x86/efi: Push EFI_MEMMAP check into leaf routines
[linux-2.6-microblaze.git] / arch / x86 / platform / efi / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *      Fenghua Yu <fenghua.yu@intel.com>
13  *      Bibo Mao <bibo.mao@intel.com>
14  *      Chandramouli Narayanan <mouli@linux.intel.com>
15  *      Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *      Skip non-WB memory and ignore empty memory ranges.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/memblock.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/e820/api.h>
51 #include <asm/time.h>
52 #include <asm/set_memory.h>
53 #include <asm/tlbflush.h>
54 #include <asm/x86_init.h>
55 #include <asm/uv/uv.h>
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static efi_config_table_type_t arch_tables[] __initdata = {
61 #ifdef CONFIG_X86_UV
62         {UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
63 #endif
64         {NULL_GUID, NULL, NULL},
65 };
66
67 static const unsigned long * const efi_tables[] = {
68         &efi.mps,
69         &efi.acpi,
70         &efi.acpi20,
71         &efi.smbios,
72         &efi.smbios3,
73         &efi.boot_info,
74         &efi.hcdp,
75         &efi.uga,
76 #ifdef CONFIG_X86_UV
77         &uv_systab_phys,
78 #endif
79         &efi.fw_vendor,
80         &efi.runtime,
81         &efi.config_table,
82         &efi.esrt,
83         &efi.properties_table,
84         &efi.mem_attr_table,
85 #ifdef CONFIG_EFI_RCI2_TABLE
86         &rci2_table_phys,
87 #endif
88 };
89
90 u64 efi_setup;          /* efi setup_data physical address */
91
92 static int add_efi_memmap __initdata;
93 static int __init setup_add_efi_memmap(char *arg)
94 {
95         add_efi_memmap = 1;
96         return 0;
97 }
98 early_param("add_efi_memmap", setup_add_efi_memmap);
99
100 static efi_status_t __init phys_efi_set_virtual_address_map(
101         unsigned long memory_map_size,
102         unsigned long descriptor_size,
103         u32 descriptor_version,
104         efi_memory_desc_t *virtual_map)
105 {
106         efi_status_t status;
107         unsigned long flags;
108         pgd_t *save_pgd;
109
110         save_pgd = efi_call_phys_prolog();
111         if (!save_pgd)
112                 return EFI_ABORTED;
113
114         /* Disable interrupts around EFI calls: */
115         local_irq_save(flags);
116         status = efi_call_phys(efi_phys.set_virtual_address_map,
117                                memory_map_size, descriptor_size,
118                                descriptor_version, virtual_map);
119         local_irq_restore(flags);
120
121         efi_call_phys_epilog(save_pgd);
122
123         return status;
124 }
125
126 void __init efi_find_mirror(void)
127 {
128         efi_memory_desc_t *md;
129         u64 mirror_size = 0, total_size = 0;
130
131         if (!efi_enabled(EFI_MEMMAP))
132                 return;
133
134         for_each_efi_memory_desc(md) {
135                 unsigned long long start = md->phys_addr;
136                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
137
138                 total_size += size;
139                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
140                         memblock_mark_mirror(start, size);
141                         mirror_size += size;
142                 }
143         }
144         if (mirror_size)
145                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
146                         mirror_size>>20, total_size>>20);
147 }
148
149 /*
150  * Tell the kernel about the EFI memory map.  This might include
151  * more than the max 128 entries that can fit in the e820 legacy
152  * (zeropage) memory map.
153  */
154
155 static void __init do_add_efi_memmap(void)
156 {
157         efi_memory_desc_t *md;
158
159         for_each_efi_memory_desc(md) {
160                 unsigned long long start = md->phys_addr;
161                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
162                 int e820_type;
163
164                 switch (md->type) {
165                 case EFI_LOADER_CODE:
166                 case EFI_LOADER_DATA:
167                 case EFI_BOOT_SERVICES_CODE:
168                 case EFI_BOOT_SERVICES_DATA:
169                 case EFI_CONVENTIONAL_MEMORY:
170                         if (md->attribute & EFI_MEMORY_WB)
171                                 e820_type = E820_TYPE_RAM;
172                         else
173                                 e820_type = E820_TYPE_RESERVED;
174                         break;
175                 case EFI_ACPI_RECLAIM_MEMORY:
176                         e820_type = E820_TYPE_ACPI;
177                         break;
178                 case EFI_ACPI_MEMORY_NVS:
179                         e820_type = E820_TYPE_NVS;
180                         break;
181                 case EFI_UNUSABLE_MEMORY:
182                         e820_type = E820_TYPE_UNUSABLE;
183                         break;
184                 case EFI_PERSISTENT_MEMORY:
185                         e820_type = E820_TYPE_PMEM;
186                         break;
187                 default:
188                         /*
189                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
190                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
191                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
192                          */
193                         e820_type = E820_TYPE_RESERVED;
194                         break;
195                 }
196                 e820__range_add(start, size, e820_type);
197         }
198         e820__update_table(e820_table);
199 }
200
201 int __init efi_memblock_x86_reserve_range(void)
202 {
203         struct efi_info *e = &boot_params.efi_info;
204         struct efi_memory_map_data data;
205         phys_addr_t pmap;
206         int rv;
207
208         if (efi_enabled(EFI_PARAVIRT))
209                 return 0;
210
211 #ifdef CONFIG_X86_32
212         /* Can't handle data above 4GB at this time */
213         if (e->efi_memmap_hi) {
214                 pr_err("Memory map is above 4GB, disabling EFI.\n");
215                 return -EINVAL;
216         }
217         pmap =  e->efi_memmap;
218 #else
219         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
220 #endif
221         data.phys_map           = pmap;
222         data.size               = e->efi_memmap_size;
223         data.desc_size          = e->efi_memdesc_size;
224         data.desc_version       = e->efi_memdesc_version;
225
226         rv = efi_memmap_init_early(&data);
227         if (rv)
228                 return rv;
229
230         if (add_efi_memmap)
231                 do_add_efi_memmap();
232
233         WARN(efi.memmap.desc_version != 1,
234              "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
235              efi.memmap.desc_version);
236
237         memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
238
239         return 0;
240 }
241
242 #define OVERFLOW_ADDR_SHIFT     (64 - EFI_PAGE_SHIFT)
243 #define OVERFLOW_ADDR_MASK      (U64_MAX << OVERFLOW_ADDR_SHIFT)
244 #define U64_HIGH_BIT            (~(U64_MAX >> 1))
245
246 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
247 {
248         u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
249         u64 end_hi = 0;
250         char buf[64];
251
252         if (md->num_pages == 0) {
253                 end = 0;
254         } else if (md->num_pages > EFI_PAGES_MAX ||
255                    EFI_PAGES_MAX - md->num_pages <
256                    (md->phys_addr >> EFI_PAGE_SHIFT)) {
257                 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
258                         >> OVERFLOW_ADDR_SHIFT;
259
260                 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
261                         end_hi += 1;
262         } else {
263                 return true;
264         }
265
266         pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
267
268         if (end_hi) {
269                 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
270                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
271                         md->phys_addr, end_hi, end);
272         } else {
273                 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
274                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
275                         md->phys_addr, end);
276         }
277         return false;
278 }
279
280 static void __init efi_clean_memmap(void)
281 {
282         efi_memory_desc_t *out = efi.memmap.map;
283         const efi_memory_desc_t *in = out;
284         const efi_memory_desc_t *end = efi.memmap.map_end;
285         int i, n_removal;
286
287         for (i = n_removal = 0; in < end; i++) {
288                 if (efi_memmap_entry_valid(in, i)) {
289                         if (out != in)
290                                 memcpy(out, in, efi.memmap.desc_size);
291                         out = (void *)out + efi.memmap.desc_size;
292                 } else {
293                         n_removal++;
294                 }
295                 in = (void *)in + efi.memmap.desc_size;
296         }
297
298         if (n_removal > 0) {
299                 u64 size = efi.memmap.nr_map - n_removal;
300
301                 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
302                 efi_memmap_install(efi.memmap.phys_map, size);
303         }
304 }
305
306 void __init efi_print_memmap(void)
307 {
308         efi_memory_desc_t *md;
309         int i = 0;
310
311         for_each_efi_memory_desc(md) {
312                 char buf[64];
313
314                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
315                         i++, efi_md_typeattr_format(buf, sizeof(buf), md),
316                         md->phys_addr,
317                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
318                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
319         }
320 }
321
322 static int __init efi_systab_init(void *phys)
323 {
324         if (efi_enabled(EFI_64BIT)) {
325                 efi_system_table_64_t *systab64;
326                 struct efi_setup_data *data = NULL;
327                 u64 tmp = 0;
328
329                 if (efi_setup) {
330                         data = early_memremap(efi_setup, sizeof(*data));
331                         if (!data)
332                                 return -ENOMEM;
333                 }
334                 systab64 = early_memremap((unsigned long)phys,
335                                          sizeof(*systab64));
336                 if (systab64 == NULL) {
337                         pr_err("Couldn't map the system table!\n");
338                         if (data)
339                                 early_memunmap(data, sizeof(*data));
340                         return -ENOMEM;
341                 }
342
343                 efi_systab.hdr = systab64->hdr;
344                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
345                                               systab64->fw_vendor;
346                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
347                 efi_systab.fw_revision = systab64->fw_revision;
348                 efi_systab.con_in_handle = systab64->con_in_handle;
349                 tmp |= systab64->con_in_handle;
350                 efi_systab.con_in = systab64->con_in;
351                 tmp |= systab64->con_in;
352                 efi_systab.con_out_handle = systab64->con_out_handle;
353                 tmp |= systab64->con_out_handle;
354                 efi_systab.con_out = systab64->con_out;
355                 tmp |= systab64->con_out;
356                 efi_systab.stderr_handle = systab64->stderr_handle;
357                 tmp |= systab64->stderr_handle;
358                 efi_systab.stderr = systab64->stderr;
359                 tmp |= systab64->stderr;
360                 efi_systab.runtime = data ?
361                                      (void *)(unsigned long)data->runtime :
362                                      (void *)(unsigned long)systab64->runtime;
363                 tmp |= data ? data->runtime : systab64->runtime;
364                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
365                 tmp |= systab64->boottime;
366                 efi_systab.nr_tables = systab64->nr_tables;
367                 efi_systab.tables = data ? (unsigned long)data->tables :
368                                            systab64->tables;
369                 tmp |= data ? data->tables : systab64->tables;
370
371                 early_memunmap(systab64, sizeof(*systab64));
372                 if (data)
373                         early_memunmap(data, sizeof(*data));
374 #ifdef CONFIG_X86_32
375                 if (tmp >> 32) {
376                         pr_err("EFI data located above 4GB, disabling EFI.\n");
377                         return -EINVAL;
378                 }
379 #endif
380         } else {
381                 efi_system_table_32_t *systab32;
382
383                 systab32 = early_memremap((unsigned long)phys,
384                                          sizeof(*systab32));
385                 if (systab32 == NULL) {
386                         pr_err("Couldn't map the system table!\n");
387                         return -ENOMEM;
388                 }
389
390                 efi_systab.hdr = systab32->hdr;
391                 efi_systab.fw_vendor = systab32->fw_vendor;
392                 efi_systab.fw_revision = systab32->fw_revision;
393                 efi_systab.con_in_handle = systab32->con_in_handle;
394                 efi_systab.con_in = systab32->con_in;
395                 efi_systab.con_out_handle = systab32->con_out_handle;
396                 efi_systab.con_out = systab32->con_out;
397                 efi_systab.stderr_handle = systab32->stderr_handle;
398                 efi_systab.stderr = systab32->stderr;
399                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
400                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
401                 efi_systab.nr_tables = systab32->nr_tables;
402                 efi_systab.tables = systab32->tables;
403
404                 early_memunmap(systab32, sizeof(*systab32));
405         }
406
407         efi.systab = &efi_systab;
408
409         /*
410          * Verify the EFI Table
411          */
412         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
413                 pr_err("System table signature incorrect!\n");
414                 return -EINVAL;
415         }
416         if ((efi.systab->hdr.revision >> 16) == 0)
417                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
418                        efi.systab->hdr.revision >> 16,
419                        efi.systab->hdr.revision & 0xffff);
420
421         return 0;
422 }
423
424 static int __init efi_runtime_init32(void)
425 {
426         efi_runtime_services_32_t *runtime;
427
428         runtime = early_memremap((unsigned long)efi.systab->runtime,
429                         sizeof(efi_runtime_services_32_t));
430         if (!runtime) {
431                 pr_err("Could not map the runtime service table!\n");
432                 return -ENOMEM;
433         }
434
435         /*
436          * We will only need *early* access to the SetVirtualAddressMap
437          * EFI runtime service. All other runtime services will be called
438          * via the virtual mapping.
439          */
440         efi_phys.set_virtual_address_map =
441                         (efi_set_virtual_address_map_t *)
442                         (unsigned long)runtime->set_virtual_address_map;
443         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
444
445         return 0;
446 }
447
448 static int __init efi_runtime_init64(void)
449 {
450         efi_runtime_services_64_t *runtime;
451
452         runtime = early_memremap((unsigned long)efi.systab->runtime,
453                         sizeof(efi_runtime_services_64_t));
454         if (!runtime) {
455                 pr_err("Could not map the runtime service table!\n");
456                 return -ENOMEM;
457         }
458
459         /*
460          * We will only need *early* access to the SetVirtualAddressMap
461          * EFI runtime service. All other runtime services will be called
462          * via the virtual mapping.
463          */
464         efi_phys.set_virtual_address_map =
465                         (efi_set_virtual_address_map_t *)
466                         (unsigned long)runtime->set_virtual_address_map;
467         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
468
469         return 0;
470 }
471
472 static int __init efi_runtime_init(void)
473 {
474         int rv;
475
476         /*
477          * Check out the runtime services table. We need to map
478          * the runtime services table so that we can grab the physical
479          * address of several of the EFI runtime functions, needed to
480          * set the firmware into virtual mode.
481          *
482          * When EFI_PARAVIRT is in force then we could not map runtime
483          * service memory region because we do not have direct access to it.
484          * However, runtime services are available through proxy functions
485          * (e.g. in case of Xen dom0 EFI implementation they call special
486          * hypercall which executes relevant EFI functions) and that is why
487          * they are always enabled.
488          */
489
490         if (!efi_enabled(EFI_PARAVIRT)) {
491                 if (efi_enabled(EFI_64BIT))
492                         rv = efi_runtime_init64();
493                 else
494                         rv = efi_runtime_init32();
495
496                 if (rv)
497                         return rv;
498         }
499
500         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
501
502         return 0;
503 }
504
505 void __init efi_init(void)
506 {
507         efi_char16_t *c16;
508         char vendor[100] = "unknown";
509         int i = 0;
510         void *tmp;
511
512 #ifdef CONFIG_X86_32
513         if (boot_params.efi_info.efi_systab_hi ||
514             boot_params.efi_info.efi_memmap_hi) {
515                 pr_info("Table located above 4GB, disabling EFI.\n");
516                 return;
517         }
518         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
519 #else
520         efi_phys.systab = (efi_system_table_t *)
521                           (boot_params.efi_info.efi_systab |
522                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
523 #endif
524
525         if (efi_systab_init(efi_phys.systab))
526                 return;
527
528         efi.config_table = (unsigned long)efi.systab->tables;
529         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
530         efi.runtime      = (unsigned long)efi.systab->runtime;
531
532         /*
533          * Show what we know for posterity
534          */
535         c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
536         if (c16) {
537                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
538                         vendor[i] = *c16++;
539                 vendor[i] = '\0';
540         } else
541                 pr_err("Could not map the firmware vendor!\n");
542         early_memunmap(tmp, 2);
543
544         pr_info("EFI v%u.%.02u by %s\n",
545                 efi.systab->hdr.revision >> 16,
546                 efi.systab->hdr.revision & 0xffff, vendor);
547
548         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
549                 return;
550
551         if (efi_config_init(arch_tables))
552                 return;
553
554         /*
555          * Note: We currently don't support runtime services on an EFI
556          * that doesn't match the kernel 32/64-bit mode.
557          */
558
559         if (!efi_runtime_supported())
560                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
561         else {
562                 if (efi_runtime_disabled() || efi_runtime_init()) {
563                         efi_memmap_unmap();
564                         return;
565                 }
566         }
567
568         efi_clean_memmap();
569
570         if (efi_enabled(EFI_DBG))
571                 efi_print_memmap();
572 }
573
574 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
575 {
576         u64 addr, npages;
577
578         addr = md->virt_addr;
579         npages = md->num_pages;
580
581         memrange_efi_to_native(&addr, &npages);
582
583         if (executable)
584                 set_memory_x(addr, npages);
585         else
586                 set_memory_nx(addr, npages);
587 }
588
589 void __init runtime_code_page_mkexec(void)
590 {
591         efi_memory_desc_t *md;
592
593         /* Make EFI runtime service code area executable */
594         for_each_efi_memory_desc(md) {
595                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
596                         continue;
597
598                 efi_set_executable(md, true);
599         }
600 }
601
602 void __init efi_memory_uc(u64 addr, unsigned long size)
603 {
604         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
605         u64 npages;
606
607         npages = round_up(size, page_shift) / page_shift;
608         memrange_efi_to_native(&addr, &npages);
609         set_memory_uc(addr, npages);
610 }
611
612 void __init old_map_region(efi_memory_desc_t *md)
613 {
614         u64 start_pfn, end_pfn, end;
615         unsigned long size;
616         void *va;
617
618         start_pfn = PFN_DOWN(md->phys_addr);
619         size      = md->num_pages << PAGE_SHIFT;
620         end       = md->phys_addr + size;
621         end_pfn   = PFN_UP(end);
622
623         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
624                 va = __va(md->phys_addr);
625
626                 if (!(md->attribute & EFI_MEMORY_WB))
627                         efi_memory_uc((u64)(unsigned long)va, size);
628         } else
629                 va = efi_ioremap(md->phys_addr, size,
630                                  md->type, md->attribute);
631
632         md->virt_addr = (u64) (unsigned long) va;
633         if (!va)
634                 pr_err("ioremap of 0x%llX failed!\n",
635                        (unsigned long long)md->phys_addr);
636 }
637
638 /* Merge contiguous regions of the same type and attribute */
639 static void __init efi_merge_regions(void)
640 {
641         efi_memory_desc_t *md, *prev_md = NULL;
642
643         for_each_efi_memory_desc(md) {
644                 u64 prev_size;
645
646                 if (!prev_md) {
647                         prev_md = md;
648                         continue;
649                 }
650
651                 if (prev_md->type != md->type ||
652                     prev_md->attribute != md->attribute) {
653                         prev_md = md;
654                         continue;
655                 }
656
657                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
658
659                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
660                         prev_md->num_pages += md->num_pages;
661                         md->type = EFI_RESERVED_TYPE;
662                         md->attribute = 0;
663                         continue;
664                 }
665                 prev_md = md;
666         }
667 }
668
669 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
670 {
671         unsigned long size;
672         u64 end, systab;
673
674         size = md->num_pages << EFI_PAGE_SHIFT;
675         end = md->phys_addr + size;
676         systab = (u64)(unsigned long)efi_phys.systab;
677         if (md->phys_addr <= systab && systab < end) {
678                 systab += md->virt_addr - md->phys_addr;
679                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
680         }
681 }
682
683 static void *realloc_pages(void *old_memmap, int old_shift)
684 {
685         void *ret;
686
687         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
688         if (!ret)
689                 goto out;
690
691         /*
692          * A first-time allocation doesn't have anything to copy.
693          */
694         if (!old_memmap)
695                 return ret;
696
697         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
698
699 out:
700         free_pages((unsigned long)old_memmap, old_shift);
701         return ret;
702 }
703
704 /*
705  * Iterate the EFI memory map in reverse order because the regions
706  * will be mapped top-down. The end result is the same as if we had
707  * mapped things forward, but doesn't require us to change the
708  * existing implementation of efi_map_region().
709  */
710 static inline void *efi_map_next_entry_reverse(void *entry)
711 {
712         /* Initial call */
713         if (!entry)
714                 return efi.memmap.map_end - efi.memmap.desc_size;
715
716         entry -= efi.memmap.desc_size;
717         if (entry < efi.memmap.map)
718                 return NULL;
719
720         return entry;
721 }
722
723 /*
724  * efi_map_next_entry - Return the next EFI memory map descriptor
725  * @entry: Previous EFI memory map descriptor
726  *
727  * This is a helper function to iterate over the EFI memory map, which
728  * we do in different orders depending on the current configuration.
729  *
730  * To begin traversing the memory map @entry must be %NULL.
731  *
732  * Returns %NULL when we reach the end of the memory map.
733  */
734 static void *efi_map_next_entry(void *entry)
735 {
736         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
737                 /*
738                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
739                  * config table feature requires us to map all entries
740                  * in the same order as they appear in the EFI memory
741                  * map. That is to say, entry N must have a lower
742                  * virtual address than entry N+1. This is because the
743                  * firmware toolchain leaves relative references in
744                  * the code/data sections, which are split and become
745                  * separate EFI memory regions. Mapping things
746                  * out-of-order leads to the firmware accessing
747                  * unmapped addresses.
748                  *
749                  * Since we need to map things this way whether or not
750                  * the kernel actually makes use of
751                  * EFI_PROPERTIES_TABLE, let's just switch to this
752                  * scheme by default for 64-bit.
753                  */
754                 return efi_map_next_entry_reverse(entry);
755         }
756
757         /* Initial call */
758         if (!entry)
759                 return efi.memmap.map;
760
761         entry += efi.memmap.desc_size;
762         if (entry >= efi.memmap.map_end)
763                 return NULL;
764
765         return entry;
766 }
767
768 static bool should_map_region(efi_memory_desc_t *md)
769 {
770         /*
771          * Runtime regions always require runtime mappings (obviously).
772          */
773         if (md->attribute & EFI_MEMORY_RUNTIME)
774                 return true;
775
776         /*
777          * 32-bit EFI doesn't suffer from the bug that requires us to
778          * reserve boot services regions, and mixed mode support
779          * doesn't exist for 32-bit kernels.
780          */
781         if (IS_ENABLED(CONFIG_X86_32))
782                 return false;
783
784         /*
785          * Map all of RAM so that we can access arguments in the 1:1
786          * mapping when making EFI runtime calls.
787          */
788         if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
789                 if (md->type == EFI_CONVENTIONAL_MEMORY ||
790                     md->type == EFI_LOADER_DATA ||
791                     md->type == EFI_LOADER_CODE)
792                         return true;
793         }
794
795         /*
796          * Map boot services regions as a workaround for buggy
797          * firmware that accesses them even when they shouldn't.
798          *
799          * See efi_{reserve,free}_boot_services().
800          */
801         if (md->type == EFI_BOOT_SERVICES_CODE ||
802             md->type == EFI_BOOT_SERVICES_DATA)
803                 return true;
804
805         return false;
806 }
807
808 /*
809  * Map the efi memory ranges of the runtime services and update new_mmap with
810  * virtual addresses.
811  */
812 static void * __init efi_map_regions(int *count, int *pg_shift)
813 {
814         void *p, *new_memmap = NULL;
815         unsigned long left = 0;
816         unsigned long desc_size;
817         efi_memory_desc_t *md;
818
819         desc_size = efi.memmap.desc_size;
820
821         p = NULL;
822         while ((p = efi_map_next_entry(p))) {
823                 md = p;
824
825                 if (!should_map_region(md))
826                         continue;
827
828                 efi_map_region(md);
829                 get_systab_virt_addr(md);
830
831                 if (left < desc_size) {
832                         new_memmap = realloc_pages(new_memmap, *pg_shift);
833                         if (!new_memmap)
834                                 return NULL;
835
836                         left += PAGE_SIZE << *pg_shift;
837                         (*pg_shift)++;
838                 }
839
840                 memcpy(new_memmap + (*count * desc_size), md, desc_size);
841
842                 left -= desc_size;
843                 (*count)++;
844         }
845
846         return new_memmap;
847 }
848
849 static void __init kexec_enter_virtual_mode(void)
850 {
851 #ifdef CONFIG_KEXEC_CORE
852         efi_memory_desc_t *md;
853         unsigned int num_pages;
854
855         efi.systab = NULL;
856
857         /*
858          * We don't do virtual mode, since we don't do runtime services, on
859          * non-native EFI. With efi=old_map, we don't do runtime services in
860          * kexec kernel because in the initial boot something else might
861          * have been mapped at these virtual addresses.
862          */
863         if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
864                 efi_memmap_unmap();
865                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
866                 return;
867         }
868
869         if (efi_alloc_page_tables()) {
870                 pr_err("Failed to allocate EFI page tables\n");
871                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
872                 return;
873         }
874
875         /*
876         * Map efi regions which were passed via setup_data. The virt_addr is a
877         * fixed addr which was used in first kernel of a kexec boot.
878         */
879         for_each_efi_memory_desc(md) {
880                 efi_map_region_fixed(md); /* FIXME: add error handling */
881                 get_systab_virt_addr(md);
882         }
883
884         /*
885          * Unregister the early EFI memmap from efi_init() and install
886          * the new EFI memory map.
887          */
888         efi_memmap_unmap();
889
890         if (efi_memmap_init_late(efi.memmap.phys_map,
891                                  efi.memmap.desc_size * efi.memmap.nr_map)) {
892                 pr_err("Failed to remap late EFI memory map\n");
893                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
894                 return;
895         }
896
897         BUG_ON(!efi.systab);
898
899         num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
900         num_pages >>= PAGE_SHIFT;
901
902         if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
903                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
904                 return;
905         }
906
907         efi_sync_low_kernel_mappings();
908
909         /*
910          * Now that EFI is in virtual mode, update the function
911          * pointers in the runtime service table to the new virtual addresses.
912          *
913          * Call EFI services through wrapper functions.
914          */
915         efi.runtime_version = efi_systab.hdr.revision;
916
917         efi_native_runtime_setup();
918
919         efi.set_virtual_address_map = NULL;
920
921         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
922                 runtime_code_page_mkexec();
923 #endif
924 }
925
926 /*
927  * This function will switch the EFI runtime services to virtual mode.
928  * Essentially, we look through the EFI memmap and map every region that
929  * has the runtime attribute bit set in its memory descriptor into the
930  * efi_pgd page table.
931  *
932  * The old method which used to update that memory descriptor with the
933  * virtual address obtained from ioremap() is still supported when the
934  * kernel is booted with efi=old_map on its command line. Same old
935  * method enabled the runtime services to be called without having to
936  * thunk back into physical mode for every invocation.
937  *
938  * The new method does a pagetable switch in a preemption-safe manner
939  * so that we're in a different address space when calling a runtime
940  * function. For function arguments passing we do copy the PUDs of the
941  * kernel page table into efi_pgd prior to each call.
942  *
943  * Specially for kexec boot, efi runtime maps in previous kernel should
944  * be passed in via setup_data. In that case runtime ranges will be mapped
945  * to the same virtual addresses as the first kernel, see
946  * kexec_enter_virtual_mode().
947  */
948 static void __init __efi_enter_virtual_mode(void)
949 {
950         int count = 0, pg_shift = 0;
951         void *new_memmap = NULL;
952         efi_status_t status;
953         unsigned long pa;
954
955         efi.systab = NULL;
956
957         if (efi_alloc_page_tables()) {
958                 pr_err("Failed to allocate EFI page tables\n");
959                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
960                 return;
961         }
962
963         efi_merge_regions();
964         new_memmap = efi_map_regions(&count, &pg_shift);
965         if (!new_memmap) {
966                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
967                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
968                 return;
969         }
970
971         pa = __pa(new_memmap);
972
973         /*
974          * Unregister the early EFI memmap from efi_init() and install
975          * the new EFI memory map that we are about to pass to the
976          * firmware via SetVirtualAddressMap().
977          */
978         efi_memmap_unmap();
979
980         if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
981                 pr_err("Failed to remap late EFI memory map\n");
982                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
983                 return;
984         }
985
986         if (efi_enabled(EFI_DBG)) {
987                 pr_info("EFI runtime memory map:\n");
988                 efi_print_memmap();
989         }
990
991         BUG_ON(!efi.systab);
992
993         if (efi_setup_page_tables(pa, 1 << pg_shift)) {
994                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
995                 return;
996         }
997
998         efi_sync_low_kernel_mappings();
999
1000         if (efi_is_native()) {
1001                 status = phys_efi_set_virtual_address_map(
1002                                 efi.memmap.desc_size * count,
1003                                 efi.memmap.desc_size,
1004                                 efi.memmap.desc_version,
1005                                 (efi_memory_desc_t *)pa);
1006         } else {
1007                 status = efi_thunk_set_virtual_address_map(
1008                                 efi_phys.set_virtual_address_map,
1009                                 efi.memmap.desc_size * count,
1010                                 efi.memmap.desc_size,
1011                                 efi.memmap.desc_version,
1012                                 (efi_memory_desc_t *)pa);
1013         }
1014
1015         if (status != EFI_SUCCESS) {
1016                 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1017                          status);
1018                 panic("EFI call to SetVirtualAddressMap() failed!");
1019         }
1020
1021         efi_free_boot_services();
1022
1023         /*
1024          * Now that EFI is in virtual mode, update the function
1025          * pointers in the runtime service table to the new virtual addresses.
1026          *
1027          * Call EFI services through wrapper functions.
1028          */
1029         efi.runtime_version = efi_systab.hdr.revision;
1030
1031         if (efi_is_native())
1032                 efi_native_runtime_setup();
1033         else
1034                 efi_thunk_runtime_setup();
1035
1036         efi.set_virtual_address_map = NULL;
1037
1038         /*
1039          * Apply more restrictive page table mapping attributes now that
1040          * SVAM() has been called and the firmware has performed all
1041          * necessary relocation fixups for the new virtual addresses.
1042          */
1043         efi_runtime_update_mappings();
1044
1045         /* clean DUMMY object */
1046         efi_delete_dummy_variable();
1047 }
1048
1049 void __init efi_enter_virtual_mode(void)
1050 {
1051         if (efi_enabled(EFI_PARAVIRT))
1052                 return;
1053
1054         if (efi_setup)
1055                 kexec_enter_virtual_mode();
1056         else
1057                 __efi_enter_virtual_mode();
1058
1059         efi_dump_pagetable();
1060 }
1061
1062 static int __init arch_parse_efi_cmdline(char *str)
1063 {
1064         if (!str) {
1065                 pr_warn("need at least one option\n");
1066                 return -EINVAL;
1067         }
1068
1069         if (parse_option_str(str, "old_map"))
1070                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1071
1072         return 0;
1073 }
1074 early_param("efi", arch_parse_efi_cmdline);
1075
1076 bool efi_is_table_address(unsigned long phys_addr)
1077 {
1078         unsigned int i;
1079
1080         if (phys_addr == EFI_INVALID_TABLE_ADDR)
1081                 return false;
1082
1083         for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
1084                 if (*(efi_tables[i]) == phys_addr)
1085                         return true;
1086
1087         return false;
1088 }