blkcg: add missing NULL check in ioc_cpd_alloc()
[linux-2.6-microblaze.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50  * device-specific coefficients.
51  *
52  * 2. Control Strategy
53  *
54  * The device virtual time (vtime) is used as the primary control metric.
55  * The control strategy is composed of the following three parts.
56  *
57  * 2-1. Vtime Distribution
58  *
59  * When a cgroup becomes active in terms of IOs, its hierarchical share is
60  * calculated.  Please consider the following hierarchy where the numbers
61  * inside parentheses denote the configured weights.
62  *
63  *           root
64  *         /       \
65  *      A (w:100)  B (w:300)
66  *      /       \
67  *  A0 (w:100)  A1 (w:100)
68  *
69  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
71  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72  * 12.5% each.  The distribution mechanism only cares about these flattened
73  * shares.  They're called hweights (hierarchical weights) and always add
74  * upto 1 (HWEIGHT_WHOLE).
75  *
76  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78  * against the device vtime - an IO which takes 10ms on the underlying
79  * device is considered to take 80ms on A0.
80  *
81  * This constitutes the basis of IO capacity distribution.  Each cgroup's
82  * vtime is running at a rate determined by its hweight.  A cgroup tracks
83  * the vtime consumed by past IOs and can issue a new IO iff doing so
84  * wouldn't outrun the current device vtime.  Otherwise, the IO is
85  * suspended until the vtime has progressed enough to cover it.
86  *
87  * 2-2. Vrate Adjustment
88  *
89  * It's unrealistic to expect the cost model to be perfect.  There are too
90  * many devices and even on the same device the overall performance
91  * fluctuates depending on numerous factors such as IO mixture and device
92  * internal garbage collection.  The controller needs to adapt dynamically.
93  *
94  * This is achieved by adjusting the overall IO rate according to how busy
95  * the device is.  If the device becomes overloaded, we're sending down too
96  * many IOs and should generally slow down.  If there are waiting issuers
97  * but the device isn't saturated, we're issuing too few and should
98  * generally speed up.
99  *
100  * To slow down, we lower the vrate - the rate at which the device vtime
101  * passes compared to the wall clock.  For example, if the vtime is running
102  * at the vrate of 75%, all cgroups added up would only be able to issue
103  * 750ms worth of IOs per second, and vice-versa for speeding up.
104  *
105  * Device business is determined using two criteria - rq wait and
106  * completion latencies.
107  *
108  * When a device gets saturated, the on-device and then the request queues
109  * fill up and a bio which is ready to be issued has to wait for a request
110  * to become available.  When this delay becomes noticeable, it's a clear
111  * indication that the device is saturated and we lower the vrate.  This
112  * saturation signal is fairly conservative as it only triggers when both
113  * hardware and software queues are filled up, and is used as the default
114  * busy signal.
115  *
116  * As devices can have deep queues and be unfair in how the queued commands
117  * are executed, soley depending on rq wait may not result in satisfactory
118  * control quality.  For a better control quality, completion latency QoS
119  * parameters can be configured so that the device is considered saturated
120  * if N'th percentile completion latency rises above the set point.
121  *
122  * The completion latency requirements are a function of both the
123  * underlying device characteristics and the desired IO latency quality of
124  * service.  There is an inherent trade-off - the tighter the latency QoS,
125  * the higher the bandwidth lossage.  Latency QoS is disabled by default
126  * and can be set through /sys/fs/cgroup/io.cost.qos.
127  *
128  * 2-3. Work Conservation
129  *
130  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
131  * periodically while B is sending out enough parallel IOs to saturate the
132  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
133  * cost per second, i.e., 10% of the device capacity.  The naive
134  * distribution of half and half would lead to 60% utilization of the
135  * device, a significant reduction in the total amount of work done
136  * compared to free-for-all competition.  This is too high a cost to pay
137  * for IO control.
138  *
139  * To conserve the total amount of work done, we keep track of how much
140  * each active cgroup is actually using and yield part of its weight if
141  * there are other cgroups which can make use of it.  In the above case,
142  * A's weight will be lowered so that it hovers above the actual usage and
143  * B would be able to use the rest.
144  *
145  * As we don't want to penalize a cgroup for donating its weight, the
146  * surplus weight adjustment factors in a margin and has an immediate
147  * snapback mechanism in case the cgroup needs more IO vtime for itself.
148  *
149  * Note that adjusting down surplus weights has the same effects as
150  * accelerating vtime for other cgroups and work conservation can also be
151  * implemented by adjusting vrate dynamically.  However, squaring who can
152  * donate and should take back how much requires hweight propagations
153  * anyway making it easier to implement and understand as a separate
154  * mechanism.
155  *
156  * 3. Monitoring
157  *
158  * Instead of debugfs or other clumsy monitoring mechanisms, this
159  * controller uses a drgn based monitoring script -
160  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
161  * https://github.com/osandov/drgn.  The ouput looks like the following.
162  *
163  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164  *                 active      weight      hweight% inflt% del_ms usages%
165  *  test/a              *    50/   50  33.33/ 33.33  27.65  0*041 033:033:033
166  *  test/b              *   100/  100  66.67/ 66.67  17.56  0*000 066:079:077
167  *
168  * - per        : Timer period
169  * - cur_per    : Internal wall and device vtime clock
170  * - vrate      : Device virtual time rate against wall clock
171  * - weight     : Surplus-adjusted and configured weights
172  * - hweight    : Surplus-adjusted and configured hierarchical weights
173  * - inflt      : The percentage of in-flight IO cost at the end of last period
174  * - del_ms     : Deferred issuer delay induction level and duration
175  * - usages     : Usage history
176  */
177
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
187 #include "blk-wbt.h"
188
189 #ifdef CONFIG_TRACEPOINTS
190
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195
196 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
197         do {                                                                    \
198                 unsigned long flags;                                            \
199                 if (trace_iocost_##type##_enabled()) {                          \
200                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
201                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
202                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
203                         trace_iocost_##type(iocg, trace_iocg_path,              \
204                                               ##__VA_ARGS__);                   \
205                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
206                 }                                                               \
207         } while (0)
208
209 #else   /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
211 #endif  /* CONFIG_TRACE_POINTS */
212
213 enum {
214         MILLION                 = 1000000,
215
216         /* timer period is calculated from latency requirements, bound it */
217         MIN_PERIOD              = USEC_PER_MSEC,
218         MAX_PERIOD              = USEC_PER_SEC,
219
220         /*
221          * A cgroup's vtime can run 50% behind the device vtime, which
222          * serves as its IO credit buffer.  Surplus weight adjustment is
223          * immediately canceled if the vtime margin runs below 10%.
224          */
225         MARGIN_PCT              = 50,
226         INUSE_MARGIN_PCT        = 10,
227
228         /* Have some play in waitq timer operations */
229         WAITQ_TIMER_MARGIN_PCT  = 5,
230
231         /*
232          * vtime can wrap well within a reasonable uptime when vrate is
233          * consistently raised.  Don't trust recorded cgroup vtime if the
234          * period counter indicates that it's older than 5mins.
235          */
236         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
237
238         /*
239          * Remember the past three non-zero usages and use the max for
240          * surplus calculation.  Three slots guarantee that we remember one
241          * full period usage from the last active stretch even after
242          * partial deactivation and re-activation periods.  Don't start
243          * giving away weight before collecting two data points to prevent
244          * hweight adjustments based on one partial activation period.
245          */
246         NR_USAGE_SLOTS          = 3,
247         MIN_VALID_USAGES        = 2,
248
249         /* 1/64k is granular enough and can easily be handled w/ u32 */
250         HWEIGHT_WHOLE           = 1 << 16,
251
252         /*
253          * As vtime is used to calculate the cost of each IO, it needs to
254          * be fairly high precision.  For example, it should be able to
255          * represent the cost of a single page worth of discard with
256          * suffificient accuracy.  At the same time, it should be able to
257          * represent reasonably long enough durations to be useful and
258          * convenient during operation.
259          *
260          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
261          * granularity and days of wrap-around time even at extreme vrates.
262          */
263         VTIME_PER_SEC_SHIFT     = 37,
264         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
265         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
266
267         /* bound vrate adjustments within two orders of magnitude */
268         VRATE_MIN_PPM           = 10000,        /* 1% */
269         VRATE_MAX_PPM           = 100000000,    /* 10000% */
270
271         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272         VRATE_CLAMP_ADJ_PCT     = 4,
273
274         /* if IOs end up waiting for requests, issue less */
275         RQ_WAIT_BUSY_PCT        = 5,
276
277         /* unbusy hysterisis */
278         UNBUSY_THR_PCT          = 75,
279
280         /* don't let cmds which take a very long time pin lagging for too long */
281         MAX_LAGGING_PERIODS     = 10,
282
283         /*
284          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285          * donate the surplus.
286          */
287         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
288         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
289         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
290
291         /* switch iff the conditions are met for longer than this */
292         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
293
294         /*
295          * Count IO size in 4k pages.  The 12bit shift helps keeping
296          * size-proportional components of cost calculation in closer
297          * numbers of digits to per-IO cost components.
298          */
299         IOC_PAGE_SHIFT          = 12,
300         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
301         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303         /* if apart further than 16M, consider randio for linear model */
304         LCOEF_RANDIO_PAGES      = 4096,
305 };
306
307 enum ioc_running {
308         IOC_IDLE,
309         IOC_RUNNING,
310         IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315         QOS_ENABLE,
316         QOS_CTRL,
317         NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322         QOS_RPPM,
323         QOS_RLAT,
324         QOS_WPPM,
325         QOS_WLAT,
326         QOS_MIN,
327         QOS_MAX,
328         NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333         COST_CTRL,
334         COST_MODEL,
335         NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340         I_LCOEF_RBPS,
341         I_LCOEF_RSEQIOPS,
342         I_LCOEF_RRANDIOPS,
343         I_LCOEF_WBPS,
344         I_LCOEF_WSEQIOPS,
345         I_LCOEF_WRANDIOPS,
346         NR_I_LCOEFS,
347 };
348
349 enum {
350         LCOEF_RPAGE,
351         LCOEF_RSEQIO,
352         LCOEF_RRANDIO,
353         LCOEF_WPAGE,
354         LCOEF_WSEQIO,
355         LCOEF_WRANDIO,
356         NR_LCOEFS,
357 };
358
359 enum {
360         AUTOP_INVALID,
361         AUTOP_HDD,
362         AUTOP_SSD_QD1,
363         AUTOP_SSD_DFL,
364         AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370         u32                             qos[NR_QOS_PARAMS];
371         u64                             i_lcoefs[NR_I_LCOEFS];
372         u64                             lcoefs[NR_LCOEFS];
373         u32                             too_fast_vrate_pct;
374         u32                             too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378         u32                             nr_met;
379         u32                             nr_missed;
380         u32                             last_met;
381         u32                             last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385         struct ioc_missed               missed[2];
386
387         u64                             rq_wait_ns;
388         u64                             last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393         struct rq_qos                   rqos;
394
395         bool                            enabled;
396
397         struct ioc_params               params;
398         u32                             period_us;
399         u32                             margin_us;
400         u64                             vrate_min;
401         u64                             vrate_max;
402
403         spinlock_t                      lock;
404         struct timer_list               timer;
405         struct list_head                active_iocgs;   /* active cgroups */
406         struct ioc_pcpu_stat __percpu   *pcpu_stat;
407
408         enum ioc_running                running;
409         atomic64_t                      vtime_rate;
410
411         seqcount_t                      period_seqcount;
412         u32                             period_at;      /* wallclock starttime */
413         u64                             period_at_vtime; /* vtime starttime */
414
415         atomic64_t                      cur_period;     /* inc'd each period */
416         int                             busy_level;     /* saturation history */
417
418         u64                             inuse_margin_vtime;
419         bool                            weights_updated;
420         atomic_t                        hweight_gen;    /* for lazy hweights */
421
422         u64                             autop_too_fast_at;
423         u64                             autop_too_slow_at;
424         int                             autop_idx;
425         bool                            user_qos_params:1;
426         bool                            user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431         struct blkg_policy_data         pd;
432         struct ioc                      *ioc;
433
434         /*
435          * A iocg can get its weight from two sources - an explicit
436          * per-device-cgroup configuration or the default weight of the
437          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
438          * configuration.  `weight` is the effective considering both
439          * sources.
440          *
441          * When an idle cgroup becomes active its `active` goes from 0 to
442          * `weight`.  `inuse` is the surplus adjusted active weight.
443          * `active` and `inuse` are used to calculate `hweight_active` and
444          * `hweight_inuse`.
445          *
446          * `last_inuse` remembers `inuse` while an iocg is idle to persist
447          * surplus adjustments.
448          */
449         u32                             cfg_weight;
450         u32                             weight;
451         u32                             active;
452         u32                             inuse;
453         u32                             last_inuse;
454
455         sector_t                        cursor;         /* to detect randio */
456
457         /*
458          * `vtime` is this iocg's vtime cursor which progresses as IOs are
459          * issued.  If lagging behind device vtime, the delta represents
460          * the currently available IO budget.  If runnning ahead, the
461          * overage.
462          *
463          * `vtime_done` is the same but progressed on completion rather
464          * than issue.  The delta behind `vtime` represents the cost of
465          * currently in-flight IOs.
466          *
467          * `last_vtime` is used to remember `vtime` at the end of the last
468          * period to calculate utilization.
469          */
470         atomic64_t                      vtime;
471         atomic64_t                      done_vtime;
472         u64                             last_vtime;
473
474         /*
475          * The period this iocg was last active in.  Used for deactivation
476          * and invalidating `vtime`.
477          */
478         atomic64_t                      active_period;
479         struct list_head                active_list;
480
481         /* see __propagate_active_weight() and current_hweight() for details */
482         u64                             child_active_sum;
483         u64                             child_inuse_sum;
484         int                             hweight_gen;
485         u32                             hweight_active;
486         u32                             hweight_inuse;
487         bool                            has_surplus;
488
489         struct wait_queue_head          waitq;
490         struct hrtimer                  waitq_timer;
491         struct hrtimer                  delay_timer;
492
493         /* usage is recorded as fractions of HWEIGHT_WHOLE */
494         int                             usage_idx;
495         u32                             usages[NR_USAGE_SLOTS];
496
497         /* this iocg's depth in the hierarchy and ancestors including self */
498         int                             level;
499         struct ioc_gq                   *ancestors[];
500 };
501
502 /* per cgroup */
503 struct ioc_cgrp {
504         struct blkcg_policy_data        cpd;
505         unsigned int                    dfl_weight;
506 };
507
508 struct ioc_now {
509         u64                             now_ns;
510         u32                             now;
511         u64                             vnow;
512         u64                             vrate;
513 };
514
515 struct iocg_wait {
516         struct wait_queue_entry         wait;
517         struct bio                      *bio;
518         u64                             abs_cost;
519         bool                            committed;
520 };
521
522 struct iocg_wake_ctx {
523         struct ioc_gq                   *iocg;
524         u32                             hw_inuse;
525         s64                             vbudget;
526 };
527
528 static const struct ioc_params autop[] = {
529         [AUTOP_HDD] = {
530                 .qos                            = {
531                         [QOS_RLAT]              =         50000, /* 50ms */
532                         [QOS_WLAT]              =         50000,
533                         [QOS_MIN]               = VRATE_MIN_PPM,
534                         [QOS_MAX]               = VRATE_MAX_PPM,
535                 },
536                 .i_lcoefs                       = {
537                         [I_LCOEF_RBPS]          =     174019176,
538                         [I_LCOEF_RSEQIOPS]      =         41708,
539                         [I_LCOEF_RRANDIOPS]     =           370,
540                         [I_LCOEF_WBPS]          =     178075866,
541                         [I_LCOEF_WSEQIOPS]      =         42705,
542                         [I_LCOEF_WRANDIOPS]     =           378,
543                 },
544         },
545         [AUTOP_SSD_QD1] = {
546                 .qos                            = {
547                         [QOS_RLAT]              =         25000, /* 25ms */
548                         [QOS_WLAT]              =         25000,
549                         [QOS_MIN]               = VRATE_MIN_PPM,
550                         [QOS_MAX]               = VRATE_MAX_PPM,
551                 },
552                 .i_lcoefs                       = {
553                         [I_LCOEF_RBPS]          =     245855193,
554                         [I_LCOEF_RSEQIOPS]      =         61575,
555                         [I_LCOEF_RRANDIOPS]     =          6946,
556                         [I_LCOEF_WBPS]          =     141365009,
557                         [I_LCOEF_WSEQIOPS]      =         33716,
558                         [I_LCOEF_WRANDIOPS]     =         26796,
559                 },
560         },
561         [AUTOP_SSD_DFL] = {
562                 .qos                            = {
563                         [QOS_RLAT]              =         25000, /* 25ms */
564                         [QOS_WLAT]              =         25000,
565                         [QOS_MIN]               = VRATE_MIN_PPM,
566                         [QOS_MAX]               = VRATE_MAX_PPM,
567                 },
568                 .i_lcoefs                       = {
569                         [I_LCOEF_RBPS]          =     488636629,
570                         [I_LCOEF_RSEQIOPS]      =          8932,
571                         [I_LCOEF_RRANDIOPS]     =          8518,
572                         [I_LCOEF_WBPS]          =     427891549,
573                         [I_LCOEF_WSEQIOPS]      =         28755,
574                         [I_LCOEF_WRANDIOPS]     =         21940,
575                 },
576                 .too_fast_vrate_pct             =           500,
577         },
578         [AUTOP_SSD_FAST] = {
579                 .qos                            = {
580                         [QOS_RLAT]              =          5000, /* 5ms */
581                         [QOS_WLAT]              =          5000,
582                         [QOS_MIN]               = VRATE_MIN_PPM,
583                         [QOS_MAX]               = VRATE_MAX_PPM,
584                 },
585                 .i_lcoefs                       = {
586                         [I_LCOEF_RBPS]          =    3102524156LLU,
587                         [I_LCOEF_RSEQIOPS]      =        724816,
588                         [I_LCOEF_RRANDIOPS]     =        778122,
589                         [I_LCOEF_WBPS]          =    1742780862LLU,
590                         [I_LCOEF_WSEQIOPS]      =        425702,
591                         [I_LCOEF_WRANDIOPS]     =        443193,
592                 },
593                 .too_slow_vrate_pct             =            10,
594         },
595 };
596
597 /*
598  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
599  * vtime credit shortage and down on device saturation.
600  */
601 static u32 vrate_adj_pct[] =
602         { 0, 0, 0, 0,
603           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
604           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
605           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
606
607 static struct blkcg_policy blkcg_policy_iocost;
608
609 /* accessors and helpers */
610 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
611 {
612         return container_of(rqos, struct ioc, rqos);
613 }
614
615 static struct ioc *q_to_ioc(struct request_queue *q)
616 {
617         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
618 }
619
620 static const char *q_name(struct request_queue *q)
621 {
622         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
623                 return kobject_name(q->kobj.parent);
624         else
625                 return "<unknown>";
626 }
627
628 static const char __maybe_unused *ioc_name(struct ioc *ioc)
629 {
630         return q_name(ioc->rqos.q);
631 }
632
633 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
634 {
635         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
636 }
637
638 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
639 {
640         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
641 }
642
643 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
644 {
645         return pd_to_blkg(&iocg->pd);
646 }
647
648 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
649 {
650         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
651                             struct ioc_cgrp, cpd);
652 }
653
654 /*
655  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
656  * weight, the more expensive each IO.
657  */
658 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
659 {
660         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
661 }
662
663 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
664 {
665         bio->bi_iocost_cost = cost;
666         atomic64_add(cost, &iocg->vtime);
667 }
668
669 #define CREATE_TRACE_POINTS
670 #include <trace/events/iocost.h>
671
672 /* latency Qos params changed, update period_us and all the dependent params */
673 static void ioc_refresh_period_us(struct ioc *ioc)
674 {
675         u32 ppm, lat, multi, period_us;
676
677         lockdep_assert_held(&ioc->lock);
678
679         /* pick the higher latency target */
680         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
681                 ppm = ioc->params.qos[QOS_RPPM];
682                 lat = ioc->params.qos[QOS_RLAT];
683         } else {
684                 ppm = ioc->params.qos[QOS_WPPM];
685                 lat = ioc->params.qos[QOS_WLAT];
686         }
687
688         /*
689          * We want the period to be long enough to contain a healthy number
690          * of IOs while short enough for granular control.  Define it as a
691          * multiple of the latency target.  Ideally, the multiplier should
692          * be scaled according to the percentile so that it would nominally
693          * contain a certain number of requests.  Let's be simpler and
694          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
695          */
696         if (ppm)
697                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
698         else
699                 multi = 2;
700         period_us = multi * lat;
701         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
702
703         /* calculate dependent params */
704         ioc->period_us = period_us;
705         ioc->margin_us = period_us * MARGIN_PCT / 100;
706         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
707                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
708 }
709
710 static int ioc_autop_idx(struct ioc *ioc)
711 {
712         int idx = ioc->autop_idx;
713         const struct ioc_params *p = &autop[idx];
714         u32 vrate_pct;
715         u64 now_ns;
716
717         /* rotational? */
718         if (!blk_queue_nonrot(ioc->rqos.q))
719                 return AUTOP_HDD;
720
721         /* handle SATA SSDs w/ broken NCQ */
722         if (blk_queue_depth(ioc->rqos.q) == 1)
723                 return AUTOP_SSD_QD1;
724
725         /* use one of the normal ssd sets */
726         if (idx < AUTOP_SSD_DFL)
727                 return AUTOP_SSD_DFL;
728
729         /* if user is overriding anything, maintain what was there */
730         if (ioc->user_qos_params || ioc->user_cost_model)
731                 return idx;
732
733         /* step up/down based on the vrate */
734         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
735                               VTIME_PER_USEC);
736         now_ns = ktime_get_ns();
737
738         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
739                 if (!ioc->autop_too_fast_at)
740                         ioc->autop_too_fast_at = now_ns;
741                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
742                         return idx + 1;
743         } else {
744                 ioc->autop_too_fast_at = 0;
745         }
746
747         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
748                 if (!ioc->autop_too_slow_at)
749                         ioc->autop_too_slow_at = now_ns;
750                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
751                         return idx - 1;
752         } else {
753                 ioc->autop_too_slow_at = 0;
754         }
755
756         return idx;
757 }
758
759 /*
760  * Take the followings as input
761  *
762  *  @bps        maximum sequential throughput
763  *  @seqiops    maximum sequential 4k iops
764  *  @randiops   maximum random 4k iops
765  *
766  * and calculate the linear model cost coefficients.
767  *
768  *  *@page      per-page cost           1s / (@bps / 4096)
769  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
770  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
771  */
772 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
773                         u64 *page, u64 *seqio, u64 *randio)
774 {
775         u64 v;
776
777         *page = *seqio = *randio = 0;
778
779         if (bps)
780                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
781                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
782
783         if (seqiops) {
784                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
785                 if (v > *page)
786                         *seqio = v - *page;
787         }
788
789         if (randiops) {
790                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
791                 if (v > *page)
792                         *randio = v - *page;
793         }
794 }
795
796 static void ioc_refresh_lcoefs(struct ioc *ioc)
797 {
798         u64 *u = ioc->params.i_lcoefs;
799         u64 *c = ioc->params.lcoefs;
800
801         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
802                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
803         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
804                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
805 }
806
807 static bool ioc_refresh_params(struct ioc *ioc, bool force)
808 {
809         const struct ioc_params *p;
810         int idx;
811
812         lockdep_assert_held(&ioc->lock);
813
814         idx = ioc_autop_idx(ioc);
815         p = &autop[idx];
816
817         if (idx == ioc->autop_idx && !force)
818                 return false;
819
820         if (idx != ioc->autop_idx)
821                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
822
823         ioc->autop_idx = idx;
824         ioc->autop_too_fast_at = 0;
825         ioc->autop_too_slow_at = 0;
826
827         if (!ioc->user_qos_params)
828                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
829         if (!ioc->user_cost_model)
830                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
831
832         ioc_refresh_period_us(ioc);
833         ioc_refresh_lcoefs(ioc);
834
835         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
836                                             VTIME_PER_USEC, MILLION);
837         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
838                                    VTIME_PER_USEC, MILLION);
839
840         return true;
841 }
842
843 /* take a snapshot of the current [v]time and vrate */
844 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
845 {
846         unsigned seq;
847
848         now->now_ns = ktime_get();
849         now->now = ktime_to_us(now->now_ns);
850         now->vrate = atomic64_read(&ioc->vtime_rate);
851
852         /*
853          * The current vtime is
854          *
855          *   vtime at period start + (wallclock time since the start) * vrate
856          *
857          * As a consistent snapshot of `period_at_vtime` and `period_at` is
858          * needed, they're seqcount protected.
859          */
860         do {
861                 seq = read_seqcount_begin(&ioc->period_seqcount);
862                 now->vnow = ioc->period_at_vtime +
863                         (now->now - ioc->period_at) * now->vrate;
864         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
865 }
866
867 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
868 {
869         lockdep_assert_held(&ioc->lock);
870         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
871
872         write_seqcount_begin(&ioc->period_seqcount);
873         ioc->period_at = now->now;
874         ioc->period_at_vtime = now->vnow;
875         write_seqcount_end(&ioc->period_seqcount);
876
877         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
878         add_timer(&ioc->timer);
879 }
880
881 /*
882  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
883  * weight sums and propagate upwards accordingly.
884  */
885 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
886 {
887         struct ioc *ioc = iocg->ioc;
888         int lvl;
889
890         lockdep_assert_held(&ioc->lock);
891
892         inuse = min(active, inuse);
893
894         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
895                 struct ioc_gq *parent = iocg->ancestors[lvl];
896                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
897                 u32 parent_active = 0, parent_inuse = 0;
898
899                 /* update the level sums */
900                 parent->child_active_sum += (s32)(active - child->active);
901                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
902                 /* apply the udpates */
903                 child->active = active;
904                 child->inuse = inuse;
905
906                 /*
907                  * The delta between inuse and active sums indicates that
908                  * that much of weight is being given away.  Parent's inuse
909                  * and active should reflect the ratio.
910                  */
911                 if (parent->child_active_sum) {
912                         parent_active = parent->weight;
913                         parent_inuse = DIV64_U64_ROUND_UP(
914                                 parent_active * parent->child_inuse_sum,
915                                 parent->child_active_sum);
916                 }
917
918                 /* do we need to keep walking up? */
919                 if (parent_active == parent->active &&
920                     parent_inuse == parent->inuse)
921                         break;
922
923                 active = parent_active;
924                 inuse = parent_inuse;
925         }
926
927         ioc->weights_updated = true;
928 }
929
930 static void commit_active_weights(struct ioc *ioc)
931 {
932         lockdep_assert_held(&ioc->lock);
933
934         if (ioc->weights_updated) {
935                 /* paired with rmb in current_hweight(), see there */
936                 smp_wmb();
937                 atomic_inc(&ioc->hweight_gen);
938                 ioc->weights_updated = false;
939         }
940 }
941
942 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
943 {
944         __propagate_active_weight(iocg, active, inuse);
945         commit_active_weights(iocg->ioc);
946 }
947
948 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
949 {
950         struct ioc *ioc = iocg->ioc;
951         int lvl;
952         u32 hwa, hwi;
953         int ioc_gen;
954
955         /* hot path - if uptodate, use cached */
956         ioc_gen = atomic_read(&ioc->hweight_gen);
957         if (ioc_gen == iocg->hweight_gen)
958                 goto out;
959
960         /*
961          * Paired with wmb in commit_active_weights().  If we saw the
962          * updated hweight_gen, all the weight updates from
963          * __propagate_active_weight() are visible too.
964          *
965          * We can race with weight updates during calculation and get it
966          * wrong.  However, hweight_gen would have changed and a future
967          * reader will recalculate and we're guaranteed to discard the
968          * wrong result soon.
969          */
970         smp_rmb();
971
972         hwa = hwi = HWEIGHT_WHOLE;
973         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
974                 struct ioc_gq *parent = iocg->ancestors[lvl];
975                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
976                 u32 active_sum = READ_ONCE(parent->child_active_sum);
977                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
978                 u32 active = READ_ONCE(child->active);
979                 u32 inuse = READ_ONCE(child->inuse);
980
981                 /* we can race with deactivations and either may read as zero */
982                 if (!active_sum || !inuse_sum)
983                         continue;
984
985                 active_sum = max(active, active_sum);
986                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
987
988                 inuse_sum = max(inuse, inuse_sum);
989                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
990         }
991
992         iocg->hweight_active = max_t(u32, hwa, 1);
993         iocg->hweight_inuse = max_t(u32, hwi, 1);
994         iocg->hweight_gen = ioc_gen;
995 out:
996         if (hw_activep)
997                 *hw_activep = iocg->hweight_active;
998         if (hw_inusep)
999                 *hw_inusep = iocg->hweight_inuse;
1000 }
1001
1002 static void weight_updated(struct ioc_gq *iocg)
1003 {
1004         struct ioc *ioc = iocg->ioc;
1005         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1006         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1007         u32 weight;
1008
1009         lockdep_assert_held(&ioc->lock);
1010
1011         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1012         if (weight != iocg->weight && iocg->active)
1013                 propagate_active_weight(iocg, weight,
1014                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1015         iocg->weight = weight;
1016 }
1017
1018 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1019 {
1020         struct ioc *ioc = iocg->ioc;
1021         u64 last_period, cur_period, max_period_delta;
1022         u64 vtime, vmargin, vmin;
1023         int i;
1024
1025         /*
1026          * If seem to be already active, just update the stamp to tell the
1027          * timer that we're still active.  We don't mind occassional races.
1028          */
1029         if (!list_empty(&iocg->active_list)) {
1030                 ioc_now(ioc, now);
1031                 cur_period = atomic64_read(&ioc->cur_period);
1032                 if (atomic64_read(&iocg->active_period) != cur_period)
1033                         atomic64_set(&iocg->active_period, cur_period);
1034                 return true;
1035         }
1036
1037         /* racy check on internal node IOs, treat as root level IOs */
1038         if (iocg->child_active_sum)
1039                 return false;
1040
1041         spin_lock_irq(&ioc->lock);
1042
1043         ioc_now(ioc, now);
1044
1045         /* update period */
1046         cur_period = atomic64_read(&ioc->cur_period);
1047         last_period = atomic64_read(&iocg->active_period);
1048         atomic64_set(&iocg->active_period, cur_period);
1049
1050         /* already activated or breaking leaf-only constraint? */
1051         for (i = iocg->level; i > 0; i--)
1052                 if (!list_empty(&iocg->active_list))
1053                         goto fail_unlock;
1054         if (iocg->child_active_sum)
1055                 goto fail_unlock;
1056
1057         /*
1058          * vtime may wrap when vrate is raised substantially due to
1059          * underestimated IO costs.  Look at the period and ignore its
1060          * vtime if the iocg has been idle for too long.  Also, cap the
1061          * budget it can start with to the margin.
1062          */
1063         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1064         vtime = atomic64_read(&iocg->vtime);
1065         vmargin = ioc->margin_us * now->vrate;
1066         vmin = now->vnow - vmargin;
1067
1068         if (last_period + max_period_delta < cur_period ||
1069             time_before64(vtime, vmin)) {
1070                 atomic64_add(vmin - vtime, &iocg->vtime);
1071                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1072                 vtime = vmin;
1073         }
1074
1075         /*
1076          * Activate, propagate weight and start period timer if not
1077          * running.  Reset hweight_gen to avoid accidental match from
1078          * wrapping.
1079          */
1080         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1081         list_add(&iocg->active_list, &ioc->active_iocgs);
1082         propagate_active_weight(iocg, iocg->weight,
1083                                 iocg->last_inuse ?: iocg->weight);
1084
1085         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1086                         last_period, cur_period, vtime);
1087
1088         iocg->last_vtime = vtime;
1089
1090         if (ioc->running == IOC_IDLE) {
1091                 ioc->running = IOC_RUNNING;
1092                 ioc_start_period(ioc, now);
1093         }
1094
1095         spin_unlock_irq(&ioc->lock);
1096         return true;
1097
1098 fail_unlock:
1099         spin_unlock_irq(&ioc->lock);
1100         return false;
1101 }
1102
1103 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1104                         int flags, void *key)
1105 {
1106         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1107         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1108         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1109
1110         ctx->vbudget -= cost;
1111
1112         if (ctx->vbudget < 0)
1113                 return -1;
1114
1115         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1116
1117         /*
1118          * autoremove_wake_function() removes the wait entry only when it
1119          * actually changed the task state.  We want the wait always
1120          * removed.  Remove explicitly and use default_wake_function().
1121          */
1122         list_del_init(&wq_entry->entry);
1123         wait->committed = true;
1124
1125         default_wake_function(wq_entry, mode, flags, key);
1126         return 0;
1127 }
1128
1129 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1130 {
1131         struct ioc *ioc = iocg->ioc;
1132         struct iocg_wake_ctx ctx = { .iocg = iocg };
1133         u64 margin_ns = (u64)(ioc->period_us *
1134                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1135         u64 vshortage, expires, oexpires;
1136
1137         lockdep_assert_held(&iocg->waitq.lock);
1138
1139         /*
1140          * Wake up the ones which are due and see how much vtime we'll need
1141          * for the next one.
1142          */
1143         current_hweight(iocg, NULL, &ctx.hw_inuse);
1144         ctx.vbudget = now->vnow - atomic64_read(&iocg->vtime);
1145         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1146         if (!waitqueue_active(&iocg->waitq))
1147                 return;
1148         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1149                 return;
1150
1151         /* determine next wakeup, add a quarter margin to guarantee chunking */
1152         vshortage = -ctx.vbudget;
1153         expires = now->now_ns +
1154                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1155         expires += margin_ns / 4;
1156
1157         /* if already active and close enough, don't bother */
1158         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1159         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1160             abs(oexpires - expires) <= margin_ns / 4)
1161                 return;
1162
1163         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1164                                margin_ns / 4, HRTIMER_MODE_ABS);
1165 }
1166
1167 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1168 {
1169         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1170         struct ioc_now now;
1171         unsigned long flags;
1172
1173         ioc_now(iocg->ioc, &now);
1174
1175         spin_lock_irqsave(&iocg->waitq.lock, flags);
1176         iocg_kick_waitq(iocg, &now);
1177         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1178
1179         return HRTIMER_NORESTART;
1180 }
1181
1182 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1183 {
1184         struct ioc *ioc = iocg->ioc;
1185         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1186         u64 vtime = atomic64_read(&iocg->vtime);
1187         u64 vmargin = ioc->margin_us * now->vrate;
1188         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1189         u64 expires, oexpires;
1190
1191         /* clear or maintain depending on the overage */
1192         if (time_before_eq64(vtime, now->vnow)) {
1193                 blkcg_clear_delay(blkg);
1194                 return;
1195         }
1196         if (!atomic_read(&blkg->use_delay) &&
1197             time_before_eq64(vtime, now->vnow + vmargin))
1198                 return;
1199
1200         /* use delay */
1201         if (cost) {
1202                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1203                                                  now->vrate);
1204                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1205         }
1206         blkcg_use_delay(blkg);
1207
1208         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1209                                                    now->vrate) * NSEC_PER_USEC;
1210
1211         /* if already active and close enough, don't bother */
1212         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1213         if (hrtimer_is_queued(&iocg->delay_timer) &&
1214             abs(oexpires - expires) <= margin_ns / 4)
1215                 return;
1216
1217         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1218                                margin_ns / 4, HRTIMER_MODE_ABS);
1219 }
1220
1221 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1222 {
1223         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1224         struct ioc_now now;
1225
1226         ioc_now(iocg->ioc, &now);
1227         iocg_kick_delay(iocg, &now, 0);
1228
1229         return HRTIMER_NORESTART;
1230 }
1231
1232 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1233 {
1234         u32 nr_met[2] = { };
1235         u32 nr_missed[2] = { };
1236         u64 rq_wait_ns = 0;
1237         int cpu, rw;
1238
1239         for_each_online_cpu(cpu) {
1240                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1241                 u64 this_rq_wait_ns;
1242
1243                 for (rw = READ; rw <= WRITE; rw++) {
1244                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1245                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1246
1247                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1248                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1249                         stat->missed[rw].last_met = this_met;
1250                         stat->missed[rw].last_missed = this_missed;
1251                 }
1252
1253                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1254                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1255                 stat->last_rq_wait_ns = this_rq_wait_ns;
1256         }
1257
1258         for (rw = READ; rw <= WRITE; rw++) {
1259                 if (nr_met[rw] + nr_missed[rw])
1260                         missed_ppm_ar[rw] =
1261                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1262                                                    nr_met[rw] + nr_missed[rw]);
1263                 else
1264                         missed_ppm_ar[rw] = 0;
1265         }
1266
1267         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1268                                    ioc->period_us * NSEC_PER_USEC);
1269 }
1270
1271 /* was iocg idle this period? */
1272 static bool iocg_is_idle(struct ioc_gq *iocg)
1273 {
1274         struct ioc *ioc = iocg->ioc;
1275
1276         /* did something get issued this period? */
1277         if (atomic64_read(&iocg->active_period) ==
1278             atomic64_read(&ioc->cur_period))
1279                 return false;
1280
1281         /* is something in flight? */
1282         if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1283                 return false;
1284
1285         return true;
1286 }
1287
1288 /* returns usage with margin added if surplus is large enough */
1289 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1290 {
1291         /* add margin */
1292         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1293         usage += SURPLUS_SCALE_ABS;
1294
1295         /* don't bother if the surplus is too small */
1296         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1297                 return 0;
1298
1299         return usage;
1300 }
1301
1302 static void ioc_timer_fn(struct timer_list *timer)
1303 {
1304         struct ioc *ioc = container_of(timer, struct ioc, timer);
1305         struct ioc_gq *iocg, *tiocg;
1306         struct ioc_now now;
1307         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1308         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1309         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1310         u32 missed_ppm[2], rq_wait_pct;
1311         u64 period_vtime;
1312         int i;
1313
1314         /* how were the latencies during the period? */
1315         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1316
1317         /* take care of active iocgs */
1318         spin_lock_irq(&ioc->lock);
1319
1320         ioc_now(ioc, &now);
1321
1322         period_vtime = now.vnow - ioc->period_at_vtime;
1323         if (WARN_ON_ONCE(!period_vtime)) {
1324                 spin_unlock_irq(&ioc->lock);
1325                 return;
1326         }
1327
1328         /*
1329          * Waiters determine the sleep durations based on the vrate they
1330          * saw at the time of sleep.  If vrate has increased, some waiters
1331          * could be sleeping for too long.  Wake up tardy waiters which
1332          * should have woken up in the last period and expire idle iocgs.
1333          */
1334         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1335                 if (!waitqueue_active(&iocg->waitq) && !iocg_is_idle(iocg))
1336                         continue;
1337
1338                 spin_lock(&iocg->waitq.lock);
1339
1340                 if (waitqueue_active(&iocg->waitq)) {
1341                         /* might be oversleeping vtime / hweight changes, kick */
1342                         iocg_kick_waitq(iocg, &now);
1343                         iocg_kick_delay(iocg, &now, 0);
1344                 } else if (iocg_is_idle(iocg)) {
1345                         /* no waiter and idle, deactivate */
1346                         iocg->last_inuse = iocg->inuse;
1347                         __propagate_active_weight(iocg, 0, 0);
1348                         list_del_init(&iocg->active_list);
1349                 }
1350
1351                 spin_unlock(&iocg->waitq.lock);
1352         }
1353         commit_active_weights(ioc);
1354
1355         /* calc usages and see whether some weights need to be moved around */
1356         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1357                 u64 vdone, vtime, vusage, vmargin, vmin;
1358                 u32 hw_active, hw_inuse, usage;
1359
1360                 /*
1361                  * Collect unused and wind vtime closer to vnow to prevent
1362                  * iocgs from accumulating a large amount of budget.
1363                  */
1364                 vdone = atomic64_read(&iocg->done_vtime);
1365                 vtime = atomic64_read(&iocg->vtime);
1366                 current_hweight(iocg, &hw_active, &hw_inuse);
1367
1368                 /*
1369                  * Latency QoS detection doesn't account for IOs which are
1370                  * in-flight for longer than a period.  Detect them by
1371                  * comparing vdone against period start.  If lagging behind
1372                  * IOs from past periods, don't increase vrate.
1373                  */
1374                 if (!atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1375                     time_after64(vtime, vdone) &&
1376                     time_after64(vtime, now.vnow -
1377                                  MAX_LAGGING_PERIODS * period_vtime) &&
1378                     time_before64(vdone, now.vnow - period_vtime))
1379                         nr_lagging++;
1380
1381                 if (waitqueue_active(&iocg->waitq))
1382                         vusage = now.vnow - iocg->last_vtime;
1383                 else if (time_before64(iocg->last_vtime, vtime))
1384                         vusage = vtime - iocg->last_vtime;
1385                 else
1386                         vusage = 0;
1387
1388                 iocg->last_vtime += vusage;
1389                 /*
1390                  * Factor in in-flight vtime into vusage to avoid
1391                  * high-latency completions appearing as idle.  This should
1392                  * be done after the above ->last_time adjustment.
1393                  */
1394                 vusage = max(vusage, vtime - vdone);
1395
1396                 /* calculate hweight based usage ratio and record */
1397                 if (vusage) {
1398                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1399                                                    period_vtime);
1400                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1401                         iocg->usages[iocg->usage_idx] = usage;
1402                 } else {
1403                         usage = 0;
1404                 }
1405
1406                 /* see whether there's surplus vtime */
1407                 vmargin = ioc->margin_us * now.vrate;
1408                 vmin = now.vnow - vmargin;
1409
1410                 iocg->has_surplus = false;
1411
1412                 if (!waitqueue_active(&iocg->waitq) &&
1413                     time_before64(vtime, vmin)) {
1414                         u64 delta = vmin - vtime;
1415
1416                         /* throw away surplus vtime */
1417                         atomic64_add(delta, &iocg->vtime);
1418                         atomic64_add(delta, &iocg->done_vtime);
1419                         iocg->last_vtime += delta;
1420                         /* if usage is sufficiently low, maybe it can donate */
1421                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1422                                 iocg->has_surplus = true;
1423                                 nr_surpluses++;
1424                         }
1425                 } else if (hw_inuse < hw_active) {
1426                         u32 new_hwi, new_inuse;
1427
1428                         /* was donating but might need to take back some */
1429                         if (waitqueue_active(&iocg->waitq)) {
1430                                 new_hwi = hw_active;
1431                         } else {
1432                                 new_hwi = max(hw_inuse,
1433                                               usage * SURPLUS_SCALE_PCT / 100 +
1434                                               SURPLUS_SCALE_ABS);
1435                         }
1436
1437                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1438                                               hw_inuse);
1439                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1440
1441                         if (new_inuse > iocg->inuse) {
1442                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1443                                                 iocg->inuse, new_inuse,
1444                                                 hw_inuse, new_hwi);
1445                                 __propagate_active_weight(iocg, iocg->weight,
1446                                                           new_inuse);
1447                         }
1448                 } else {
1449                         /* genuninely out of vtime */
1450                         nr_shortages++;
1451                 }
1452         }
1453
1454         if (!nr_shortages || !nr_surpluses)
1455                 goto skip_surplus_transfers;
1456
1457         /* there are both shortages and surpluses, transfer surpluses */
1458         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1459                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1460                 int nr_valid = 0;
1461
1462                 if (!iocg->has_surplus)
1463                         continue;
1464
1465                 /* base the decision on max historical usage */
1466                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1467                         if (iocg->usages[i]) {
1468                                 usage = max(usage, iocg->usages[i]);
1469                                 nr_valid++;
1470                         }
1471                 }
1472                 if (nr_valid < MIN_VALID_USAGES)
1473                         continue;
1474
1475                 current_hweight(iocg, &hw_active, &hw_inuse);
1476                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1477                 if (!new_hwi)
1478                         continue;
1479
1480                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1481                                                hw_inuse);
1482                 if (new_inuse < iocg->inuse) {
1483                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1484                                         iocg->inuse, new_inuse,
1485                                         hw_inuse, new_hwi);
1486                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1487                 }
1488         }
1489 skip_surplus_transfers:
1490         commit_active_weights(ioc);
1491
1492         /*
1493          * If q is getting clogged or we're missing too much, we're issuing
1494          * too much IO and should lower vtime rate.  If we're not missing
1495          * and experiencing shortages but not surpluses, we're too stingy
1496          * and should increase vtime rate.
1497          */
1498         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1499             missed_ppm[READ] > ppm_rthr ||
1500             missed_ppm[WRITE] > ppm_wthr) {
1501                 ioc->busy_level = max(ioc->busy_level, 0);
1502                 ioc->busy_level++;
1503         } else if (nr_lagging) {
1504                 ioc->busy_level = max(ioc->busy_level, 0);
1505         } else if (nr_shortages && !nr_surpluses &&
1506                    rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1507                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1508                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1509                 ioc->busy_level = min(ioc->busy_level, 0);
1510                 ioc->busy_level--;
1511         } else {
1512                 ioc->busy_level = 0;
1513         }
1514
1515         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1516
1517         if (ioc->busy_level) {
1518                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1519                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1520
1521                 /* rq_wait signal is always reliable, ignore user vrate_min */
1522                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1523                         vrate_min = VRATE_MIN;
1524
1525                 /*
1526                  * If vrate is out of bounds, apply clamp gradually as the
1527                  * bounds can change abruptly.  Otherwise, apply busy_level
1528                  * based adjustment.
1529                  */
1530                 if (vrate < vrate_min) {
1531                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1532                                           100);
1533                         vrate = min(vrate, vrate_min);
1534                 } else if (vrate > vrate_max) {
1535                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1536                                           100);
1537                         vrate = max(vrate, vrate_max);
1538                 } else {
1539                         int idx = min_t(int, abs(ioc->busy_level),
1540                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1541                         u32 adj_pct = vrate_adj_pct[idx];
1542
1543                         if (ioc->busy_level > 0)
1544                                 adj_pct = 100 - adj_pct;
1545                         else
1546                                 adj_pct = 100 + adj_pct;
1547
1548                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1549                                       vrate_min, vrate_max);
1550                 }
1551
1552                 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1553                                            nr_lagging, nr_shortages,
1554                                            nr_surpluses);
1555
1556                 atomic64_set(&ioc->vtime_rate, vrate);
1557                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1558                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1559         }
1560
1561         ioc_refresh_params(ioc, false);
1562
1563         /*
1564          * This period is done.  Move onto the next one.  If nothing's
1565          * going on with the device, stop the timer.
1566          */
1567         atomic64_inc(&ioc->cur_period);
1568
1569         if (ioc->running != IOC_STOP) {
1570                 if (!list_empty(&ioc->active_iocgs)) {
1571                         ioc_start_period(ioc, &now);
1572                 } else {
1573                         ioc->busy_level = 0;
1574                         ioc->running = IOC_IDLE;
1575                 }
1576         }
1577
1578         spin_unlock_irq(&ioc->lock);
1579 }
1580
1581 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1582                                     bool is_merge, u64 *costp)
1583 {
1584         struct ioc *ioc = iocg->ioc;
1585         u64 coef_seqio, coef_randio, coef_page;
1586         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1587         u64 seek_pages = 0;
1588         u64 cost = 0;
1589
1590         switch (bio_op(bio)) {
1591         case REQ_OP_READ:
1592                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1593                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1594                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1595                 break;
1596         case REQ_OP_WRITE:
1597                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1598                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1599                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1600                 break;
1601         default:
1602                 goto out;
1603         }
1604
1605         if (iocg->cursor) {
1606                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1607                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1608         }
1609
1610         if (!is_merge) {
1611                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1612                         cost += coef_randio;
1613                 } else {
1614                         cost += coef_seqio;
1615                 }
1616         }
1617         cost += pages * coef_page;
1618 out:
1619         *costp = cost;
1620 }
1621
1622 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1623 {
1624         u64 cost;
1625
1626         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1627         return cost;
1628 }
1629
1630 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1631 {
1632         struct blkcg_gq *blkg = bio->bi_blkg;
1633         struct ioc *ioc = rqos_to_ioc(rqos);
1634         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1635         struct ioc_now now;
1636         struct iocg_wait wait;
1637         u32 hw_active, hw_inuse;
1638         u64 abs_cost, cost, vtime;
1639
1640         /* bypass IOs if disabled or for root cgroup */
1641         if (!ioc->enabled || !iocg->level)
1642                 return;
1643
1644         /* always activate so that even 0 cost IOs get protected to some level */
1645         if (!iocg_activate(iocg, &now))
1646                 return;
1647
1648         /* calculate the absolute vtime cost */
1649         abs_cost = calc_vtime_cost(bio, iocg, false);
1650         if (!abs_cost)
1651                 return;
1652
1653         iocg->cursor = bio_end_sector(bio);
1654
1655         vtime = atomic64_read(&iocg->vtime);
1656         current_hweight(iocg, &hw_active, &hw_inuse);
1657
1658         if (hw_inuse < hw_active &&
1659             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1660                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1661                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1662                 spin_lock_irq(&ioc->lock);
1663                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1664                 spin_unlock_irq(&ioc->lock);
1665                 current_hweight(iocg, &hw_active, &hw_inuse);
1666         }
1667
1668         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1669
1670         /*
1671          * If no one's waiting and within budget, issue right away.  The
1672          * tests are racy but the races aren't systemic - we only miss once
1673          * in a while which is fine.
1674          */
1675         if (!waitqueue_active(&iocg->waitq) &&
1676             time_before_eq64(vtime + cost, now.vnow)) {
1677                 iocg_commit_bio(iocg, bio, cost);
1678                 return;
1679         }
1680
1681         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1682                 iocg_commit_bio(iocg, bio, cost);
1683                 iocg_kick_delay(iocg, &now, cost);
1684                 return;
1685         }
1686
1687         /*
1688          * Append self to the waitq and schedule the wakeup timer if we're
1689          * the first waiter.  The timer duration is calculated based on the
1690          * current vrate.  vtime and hweight changes can make it too short
1691          * or too long.  Each wait entry records the absolute cost it's
1692          * waiting for to allow re-evaluation using a custom wait entry.
1693          *
1694          * If too short, the timer simply reschedules itself.  If too long,
1695          * the period timer will notice and trigger wakeups.
1696          *
1697          * All waiters are on iocg->waitq and the wait states are
1698          * synchronized using waitq.lock.
1699          */
1700         spin_lock_irq(&iocg->waitq.lock);
1701
1702         /*
1703          * We activated above but w/o any synchronization.  Deactivation is
1704          * synchronized with waitq.lock and we won't get deactivated as
1705          * long as we're waiting, so we're good if we're activated here.
1706          * In the unlikely case that we are deactivated, just issue the IO.
1707          */
1708         if (unlikely(list_empty(&iocg->active_list))) {
1709                 spin_unlock_irq(&iocg->waitq.lock);
1710                 iocg_commit_bio(iocg, bio, cost);
1711                 return;
1712         }
1713
1714         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1715         wait.wait.private = current;
1716         wait.bio = bio;
1717         wait.abs_cost = abs_cost;
1718         wait.committed = false; /* will be set true by waker */
1719
1720         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1721         iocg_kick_waitq(iocg, &now);
1722
1723         spin_unlock_irq(&iocg->waitq.lock);
1724
1725         while (true) {
1726                 set_current_state(TASK_UNINTERRUPTIBLE);
1727                 if (wait.committed)
1728                         break;
1729                 io_schedule();
1730         }
1731
1732         /* waker already committed us, proceed */
1733         finish_wait(&iocg->waitq, &wait.wait);
1734 }
1735
1736 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1737                            struct bio *bio)
1738 {
1739         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1740         sector_t bio_end = bio_end_sector(bio);
1741         u32 hw_inuse;
1742         u64 abs_cost, cost;
1743
1744         /* add iff the existing request has cost assigned */
1745         if (!rq->bio || !rq->bio->bi_iocost_cost)
1746                 return;
1747
1748         abs_cost = calc_vtime_cost(bio, iocg, true);
1749         if (!abs_cost)
1750                 return;
1751
1752         /* update cursor if backmerging into the request at the cursor */
1753         if (blk_rq_pos(rq) < bio_end &&
1754             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1755                 iocg->cursor = bio_end;
1756
1757         current_hweight(iocg, NULL, &hw_inuse);
1758         cost = div64_u64(abs_cost * HWEIGHT_WHOLE, hw_inuse);
1759         bio->bi_iocost_cost = cost;
1760
1761         atomic64_add(cost, &iocg->vtime);
1762 }
1763
1764 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1765 {
1766         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1767
1768         if (iocg && bio->bi_iocost_cost)
1769                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1770 }
1771
1772 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1773 {
1774         struct ioc *ioc = rqos_to_ioc(rqos);
1775         u64 on_q_ns, rq_wait_ns;
1776         int pidx, rw;
1777
1778         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1779                 return;
1780
1781         switch (req_op(rq) & REQ_OP_MASK) {
1782         case REQ_OP_READ:
1783                 pidx = QOS_RLAT;
1784                 rw = READ;
1785                 break;
1786         case REQ_OP_WRITE:
1787                 pidx = QOS_WLAT;
1788                 rw = WRITE;
1789                 break;
1790         default:
1791                 return;
1792         }
1793
1794         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1795         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1796
1797         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1798                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1799         else
1800                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1801
1802         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1803 }
1804
1805 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1806 {
1807         struct ioc *ioc = rqos_to_ioc(rqos);
1808
1809         spin_lock_irq(&ioc->lock);
1810         ioc_refresh_params(ioc, false);
1811         spin_unlock_irq(&ioc->lock);
1812 }
1813
1814 static void ioc_rqos_exit(struct rq_qos *rqos)
1815 {
1816         struct ioc *ioc = rqos_to_ioc(rqos);
1817
1818         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1819
1820         spin_lock_irq(&ioc->lock);
1821         ioc->running = IOC_STOP;
1822         spin_unlock_irq(&ioc->lock);
1823
1824         del_timer_sync(&ioc->timer);
1825         free_percpu(ioc->pcpu_stat);
1826         kfree(ioc);
1827 }
1828
1829 static struct rq_qos_ops ioc_rqos_ops = {
1830         .throttle = ioc_rqos_throttle,
1831         .merge = ioc_rqos_merge,
1832         .done_bio = ioc_rqos_done_bio,
1833         .done = ioc_rqos_done,
1834         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1835         .exit = ioc_rqos_exit,
1836 };
1837
1838 static int blk_iocost_init(struct request_queue *q)
1839 {
1840         struct ioc *ioc;
1841         struct rq_qos *rqos;
1842         int ret;
1843
1844         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1845         if (!ioc)
1846                 return -ENOMEM;
1847
1848         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1849         if (!ioc->pcpu_stat) {
1850                 kfree(ioc);
1851                 return -ENOMEM;
1852         }
1853
1854         rqos = &ioc->rqos;
1855         rqos->id = RQ_QOS_COST;
1856         rqos->ops = &ioc_rqos_ops;
1857         rqos->q = q;
1858
1859         spin_lock_init(&ioc->lock);
1860         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1861         INIT_LIST_HEAD(&ioc->active_iocgs);
1862
1863         ioc->running = IOC_IDLE;
1864         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1865         seqcount_init(&ioc->period_seqcount);
1866         ioc->period_at = ktime_to_us(ktime_get());
1867         atomic64_set(&ioc->cur_period, 0);
1868         atomic_set(&ioc->hweight_gen, 0);
1869
1870         spin_lock_irq(&ioc->lock);
1871         ioc->autop_idx = AUTOP_INVALID;
1872         ioc_refresh_params(ioc, true);
1873         spin_unlock_irq(&ioc->lock);
1874
1875         rq_qos_add(q, rqos);
1876         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1877         if (ret) {
1878                 rq_qos_del(q, rqos);
1879                 free_percpu(ioc->pcpu_stat);
1880                 kfree(ioc);
1881                 return ret;
1882         }
1883         return 0;
1884 }
1885
1886 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1887 {
1888         struct ioc_cgrp *iocc;
1889
1890         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1891         if (!iocc)
1892                 return NULL;
1893
1894         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1895         return &iocc->cpd;
1896 }
1897
1898 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1899 {
1900         kfree(container_of(cpd, struct ioc_cgrp, cpd));
1901 }
1902
1903 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1904                                              struct blkcg *blkcg)
1905 {
1906         int levels = blkcg->css.cgroup->level + 1;
1907         struct ioc_gq *iocg;
1908
1909         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1910                             gfp, q->node);
1911         if (!iocg)
1912                 return NULL;
1913
1914         return &iocg->pd;
1915 }
1916
1917 static void ioc_pd_init(struct blkg_policy_data *pd)
1918 {
1919         struct ioc_gq *iocg = pd_to_iocg(pd);
1920         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1921         struct ioc *ioc = q_to_ioc(blkg->q);
1922         struct ioc_now now;
1923         struct blkcg_gq *tblkg;
1924         unsigned long flags;
1925
1926         ioc_now(ioc, &now);
1927
1928         iocg->ioc = ioc;
1929         atomic64_set(&iocg->vtime, now.vnow);
1930         atomic64_set(&iocg->done_vtime, now.vnow);
1931         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
1932         INIT_LIST_HEAD(&iocg->active_list);
1933         iocg->hweight_active = HWEIGHT_WHOLE;
1934         iocg->hweight_inuse = HWEIGHT_WHOLE;
1935
1936         init_waitqueue_head(&iocg->waitq);
1937         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1938         iocg->waitq_timer.function = iocg_waitq_timer_fn;
1939         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1940         iocg->delay_timer.function = iocg_delay_timer_fn;
1941
1942         iocg->level = blkg->blkcg->css.cgroup->level;
1943
1944         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
1945                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
1946                 iocg->ancestors[tiocg->level] = tiocg;
1947         }
1948
1949         spin_lock_irqsave(&ioc->lock, flags);
1950         weight_updated(iocg);
1951         spin_unlock_irqrestore(&ioc->lock, flags);
1952 }
1953
1954 static void ioc_pd_free(struct blkg_policy_data *pd)
1955 {
1956         struct ioc_gq *iocg = pd_to_iocg(pd);
1957         struct ioc *ioc = iocg->ioc;
1958
1959         if (ioc) {
1960                 hrtimer_cancel(&iocg->waitq_timer);
1961                 hrtimer_cancel(&iocg->delay_timer);
1962
1963                 spin_lock(&ioc->lock);
1964                 if (!list_empty(&iocg->active_list)) {
1965                         propagate_active_weight(iocg, 0, 0);
1966                         list_del_init(&iocg->active_list);
1967                 }
1968                 spin_unlock(&ioc->lock);
1969         }
1970         kfree(iocg);
1971 }
1972
1973 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
1974                              int off)
1975 {
1976         const char *dname = blkg_dev_name(pd->blkg);
1977         struct ioc_gq *iocg = pd_to_iocg(pd);
1978
1979         if (dname && iocg->cfg_weight)
1980                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
1981         return 0;
1982 }
1983
1984
1985 static int ioc_weight_show(struct seq_file *sf, void *v)
1986 {
1987         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1988         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
1989
1990         seq_printf(sf, "default %u\n", iocc->dfl_weight);
1991         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
1992                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
1993         return 0;
1994 }
1995
1996 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
1997                                 size_t nbytes, loff_t off)
1998 {
1999         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2000         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2001         struct blkg_conf_ctx ctx;
2002         struct ioc_gq *iocg;
2003         u32 v;
2004         int ret;
2005
2006         if (!strchr(buf, ':')) {
2007                 struct blkcg_gq *blkg;
2008
2009                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2010                         return -EINVAL;
2011
2012                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2013                         return -EINVAL;
2014
2015                 spin_lock(&blkcg->lock);
2016                 iocc->dfl_weight = v;
2017                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2018                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2019
2020                         if (iocg) {
2021                                 spin_lock_irq(&iocg->ioc->lock);
2022                                 weight_updated(iocg);
2023                                 spin_unlock_irq(&iocg->ioc->lock);
2024                         }
2025                 }
2026                 spin_unlock(&blkcg->lock);
2027
2028                 return nbytes;
2029         }
2030
2031         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2032         if (ret)
2033                 return ret;
2034
2035         iocg = blkg_to_iocg(ctx.blkg);
2036
2037         if (!strncmp(ctx.body, "default", 7)) {
2038                 v = 0;
2039         } else {
2040                 if (!sscanf(ctx.body, "%u", &v))
2041                         goto einval;
2042                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2043                         goto einval;
2044         }
2045
2046         spin_lock_irq(&iocg->ioc->lock);
2047         iocg->cfg_weight = v;
2048         weight_updated(iocg);
2049         spin_unlock_irq(&iocg->ioc->lock);
2050
2051         blkg_conf_finish(&ctx);
2052         return nbytes;
2053
2054 einval:
2055         blkg_conf_finish(&ctx);
2056         return -EINVAL;
2057 }
2058
2059 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2060                           int off)
2061 {
2062         const char *dname = blkg_dev_name(pd->blkg);
2063         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2064
2065         if (!dname)
2066                 return 0;
2067
2068         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2069                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2070                    ioc->params.qos[QOS_RPPM] / 10000,
2071                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2072                    ioc->params.qos[QOS_RLAT],
2073                    ioc->params.qos[QOS_WPPM] / 10000,
2074                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2075                    ioc->params.qos[QOS_WLAT],
2076                    ioc->params.qos[QOS_MIN] / 10000,
2077                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2078                    ioc->params.qos[QOS_MAX] / 10000,
2079                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2080         return 0;
2081 }
2082
2083 static int ioc_qos_show(struct seq_file *sf, void *v)
2084 {
2085         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2086
2087         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2088                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2089         return 0;
2090 }
2091
2092 static const match_table_t qos_ctrl_tokens = {
2093         { QOS_ENABLE,           "enable=%u"     },
2094         { QOS_CTRL,             "ctrl=%s"       },
2095         { NR_QOS_CTRL_PARAMS,   NULL            },
2096 };
2097
2098 static const match_table_t qos_tokens = {
2099         { QOS_RPPM,             "rpct=%s"       },
2100         { QOS_RLAT,             "rlat=%u"       },
2101         { QOS_WPPM,             "wpct=%s"       },
2102         { QOS_WLAT,             "wlat=%u"       },
2103         { QOS_MIN,              "min=%s"        },
2104         { QOS_MAX,              "max=%s"        },
2105         { NR_QOS_PARAMS,        NULL            },
2106 };
2107
2108 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2109                              size_t nbytes, loff_t off)
2110 {
2111         struct gendisk *disk;
2112         struct ioc *ioc;
2113         u32 qos[NR_QOS_PARAMS];
2114         bool enable, user;
2115         char *p;
2116         int ret;
2117
2118         disk = blkcg_conf_get_disk(&input);
2119         if (IS_ERR(disk))
2120                 return PTR_ERR(disk);
2121
2122         ioc = q_to_ioc(disk->queue);
2123         if (!ioc) {
2124                 ret = blk_iocost_init(disk->queue);
2125                 if (ret)
2126                         goto err;
2127                 ioc = q_to_ioc(disk->queue);
2128         }
2129
2130         spin_lock_irq(&ioc->lock);
2131         memcpy(qos, ioc->params.qos, sizeof(qos));
2132         enable = ioc->enabled;
2133         user = ioc->user_qos_params;
2134         spin_unlock_irq(&ioc->lock);
2135
2136         while ((p = strsep(&input, " \t\n"))) {
2137                 substring_t args[MAX_OPT_ARGS];
2138                 char buf[32];
2139                 int tok;
2140                 s64 v;
2141
2142                 if (!*p)
2143                         continue;
2144
2145                 switch (match_token(p, qos_ctrl_tokens, args)) {
2146                 case QOS_ENABLE:
2147                         match_u64(&args[0], &v);
2148                         enable = v;
2149                         continue;
2150                 case QOS_CTRL:
2151                         match_strlcpy(buf, &args[0], sizeof(buf));
2152                         if (!strcmp(buf, "auto"))
2153                                 user = false;
2154                         else if (!strcmp(buf, "user"))
2155                                 user = true;
2156                         else
2157                                 goto einval;
2158                         continue;
2159                 }
2160
2161                 tok = match_token(p, qos_tokens, args);
2162                 switch (tok) {
2163                 case QOS_RPPM:
2164                 case QOS_WPPM:
2165                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2166                             sizeof(buf))
2167                                 goto einval;
2168                         if (cgroup_parse_float(buf, 2, &v))
2169                                 goto einval;
2170                         if (v < 0 || v > 10000)
2171                                 goto einval;
2172                         qos[tok] = v * 100;
2173                         break;
2174                 case QOS_RLAT:
2175                 case QOS_WLAT:
2176                         if (match_u64(&args[0], &v))
2177                                 goto einval;
2178                         qos[tok] = v;
2179                         break;
2180                 case QOS_MIN:
2181                 case QOS_MAX:
2182                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2183                             sizeof(buf))
2184                                 goto einval;
2185                         if (cgroup_parse_float(buf, 2, &v))
2186                                 goto einval;
2187                         if (v < 0)
2188                                 goto einval;
2189                         qos[tok] = clamp_t(s64, v * 100,
2190                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2191                         break;
2192                 default:
2193                         goto einval;
2194                 }
2195                 user = true;
2196         }
2197
2198         if (qos[QOS_MIN] > qos[QOS_MAX])
2199                 goto einval;
2200
2201         spin_lock_irq(&ioc->lock);
2202
2203         if (enable) {
2204                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2205                 ioc->enabled = true;
2206         } else {
2207                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2208                 ioc->enabled = false;
2209         }
2210
2211         if (user) {
2212                 memcpy(ioc->params.qos, qos, sizeof(qos));
2213                 ioc->user_qos_params = true;
2214         } else {
2215                 ioc->user_qos_params = false;
2216         }
2217
2218         ioc_refresh_params(ioc, true);
2219         spin_unlock_irq(&ioc->lock);
2220
2221         put_disk_and_module(disk);
2222         return nbytes;
2223 einval:
2224         ret = -EINVAL;
2225 err:
2226         put_disk_and_module(disk);
2227         return ret;
2228 }
2229
2230 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2231                                  struct blkg_policy_data *pd, int off)
2232 {
2233         const char *dname = blkg_dev_name(pd->blkg);
2234         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2235         u64 *u = ioc->params.i_lcoefs;
2236
2237         if (!dname)
2238                 return 0;
2239
2240         seq_printf(sf, "%s ctrl=%s model=linear "
2241                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2242                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2243                    dname, ioc->user_cost_model ? "user" : "auto",
2244                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2245                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2246         return 0;
2247 }
2248
2249 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2250 {
2251         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2252
2253         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2254                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2255         return 0;
2256 }
2257
2258 static const match_table_t cost_ctrl_tokens = {
2259         { COST_CTRL,            "ctrl=%s"       },
2260         { COST_MODEL,           "model=%s"      },
2261         { NR_COST_CTRL_PARAMS,  NULL            },
2262 };
2263
2264 static const match_table_t i_lcoef_tokens = {
2265         { I_LCOEF_RBPS,         "rbps=%u"       },
2266         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2267         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2268         { I_LCOEF_WBPS,         "wbps=%u"       },
2269         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2270         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2271         { NR_I_LCOEFS,          NULL            },
2272 };
2273
2274 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2275                                     size_t nbytes, loff_t off)
2276 {
2277         struct gendisk *disk;
2278         struct ioc *ioc;
2279         u64 u[NR_I_LCOEFS];
2280         bool user;
2281         char *p;
2282         int ret;
2283
2284         disk = blkcg_conf_get_disk(&input);
2285         if (IS_ERR(disk))
2286                 return PTR_ERR(disk);
2287
2288         ioc = q_to_ioc(disk->queue);
2289         if (!ioc) {
2290                 ret = blk_iocost_init(disk->queue);
2291                 if (ret)
2292                         goto err;
2293                 ioc = q_to_ioc(disk->queue);
2294         }
2295
2296         spin_lock_irq(&ioc->lock);
2297         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2298         user = ioc->user_cost_model;
2299         spin_unlock_irq(&ioc->lock);
2300
2301         while ((p = strsep(&input, " \t\n"))) {
2302                 substring_t args[MAX_OPT_ARGS];
2303                 char buf[32];
2304                 int tok;
2305                 u64 v;
2306
2307                 if (!*p)
2308                         continue;
2309
2310                 switch (match_token(p, cost_ctrl_tokens, args)) {
2311                 case COST_CTRL:
2312                         match_strlcpy(buf, &args[0], sizeof(buf));
2313                         if (!strcmp(buf, "auto"))
2314                                 user = false;
2315                         else if (!strcmp(buf, "user"))
2316                                 user = true;
2317                         else
2318                                 goto einval;
2319                         continue;
2320                 case COST_MODEL:
2321                         match_strlcpy(buf, &args[0], sizeof(buf));
2322                         if (strcmp(buf, "linear"))
2323                                 goto einval;
2324                         continue;
2325                 }
2326
2327                 tok = match_token(p, i_lcoef_tokens, args);
2328                 if (tok == NR_I_LCOEFS)
2329                         goto einval;
2330                 if (match_u64(&args[0], &v))
2331                         goto einval;
2332                 u[tok] = v;
2333                 user = true;
2334         }
2335
2336         spin_lock_irq(&ioc->lock);
2337         if (user) {
2338                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2339                 ioc->user_cost_model = true;
2340         } else {
2341                 ioc->user_cost_model = false;
2342         }
2343         ioc_refresh_params(ioc, true);
2344         spin_unlock_irq(&ioc->lock);
2345
2346         put_disk_and_module(disk);
2347         return nbytes;
2348
2349 einval:
2350         ret = -EINVAL;
2351 err:
2352         put_disk_and_module(disk);
2353         return ret;
2354 }
2355
2356 static struct cftype ioc_files[] = {
2357         {
2358                 .name = "weight",
2359                 .flags = CFTYPE_NOT_ON_ROOT,
2360                 .seq_show = ioc_weight_show,
2361                 .write = ioc_weight_write,
2362         },
2363         {
2364                 .name = "cost.qos",
2365                 .flags = CFTYPE_ONLY_ON_ROOT,
2366                 .seq_show = ioc_qos_show,
2367                 .write = ioc_qos_write,
2368         },
2369         {
2370                 .name = "cost.model",
2371                 .flags = CFTYPE_ONLY_ON_ROOT,
2372                 .seq_show = ioc_cost_model_show,
2373                 .write = ioc_cost_model_write,
2374         },
2375         {}
2376 };
2377
2378 static struct blkcg_policy blkcg_policy_iocost = {
2379         .dfl_cftypes    = ioc_files,
2380         .cpd_alloc_fn   = ioc_cpd_alloc,
2381         .cpd_free_fn    = ioc_cpd_free,
2382         .pd_alloc_fn    = ioc_pd_alloc,
2383         .pd_init_fn     = ioc_pd_init,
2384         .pd_free_fn     = ioc_pd_free,
2385 };
2386
2387 static int __init ioc_init(void)
2388 {
2389         return blkcg_policy_register(&blkcg_policy_iocost);
2390 }
2391
2392 static void __exit ioc_exit(void)
2393 {
2394         return blkcg_policy_unregister(&blkcg_policy_iocost);
2395 }
2396
2397 module_init(ioc_init);
2398 module_exit(ioc_exit);