct seq_file *sf, void *v)
2057 {
2058         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2059         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2060
2061         seq_printf(sf, "default %u\n", iocc->dfl_weight);
2062         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2063                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2064         return 0;
2065 }
2066
2067 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2068                                 size_t nbytes, loff_t off)
2069 {
2070         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2071         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2072         struct blkg_conf_ctx ctx;
2073         struct ioc_gq *iocg;
2074         u32 v;
2075         int ret;
2076
2077         if (!strchr(buf, ':')) {
2078                 struct blkcg_gq *blkg;
2079
2080                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2081                         return -EINVAL;
2082
2083                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2084                         return -EINVAL;
2085
2086                 spin_lock(&blkcg->lock);
2087                 iocc->dfl_weight = v;
2088                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2089                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2090
2091                         if (iocg) {
2092                                 spin_lock_irq(&iocg->ioc->lock);
2093                                 weight_updated(iocg);
2094                                 spin_unlock_irq(&iocg->ioc->lock);
2095                         }
2096                 }
2097                 spin_unlock(&blkcg->lock);
2098
2099                 return nbytes;
2100         }
2101
2102         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2103         if (ret)
2104                 return ret;
2105
2106         iocg = blkg_to_iocg(ctx.blkg);
2107
2108         if (!strncmp(ctx.body, "default", 7)) {
2109                 v = 0;
2110         } else {
2111                 if (!sscanf(ctx.body, "%u", &v))
2112                         goto einval;
2113                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2114                         goto einval;
2115         }
2116
2117         spin_lock(&iocg->ioc->lock);
2118         iocg->cfg_weight = v;
2119         weight_updated(iocg);
2120         spin_unlock(&iocg->ioc->lock);
2121
2122         blkg_conf_finish(&ctx);
2123         return nbytes;
2124
2125 einval:
2126         blkg_conf_finish(&ctx);
2127         return -EINVAL;
2128 }
2129
2130 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2131                           int off)
2132 {
2133         const char *dname = blkg_dev_name(pd->blkg);
2134         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2135
2136         if (!dname)
2137                 return 0;
2138
2139         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2140                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2141                    ioc->params.qos[QOS_RPPM] / 10000,
2142                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2143                    ioc->params.qos[QOS_RLAT],
2144                    ioc->params.qos[QOS_WPPM] / 10000,
2145                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2146                    ioc->params.qos[QOS_WLAT],
2147                    ioc->params.qos[QOS_MIN] / 10000,
2148                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2149                    ioc->params.qos[QOS_MAX] / 10000,
2150                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2151         return 0;
2152 }
2153
2154 static int ioc_qos_show(struct seq_file *sf, void *v)
2155 {
2156         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2157
2158         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2159                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2160         return 0;
2161 }
2162
2163 static const match_table_t qos_ctrl_tokens = {
2164         { QOS_ENABLE,           "enable=%u"     },
2165         { QOS_CTRL,             "ctrl=%s"       },
2166         { NR_QOS_CTRL_PARAMS,   NULL            },
2167 };
2168
2169 static const match_table_t qos_tokens = {
2170         { QOS_RPPM,             "rpct=%s"       },
2171         { QOS_RLAT,             "rlat=%u"       },
2172         { QOS_WPPM,             "wpct=%s"       },
2173         { QOS_WLAT,             "wlat=%u"       },
2174         { QOS_MIN,              "min=%s"        },
2175         { QOS_MAX,              "max=%s"        },
2176         { NR_QOS_PARAMS,        NULL            },
2177 };
2178
2179 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2180                              size_t nbytes, loff_t off)
2181 {
2182         struct gendisk *disk;
2183         struct ioc *ioc;
2184         u32 qos[NR_QOS_PARAMS];
2185         bool enable, user;
2186         char *p;
2187         int ret;
2188
2189         disk = blkcg_conf_get_disk(&input);
2190         if (IS_ERR(disk))
2191                 return PTR_ERR(disk);
2192
2193         ioc = q_to_ioc(disk->queue);
2194         if (!ioc) {
2195                 ret = blk_iocost_init(disk->queue);
2196                 if (ret)
2197                         goto err;
2198                 ioc = q_to_ioc(disk->queue);
2199         }
2200
2201         spin_lock_irq(&ioc->lock);
2202         memcpy(qos, ioc->params.qos, sizeof(qos));
2203         enable = ioc->enabled;
2204         user = ioc->user_qos_params;
2205         spin_unlock_irq(&ioc->lock);
2206
2207         while ((p = strsep(&input, " \t\n"))) {
2208                 substring_t args[MAX_OPT_ARGS];
2209                 char buf[32];
2210                 int tok;
2211                 s64 v;
2212
2213                 if (!*p)
2214                         continue;
2215
2216                 switch (match_token(p, qos_ctrl_tokens, args)) {
2217                 case QOS_ENABLE:
2218                         match_u64(&args[0], &v);
2219                         enable = v;
2220                         continue;
2221                 case QOS_CTRL:
2222                         match_strlcpy(buf, &args[0], sizeof(buf));
2223                         if (!strcmp(buf, "auto"))
2224                                 user = false;
2225                         else if (!strcmp(buf, "user"))
2226                                 user = true;
2227                         else
2228                                 goto einval;
2229                         continue;
2230                 }
2231
2232                 tok = match_token(p, qos_tokens, args);
2233                 switch (tok) {
2234                 case QOS_RPPM:
2235                 case QOS_WPPM:
2236                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2237                             sizeof(buf))
2238                                 goto einval;
2239                         if (cgroup_parse_float(buf, 2, &v))
2240                                 goto einval;
2241                         if (v < 0 || v > 10000)
2242                                 goto einval;
2243                         qos[tok] = v * 100;
2244                         break;
2245                 case QOS_RLAT:
2246                 case QOS_WLAT:
2247                         if (match_u64(&args[0], &v))
2248                                 goto einval;
2249                         qos[tok] = v;
2250                         break;
2251                 case QOS_MIN:
2252                 case QOS_MAX:
2253                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2254                             sizeof(buf))
2255                                 goto einval;
2256                         if (cgroup_parse_float(buf, 2, &v))
2257                                 goto einval;
2258                         if (v < 0)
2259                                 goto einval;
2260                         qos[tok] = clamp_t(s64, v * 100,
2261                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2262                         break;
2263                 default:
2264                         goto einval;
2265                 }
2266                 user = true;
2267         }
2268
2269         if (qos[QOS_MIN] > qos[QOS_MAX])
2270                 goto einval;
2271
2272         spin_lock_irq(&ioc->lock);
2273
2274         if (enable) {
2275                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2276                 ioc->enabled = true;
2277         } else {
2278                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2279                 ioc->enabled = false;
2280         }
2281
2282         if (user) {
2283                 memcpy(ioc->params.qos, qos, sizeof(qos));
2284                 ioc->user_qos_params = true;
2285         } else {
2286                 ioc->user_qos_params = false;
2287         }
2288
2289         ioc_refresh_params(ioc, true);
2290         spin_unlock_irq(&ioc->lock);
2291
2292         put_disk_and_module(disk);
2293         return nbytes;
2294 einval:
2295         ret = -EINVAL;
2296 err:
2297         put_disk_and_module(disk);
2298         return ret;
2299 }
2300
2301 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2302                                  struct blkg_policy_data *pd, int off)
2303 {
2304         const char *dname = blkg_dev_name(pd->blkg);
2305         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2306         u64 *u = ioc->params.i_lcoefs;
2307
2308         if (!dname)
2309                 return 0;
2310
2311         seq_printf(sf, "%s ctrl=%s model=linear "
2312                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2313                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2314                    dname, ioc->user_cost_model ? "user" : "auto",
2315                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2316                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2317         return 0;
2318 }
2319
2320 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2321 {
2322         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2323
2324         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2325                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2326         return 0;
2327 }
2328
2329 static const match_table_t cost_ctrl_tokens = {
2330         { COST_CTRL,            "ctrl=%s"       },
2331         { COST_MODEL,           "model=%s"      },
2332         { NR_COST_CTRL_PARAMS,  NULL            },
2333 };
2334
2335 static const match_table_t i_lcoef_tokens = {
2336         { I_LCOEF_RBPS,         "rbps=%u"       },
2337         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2338         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2339         { I_LCOEF_WBPS,         "wbps=%u"       },
2340         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2341         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2342         { NR_I_LCOEFS,          NULL            },
2343 };
2344
2345 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2346                                     size_t nbytes, loff_t off)
2347 {
2348         struct gendisk *disk;
2349         struct ioc *ioc;
2350         u64 u[NR_I_LCOEFS];
2351         bool user;
2352         char *p;
2353         int ret;
2354
2355         disk = blkcg_conf_get_disk(&input);
2356         if (IS_ERR(disk))
2357                 return PTR_ERR(disk);
2358
2359         ioc = q_to_ioc(disk->queue);
2360         if (!ioc) {
2361                 ret = blk_iocost_init(disk->queue);
2362                 if (ret)
2363                         goto err;
2364                 ioc = q_to_ioc(disk->queue);
2365         }
2366
2367         spin_lock_irq(&ioc->lock);
2368         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2369         user = ioc->user_cost_model;
2370         spin_unlock_irq(&ioc->lock);
2371
2372         while ((p = strsep(&input, " \t\n"))) {
2373                 substring_t args[MAX_OPT_ARGS];
2374                 char buf[32];
2375                 int tok;
2376                 u64 v;
2377
2378                 if (!*p)
2379                         continue;
2380
2381                 switch (match_token(p, cost_ctrl_tokens, args)) {
2382                 case COST_CTRL:
2383                         match_strlcpy(buf, &args[0], sizeof(buf));
2384                         if (!strcmp(buf, "auto"))
2385                                 user = false;
2386                         else if (!strcmp(buf, "user"))
2387                                 user = true;
2388                         else
2389                                 goto einval;
2390                         continue;
2391                 case COST_MODEL:
2392                         match_strlcpy(buf, &args[0], sizeof(buf));
2393                         if (strcmp(buf, "linear"))
2394                                 goto einval;
2395                         continue;
2396                 }
2397
2398                 tok = match_token(p, i_lcoef_tokens, args);
2399                 if (tok == NR_I_LCOEFS)
2400                         goto einval;
2401                 if (match_u64(&args[0], &v))
2402                         goto einval;
2403                 u[tok] = v;
2404                 user = true;
2405         }
2406
2407         spin_lock_irq(&ioc->lock);
2408         if (user) {
2409                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2410                 ioc->user_cost_model = true;
2411         } else {
2412                 ioc->user_cost_model = false;
2413         }
2414         ioc_refresh_params(ioc, true);
2415         spin_unlock_irq(&ioc->lock);
2416
2417         put_disk_and_module(disk);
2418         return nbytes;
2419
2420 einval:
2421         ret = -EINVAL;
2422 err:
2423         put_disk_and_module(disk);
2424         return ret;
2425 }
2426
2427 static struct cftype ioc_files[] = {
2428         {
2429                 .name = "weight",
2430                 .flags = CFTYPE_NOT_ON_ROOT,
2431                 .seq_show = ioc_weight_show,
2432                 .write = ioc_weight_write,
2433         },
2434         {
2435                 .name = "cost.qos",
2436                 .flags = CFTYPE_ONLY_ON_ROOT,
2437                 .seq_show = ioc_qos_show,
2438                 .write = ioc_qos_write,
2439         },
2440         {
2441                 .name = "cost.model",
2442                 .flags = CFTYPE_ONLY_ON_ROOT,
2443                 .seq_show = ioc_cost_model_show,
2444                 .write = ioc_cost_model_write,
2445         },
2446         {}
2447 };
2448
2449 static struct blkcg_policy blkcg_policy_iocost = {
2450         .dfl_cftypes    = ioc_files,
2451         .cpd_alloc_fn   = ioc_cpd_alloc,
2452         .cpd_free_fn    = ioc_cpd_free,
2453         .pd_alloc_fn    = ioc_pd_alloc,
2454         .pd_init_fn     = ioc_pd_init,
2455         .pd_free_fn     = ioc_pd_free,
2456 };
2457
2458 static int __init ioc_init(void)
2459 {
2460         return blkcg_policy_register(&blkcg_policy_iocost);
2461 }
2462
2463 static void __exit ioc_exit(void)
2464 {
2465         return blkcg_policy_unregister(&blkcg_policy_iocost);
2466 }
2467
2468 module_init(ioc_init);
2469 module_exit(ioc_exit);