Merge tag 'efi-next-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 static struct mm_struct *efi_prev_mm;
58
59 /*
60  * We need our own copy of the higher levels of the page tables
61  * because we want to avoid inserting EFI region mappings (EFI_VA_END
62  * to EFI_VA_START) into the standard kernel page tables. Everything
63  * else can be shared, see efi_sync_low_kernel_mappings().
64  *
65  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66  * allocation.
67  */
68 int __init efi_alloc_page_tables(void)
69 {
70         pgd_t *pgd, *efi_pgd;
71         p4d_t *p4d;
72         pud_t *pud;
73         gfp_t gfp_mask;
74
75         gfp_mask = GFP_KERNEL | __GFP_ZERO;
76         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
77         if (!efi_pgd)
78                 goto fail;
79
80         pgd = efi_pgd + pgd_index(EFI_VA_END);
81         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82         if (!p4d)
83                 goto free_pgd;
84
85         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86         if (!pud)
87                 goto free_p4d;
88
89         efi_mm.pgd = efi_pgd;
90         mm_init_cpumask(&efi_mm);
91         init_new_context(NULL, &efi_mm);
92
93         return 0;
94
95 free_p4d:
96         if (pgtable_l5_enabled())
97                 free_page((unsigned long)pgd_page_vaddr(*pgd));
98 free_pgd:
99         free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
100 fail:
101         return -ENOMEM;
102 }
103
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109         unsigned num_entries;
110         pgd_t *pgd_k, *pgd_efi;
111         p4d_t *p4d_k, *p4d_efi;
112         pud_t *pud_k, *pud_efi;
113         pgd_t *efi_pgd = efi_mm.pgd;
114
115         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
116         pgd_k = pgd_offset_k(PAGE_OFFSET);
117
118         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
119         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
120
121         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
122         pgd_k = pgd_offset_k(EFI_VA_END);
123         p4d_efi = p4d_offset(pgd_efi, 0);
124         p4d_k = p4d_offset(pgd_k, 0);
125
126         num_entries = p4d_index(EFI_VA_END);
127         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
128
129         /*
130          * We share all the PUD entries apart from those that map the
131          * EFI regions. Copy around them.
132          */
133         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
134         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
135
136         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
137         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
138         pud_efi = pud_offset(p4d_efi, 0);
139         pud_k = pud_offset(p4d_k, 0);
140
141         num_entries = pud_index(EFI_VA_END);
142         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
143
144         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
145         pud_k = pud_offset(p4d_k, EFI_VA_START);
146
147         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
148         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
149 }
150
151 /*
152  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
153  */
154 static inline phys_addr_t
155 virt_to_phys_or_null_size(void *va, unsigned long size)
156 {
157         phys_addr_t pa;
158
159         if (!va)
160                 return 0;
161
162         if (virt_addr_valid(va))
163                 return virt_to_phys(va);
164
165         pa = slow_virt_to_phys(va);
166
167         /* check if the object crosses a page boundary */
168         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
169                 return 0;
170
171         return pa;
172 }
173
174 #define virt_to_phys_or_null(addr)                              \
175         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
176
177 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
178 {
179         unsigned long pfn, text, pf, rodata;
180         struct page *page;
181         unsigned npages;
182         pgd_t *pgd = efi_mm.pgd;
183
184         /*
185          * It can happen that the physical address of new_memmap lands in memory
186          * which is not mapped in the EFI page table. Therefore we need to go
187          * and ident-map those pages containing the map before calling
188          * phys_efi_set_virtual_address_map().
189          */
190         pfn = pa_memmap >> PAGE_SHIFT;
191         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
192         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
193                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
194                 return 1;
195         }
196
197         /*
198          * Certain firmware versions are way too sentimential and still believe
199          * they are exclusive and unquestionable owners of the first physical page,
200          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
201          * (but then write-access it later during SetVirtualAddressMap()).
202          *
203          * Create a 1:1 mapping for this page, to avoid triple faults during early
204          * boot with such firmware. We are free to hand this page to the BIOS,
205          * as trim_bios_range() will reserve the first page and isolate it away
206          * from memory allocators anyway.
207          */
208         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
209                 pr_err("Failed to create 1:1 mapping for the first page!\n");
210                 return 1;
211         }
212
213         /*
214          * When SEV-ES is active, the GHCB as set by the kernel will be used
215          * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
216          */
217         if (sev_es_efi_map_ghcbs(pgd)) {
218                 pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
219                 return 1;
220         }
221
222         /*
223          * When making calls to the firmware everything needs to be 1:1
224          * mapped and addressable with 32-bit pointers. Map the kernel
225          * text and allocate a new stack because we can't rely on the
226          * stack pointer being < 4GB.
227          */
228         if (!efi_is_mixed())
229                 return 0;
230
231         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
232         if (!page) {
233                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
234                 return 1;
235         }
236
237         efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
238
239         npages = (_etext - _text) >> PAGE_SHIFT;
240         text = __pa(_text);
241         pfn = text >> PAGE_SHIFT;
242
243         pf = _PAGE_ENC;
244         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
245                 pr_err("Failed to map kernel text 1:1\n");
246                 return 1;
247         }
248
249         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
250         rodata = __pa(__start_rodata);
251         pfn = rodata >> PAGE_SHIFT;
252
253         pf = _PAGE_NX | _PAGE_ENC;
254         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
255                 pr_err("Failed to map kernel rodata 1:1\n");
256                 return 1;
257         }
258
259         return 0;
260 }
261
262 static void __init __map_region(efi_memory_desc_t *md, u64 va)
263 {
264         unsigned long flags = _PAGE_RW;
265         unsigned long pfn;
266         pgd_t *pgd = efi_mm.pgd;
267
268         /*
269          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
270          * executable images in memory that consist of both R-X and
271          * RW- sections, so we cannot apply read-only or non-exec
272          * permissions just yet. However, modern EFI systems provide
273          * a memory attributes table that describes those sections
274          * with the appropriate restricted permissions, which are
275          * applied in efi_runtime_update_mappings() below. All other
276          * regions can be mapped non-executable at this point, with
277          * the exception of boot services code regions, but those will
278          * be unmapped again entirely in efi_free_boot_services().
279          */
280         if (md->type != EFI_BOOT_SERVICES_CODE &&
281             md->type != EFI_RUNTIME_SERVICES_CODE)
282                 flags |= _PAGE_NX;
283
284         if (!(md->attribute & EFI_MEMORY_WB))
285                 flags |= _PAGE_PCD;
286
287         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
288                 flags |= _PAGE_ENC;
289
290         pfn = md->phys_addr >> PAGE_SHIFT;
291         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
292                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
293                            md->phys_addr, va);
294 }
295
296 void __init efi_map_region(efi_memory_desc_t *md)
297 {
298         unsigned long size = md->num_pages << PAGE_SHIFT;
299         u64 pa = md->phys_addr;
300
301         /*
302          * Make sure the 1:1 mappings are present as a catch-all for b0rked
303          * firmware which doesn't update all internal pointers after switching
304          * to virtual mode and would otherwise crap on us.
305          */
306         __map_region(md, md->phys_addr);
307
308         /*
309          * Enforce the 1:1 mapping as the default virtual address when
310          * booting in EFI mixed mode, because even though we may be
311          * running a 64-bit kernel, the firmware may only be 32-bit.
312          */
313         if (efi_is_mixed()) {
314                 md->virt_addr = md->phys_addr;
315                 return;
316         }
317
318         efi_va -= size;
319
320         /* Is PA 2M-aligned? */
321         if (!(pa & (PMD_SIZE - 1))) {
322                 efi_va &= PMD_MASK;
323         } else {
324                 u64 pa_offset = pa & (PMD_SIZE - 1);
325                 u64 prev_va = efi_va;
326
327                 /* get us the same offset within this 2M page */
328                 efi_va = (efi_va & PMD_MASK) + pa_offset;
329
330                 if (efi_va > prev_va)
331                         efi_va -= PMD_SIZE;
332         }
333
334         if (efi_va < EFI_VA_END) {
335                 pr_warn(FW_WARN "VA address range overflow!\n");
336                 return;
337         }
338
339         /* Do the VA map */
340         __map_region(md, efi_va);
341         md->virt_addr = efi_va;
342 }
343
344 /*
345  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
346  * md->virt_addr is the original virtual address which had been mapped in kexec
347  * 1st kernel.
348  */
349 void __init efi_map_region_fixed(efi_memory_desc_t *md)
350 {
351         __map_region(md, md->phys_addr);
352         __map_region(md, md->virt_addr);
353 }
354
355 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
356 {
357         efi_setup = phys_addr + sizeof(struct setup_data);
358 }
359
360 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
361 {
362         unsigned long pfn;
363         pgd_t *pgd = efi_mm.pgd;
364         int err1, err2;
365
366         /* Update the 1:1 mapping */
367         pfn = md->phys_addr >> PAGE_SHIFT;
368         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
369         if (err1) {
370                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
371                            md->phys_addr, md->virt_addr);
372         }
373
374         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
375         if (err2) {
376                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
377                            md->phys_addr, md->virt_addr);
378         }
379
380         return err1 || err2;
381 }
382
383 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
384 {
385         unsigned long pf = 0;
386
387         if (md->attribute & EFI_MEMORY_XP)
388                 pf |= _PAGE_NX;
389
390         if (!(md->attribute & EFI_MEMORY_RO))
391                 pf |= _PAGE_RW;
392
393         if (sev_active())
394                 pf |= _PAGE_ENC;
395
396         return efi_update_mappings(md, pf);
397 }
398
399 void __init efi_runtime_update_mappings(void)
400 {
401         efi_memory_desc_t *md;
402
403         /*
404          * Use the EFI Memory Attribute Table for mapping permissions if it
405          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
406          */
407         if (efi_enabled(EFI_MEM_ATTR)) {
408                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
409                 return;
410         }
411
412         /*
413          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
414          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
415          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
416          * published by the firmware. Even if we find a buggy implementation of
417          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
418          * EFI_PROPERTIES_TABLE, because of the same reason.
419          */
420
421         if (!efi_enabled(EFI_NX_PE_DATA))
422                 return;
423
424         for_each_efi_memory_desc(md) {
425                 unsigned long pf = 0;
426
427                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
428                         continue;
429
430                 if (!(md->attribute & EFI_MEMORY_WB))
431                         pf |= _PAGE_PCD;
432
433                 if ((md->attribute & EFI_MEMORY_XP) ||
434                         (md->type == EFI_RUNTIME_SERVICES_DATA))
435                         pf |= _PAGE_NX;
436
437                 if (!(md->attribute & EFI_MEMORY_RO) &&
438                         (md->type != EFI_RUNTIME_SERVICES_CODE))
439                         pf |= _PAGE_RW;
440
441                 if (sev_active())
442                         pf |= _PAGE_ENC;
443
444                 efi_update_mappings(md, pf);
445         }
446 }
447
448 void __init efi_dump_pagetable(void)
449 {
450 #ifdef CONFIG_EFI_PGT_DUMP
451         ptdump_walk_pgd_level(NULL, &efi_mm);
452 #endif
453 }
454
455 /*
456  * Makes the calling thread switch to/from efi_mm context. Can be used
457  * in a kernel thread and user context. Preemption needs to remain disabled
458  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
459  * can not change under us.
460  * It should be ensured that there are no concurent calls to this function.
461  */
462 void efi_enter_mm(void)
463 {
464         efi_prev_mm = current->active_mm;
465         current->active_mm = &efi_mm;
466         switch_mm(efi_prev_mm, &efi_mm, NULL);
467 }
468
469 void efi_leave_mm(void)
470 {
471         current->active_mm = efi_prev_mm;
472         switch_mm(&efi_mm, efi_prev_mm, NULL);
473 }
474
475 static DEFINE_SPINLOCK(efi_runtime_lock);
476
477 /*
478  * DS and ES contain user values.  We need to save them.
479  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
480  * need to save the old SS: __KERNEL_DS is always acceptable.
481  */
482 #define __efi_thunk(func, ...)                                          \
483 ({                                                                      \
484         unsigned short __ds, __es;                                      \
485         efi_status_t ____s;                                             \
486                                                                         \
487         savesegment(ds, __ds);                                          \
488         savesegment(es, __es);                                          \
489                                                                         \
490         loadsegment(ss, __KERNEL_DS);                                   \
491         loadsegment(ds, __KERNEL_DS);                                   \
492         loadsegment(es, __KERNEL_DS);                                   \
493                                                                         \
494         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
495                                                                         \
496         loadsegment(ds, __ds);                                          \
497         loadsegment(es, __es);                                          \
498                                                                         \
499         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
500         ____s;                                                          \
501 })
502
503 /*
504  * Switch to the EFI page tables early so that we can access the 1:1
505  * runtime services mappings which are not mapped in any other page
506  * tables.
507  *
508  * Also, disable interrupts because the IDT points to 64-bit handlers,
509  * which aren't going to function correctly when we switch to 32-bit.
510  */
511 #define efi_thunk(func...)                                              \
512 ({                                                                      \
513         efi_status_t __s;                                               \
514                                                                         \
515         arch_efi_call_virt_setup();                                     \
516                                                                         \
517         __s = __efi_thunk(func);                                        \
518                                                                         \
519         arch_efi_call_virt_teardown();                                  \
520                                                                         \
521         __s;                                                            \
522 })
523
524 static efi_status_t __init __no_sanitize_address
525 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
526                                   unsigned long descriptor_size,
527                                   u32 descriptor_version,
528                                   efi_memory_desc_t *virtual_map)
529 {
530         efi_status_t status;
531         unsigned long flags;
532
533         efi_sync_low_kernel_mappings();
534         local_irq_save(flags);
535
536         efi_enter_mm();
537
538         status = __efi_thunk(set_virtual_address_map, memory_map_size,
539                              descriptor_size, descriptor_version, virtual_map);
540
541         efi_leave_mm();
542         local_irq_restore(flags);
543
544         return status;
545 }
546
547 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
548 {
549         return EFI_UNSUPPORTED;
550 }
551
552 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
553 {
554         return EFI_UNSUPPORTED;
555 }
556
557 static efi_status_t
558 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
559                           efi_time_t *tm)
560 {
561         return EFI_UNSUPPORTED;
562 }
563
564 static efi_status_t
565 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
566 {
567         return EFI_UNSUPPORTED;
568 }
569
570 static unsigned long efi_name_size(efi_char16_t *name)
571 {
572         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
573 }
574
575 static efi_status_t
576 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
577                        u32 *attr, unsigned long *data_size, void *data)
578 {
579         u8 buf[24] __aligned(8);
580         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
581         efi_status_t status;
582         u32 phys_name, phys_vendor, phys_attr;
583         u32 phys_data_size, phys_data;
584         unsigned long flags;
585
586         spin_lock_irqsave(&efi_runtime_lock, flags);
587
588         *vnd = *vendor;
589
590         phys_data_size = virt_to_phys_or_null(data_size);
591         phys_vendor = virt_to_phys_or_null(vnd);
592         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
593         phys_attr = virt_to_phys_or_null(attr);
594         phys_data = virt_to_phys_or_null_size(data, *data_size);
595
596         if (!phys_name || (data && !phys_data))
597                 status = EFI_INVALID_PARAMETER;
598         else
599                 status = efi_thunk(get_variable, phys_name, phys_vendor,
600                                    phys_attr, phys_data_size, phys_data);
601
602         spin_unlock_irqrestore(&efi_runtime_lock, flags);
603
604         return status;
605 }
606
607 static efi_status_t
608 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
609                        u32 attr, unsigned long data_size, void *data)
610 {
611         u8 buf[24] __aligned(8);
612         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
613         u32 phys_name, phys_vendor, phys_data;
614         efi_status_t status;
615         unsigned long flags;
616
617         spin_lock_irqsave(&efi_runtime_lock, flags);
618
619         *vnd = *vendor;
620
621         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
622         phys_vendor = virt_to_phys_or_null(vnd);
623         phys_data = virt_to_phys_or_null_size(data, data_size);
624
625         if (!phys_name || (data && !phys_data))
626                 status = EFI_INVALID_PARAMETER;
627         else
628                 status = efi_thunk(set_variable, phys_name, phys_vendor,
629                                    attr, data_size, phys_data);
630
631         spin_unlock_irqrestore(&efi_runtime_lock, flags);
632
633         return status;
634 }
635
636 static efi_status_t
637 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
638                                    u32 attr, unsigned long data_size,
639                                    void *data)
640 {
641         u8 buf[24] __aligned(8);
642         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
643         u32 phys_name, phys_vendor, phys_data;
644         efi_status_t status;
645         unsigned long flags;
646
647         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
648                 return EFI_NOT_READY;
649
650         *vnd = *vendor;
651
652         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
653         phys_vendor = virt_to_phys_or_null(vnd);
654         phys_data = virt_to_phys_or_null_size(data, data_size);
655
656         if (!phys_name || (data && !phys_data))
657                 status = EFI_INVALID_PARAMETER;
658         else
659                 status = efi_thunk(set_variable, phys_name, phys_vendor,
660                                    attr, data_size, phys_data);
661
662         spin_unlock_irqrestore(&efi_runtime_lock, flags);
663
664         return status;
665 }
666
667 static efi_status_t
668 efi_thunk_get_next_variable(unsigned long *name_size,
669                             efi_char16_t *name,
670                             efi_guid_t *vendor)
671 {
672         u8 buf[24] __aligned(8);
673         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
674         efi_status_t status;
675         u32 phys_name_size, phys_name, phys_vendor;
676         unsigned long flags;
677
678         spin_lock_irqsave(&efi_runtime_lock, flags);
679
680         *vnd = *vendor;
681
682         phys_name_size = virt_to_phys_or_null(name_size);
683         phys_vendor = virt_to_phys_or_null(vnd);
684         phys_name = virt_to_phys_or_null_size(name, *name_size);
685
686         if (!phys_name)
687                 status = EFI_INVALID_PARAMETER;
688         else
689                 status = efi_thunk(get_next_variable, phys_name_size,
690                                    phys_name, phys_vendor);
691
692         spin_unlock_irqrestore(&efi_runtime_lock, flags);
693
694         *vendor = *vnd;
695         return status;
696 }
697
698 static efi_status_t
699 efi_thunk_get_next_high_mono_count(u32 *count)
700 {
701         return EFI_UNSUPPORTED;
702 }
703
704 static void
705 efi_thunk_reset_system(int reset_type, efi_status_t status,
706                        unsigned long data_size, efi_char16_t *data)
707 {
708         u32 phys_data;
709         unsigned long flags;
710
711         spin_lock_irqsave(&efi_runtime_lock, flags);
712
713         phys_data = virt_to_phys_or_null_size(data, data_size);
714
715         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
716
717         spin_unlock_irqrestore(&efi_runtime_lock, flags);
718 }
719
720 static efi_status_t
721 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
722                          unsigned long count, unsigned long sg_list)
723 {
724         /*
725          * To properly support this function we would need to repackage
726          * 'capsules' because the firmware doesn't understand 64-bit
727          * pointers.
728          */
729         return EFI_UNSUPPORTED;
730 }
731
732 static efi_status_t
733 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
734                               u64 *remaining_space,
735                               u64 *max_variable_size)
736 {
737         efi_status_t status;
738         u32 phys_storage, phys_remaining, phys_max;
739         unsigned long flags;
740
741         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
742                 return EFI_UNSUPPORTED;
743
744         spin_lock_irqsave(&efi_runtime_lock, flags);
745
746         phys_storage = virt_to_phys_or_null(storage_space);
747         phys_remaining = virt_to_phys_or_null(remaining_space);
748         phys_max = virt_to_phys_or_null(max_variable_size);
749
750         status = efi_thunk(query_variable_info, attr, phys_storage,
751                            phys_remaining, phys_max);
752
753         spin_unlock_irqrestore(&efi_runtime_lock, flags);
754
755         return status;
756 }
757
758 static efi_status_t
759 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
760                                           u64 *remaining_space,
761                                           u64 *max_variable_size)
762 {
763         efi_status_t status;
764         u32 phys_storage, phys_remaining, phys_max;
765         unsigned long flags;
766
767         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
768                 return EFI_UNSUPPORTED;
769
770         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
771                 return EFI_NOT_READY;
772
773         phys_storage = virt_to_phys_or_null(storage_space);
774         phys_remaining = virt_to_phys_or_null(remaining_space);
775         phys_max = virt_to_phys_or_null(max_variable_size);
776
777         status = efi_thunk(query_variable_info, attr, phys_storage,
778                            phys_remaining, phys_max);
779
780         spin_unlock_irqrestore(&efi_runtime_lock, flags);
781
782         return status;
783 }
784
785 static efi_status_t
786 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
787                              unsigned long count, u64 *max_size,
788                              int *reset_type)
789 {
790         /*
791          * To properly support this function we would need to repackage
792          * 'capsules' because the firmware doesn't understand 64-bit
793          * pointers.
794          */
795         return EFI_UNSUPPORTED;
796 }
797
798 void __init efi_thunk_runtime_setup(void)
799 {
800         if (!IS_ENABLED(CONFIG_EFI_MIXED))
801                 return;
802
803         efi.get_time = efi_thunk_get_time;
804         efi.set_time = efi_thunk_set_time;
805         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
806         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
807         efi.get_variable = efi_thunk_get_variable;
808         efi.get_next_variable = efi_thunk_get_next_variable;
809         efi.set_variable = efi_thunk_set_variable;
810         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
811         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
812         efi.reset_system = efi_thunk_reset_system;
813         efi.query_variable_info = efi_thunk_query_variable_info;
814         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
815         efi.update_capsule = efi_thunk_update_capsule;
816         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
817 }
818
819 efi_status_t __init __no_sanitize_address
820 efi_set_virtual_address_map(unsigned long memory_map_size,
821                             unsigned long descriptor_size,
822                             u32 descriptor_version,
823                             efi_memory_desc_t *virtual_map,
824                             unsigned long systab_phys)
825 {
826         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
827         efi_status_t status;
828         unsigned long flags;
829
830         if (efi_is_mixed())
831                 return efi_thunk_set_virtual_address_map(memory_map_size,
832                                                          descriptor_size,
833                                                          descriptor_version,
834                                                          virtual_map);
835         efi_enter_mm();
836
837         kernel_fpu_begin();
838
839         /* Disable interrupts around EFI calls: */
840         local_irq_save(flags);
841         status = efi_call(efi.runtime->set_virtual_address_map,
842                           memory_map_size, descriptor_size,
843                           descriptor_version, virtual_map);
844         local_irq_restore(flags);
845
846         kernel_fpu_end();
847
848         /* grab the virtually remapped EFI runtime services table pointer */
849         efi.runtime = READ_ONCE(systab->runtime);
850
851         efi_leave_mm();
852
853         return status;
854 }