Merge tag 'hwlock-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57
58 struct efi_scratch efi_scratch;
59
60 EXPORT_SYMBOL_GPL(efi_mm);
61
62 /*
63  * We need our own copy of the higher levels of the page tables
64  * because we want to avoid inserting EFI region mappings (EFI_VA_END
65  * to EFI_VA_START) into the standard kernel page tables. Everything
66  * else can be shared, see efi_sync_low_kernel_mappings().
67  *
68  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69  * allocation.
70  */
71 int __init efi_alloc_page_tables(void)
72 {
73         pgd_t *pgd, *efi_pgd;
74         p4d_t *p4d;
75         pud_t *pud;
76         gfp_t gfp_mask;
77
78         if (efi_have_uv1_memmap())
79                 return 0;
80
81         gfp_mask = GFP_KERNEL | __GFP_ZERO;
82         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
83         if (!efi_pgd)
84                 return -ENOMEM;
85
86         pgd = efi_pgd + pgd_index(EFI_VA_END);
87         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
88         if (!p4d) {
89                 free_page((unsigned long)efi_pgd);
90                 return -ENOMEM;
91         }
92
93         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
94         if (!pud) {
95                 if (pgtable_l5_enabled())
96                         free_page((unsigned long) pgd_page_vaddr(*pgd));
97                 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
98                 return -ENOMEM;
99         }
100
101         efi_mm.pgd = efi_pgd;
102         mm_init_cpumask(&efi_mm);
103         init_new_context(NULL, &efi_mm);
104
105         return 0;
106 }
107
108 /*
109  * Add low kernel mappings for passing arguments to EFI functions.
110  */
111 void efi_sync_low_kernel_mappings(void)
112 {
113         unsigned num_entries;
114         pgd_t *pgd_k, *pgd_efi;
115         p4d_t *p4d_k, *p4d_efi;
116         pud_t *pud_k, *pud_efi;
117         pgd_t *efi_pgd = efi_mm.pgd;
118
119         if (efi_have_uv1_memmap())
120                 return;
121
122         /*
123          * We can share all PGD entries apart from the one entry that
124          * covers the EFI runtime mapping space.
125          *
126          * Make sure the EFI runtime region mappings are guaranteed to
127          * only span a single PGD entry and that the entry also maps
128          * other important kernel regions.
129          */
130         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
131         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
132                         (EFI_VA_END & PGDIR_MASK));
133
134         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
135         pgd_k = pgd_offset_k(PAGE_OFFSET);
136
137         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
138         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
139
140         /*
141          * As with PGDs, we share all P4D entries apart from the one entry
142          * that covers the EFI runtime mapping space.
143          */
144         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
145         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
146
147         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
148         pgd_k = pgd_offset_k(EFI_VA_END);
149         p4d_efi = p4d_offset(pgd_efi, 0);
150         p4d_k = p4d_offset(pgd_k, 0);
151
152         num_entries = p4d_index(EFI_VA_END);
153         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
154
155         /*
156          * We share all the PUD entries apart from those that map the
157          * EFI regions. Copy around them.
158          */
159         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
160         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
161
162         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
163         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
164         pud_efi = pud_offset(p4d_efi, 0);
165         pud_k = pud_offset(p4d_k, 0);
166
167         num_entries = pud_index(EFI_VA_END);
168         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
169
170         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
171         pud_k = pud_offset(p4d_k, EFI_VA_START);
172
173         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
174         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
175 }
176
177 /*
178  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
179  */
180 static inline phys_addr_t
181 virt_to_phys_or_null_size(void *va, unsigned long size)
182 {
183         phys_addr_t pa;
184
185         if (!va)
186                 return 0;
187
188         if (virt_addr_valid(va))
189                 return virt_to_phys(va);
190
191         pa = slow_virt_to_phys(va);
192
193         /* check if the object crosses a page boundary */
194         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
195                 return 0;
196
197         return pa;
198 }
199
200 #define virt_to_phys_or_null(addr)                              \
201         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
202
203 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
204 {
205         unsigned long pfn, text, pf;
206         struct page *page;
207         unsigned npages;
208         pgd_t *pgd = efi_mm.pgd;
209
210         if (efi_have_uv1_memmap())
211                 return 0;
212
213         /*
214          * It can happen that the physical address of new_memmap lands in memory
215          * which is not mapped in the EFI page table. Therefore we need to go
216          * and ident-map those pages containing the map before calling
217          * phys_efi_set_virtual_address_map().
218          */
219         pfn = pa_memmap >> PAGE_SHIFT;
220         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
221         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
222                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
223                 return 1;
224         }
225
226         /*
227          * Certain firmware versions are way too sentimential and still believe
228          * they are exclusive and unquestionable owners of the first physical page,
229          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
230          * (but then write-access it later during SetVirtualAddressMap()).
231          *
232          * Create a 1:1 mapping for this page, to avoid triple faults during early
233          * boot with such firmware. We are free to hand this page to the BIOS,
234          * as trim_bios_range() will reserve the first page and isolate it away
235          * from memory allocators anyway.
236          */
237         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
238                 pr_err("Failed to create 1:1 mapping for the first page!\n");
239                 return 1;
240         }
241
242         /*
243          * When making calls to the firmware everything needs to be 1:1
244          * mapped and addressable with 32-bit pointers. Map the kernel
245          * text and allocate a new stack because we can't rely on the
246          * stack pointer being < 4GB.
247          */
248         if (!efi_is_mixed())
249                 return 0;
250
251         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
252         if (!page) {
253                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
254                 return 1;
255         }
256
257         efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
258
259         npages = (__end_rodata_aligned - _text) >> PAGE_SHIFT;
260         text = __pa(_text);
261         pfn = text >> PAGE_SHIFT;
262
263         pf = _PAGE_ENC;
264         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
265                 pr_err("Failed to map kernel text 1:1\n");
266                 return 1;
267         }
268
269         return 0;
270 }
271
272 static void __init __map_region(efi_memory_desc_t *md, u64 va)
273 {
274         unsigned long flags = _PAGE_RW;
275         unsigned long pfn;
276         pgd_t *pgd = efi_mm.pgd;
277
278         /*
279          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
280          * executable images in memory that consist of both R-X and
281          * RW- sections, so we cannot apply read-only or non-exec
282          * permissions just yet. However, modern EFI systems provide
283          * a memory attributes table that describes those sections
284          * with the appropriate restricted permissions, which are
285          * applied in efi_runtime_update_mappings() below. All other
286          * regions can be mapped non-executable at this point, with
287          * the exception of boot services code regions, but those will
288          * be unmapped again entirely in efi_free_boot_services().
289          */
290         if (md->type != EFI_BOOT_SERVICES_CODE &&
291             md->type != EFI_RUNTIME_SERVICES_CODE)
292                 flags |= _PAGE_NX;
293
294         if (!(md->attribute & EFI_MEMORY_WB))
295                 flags |= _PAGE_PCD;
296
297         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
298                 flags |= _PAGE_ENC;
299
300         pfn = md->phys_addr >> PAGE_SHIFT;
301         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
302                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
303                            md->phys_addr, va);
304 }
305
306 void __init efi_map_region(efi_memory_desc_t *md)
307 {
308         unsigned long size = md->num_pages << PAGE_SHIFT;
309         u64 pa = md->phys_addr;
310
311         if (efi_have_uv1_memmap())
312                 return old_map_region(md);
313
314         /*
315          * Make sure the 1:1 mappings are present as a catch-all for b0rked
316          * firmware which doesn't update all internal pointers after switching
317          * to virtual mode and would otherwise crap on us.
318          */
319         __map_region(md, md->phys_addr);
320
321         /*
322          * Enforce the 1:1 mapping as the default virtual address when
323          * booting in EFI mixed mode, because even though we may be
324          * running a 64-bit kernel, the firmware may only be 32-bit.
325          */
326         if (efi_is_mixed()) {
327                 md->virt_addr = md->phys_addr;
328                 return;
329         }
330
331         efi_va -= size;
332
333         /* Is PA 2M-aligned? */
334         if (!(pa & (PMD_SIZE - 1))) {
335                 efi_va &= PMD_MASK;
336         } else {
337                 u64 pa_offset = pa & (PMD_SIZE - 1);
338                 u64 prev_va = efi_va;
339
340                 /* get us the same offset within this 2M page */
341                 efi_va = (efi_va & PMD_MASK) + pa_offset;
342
343                 if (efi_va > prev_va)
344                         efi_va -= PMD_SIZE;
345         }
346
347         if (efi_va < EFI_VA_END) {
348                 pr_warn(FW_WARN "VA address range overflow!\n");
349                 return;
350         }
351
352         /* Do the VA map */
353         __map_region(md, efi_va);
354         md->virt_addr = efi_va;
355 }
356
357 /*
358  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
359  * md->virt_addr is the original virtual address which had been mapped in kexec
360  * 1st kernel.
361  */
362 void __init efi_map_region_fixed(efi_memory_desc_t *md)
363 {
364         __map_region(md, md->phys_addr);
365         __map_region(md, md->virt_addr);
366 }
367
368 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
369 {
370         efi_setup = phys_addr + sizeof(struct setup_data);
371 }
372
373 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
374 {
375         unsigned long pfn;
376         pgd_t *pgd = efi_mm.pgd;
377         int err1, err2;
378
379         /* Update the 1:1 mapping */
380         pfn = md->phys_addr >> PAGE_SHIFT;
381         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
382         if (err1) {
383                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
384                            md->phys_addr, md->virt_addr);
385         }
386
387         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
388         if (err2) {
389                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
390                            md->phys_addr, md->virt_addr);
391         }
392
393         return err1 || err2;
394 }
395
396 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
397 {
398         unsigned long pf = 0;
399
400         if (md->attribute & EFI_MEMORY_XP)
401                 pf |= _PAGE_NX;
402
403         if (!(md->attribute & EFI_MEMORY_RO))
404                 pf |= _PAGE_RW;
405
406         if (sev_active())
407                 pf |= _PAGE_ENC;
408
409         return efi_update_mappings(md, pf);
410 }
411
412 void __init efi_runtime_update_mappings(void)
413 {
414         efi_memory_desc_t *md;
415
416         if (efi_have_uv1_memmap()) {
417                 if (__supported_pte_mask & _PAGE_NX)
418                         runtime_code_page_mkexec();
419                 return;
420         }
421
422         /*
423          * Use the EFI Memory Attribute Table for mapping permissions if it
424          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
425          */
426         if (efi_enabled(EFI_MEM_ATTR)) {
427                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
428                 return;
429         }
430
431         /*
432          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
433          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
434          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
435          * published by the firmware. Even if we find a buggy implementation of
436          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
437          * EFI_PROPERTIES_TABLE, because of the same reason.
438          */
439
440         if (!efi_enabled(EFI_NX_PE_DATA))
441                 return;
442
443         for_each_efi_memory_desc(md) {
444                 unsigned long pf = 0;
445
446                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
447                         continue;
448
449                 if (!(md->attribute & EFI_MEMORY_WB))
450                         pf |= _PAGE_PCD;
451
452                 if ((md->attribute & EFI_MEMORY_XP) ||
453                         (md->type == EFI_RUNTIME_SERVICES_DATA))
454                         pf |= _PAGE_NX;
455
456                 if (!(md->attribute & EFI_MEMORY_RO) &&
457                         (md->type != EFI_RUNTIME_SERVICES_CODE))
458                         pf |= _PAGE_RW;
459
460                 if (sev_active())
461                         pf |= _PAGE_ENC;
462
463                 efi_update_mappings(md, pf);
464         }
465 }
466
467 void __init efi_dump_pagetable(void)
468 {
469 #ifdef CONFIG_EFI_PGT_DUMP
470         if (efi_have_uv1_memmap())
471                 ptdump_walk_pgd_level(NULL, &init_mm);
472         else
473                 ptdump_walk_pgd_level(NULL, &efi_mm);
474 #endif
475 }
476
477 /*
478  * Makes the calling thread switch to/from efi_mm context. Can be used
479  * in a kernel thread and user context. Preemption needs to remain disabled
480  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
481  * can not change under us.
482  * It should be ensured that there are no concurent calls to this function.
483  */
484 void efi_switch_mm(struct mm_struct *mm)
485 {
486         efi_scratch.prev_mm = current->active_mm;
487         current->active_mm = mm;
488         switch_mm(efi_scratch.prev_mm, mm, NULL);
489 }
490
491 static DEFINE_SPINLOCK(efi_runtime_lock);
492
493 /*
494  * DS and ES contain user values.  We need to save them.
495  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
496  * need to save the old SS: __KERNEL_DS is always acceptable.
497  */
498 #define __efi_thunk(func, ...)                                          \
499 ({                                                                      \
500         unsigned short __ds, __es;                                      \
501         efi_status_t ____s;                                             \
502                                                                         \
503         savesegment(ds, __ds);                                          \
504         savesegment(es, __es);                                          \
505                                                                         \
506         loadsegment(ss, __KERNEL_DS);                                   \
507         loadsegment(ds, __KERNEL_DS);                                   \
508         loadsegment(es, __KERNEL_DS);                                   \
509                                                                         \
510         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
511                                                                         \
512         loadsegment(ds, __ds);                                          \
513         loadsegment(es, __es);                                          \
514                                                                         \
515         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
516         ____s;                                                          \
517 })
518
519 /*
520  * Switch to the EFI page tables early so that we can access the 1:1
521  * runtime services mappings which are not mapped in any other page
522  * tables.
523  *
524  * Also, disable interrupts because the IDT points to 64-bit handlers,
525  * which aren't going to function correctly when we switch to 32-bit.
526  */
527 #define efi_thunk(func...)                                              \
528 ({                                                                      \
529         efi_status_t __s;                                               \
530                                                                         \
531         arch_efi_call_virt_setup();                                     \
532                                                                         \
533         __s = __efi_thunk(func);                                        \
534                                                                         \
535         arch_efi_call_virt_teardown();                                  \
536                                                                         \
537         __s;                                                            \
538 })
539
540 static efi_status_t __init __no_sanitize_address
541 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
542                                   unsigned long descriptor_size,
543                                   u32 descriptor_version,
544                                   efi_memory_desc_t *virtual_map)
545 {
546         efi_status_t status;
547         unsigned long flags;
548
549         efi_sync_low_kernel_mappings();
550         local_irq_save(flags);
551
552         efi_switch_mm(&efi_mm);
553
554         status = __efi_thunk(set_virtual_address_map, memory_map_size,
555                              descriptor_size, descriptor_version, virtual_map);
556
557         efi_switch_mm(efi_scratch.prev_mm);
558         local_irq_restore(flags);
559
560         return status;
561 }
562
563 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
564 {
565         return EFI_UNSUPPORTED;
566 }
567
568 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
569 {
570         return EFI_UNSUPPORTED;
571 }
572
573 static efi_status_t
574 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
575                           efi_time_t *tm)
576 {
577         return EFI_UNSUPPORTED;
578 }
579
580 static efi_status_t
581 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
582 {
583         return EFI_UNSUPPORTED;
584 }
585
586 static unsigned long efi_name_size(efi_char16_t *name)
587 {
588         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
589 }
590
591 static efi_status_t
592 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
593                        u32 *attr, unsigned long *data_size, void *data)
594 {
595         u8 buf[24] __aligned(8);
596         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
597         efi_status_t status;
598         u32 phys_name, phys_vendor, phys_attr;
599         u32 phys_data_size, phys_data;
600         unsigned long flags;
601
602         spin_lock_irqsave(&efi_runtime_lock, flags);
603
604         *vnd = *vendor;
605
606         phys_data_size = virt_to_phys_or_null(data_size);
607         phys_vendor = virt_to_phys_or_null(vnd);
608         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
609         phys_attr = virt_to_phys_or_null(attr);
610         phys_data = virt_to_phys_or_null_size(data, *data_size);
611
612         if (!phys_name || (data && !phys_data))
613                 status = EFI_INVALID_PARAMETER;
614         else
615                 status = efi_thunk(get_variable, phys_name, phys_vendor,
616                                    phys_attr, phys_data_size, phys_data);
617
618         spin_unlock_irqrestore(&efi_runtime_lock, flags);
619
620         return status;
621 }
622
623 static efi_status_t
624 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
625                        u32 attr, unsigned long data_size, void *data)
626 {
627         u8 buf[24] __aligned(8);
628         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
629         u32 phys_name, phys_vendor, phys_data;
630         efi_status_t status;
631         unsigned long flags;
632
633         spin_lock_irqsave(&efi_runtime_lock, flags);
634
635         *vnd = *vendor;
636
637         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
638         phys_vendor = virt_to_phys_or_null(vnd);
639         phys_data = virt_to_phys_or_null_size(data, data_size);
640
641         if (!phys_name || !phys_data)
642                 status = EFI_INVALID_PARAMETER;
643         else
644                 status = efi_thunk(set_variable, phys_name, phys_vendor,
645                                    attr, data_size, phys_data);
646
647         spin_unlock_irqrestore(&efi_runtime_lock, flags);
648
649         return status;
650 }
651
652 static efi_status_t
653 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
654                                    u32 attr, unsigned long data_size,
655                                    void *data)
656 {
657         u8 buf[24] __aligned(8);
658         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
659         u32 phys_name, phys_vendor, phys_data;
660         efi_status_t status;
661         unsigned long flags;
662
663         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
664                 return EFI_NOT_READY;
665
666         *vnd = *vendor;
667
668         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
669         phys_vendor = virt_to_phys_or_null(vnd);
670         phys_data = virt_to_phys_or_null_size(data, data_size);
671
672         if (!phys_name || !phys_data)
673                 status = EFI_INVALID_PARAMETER;
674         else
675                 status = efi_thunk(set_variable, phys_name, phys_vendor,
676                                    attr, data_size, phys_data);
677
678         spin_unlock_irqrestore(&efi_runtime_lock, flags);
679
680         return status;
681 }
682
683 static efi_status_t
684 efi_thunk_get_next_variable(unsigned long *name_size,
685                             efi_char16_t *name,
686                             efi_guid_t *vendor)
687 {
688         u8 buf[24] __aligned(8);
689         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
690         efi_status_t status;
691         u32 phys_name_size, phys_name, phys_vendor;
692         unsigned long flags;
693
694         spin_lock_irqsave(&efi_runtime_lock, flags);
695
696         *vnd = *vendor;
697
698         phys_name_size = virt_to_phys_or_null(name_size);
699         phys_vendor = virt_to_phys_or_null(vnd);
700         phys_name = virt_to_phys_or_null_size(name, *name_size);
701
702         if (!phys_name)
703                 status = EFI_INVALID_PARAMETER;
704         else
705                 status = efi_thunk(get_next_variable, phys_name_size,
706                                    phys_name, phys_vendor);
707
708         spin_unlock_irqrestore(&efi_runtime_lock, flags);
709
710         *vendor = *vnd;
711         return status;
712 }
713
714 static efi_status_t
715 efi_thunk_get_next_high_mono_count(u32 *count)
716 {
717         return EFI_UNSUPPORTED;
718 }
719
720 static void
721 efi_thunk_reset_system(int reset_type, efi_status_t status,
722                        unsigned long data_size, efi_char16_t *data)
723 {
724         u32 phys_data;
725         unsigned long flags;
726
727         spin_lock_irqsave(&efi_runtime_lock, flags);
728
729         phys_data = virt_to_phys_or_null_size(data, data_size);
730
731         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
732
733         spin_unlock_irqrestore(&efi_runtime_lock, flags);
734 }
735
736 static efi_status_t
737 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
738                          unsigned long count, unsigned long sg_list)
739 {
740         /*
741          * To properly support this function we would need to repackage
742          * 'capsules' because the firmware doesn't understand 64-bit
743          * pointers.
744          */
745         return EFI_UNSUPPORTED;
746 }
747
748 static efi_status_t
749 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
750                               u64 *remaining_space,
751                               u64 *max_variable_size)
752 {
753         efi_status_t status;
754         u32 phys_storage, phys_remaining, phys_max;
755         unsigned long flags;
756
757         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
758                 return EFI_UNSUPPORTED;
759
760         spin_lock_irqsave(&efi_runtime_lock, flags);
761
762         phys_storage = virt_to_phys_or_null(storage_space);
763         phys_remaining = virt_to_phys_or_null(remaining_space);
764         phys_max = virt_to_phys_or_null(max_variable_size);
765
766         status = efi_thunk(query_variable_info, attr, phys_storage,
767                            phys_remaining, phys_max);
768
769         spin_unlock_irqrestore(&efi_runtime_lock, flags);
770
771         return status;
772 }
773
774 static efi_status_t
775 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
776                                           u64 *remaining_space,
777                                           u64 *max_variable_size)
778 {
779         efi_status_t status;
780         u32 phys_storage, phys_remaining, phys_max;
781         unsigned long flags;
782
783         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
784                 return EFI_UNSUPPORTED;
785
786         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
787                 return EFI_NOT_READY;
788
789         phys_storage = virt_to_phys_or_null(storage_space);
790         phys_remaining = virt_to_phys_or_null(remaining_space);
791         phys_max = virt_to_phys_or_null(max_variable_size);
792
793         status = efi_thunk(query_variable_info, attr, phys_storage,
794                            phys_remaining, phys_max);
795
796         spin_unlock_irqrestore(&efi_runtime_lock, flags);
797
798         return status;
799 }
800
801 static efi_status_t
802 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
803                              unsigned long count, u64 *max_size,
804                              int *reset_type)
805 {
806         /*
807          * To properly support this function we would need to repackage
808          * 'capsules' because the firmware doesn't understand 64-bit
809          * pointers.
810          */
811         return EFI_UNSUPPORTED;
812 }
813
814 void __init efi_thunk_runtime_setup(void)
815 {
816         if (!IS_ENABLED(CONFIG_EFI_MIXED))
817                 return;
818
819         efi.get_time = efi_thunk_get_time;
820         efi.set_time = efi_thunk_set_time;
821         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
822         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
823         efi.get_variable = efi_thunk_get_variable;
824         efi.get_next_variable = efi_thunk_get_next_variable;
825         efi.set_variable = efi_thunk_set_variable;
826         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
827         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
828         efi.reset_system = efi_thunk_reset_system;
829         efi.query_variable_info = efi_thunk_query_variable_info;
830         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
831         efi.update_capsule = efi_thunk_update_capsule;
832         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
833 }
834
835 efi_status_t __init __no_sanitize_address
836 efi_set_virtual_address_map(unsigned long memory_map_size,
837                             unsigned long descriptor_size,
838                             u32 descriptor_version,
839                             efi_memory_desc_t *virtual_map,
840                             unsigned long systab_phys)
841 {
842         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
843         efi_status_t status;
844         unsigned long flags;
845         pgd_t *save_pgd = NULL;
846
847         if (efi_is_mixed())
848                 return efi_thunk_set_virtual_address_map(memory_map_size,
849                                                          descriptor_size,
850                                                          descriptor_version,
851                                                          virtual_map);
852
853         if (efi_have_uv1_memmap()) {
854                 save_pgd = efi_uv1_memmap_phys_prolog();
855                 if (!save_pgd)
856                         return EFI_ABORTED;
857         } else {
858                 efi_switch_mm(&efi_mm);
859         }
860
861         kernel_fpu_begin();
862
863         /* Disable interrupts around EFI calls: */
864         local_irq_save(flags);
865         status = efi_call(efi.runtime->set_virtual_address_map,
866                           memory_map_size, descriptor_size,
867                           descriptor_version, virtual_map);
868         local_irq_restore(flags);
869
870         kernel_fpu_end();
871
872         /* grab the virtually remapped EFI runtime services table pointer */
873         efi.runtime = READ_ONCE(systab->runtime);
874
875         if (save_pgd)
876                 efi_uv1_memmap_phys_epilog(save_pgd);
877         else
878                 efi_switch_mm(efi_scratch.prev_mm);
879
880         return status;
881 }