Merge tag 'arc-5.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57
58 struct efi_scratch efi_scratch;
59
60 EXPORT_SYMBOL_GPL(efi_mm);
61
62 /*
63  * We need our own copy of the higher levels of the page tables
64  * because we want to avoid inserting EFI region mappings (EFI_VA_END
65  * to EFI_VA_START) into the standard kernel page tables. Everything
66  * else can be shared, see efi_sync_low_kernel_mappings().
67  *
68  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69  * allocation.
70  */
71 int __init efi_alloc_page_tables(void)
72 {
73         pgd_t *pgd, *efi_pgd;
74         p4d_t *p4d;
75         pud_t *pud;
76         gfp_t gfp_mask;
77
78         if (efi_have_uv1_memmap())
79                 return 0;
80
81         gfp_mask = GFP_KERNEL | __GFP_ZERO;
82         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
83         if (!efi_pgd)
84                 return -ENOMEM;
85
86         pgd = efi_pgd + pgd_index(EFI_VA_END);
87         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
88         if (!p4d) {
89                 free_page((unsigned long)efi_pgd);
90                 return -ENOMEM;
91         }
92
93         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
94         if (!pud) {
95                 if (pgtable_l5_enabled())
96                         free_page((unsigned long) pgd_page_vaddr(*pgd));
97                 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
98                 return -ENOMEM;
99         }
100
101         efi_mm.pgd = efi_pgd;
102         mm_init_cpumask(&efi_mm);
103         init_new_context(NULL, &efi_mm);
104
105         return 0;
106 }
107
108 /*
109  * Add low kernel mappings for passing arguments to EFI functions.
110  */
111 void efi_sync_low_kernel_mappings(void)
112 {
113         unsigned num_entries;
114         pgd_t *pgd_k, *pgd_efi;
115         p4d_t *p4d_k, *p4d_efi;
116         pud_t *pud_k, *pud_efi;
117         pgd_t *efi_pgd = efi_mm.pgd;
118
119         if (efi_have_uv1_memmap())
120                 return;
121
122         /*
123          * We can share all PGD entries apart from the one entry that
124          * covers the EFI runtime mapping space.
125          *
126          * Make sure the EFI runtime region mappings are guaranteed to
127          * only span a single PGD entry and that the entry also maps
128          * other important kernel regions.
129          */
130         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
131         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
132                         (EFI_VA_END & PGDIR_MASK));
133
134         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
135         pgd_k = pgd_offset_k(PAGE_OFFSET);
136
137         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
138         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
139
140         /*
141          * As with PGDs, we share all P4D entries apart from the one entry
142          * that covers the EFI runtime mapping space.
143          */
144         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
145         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
146
147         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
148         pgd_k = pgd_offset_k(EFI_VA_END);
149         p4d_efi = p4d_offset(pgd_efi, 0);
150         p4d_k = p4d_offset(pgd_k, 0);
151
152         num_entries = p4d_index(EFI_VA_END);
153         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
154
155         /*
156          * We share all the PUD entries apart from those that map the
157          * EFI regions. Copy around them.
158          */
159         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
160         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
161
162         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
163         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
164         pud_efi = pud_offset(p4d_efi, 0);
165         pud_k = pud_offset(p4d_k, 0);
166
167         num_entries = pud_index(EFI_VA_END);
168         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
169
170         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
171         pud_k = pud_offset(p4d_k, EFI_VA_START);
172
173         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
174         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
175 }
176
177 /*
178  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
179  */
180 static inline phys_addr_t
181 virt_to_phys_or_null_size(void *va, unsigned long size)
182 {
183         phys_addr_t pa;
184
185         if (!va)
186                 return 0;
187
188         if (virt_addr_valid(va))
189                 return virt_to_phys(va);
190
191         pa = slow_virt_to_phys(va);
192
193         /* check if the object crosses a page boundary */
194         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
195                 return 0;
196
197         return pa;
198 }
199
200 #define virt_to_phys_or_null(addr)                              \
201         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
202
203 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
204 {
205         unsigned long pfn, text, pf, rodata;
206         struct page *page;
207         unsigned npages;
208         pgd_t *pgd = efi_mm.pgd;
209
210         if (efi_have_uv1_memmap())
211                 return 0;
212
213         /*
214          * It can happen that the physical address of new_memmap lands in memory
215          * which is not mapped in the EFI page table. Therefore we need to go
216          * and ident-map those pages containing the map before calling
217          * phys_efi_set_virtual_address_map().
218          */
219         pfn = pa_memmap >> PAGE_SHIFT;
220         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
221         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
222                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
223                 return 1;
224         }
225
226         /*
227          * Certain firmware versions are way too sentimential and still believe
228          * they are exclusive and unquestionable owners of the first physical page,
229          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
230          * (but then write-access it later during SetVirtualAddressMap()).
231          *
232          * Create a 1:1 mapping for this page, to avoid triple faults during early
233          * boot with such firmware. We are free to hand this page to the BIOS,
234          * as trim_bios_range() will reserve the first page and isolate it away
235          * from memory allocators anyway.
236          */
237         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
238                 pr_err("Failed to create 1:1 mapping for the first page!\n");
239                 return 1;
240         }
241
242         /*
243          * When making calls to the firmware everything needs to be 1:1
244          * mapped and addressable with 32-bit pointers. Map the kernel
245          * text and allocate a new stack because we can't rely on the
246          * stack pointer being < 4GB.
247          */
248         if (!efi_is_mixed())
249                 return 0;
250
251         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
252         if (!page) {
253                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
254                 return 1;
255         }
256
257         efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
258
259         npages = (_etext - _text) >> PAGE_SHIFT;
260         text = __pa(_text);
261         pfn = text >> PAGE_SHIFT;
262
263         pf = _PAGE_ENC;
264         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
265                 pr_err("Failed to map kernel text 1:1\n");
266                 return 1;
267         }
268
269         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
270         rodata = __pa(__start_rodata);
271         pfn = rodata >> PAGE_SHIFT;
272         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
273                 pr_err("Failed to map kernel rodata 1:1\n");
274                 return 1;
275         }
276
277         return 0;
278 }
279
280 static void __init __map_region(efi_memory_desc_t *md, u64 va)
281 {
282         unsigned long flags = _PAGE_RW;
283         unsigned long pfn;
284         pgd_t *pgd = efi_mm.pgd;
285
286         /*
287          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
288          * executable images in memory that consist of both R-X and
289          * RW- sections, so we cannot apply read-only or non-exec
290          * permissions just yet. However, modern EFI systems provide
291          * a memory attributes table that describes those sections
292          * with the appropriate restricted permissions, which are
293          * applied in efi_runtime_update_mappings() below. All other
294          * regions can be mapped non-executable at this point, with
295          * the exception of boot services code regions, but those will
296          * be unmapped again entirely in efi_free_boot_services().
297          */
298         if (md->type != EFI_BOOT_SERVICES_CODE &&
299             md->type != EFI_RUNTIME_SERVICES_CODE)
300                 flags |= _PAGE_NX;
301
302         if (!(md->attribute & EFI_MEMORY_WB))
303                 flags |= _PAGE_PCD;
304
305         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
306                 flags |= _PAGE_ENC;
307
308         pfn = md->phys_addr >> PAGE_SHIFT;
309         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
310                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
311                            md->phys_addr, va);
312 }
313
314 void __init efi_map_region(efi_memory_desc_t *md)
315 {
316         unsigned long size = md->num_pages << PAGE_SHIFT;
317         u64 pa = md->phys_addr;
318
319         if (efi_have_uv1_memmap())
320                 return old_map_region(md);
321
322         /*
323          * Make sure the 1:1 mappings are present as a catch-all for b0rked
324          * firmware which doesn't update all internal pointers after switching
325          * to virtual mode and would otherwise crap on us.
326          */
327         __map_region(md, md->phys_addr);
328
329         /*
330          * Enforce the 1:1 mapping as the default virtual address when
331          * booting in EFI mixed mode, because even though we may be
332          * running a 64-bit kernel, the firmware may only be 32-bit.
333          */
334         if (efi_is_mixed()) {
335                 md->virt_addr = md->phys_addr;
336                 return;
337         }
338
339         efi_va -= size;
340
341         /* Is PA 2M-aligned? */
342         if (!(pa & (PMD_SIZE - 1))) {
343                 efi_va &= PMD_MASK;
344         } else {
345                 u64 pa_offset = pa & (PMD_SIZE - 1);
346                 u64 prev_va = efi_va;
347
348                 /* get us the same offset within this 2M page */
349                 efi_va = (efi_va & PMD_MASK) + pa_offset;
350
351                 if (efi_va > prev_va)
352                         efi_va -= PMD_SIZE;
353         }
354
355         if (efi_va < EFI_VA_END) {
356                 pr_warn(FW_WARN "VA address range overflow!\n");
357                 return;
358         }
359
360         /* Do the VA map */
361         __map_region(md, efi_va);
362         md->virt_addr = efi_va;
363 }
364
365 /*
366  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
367  * md->virt_addr is the original virtual address which had been mapped in kexec
368  * 1st kernel.
369  */
370 void __init efi_map_region_fixed(efi_memory_desc_t *md)
371 {
372         __map_region(md, md->phys_addr);
373         __map_region(md, md->virt_addr);
374 }
375
376 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
377 {
378         efi_setup = phys_addr + sizeof(struct setup_data);
379 }
380
381 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
382 {
383         unsigned long pfn;
384         pgd_t *pgd = efi_mm.pgd;
385         int err1, err2;
386
387         /* Update the 1:1 mapping */
388         pfn = md->phys_addr >> PAGE_SHIFT;
389         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
390         if (err1) {
391                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
392                            md->phys_addr, md->virt_addr);
393         }
394
395         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
396         if (err2) {
397                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
398                            md->phys_addr, md->virt_addr);
399         }
400
401         return err1 || err2;
402 }
403
404 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
405 {
406         unsigned long pf = 0;
407
408         if (md->attribute & EFI_MEMORY_XP)
409                 pf |= _PAGE_NX;
410
411         if (!(md->attribute & EFI_MEMORY_RO))
412                 pf |= _PAGE_RW;
413
414         if (sev_active())
415                 pf |= _PAGE_ENC;
416
417         return efi_update_mappings(md, pf);
418 }
419
420 void __init efi_runtime_update_mappings(void)
421 {
422         efi_memory_desc_t *md;
423
424         if (efi_have_uv1_memmap()) {
425                 if (__supported_pte_mask & _PAGE_NX)
426                         runtime_code_page_mkexec();
427                 return;
428         }
429
430         /*
431          * Use the EFI Memory Attribute Table for mapping permissions if it
432          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
433          */
434         if (efi_enabled(EFI_MEM_ATTR)) {
435                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
436                 return;
437         }
438
439         /*
440          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
441          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
442          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
443          * published by the firmware. Even if we find a buggy implementation of
444          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
445          * EFI_PROPERTIES_TABLE, because of the same reason.
446          */
447
448         if (!efi_enabled(EFI_NX_PE_DATA))
449                 return;
450
451         for_each_efi_memory_desc(md) {
452                 unsigned long pf = 0;
453
454                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
455                         continue;
456
457                 if (!(md->attribute & EFI_MEMORY_WB))
458                         pf |= _PAGE_PCD;
459
460                 if ((md->attribute & EFI_MEMORY_XP) ||
461                         (md->type == EFI_RUNTIME_SERVICES_DATA))
462                         pf |= _PAGE_NX;
463
464                 if (!(md->attribute & EFI_MEMORY_RO) &&
465                         (md->type != EFI_RUNTIME_SERVICES_CODE))
466                         pf |= _PAGE_RW;
467
468                 if (sev_active())
469                         pf |= _PAGE_ENC;
470
471                 efi_update_mappings(md, pf);
472         }
473 }
474
475 void __init efi_dump_pagetable(void)
476 {
477 #ifdef CONFIG_EFI_PGT_DUMP
478         if (efi_have_uv1_memmap())
479                 ptdump_walk_pgd_level(NULL, &init_mm);
480         else
481                 ptdump_walk_pgd_level(NULL, &efi_mm);
482 #endif
483 }
484
485 /*
486  * Makes the calling thread switch to/from efi_mm context. Can be used
487  * in a kernel thread and user context. Preemption needs to remain disabled
488  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
489  * can not change under us.
490  * It should be ensured that there are no concurent calls to this function.
491  */
492 void efi_switch_mm(struct mm_struct *mm)
493 {
494         efi_scratch.prev_mm = current->active_mm;
495         current->active_mm = mm;
496         switch_mm(efi_scratch.prev_mm, mm, NULL);
497 }
498
499 static DEFINE_SPINLOCK(efi_runtime_lock);
500
501 /*
502  * DS and ES contain user values.  We need to save them.
503  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
504  * need to save the old SS: __KERNEL_DS is always acceptable.
505  */
506 #define __efi_thunk(func, ...)                                          \
507 ({                                                                      \
508         unsigned short __ds, __es;                                      \
509         efi_status_t ____s;                                             \
510                                                                         \
511         savesegment(ds, __ds);                                          \
512         savesegment(es, __es);                                          \
513                                                                         \
514         loadsegment(ss, __KERNEL_DS);                                   \
515         loadsegment(ds, __KERNEL_DS);                                   \
516         loadsegment(es, __KERNEL_DS);                                   \
517                                                                         \
518         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
519                                                                         \
520         loadsegment(ds, __ds);                                          \
521         loadsegment(es, __es);                                          \
522                                                                         \
523         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
524         ____s;                                                          \
525 })
526
527 /*
528  * Switch to the EFI page tables early so that we can access the 1:1
529  * runtime services mappings which are not mapped in any other page
530  * tables.
531  *
532  * Also, disable interrupts because the IDT points to 64-bit handlers,
533  * which aren't going to function correctly when we switch to 32-bit.
534  */
535 #define efi_thunk(func...)                                              \
536 ({                                                                      \
537         efi_status_t __s;                                               \
538                                                                         \
539         arch_efi_call_virt_setup();                                     \
540                                                                         \
541         __s = __efi_thunk(func);                                        \
542                                                                         \
543         arch_efi_call_virt_teardown();                                  \
544                                                                         \
545         __s;                                                            \
546 })
547
548 static efi_status_t __init __no_sanitize_address
549 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
550                                   unsigned long descriptor_size,
551                                   u32 descriptor_version,
552                                   efi_memory_desc_t *virtual_map)
553 {
554         efi_status_t status;
555         unsigned long flags;
556
557         efi_sync_low_kernel_mappings();
558         local_irq_save(flags);
559
560         efi_switch_mm(&efi_mm);
561
562         status = __efi_thunk(set_virtual_address_map, memory_map_size,
563                              descriptor_size, descriptor_version, virtual_map);
564
565         efi_switch_mm(efi_scratch.prev_mm);
566         local_irq_restore(flags);
567
568         return status;
569 }
570
571 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
572 {
573         return EFI_UNSUPPORTED;
574 }
575
576 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
577 {
578         return EFI_UNSUPPORTED;
579 }
580
581 static efi_status_t
582 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
583                           efi_time_t *tm)
584 {
585         return EFI_UNSUPPORTED;
586 }
587
588 static efi_status_t
589 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
590 {
591         return EFI_UNSUPPORTED;
592 }
593
594 static unsigned long efi_name_size(efi_char16_t *name)
595 {
596         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
597 }
598
599 static efi_status_t
600 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
601                        u32 *attr, unsigned long *data_size, void *data)
602 {
603         u8 buf[24] __aligned(8);
604         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
605         efi_status_t status;
606         u32 phys_name, phys_vendor, phys_attr;
607         u32 phys_data_size, phys_data;
608         unsigned long flags;
609
610         spin_lock_irqsave(&efi_runtime_lock, flags);
611
612         *vnd = *vendor;
613
614         phys_data_size = virt_to_phys_or_null(data_size);
615         phys_vendor = virt_to_phys_or_null(vnd);
616         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
617         phys_attr = virt_to_phys_or_null(attr);
618         phys_data = virt_to_phys_or_null_size(data, *data_size);
619
620         if (!phys_name || (data && !phys_data))
621                 status = EFI_INVALID_PARAMETER;
622         else
623                 status = efi_thunk(get_variable, phys_name, phys_vendor,
624                                    phys_attr, phys_data_size, phys_data);
625
626         spin_unlock_irqrestore(&efi_runtime_lock, flags);
627
628         return status;
629 }
630
631 static efi_status_t
632 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
633                        u32 attr, unsigned long data_size, void *data)
634 {
635         u8 buf[24] __aligned(8);
636         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
637         u32 phys_name, phys_vendor, phys_data;
638         efi_status_t status;
639         unsigned long flags;
640
641         spin_lock_irqsave(&efi_runtime_lock, flags);
642
643         *vnd = *vendor;
644
645         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
646         phys_vendor = virt_to_phys_or_null(vnd);
647         phys_data = virt_to_phys_or_null_size(data, data_size);
648
649         if (!phys_name || (data && !phys_data))
650                 status = EFI_INVALID_PARAMETER;
651         else
652                 status = efi_thunk(set_variable, phys_name, phys_vendor,
653                                    attr, data_size, phys_data);
654
655         spin_unlock_irqrestore(&efi_runtime_lock, flags);
656
657         return status;
658 }
659
660 static efi_status_t
661 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
662                                    u32 attr, unsigned long data_size,
663                                    void *data)
664 {
665         u8 buf[24] __aligned(8);
666         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
667         u32 phys_name, phys_vendor, phys_data;
668         efi_status_t status;
669         unsigned long flags;
670
671         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
672                 return EFI_NOT_READY;
673
674         *vnd = *vendor;
675
676         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
677         phys_vendor = virt_to_phys_or_null(vnd);
678         phys_data = virt_to_phys_or_null_size(data, data_size);
679
680         if (!phys_name || (data && !phys_data))
681                 status = EFI_INVALID_PARAMETER;
682         else
683                 status = efi_thunk(set_variable, phys_name, phys_vendor,
684                                    attr, data_size, phys_data);
685
686         spin_unlock_irqrestore(&efi_runtime_lock, flags);
687
688         return status;
689 }
690
691 static efi_status_t
692 efi_thunk_get_next_variable(unsigned long *name_size,
693                             efi_char16_t *name,
694                             efi_guid_t *vendor)
695 {
696         u8 buf[24] __aligned(8);
697         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
698         efi_status_t status;
699         u32 phys_name_size, phys_name, phys_vendor;
700         unsigned long flags;
701
702         spin_lock_irqsave(&efi_runtime_lock, flags);
703
704         *vnd = *vendor;
705
706         phys_name_size = virt_to_phys_or_null(name_size);
707         phys_vendor = virt_to_phys_or_null(vnd);
708         phys_name = virt_to_phys_or_null_size(name, *name_size);
709
710         if (!phys_name)
711                 status = EFI_INVALID_PARAMETER;
712         else
713                 status = efi_thunk(get_next_variable, phys_name_size,
714                                    phys_name, phys_vendor);
715
716         spin_unlock_irqrestore(&efi_runtime_lock, flags);
717
718         *vendor = *vnd;
719         return status;
720 }
721
722 static efi_status_t
723 efi_thunk_get_next_high_mono_count(u32 *count)
724 {
725         return EFI_UNSUPPORTED;
726 }
727
728 static void
729 efi_thunk_reset_system(int reset_type, efi_status_t status,
730                        unsigned long data_size, efi_char16_t *data)
731 {
732         u32 phys_data;
733         unsigned long flags;
734
735         spin_lock_irqsave(&efi_runtime_lock, flags);
736
737         phys_data = virt_to_phys_or_null_size(data, data_size);
738
739         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
740
741         spin_unlock_irqrestore(&efi_runtime_lock, flags);
742 }
743
744 static efi_status_t
745 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
746                          unsigned long count, unsigned long sg_list)
747 {
748         /*
749          * To properly support this function we would need to repackage
750          * 'capsules' because the firmware doesn't understand 64-bit
751          * pointers.
752          */
753         return EFI_UNSUPPORTED;
754 }
755
756 static efi_status_t
757 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
758                               u64 *remaining_space,
759                               u64 *max_variable_size)
760 {
761         efi_status_t status;
762         u32 phys_storage, phys_remaining, phys_max;
763         unsigned long flags;
764
765         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
766                 return EFI_UNSUPPORTED;
767
768         spin_lock_irqsave(&efi_runtime_lock, flags);
769
770         phys_storage = virt_to_phys_or_null(storage_space);
771         phys_remaining = virt_to_phys_or_null(remaining_space);
772         phys_max = virt_to_phys_or_null(max_variable_size);
773
774         status = efi_thunk(query_variable_info, attr, phys_storage,
775                            phys_remaining, phys_max);
776
777         spin_unlock_irqrestore(&efi_runtime_lock, flags);
778
779         return status;
780 }
781
782 static efi_status_t
783 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
784                                           u64 *remaining_space,
785                                           u64 *max_variable_size)
786 {
787         efi_status_t status;
788         u32 phys_storage, phys_remaining, phys_max;
789         unsigned long flags;
790
791         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
792                 return EFI_UNSUPPORTED;
793
794         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
795                 return EFI_NOT_READY;
796
797         phys_storage = virt_to_phys_or_null(storage_space);
798         phys_remaining = virt_to_phys_or_null(remaining_space);
799         phys_max = virt_to_phys_or_null(max_variable_size);
800
801         status = efi_thunk(query_variable_info, attr, phys_storage,
802                            phys_remaining, phys_max);
803
804         spin_unlock_irqrestore(&efi_runtime_lock, flags);
805
806         return status;
807 }
808
809 static efi_status_t
810 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
811                              unsigned long count, u64 *max_size,
812                              int *reset_type)
813 {
814         /*
815          * To properly support this function we would need to repackage
816          * 'capsules' because the firmware doesn't understand 64-bit
817          * pointers.
818          */
819         return EFI_UNSUPPORTED;
820 }
821
822 void __init efi_thunk_runtime_setup(void)
823 {
824         if (!IS_ENABLED(CONFIG_EFI_MIXED))
825                 return;
826
827         efi.get_time = efi_thunk_get_time;
828         efi.set_time = efi_thunk_set_time;
829         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
830         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
831         efi.get_variable = efi_thunk_get_variable;
832         efi.get_next_variable = efi_thunk_get_next_variable;
833         efi.set_variable = efi_thunk_set_variable;
834         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
835         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
836         efi.reset_system = efi_thunk_reset_system;
837         efi.query_variable_info = efi_thunk_query_variable_info;
838         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
839         efi.update_capsule = efi_thunk_update_capsule;
840         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
841 }
842
843 efi_status_t __init __no_sanitize_address
844 efi_set_virtual_address_map(unsigned long memory_map_size,
845                             unsigned long descriptor_size,
846                             u32 descriptor_version,
847                             efi_memory_desc_t *virtual_map,
848                             unsigned long systab_phys)
849 {
850         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
851         efi_status_t status;
852         unsigned long flags;
853         pgd_t *save_pgd = NULL;
854
855         if (efi_is_mixed())
856                 return efi_thunk_set_virtual_address_map(memory_map_size,
857                                                          descriptor_size,
858                                                          descriptor_version,
859                                                          virtual_map);
860
861         if (efi_have_uv1_memmap()) {
862                 save_pgd = efi_uv1_memmap_phys_prolog();
863                 if (!save_pgd)
864                         return EFI_ABORTED;
865         } else {
866                 efi_switch_mm(&efi_mm);
867         }
868
869         kernel_fpu_begin();
870
871         /* Disable interrupts around EFI calls: */
872         local_irq_save(flags);
873         status = efi_call(efi.runtime->set_virtual_address_map,
874                           memory_map_size, descriptor_size,
875                           descriptor_version, virtual_map);
876         local_irq_restore(flags);
877
878         kernel_fpu_end();
879
880         /* grab the virtually remapped EFI runtime services table pointer */
881         efi.runtime = READ_ONCE(systab->runtime);
882
883         if (save_pgd)
884                 efi_uv1_memmap_phys_epilog(save_pgd);
885         else
886                 efi_switch_mm(efi_scratch.prev_mm);
887
888         return status;
889 }