Merge tag 'rtc-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-microblaze.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22         if (len == 1)
23                 *ptr = bytes;
24         else if (len == 2)
25                 *(u16 *)ptr = bytes;
26         else {
27                 *(u32 *)ptr = bytes;
28                 barrier();
29         }
30         return ptr + len;
31 }
32
33 #define EMIT(bytes, len) \
34         do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35
36 #define EMIT1(b1)               EMIT(b1, 1)
37 #define EMIT2(b1, b2)           EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)       EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41 #define EMIT1_off32(b1, off) \
42         do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44         do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46         do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48         do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50 static bool is_imm8(int value)
51 {
52         return value <= 127 && value >= -128;
53 }
54
55 static bool is_simm32(s64 value)
56 {
57         return value == (s64)(s32)value;
58 }
59
60 static bool is_uimm32(u64 value)
61 {
62         return value == (u64)(u32)value;
63 }
64
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)                                                               \
67         do {                                                                             \
68                 if (DST != SRC)                                                          \
69                         EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70         } while (0)
71
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74         if (bpf_size == BPF_W)
75                 return 4;
76         else if (bpf_size == BPF_H)
77                 return 2;
78         else if (bpf_size == BPF_B)
79                 return 1;
80         else if (bpf_size == BPF_DW)
81                 return 4; /* imm32 */
82         else
83                 return 0;
84 }
85
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116         [BPF_REG_0] = 0,  /* RAX */
117         [BPF_REG_1] = 7,  /* RDI */
118         [BPF_REG_2] = 6,  /* RSI */
119         [BPF_REG_3] = 2,  /* RDX */
120         [BPF_REG_4] = 1,  /* RCX */
121         [BPF_REG_5] = 0,  /* R8  */
122         [BPF_REG_6] = 3,  /* RBX callee saved */
123         [BPF_REG_7] = 5,  /* R13 callee saved */
124         [BPF_REG_8] = 6,  /* R14 callee saved */
125         [BPF_REG_9] = 7,  /* R15 callee saved */
126         [BPF_REG_FP] = 5, /* RBP readonly */
127         [BPF_REG_AX] = 2, /* R10 temp register */
128         [AUX_REG] = 3,    /* R11 temp register */
129         [X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131
132 static const int reg2pt_regs[] = {
133         [BPF_REG_0] = offsetof(struct pt_regs, ax),
134         [BPF_REG_1] = offsetof(struct pt_regs, di),
135         [BPF_REG_2] = offsetof(struct pt_regs, si),
136         [BPF_REG_3] = offsetof(struct pt_regs, dx),
137         [BPF_REG_4] = offsetof(struct pt_regs, cx),
138         [BPF_REG_5] = offsetof(struct pt_regs, r8),
139         [BPF_REG_6] = offsetof(struct pt_regs, bx),
140         [BPF_REG_7] = offsetof(struct pt_regs, r13),
141         [BPF_REG_8] = offsetof(struct pt_regs, r14),
142         [BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152         return (1 << reg) & (BIT(BPF_REG_5) |
153                              BIT(AUX_REG) |
154                              BIT(BPF_REG_7) |
155                              BIT(BPF_REG_8) |
156                              BIT(BPF_REG_9) |
157                              BIT(X86_REG_R9) |
158                              BIT(BPF_REG_AX));
159 }
160
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168         return is_ereg(reg) ||
169             (1 << reg) & (BIT(BPF_REG_1) |
170                           BIT(BPF_REG_2) |
171                           BIT(BPF_REG_FP));
172 }
173
174 static bool is_axreg(u32 reg)
175 {
176         return reg == BPF_REG_0;
177 }
178
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182         if (is_ereg(reg))
183                 byte |= 1;
184         return byte;
185 }
186
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189         if (is_ereg(r1))
190                 byte |= 1;
191         if (is_ereg(r2))
192                 byte |= 4;
193         return byte;
194 }
195
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199         return byte + reg2hex[dst_reg];
200 }
201
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205         return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207
208 static void jit_fill_hole(void *area, unsigned int size)
209 {
210         /* Fill whole space with INT3 instructions */
211         memset(area, 0xcc, size);
212 }
213
214 struct jit_context {
215         int cleanup_addr; /* Epilogue code offset */
216 };
217
218 /* Maximum number of bytes emitted while JITing one eBPF insn */
219 #define BPF_MAX_INSN_SIZE       128
220 #define BPF_INSN_SAFETY         64
221
222 /* Number of bytes emit_patch() needs to generate instructions */
223 #define X86_PATCH_SIZE          5
224 /* Number of bytes that will be skipped on tailcall */
225 #define X86_TAIL_CALL_OFFSET    11
226
227 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
228 {
229         u8 *prog = *pprog;
230         int cnt = 0;
231
232         if (callee_regs_used[0])
233                 EMIT1(0x53);         /* push rbx */
234         if (callee_regs_used[1])
235                 EMIT2(0x41, 0x55);   /* push r13 */
236         if (callee_regs_used[2])
237                 EMIT2(0x41, 0x56);   /* push r14 */
238         if (callee_regs_used[3])
239                 EMIT2(0x41, 0x57);   /* push r15 */
240         *pprog = prog;
241 }
242
243 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
244 {
245         u8 *prog = *pprog;
246         int cnt = 0;
247
248         if (callee_regs_used[3])
249                 EMIT2(0x41, 0x5F);   /* pop r15 */
250         if (callee_regs_used[2])
251                 EMIT2(0x41, 0x5E);   /* pop r14 */
252         if (callee_regs_used[1])
253                 EMIT2(0x41, 0x5D);   /* pop r13 */
254         if (callee_regs_used[0])
255                 EMIT1(0x5B);         /* pop rbx */
256         *pprog = prog;
257 }
258
259 /*
260  * Emit x86-64 prologue code for BPF program.
261  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
262  * while jumping to another program
263  */
264 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
265                           bool tail_call_reachable, bool is_subprog)
266 {
267         u8 *prog = *pprog;
268         int cnt = X86_PATCH_SIZE;
269
270         /* BPF trampoline can be made to work without these nops,
271          * but let's waste 5 bytes for now and optimize later
272          */
273         memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
274         prog += cnt;
275         if (!ebpf_from_cbpf) {
276                 if (tail_call_reachable && !is_subprog)
277                         EMIT2(0x31, 0xC0); /* xor eax, eax */
278                 else
279                         EMIT2(0x66, 0x90); /* nop2 */
280         }
281         EMIT1(0x55);             /* push rbp */
282         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
283         /* sub rsp, rounded_stack_depth */
284         if (stack_depth)
285                 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
286         if (tail_call_reachable)
287                 EMIT1(0x50);         /* push rax */
288         *pprog = prog;
289 }
290
291 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
292 {
293         u8 *prog = *pprog;
294         int cnt = 0;
295         s64 offset;
296
297         offset = func - (ip + X86_PATCH_SIZE);
298         if (!is_simm32(offset)) {
299                 pr_err("Target call %p is out of range\n", func);
300                 return -ERANGE;
301         }
302         EMIT1_off32(opcode, offset);
303         *pprog = prog;
304         return 0;
305 }
306
307 static int emit_call(u8 **pprog, void *func, void *ip)
308 {
309         return emit_patch(pprog, func, ip, 0xE8);
310 }
311
312 static int emit_jump(u8 **pprog, void *func, void *ip)
313 {
314         return emit_patch(pprog, func, ip, 0xE9);
315 }
316
317 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
318                                 void *old_addr, void *new_addr,
319                                 const bool text_live)
320 {
321         const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
322         u8 old_insn[X86_PATCH_SIZE];
323         u8 new_insn[X86_PATCH_SIZE];
324         u8 *prog;
325         int ret;
326
327         memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
328         if (old_addr) {
329                 prog = old_insn;
330                 ret = t == BPF_MOD_CALL ?
331                       emit_call(&prog, old_addr, ip) :
332                       emit_jump(&prog, old_addr, ip);
333                 if (ret)
334                         return ret;
335         }
336
337         memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
338         if (new_addr) {
339                 prog = new_insn;
340                 ret = t == BPF_MOD_CALL ?
341                       emit_call(&prog, new_addr, ip) :
342                       emit_jump(&prog, new_addr, ip);
343                 if (ret)
344                         return ret;
345         }
346
347         ret = -EBUSY;
348         mutex_lock(&text_mutex);
349         if (memcmp(ip, old_insn, X86_PATCH_SIZE))
350                 goto out;
351         ret = 1;
352         if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
353                 if (text_live)
354                         text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
355                 else
356                         memcpy(ip, new_insn, X86_PATCH_SIZE);
357                 ret = 0;
358         }
359 out:
360         mutex_unlock(&text_mutex);
361         return ret;
362 }
363
364 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
365                        void *old_addr, void *new_addr)
366 {
367         if (!is_kernel_text((long)ip) &&
368             !is_bpf_text_address((long)ip))
369                 /* BPF poking in modules is not supported */
370                 return -EINVAL;
371
372         return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
373 }
374
375 static int get_pop_bytes(bool *callee_regs_used)
376 {
377         int bytes = 0;
378
379         if (callee_regs_used[3])
380                 bytes += 2;
381         if (callee_regs_used[2])
382                 bytes += 2;
383         if (callee_regs_used[1])
384                 bytes += 2;
385         if (callee_regs_used[0])
386                 bytes += 1;
387
388         return bytes;
389 }
390
391 /*
392  * Generate the following code:
393  *
394  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
395  *   if (index >= array->map.max_entries)
396  *     goto out;
397  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
398  *     goto out;
399  *   prog = array->ptrs[index];
400  *   if (prog == NULL)
401  *     goto out;
402  *   goto *(prog->bpf_func + prologue_size);
403  * out:
404  */
405 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
406                                         u32 stack_depth)
407 {
408         int tcc_off = -4 - round_up(stack_depth, 8);
409         u8 *prog = *pprog;
410         int pop_bytes = 0;
411         int off1 = 42;
412         int off2 = 31;
413         int off3 = 9;
414         int cnt = 0;
415
416         /* count the additional bytes used for popping callee regs from stack
417          * that need to be taken into account for each of the offsets that
418          * are used for bailing out of the tail call
419          */
420         pop_bytes = get_pop_bytes(callee_regs_used);
421         off1 += pop_bytes;
422         off2 += pop_bytes;
423         off3 += pop_bytes;
424
425         if (stack_depth) {
426                 off1 += 7;
427                 off2 += 7;
428                 off3 += 7;
429         }
430
431         /*
432          * rdi - pointer to ctx
433          * rsi - pointer to bpf_array
434          * rdx - index in bpf_array
435          */
436
437         /*
438          * if (index >= array->map.max_entries)
439          *      goto out;
440          */
441         EMIT2(0x89, 0xD2);                        /* mov edx, edx */
442         EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
443               offsetof(struct bpf_array, map.max_entries));
444 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
445         EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
446
447         /*
448          * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
449          *      goto out;
450          */
451         EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
452         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
453 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
454         EMIT2(X86_JA, OFFSET2);                   /* ja out */
455         EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
456         EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
457
458         /* prog = array->ptrs[index]; */
459         EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
460                     offsetof(struct bpf_array, ptrs));
461
462         /*
463          * if (prog == NULL)
464          *      goto out;
465          */
466         EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
467 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
468         EMIT2(X86_JE, OFFSET3);                   /* je out */
469
470         *pprog = prog;
471         pop_callee_regs(pprog, callee_regs_used);
472         prog = *pprog;
473
474         EMIT1(0x58);                              /* pop rax */
475         if (stack_depth)
476                 EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
477                             round_up(stack_depth, 8));
478
479         /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
480         EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
481               offsetof(struct bpf_prog, bpf_func));
482         EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
483               X86_TAIL_CALL_OFFSET);
484         /*
485          * Now we're ready to jump into next BPF program
486          * rdi == ctx (1st arg)
487          * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
488          */
489         RETPOLINE_RCX_BPF_JIT();
490
491         /* out: */
492         *pprog = prog;
493 }
494
495 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
496                                       u8 **pprog, int addr, u8 *image,
497                                       bool *callee_regs_used, u32 stack_depth)
498 {
499         int tcc_off = -4 - round_up(stack_depth, 8);
500         u8 *prog = *pprog;
501         int pop_bytes = 0;
502         int off1 = 20;
503         int poke_off;
504         int cnt = 0;
505
506         /* count the additional bytes used for popping callee regs to stack
507          * that need to be taken into account for jump offset that is used for
508          * bailing out from of the tail call when limit is reached
509          */
510         pop_bytes = get_pop_bytes(callee_regs_used);
511         off1 += pop_bytes;
512
513         /*
514          * total bytes for:
515          * - nop5/ jmpq $off
516          * - pop callee regs
517          * - sub rsp, $val if depth > 0
518          * - pop rax
519          */
520         poke_off = X86_PATCH_SIZE + pop_bytes + 1;
521         if (stack_depth) {
522                 poke_off += 7;
523                 off1 += 7;
524         }
525
526         /*
527          * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
528          *      goto out;
529          */
530         EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
531         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
532         EMIT2(X86_JA, off1);                          /* ja out */
533         EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
534         EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
535
536         poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
537         poke->adj_off = X86_TAIL_CALL_OFFSET;
538         poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
539         poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
540
541         emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
542                   poke->tailcall_bypass);
543
544         *pprog = prog;
545         pop_callee_regs(pprog, callee_regs_used);
546         prog = *pprog;
547         EMIT1(0x58);                                  /* pop rax */
548         if (stack_depth)
549                 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
550
551         memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
552         prog += X86_PATCH_SIZE;
553         /* out: */
554
555         *pprog = prog;
556 }
557
558 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
559 {
560         struct bpf_jit_poke_descriptor *poke;
561         struct bpf_array *array;
562         struct bpf_prog *target;
563         int i, ret;
564
565         for (i = 0; i < prog->aux->size_poke_tab; i++) {
566                 poke = &prog->aux->poke_tab[i];
567                 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
568
569                 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
570                         continue;
571
572                 array = container_of(poke->tail_call.map, struct bpf_array, map);
573                 mutex_lock(&array->aux->poke_mutex);
574                 target = array->ptrs[poke->tail_call.key];
575                 if (target) {
576                         /* Plain memcpy is used when image is not live yet
577                          * and still not locked as read-only. Once poke
578                          * location is active (poke->tailcall_target_stable),
579                          * any parallel bpf_arch_text_poke() might occur
580                          * still on the read-write image until we finally
581                          * locked it as read-only. Both modifications on
582                          * the given image are under text_mutex to avoid
583                          * interference.
584                          */
585                         ret = __bpf_arch_text_poke(poke->tailcall_target,
586                                                    BPF_MOD_JUMP, NULL,
587                                                    (u8 *)target->bpf_func +
588                                                    poke->adj_off, false);
589                         BUG_ON(ret < 0);
590                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
591                                                    BPF_MOD_JUMP,
592                                                    (u8 *)poke->tailcall_target +
593                                                    X86_PATCH_SIZE, NULL, false);
594                         BUG_ON(ret < 0);
595                 }
596                 WRITE_ONCE(poke->tailcall_target_stable, true);
597                 mutex_unlock(&array->aux->poke_mutex);
598         }
599 }
600
601 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
602                            u32 dst_reg, const u32 imm32)
603 {
604         u8 *prog = *pprog;
605         u8 b1, b2, b3;
606         int cnt = 0;
607
608         /*
609          * Optimization: if imm32 is positive, use 'mov %eax, imm32'
610          * (which zero-extends imm32) to save 2 bytes.
611          */
612         if (sign_propagate && (s32)imm32 < 0) {
613                 /* 'mov %rax, imm32' sign extends imm32 */
614                 b1 = add_1mod(0x48, dst_reg);
615                 b2 = 0xC7;
616                 b3 = 0xC0;
617                 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
618                 goto done;
619         }
620
621         /*
622          * Optimization: if imm32 is zero, use 'xor %eax, %eax'
623          * to save 3 bytes.
624          */
625         if (imm32 == 0) {
626                 if (is_ereg(dst_reg))
627                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
628                 b2 = 0x31; /* xor */
629                 b3 = 0xC0;
630                 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
631                 goto done;
632         }
633
634         /* mov %eax, imm32 */
635         if (is_ereg(dst_reg))
636                 EMIT1(add_1mod(0x40, dst_reg));
637         EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
638 done:
639         *pprog = prog;
640 }
641
642 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
643                            const u32 imm32_hi, const u32 imm32_lo)
644 {
645         u8 *prog = *pprog;
646         int cnt = 0;
647
648         if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
649                 /*
650                  * For emitting plain u32, where sign bit must not be
651                  * propagated LLVM tends to load imm64 over mov32
652                  * directly, so save couple of bytes by just doing
653                  * 'mov %eax, imm32' instead.
654                  */
655                 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
656         } else {
657                 /* movabsq %rax, imm64 */
658                 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
659                 EMIT(imm32_lo, 4);
660                 EMIT(imm32_hi, 4);
661         }
662
663         *pprog = prog;
664 }
665
666 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
667 {
668         u8 *prog = *pprog;
669         int cnt = 0;
670
671         if (is64) {
672                 /* mov dst, src */
673                 EMIT_mov(dst_reg, src_reg);
674         } else {
675                 /* mov32 dst, src */
676                 if (is_ereg(dst_reg) || is_ereg(src_reg))
677                         EMIT1(add_2mod(0x40, dst_reg, src_reg));
678                 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
679         }
680
681         *pprog = prog;
682 }
683
684 /* LDX: dst_reg = *(u8*)(src_reg + off) */
685 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
686 {
687         u8 *prog = *pprog;
688         int cnt = 0;
689
690         switch (size) {
691         case BPF_B:
692                 /* Emit 'movzx rax, byte ptr [rax + off]' */
693                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
694                 break;
695         case BPF_H:
696                 /* Emit 'movzx rax, word ptr [rax + off]' */
697                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
698                 break;
699         case BPF_W:
700                 /* Emit 'mov eax, dword ptr [rax+0x14]' */
701                 if (is_ereg(dst_reg) || is_ereg(src_reg))
702                         EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
703                 else
704                         EMIT1(0x8B);
705                 break;
706         case BPF_DW:
707                 /* Emit 'mov rax, qword ptr [rax+0x14]' */
708                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
709                 break;
710         }
711         /*
712          * If insn->off == 0 we can save one extra byte, but
713          * special case of x86 R13 which always needs an offset
714          * is not worth the hassle
715          */
716         if (is_imm8(off))
717                 EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
718         else
719                 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
720         *pprog = prog;
721 }
722
723 /* STX: *(u8*)(dst_reg + off) = src_reg */
724 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
725 {
726         u8 *prog = *pprog;
727         int cnt = 0;
728
729         switch (size) {
730         case BPF_B:
731                 /* Emit 'mov byte ptr [rax + off], al' */
732                 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
733                         /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
734                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
735                 else
736                         EMIT1(0x88);
737                 break;
738         case BPF_H:
739                 if (is_ereg(dst_reg) || is_ereg(src_reg))
740                         EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
741                 else
742                         EMIT2(0x66, 0x89);
743                 break;
744         case BPF_W:
745                 if (is_ereg(dst_reg) || is_ereg(src_reg))
746                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
747                 else
748                         EMIT1(0x89);
749                 break;
750         case BPF_DW:
751                 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
752                 break;
753         }
754         if (is_imm8(off))
755                 EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
756         else
757                 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
758         *pprog = prog;
759 }
760
761 static bool ex_handler_bpf(const struct exception_table_entry *x,
762                            struct pt_regs *regs, int trapnr,
763                            unsigned long error_code, unsigned long fault_addr)
764 {
765         u32 reg = x->fixup >> 8;
766
767         /* jump over faulting load and clear dest register */
768         *(unsigned long *)((void *)regs + reg) = 0;
769         regs->ip += x->fixup & 0xff;
770         return true;
771 }
772
773 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
774                              bool *regs_used, bool *tail_call_seen)
775 {
776         int i;
777
778         for (i = 1; i <= insn_cnt; i++, insn++) {
779                 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
780                         *tail_call_seen = true;
781                 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
782                         regs_used[0] = true;
783                 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
784                         regs_used[1] = true;
785                 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
786                         regs_used[2] = true;
787                 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
788                         regs_used[3] = true;
789         }
790 }
791
792 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
793                   int oldproglen, struct jit_context *ctx)
794 {
795         bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
796         struct bpf_insn *insn = bpf_prog->insnsi;
797         bool callee_regs_used[4] = {};
798         int insn_cnt = bpf_prog->len;
799         bool tail_call_seen = false;
800         bool seen_exit = false;
801         u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
802         int i, cnt = 0, excnt = 0;
803         int proglen = 0;
804         u8 *prog = temp;
805
806         detect_reg_usage(insn, insn_cnt, callee_regs_used,
807                          &tail_call_seen);
808
809         /* tail call's presence in current prog implies it is reachable */
810         tail_call_reachable |= tail_call_seen;
811
812         emit_prologue(&prog, bpf_prog->aux->stack_depth,
813                       bpf_prog_was_classic(bpf_prog), tail_call_reachable,
814                       bpf_prog->aux->func_idx != 0);
815         push_callee_regs(&prog, callee_regs_used);
816         addrs[0] = prog - temp;
817
818         for (i = 1; i <= insn_cnt; i++, insn++) {
819                 const s32 imm32 = insn->imm;
820                 u32 dst_reg = insn->dst_reg;
821                 u32 src_reg = insn->src_reg;
822                 u8 b2 = 0, b3 = 0;
823                 s64 jmp_offset;
824                 u8 jmp_cond;
825                 int ilen;
826                 u8 *func;
827
828                 switch (insn->code) {
829                         /* ALU */
830                 case BPF_ALU | BPF_ADD | BPF_X:
831                 case BPF_ALU | BPF_SUB | BPF_X:
832                 case BPF_ALU | BPF_AND | BPF_X:
833                 case BPF_ALU | BPF_OR | BPF_X:
834                 case BPF_ALU | BPF_XOR | BPF_X:
835                 case BPF_ALU64 | BPF_ADD | BPF_X:
836                 case BPF_ALU64 | BPF_SUB | BPF_X:
837                 case BPF_ALU64 | BPF_AND | BPF_X:
838                 case BPF_ALU64 | BPF_OR | BPF_X:
839                 case BPF_ALU64 | BPF_XOR | BPF_X:
840                         switch (BPF_OP(insn->code)) {
841                         case BPF_ADD: b2 = 0x01; break;
842                         case BPF_SUB: b2 = 0x29; break;
843                         case BPF_AND: b2 = 0x21; break;
844                         case BPF_OR: b2 = 0x09; break;
845                         case BPF_XOR: b2 = 0x31; break;
846                         }
847                         if (BPF_CLASS(insn->code) == BPF_ALU64)
848                                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
849                         else if (is_ereg(dst_reg) || is_ereg(src_reg))
850                                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
851                         EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
852                         break;
853
854                 case BPF_ALU64 | BPF_MOV | BPF_X:
855                 case BPF_ALU | BPF_MOV | BPF_X:
856                         emit_mov_reg(&prog,
857                                      BPF_CLASS(insn->code) == BPF_ALU64,
858                                      dst_reg, src_reg);
859                         break;
860
861                         /* neg dst */
862                 case BPF_ALU | BPF_NEG:
863                 case BPF_ALU64 | BPF_NEG:
864                         if (BPF_CLASS(insn->code) == BPF_ALU64)
865                                 EMIT1(add_1mod(0x48, dst_reg));
866                         else if (is_ereg(dst_reg))
867                                 EMIT1(add_1mod(0x40, dst_reg));
868                         EMIT2(0xF7, add_1reg(0xD8, dst_reg));
869                         break;
870
871                 case BPF_ALU | BPF_ADD | BPF_K:
872                 case BPF_ALU | BPF_SUB | BPF_K:
873                 case BPF_ALU | BPF_AND | BPF_K:
874                 case BPF_ALU | BPF_OR | BPF_K:
875                 case BPF_ALU | BPF_XOR | BPF_K:
876                 case BPF_ALU64 | BPF_ADD | BPF_K:
877                 case BPF_ALU64 | BPF_SUB | BPF_K:
878                 case BPF_ALU64 | BPF_AND | BPF_K:
879                 case BPF_ALU64 | BPF_OR | BPF_K:
880                 case BPF_ALU64 | BPF_XOR | BPF_K:
881                         if (BPF_CLASS(insn->code) == BPF_ALU64)
882                                 EMIT1(add_1mod(0x48, dst_reg));
883                         else if (is_ereg(dst_reg))
884                                 EMIT1(add_1mod(0x40, dst_reg));
885
886                         /*
887                          * b3 holds 'normal' opcode, b2 short form only valid
888                          * in case dst is eax/rax.
889                          */
890                         switch (BPF_OP(insn->code)) {
891                         case BPF_ADD:
892                                 b3 = 0xC0;
893                                 b2 = 0x05;
894                                 break;
895                         case BPF_SUB:
896                                 b3 = 0xE8;
897                                 b2 = 0x2D;
898                                 break;
899                         case BPF_AND:
900                                 b3 = 0xE0;
901                                 b2 = 0x25;
902                                 break;
903                         case BPF_OR:
904                                 b3 = 0xC8;
905                                 b2 = 0x0D;
906                                 break;
907                         case BPF_XOR:
908                                 b3 = 0xF0;
909                                 b2 = 0x35;
910                                 break;
911                         }
912
913                         if (is_imm8(imm32))
914                                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
915                         else if (is_axreg(dst_reg))
916                                 EMIT1_off32(b2, imm32);
917                         else
918                                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
919                         break;
920
921                 case BPF_ALU64 | BPF_MOV | BPF_K:
922                 case BPF_ALU | BPF_MOV | BPF_K:
923                         emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
924                                        dst_reg, imm32);
925                         break;
926
927                 case BPF_LD | BPF_IMM | BPF_DW:
928                         emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
929                         insn++;
930                         i++;
931                         break;
932
933                         /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
934                 case BPF_ALU | BPF_MOD | BPF_X:
935                 case BPF_ALU | BPF_DIV | BPF_X:
936                 case BPF_ALU | BPF_MOD | BPF_K:
937                 case BPF_ALU | BPF_DIV | BPF_K:
938                 case BPF_ALU64 | BPF_MOD | BPF_X:
939                 case BPF_ALU64 | BPF_DIV | BPF_X:
940                 case BPF_ALU64 | BPF_MOD | BPF_K:
941                 case BPF_ALU64 | BPF_DIV | BPF_K:
942                         EMIT1(0x50); /* push rax */
943                         EMIT1(0x52); /* push rdx */
944
945                         if (BPF_SRC(insn->code) == BPF_X)
946                                 /* mov r11, src_reg */
947                                 EMIT_mov(AUX_REG, src_reg);
948                         else
949                                 /* mov r11, imm32 */
950                                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
951
952                         /* mov rax, dst_reg */
953                         EMIT_mov(BPF_REG_0, dst_reg);
954
955                         /*
956                          * xor edx, edx
957                          * equivalent to 'xor rdx, rdx', but one byte less
958                          */
959                         EMIT2(0x31, 0xd2);
960
961                         if (BPF_CLASS(insn->code) == BPF_ALU64)
962                                 /* div r11 */
963                                 EMIT3(0x49, 0xF7, 0xF3);
964                         else
965                                 /* div r11d */
966                                 EMIT3(0x41, 0xF7, 0xF3);
967
968                         if (BPF_OP(insn->code) == BPF_MOD)
969                                 /* mov r11, rdx */
970                                 EMIT3(0x49, 0x89, 0xD3);
971                         else
972                                 /* mov r11, rax */
973                                 EMIT3(0x49, 0x89, 0xC3);
974
975                         EMIT1(0x5A); /* pop rdx */
976                         EMIT1(0x58); /* pop rax */
977
978                         /* mov dst_reg, r11 */
979                         EMIT_mov(dst_reg, AUX_REG);
980                         break;
981
982                 case BPF_ALU | BPF_MUL | BPF_K:
983                 case BPF_ALU | BPF_MUL | BPF_X:
984                 case BPF_ALU64 | BPF_MUL | BPF_K:
985                 case BPF_ALU64 | BPF_MUL | BPF_X:
986                 {
987                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
988
989                         if (dst_reg != BPF_REG_0)
990                                 EMIT1(0x50); /* push rax */
991                         if (dst_reg != BPF_REG_3)
992                                 EMIT1(0x52); /* push rdx */
993
994                         /* mov r11, dst_reg */
995                         EMIT_mov(AUX_REG, dst_reg);
996
997                         if (BPF_SRC(insn->code) == BPF_X)
998                                 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
999                         else
1000                                 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1001
1002                         if (is64)
1003                                 EMIT1(add_1mod(0x48, AUX_REG));
1004                         else if (is_ereg(AUX_REG))
1005                                 EMIT1(add_1mod(0x40, AUX_REG));
1006                         /* mul(q) r11 */
1007                         EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1008
1009                         if (dst_reg != BPF_REG_3)
1010                                 EMIT1(0x5A); /* pop rdx */
1011                         if (dst_reg != BPF_REG_0) {
1012                                 /* mov dst_reg, rax */
1013                                 EMIT_mov(dst_reg, BPF_REG_0);
1014                                 EMIT1(0x58); /* pop rax */
1015                         }
1016                         break;
1017                 }
1018                         /* Shifts */
1019                 case BPF_ALU | BPF_LSH | BPF_K:
1020                 case BPF_ALU | BPF_RSH | BPF_K:
1021                 case BPF_ALU | BPF_ARSH | BPF_K:
1022                 case BPF_ALU64 | BPF_LSH | BPF_K:
1023                 case BPF_ALU64 | BPF_RSH | BPF_K:
1024                 case BPF_ALU64 | BPF_ARSH | BPF_K:
1025                         if (BPF_CLASS(insn->code) == BPF_ALU64)
1026                                 EMIT1(add_1mod(0x48, dst_reg));
1027                         else if (is_ereg(dst_reg))
1028                                 EMIT1(add_1mod(0x40, dst_reg));
1029
1030                         switch (BPF_OP(insn->code)) {
1031                         case BPF_LSH: b3 = 0xE0; break;
1032                         case BPF_RSH: b3 = 0xE8; break;
1033                         case BPF_ARSH: b3 = 0xF8; break;
1034                         }
1035
1036                         if (imm32 == 1)
1037                                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1038                         else
1039                                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1040                         break;
1041
1042                 case BPF_ALU | BPF_LSH | BPF_X:
1043                 case BPF_ALU | BPF_RSH | BPF_X:
1044                 case BPF_ALU | BPF_ARSH | BPF_X:
1045                 case BPF_ALU64 | BPF_LSH | BPF_X:
1046                 case BPF_ALU64 | BPF_RSH | BPF_X:
1047                 case BPF_ALU64 | BPF_ARSH | BPF_X:
1048
1049                         /* Check for bad case when dst_reg == rcx */
1050                         if (dst_reg == BPF_REG_4) {
1051                                 /* mov r11, dst_reg */
1052                                 EMIT_mov(AUX_REG, dst_reg);
1053                                 dst_reg = AUX_REG;
1054                         }
1055
1056                         if (src_reg != BPF_REG_4) { /* common case */
1057                                 EMIT1(0x51); /* push rcx */
1058
1059                                 /* mov rcx, src_reg */
1060                                 EMIT_mov(BPF_REG_4, src_reg);
1061                         }
1062
1063                         /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1064                         if (BPF_CLASS(insn->code) == BPF_ALU64)
1065                                 EMIT1(add_1mod(0x48, dst_reg));
1066                         else if (is_ereg(dst_reg))
1067                                 EMIT1(add_1mod(0x40, dst_reg));
1068
1069                         switch (BPF_OP(insn->code)) {
1070                         case BPF_LSH: b3 = 0xE0; break;
1071                         case BPF_RSH: b3 = 0xE8; break;
1072                         case BPF_ARSH: b3 = 0xF8; break;
1073                         }
1074                         EMIT2(0xD3, add_1reg(b3, dst_reg));
1075
1076                         if (src_reg != BPF_REG_4)
1077                                 EMIT1(0x59); /* pop rcx */
1078
1079                         if (insn->dst_reg == BPF_REG_4)
1080                                 /* mov dst_reg, r11 */
1081                                 EMIT_mov(insn->dst_reg, AUX_REG);
1082                         break;
1083
1084                 case BPF_ALU | BPF_END | BPF_FROM_BE:
1085                         switch (imm32) {
1086                         case 16:
1087                                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1088                                 EMIT1(0x66);
1089                                 if (is_ereg(dst_reg))
1090                                         EMIT1(0x41);
1091                                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1092
1093                                 /* Emit 'movzwl eax, ax' */
1094                                 if (is_ereg(dst_reg))
1095                                         EMIT3(0x45, 0x0F, 0xB7);
1096                                 else
1097                                         EMIT2(0x0F, 0xB7);
1098                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1099                                 break;
1100                         case 32:
1101                                 /* Emit 'bswap eax' to swap lower 4 bytes */
1102                                 if (is_ereg(dst_reg))
1103                                         EMIT2(0x41, 0x0F);
1104                                 else
1105                                         EMIT1(0x0F);
1106                                 EMIT1(add_1reg(0xC8, dst_reg));
1107                                 break;
1108                         case 64:
1109                                 /* Emit 'bswap rax' to swap 8 bytes */
1110                                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1111                                       add_1reg(0xC8, dst_reg));
1112                                 break;
1113                         }
1114                         break;
1115
1116                 case BPF_ALU | BPF_END | BPF_FROM_LE:
1117                         switch (imm32) {
1118                         case 16:
1119                                 /*
1120                                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1121                                  * into 64 bit
1122                                  */
1123                                 if (is_ereg(dst_reg))
1124                                         EMIT3(0x45, 0x0F, 0xB7);
1125                                 else
1126                                         EMIT2(0x0F, 0xB7);
1127                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1128                                 break;
1129                         case 32:
1130                                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1131                                 if (is_ereg(dst_reg))
1132                                         EMIT1(0x45);
1133                                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1134                                 break;
1135                         case 64:
1136                                 /* nop */
1137                                 break;
1138                         }
1139                         break;
1140
1141                         /* ST: *(u8*)(dst_reg + off) = imm */
1142                 case BPF_ST | BPF_MEM | BPF_B:
1143                         if (is_ereg(dst_reg))
1144                                 EMIT2(0x41, 0xC6);
1145                         else
1146                                 EMIT1(0xC6);
1147                         goto st;
1148                 case BPF_ST | BPF_MEM | BPF_H:
1149                         if (is_ereg(dst_reg))
1150                                 EMIT3(0x66, 0x41, 0xC7);
1151                         else
1152                                 EMIT2(0x66, 0xC7);
1153                         goto st;
1154                 case BPF_ST | BPF_MEM | BPF_W:
1155                         if (is_ereg(dst_reg))
1156                                 EMIT2(0x41, 0xC7);
1157                         else
1158                                 EMIT1(0xC7);
1159                         goto st;
1160                 case BPF_ST | BPF_MEM | BPF_DW:
1161                         EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1162
1163 st:                     if (is_imm8(insn->off))
1164                                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1165                         else
1166                                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1167
1168                         EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1169                         break;
1170
1171                         /* STX: *(u8*)(dst_reg + off) = src_reg */
1172                 case BPF_STX | BPF_MEM | BPF_B:
1173                 case BPF_STX | BPF_MEM | BPF_H:
1174                 case BPF_STX | BPF_MEM | BPF_W:
1175                 case BPF_STX | BPF_MEM | BPF_DW:
1176                         emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1177                         break;
1178
1179                         /* LDX: dst_reg = *(u8*)(src_reg + off) */
1180                 case BPF_LDX | BPF_MEM | BPF_B:
1181                 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1182                 case BPF_LDX | BPF_MEM | BPF_H:
1183                 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1184                 case BPF_LDX | BPF_MEM | BPF_W:
1185                 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1186                 case BPF_LDX | BPF_MEM | BPF_DW:
1187                 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1188                         emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1189                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1190                                 struct exception_table_entry *ex;
1191                                 u8 *_insn = image + proglen;
1192                                 s64 delta;
1193
1194                                 if (!bpf_prog->aux->extable)
1195                                         break;
1196
1197                                 if (excnt >= bpf_prog->aux->num_exentries) {
1198                                         pr_err("ex gen bug\n");
1199                                         return -EFAULT;
1200                                 }
1201                                 ex = &bpf_prog->aux->extable[excnt++];
1202
1203                                 delta = _insn - (u8 *)&ex->insn;
1204                                 if (!is_simm32(delta)) {
1205                                         pr_err("extable->insn doesn't fit into 32-bit\n");
1206                                         return -EFAULT;
1207                                 }
1208                                 ex->insn = delta;
1209
1210                                 delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1211                                 if (!is_simm32(delta)) {
1212                                         pr_err("extable->handler doesn't fit into 32-bit\n");
1213                                         return -EFAULT;
1214                                 }
1215                                 ex->handler = delta;
1216
1217                                 if (dst_reg > BPF_REG_9) {
1218                                         pr_err("verifier error\n");
1219                                         return -EFAULT;
1220                                 }
1221                                 /*
1222                                  * Compute size of x86 insn and its target dest x86 register.
1223                                  * ex_handler_bpf() will use lower 8 bits to adjust
1224                                  * pt_regs->ip to jump over this x86 instruction
1225                                  * and upper bits to figure out which pt_regs to zero out.
1226                                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1227                                  * of 4 bytes will be ignored and rbx will be zero inited.
1228                                  */
1229                                 ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1230                         }
1231                         break;
1232
1233                         /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
1234                 case BPF_STX | BPF_XADD | BPF_W:
1235                         /* Emit 'lock add dword ptr [rax + off], eax' */
1236                         if (is_ereg(dst_reg) || is_ereg(src_reg))
1237                                 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
1238                         else
1239                                 EMIT2(0xF0, 0x01);
1240                         goto xadd;
1241                 case BPF_STX | BPF_XADD | BPF_DW:
1242                         EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
1243 xadd:                   if (is_imm8(insn->off))
1244                                 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
1245                         else
1246                                 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
1247                                             insn->off);
1248                         break;
1249
1250                         /* call */
1251                 case BPF_JMP | BPF_CALL:
1252                         func = (u8 *) __bpf_call_base + imm32;
1253                         if (tail_call_reachable) {
1254                                 EMIT3_off32(0x48, 0x8B, 0x85,
1255                                             -(bpf_prog->aux->stack_depth + 8));
1256                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1257                                         return -EINVAL;
1258                         } else {
1259                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1260                                         return -EINVAL;
1261                         }
1262                         break;
1263
1264                 case BPF_JMP | BPF_TAIL_CALL:
1265                         if (imm32)
1266                                 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1267                                                           &prog, addrs[i], image,
1268                                                           callee_regs_used,
1269                                                           bpf_prog->aux->stack_depth);
1270                         else
1271                                 emit_bpf_tail_call_indirect(&prog,
1272                                                             callee_regs_used,
1273                                                             bpf_prog->aux->stack_depth);
1274                         break;
1275
1276                         /* cond jump */
1277                 case BPF_JMP | BPF_JEQ | BPF_X:
1278                 case BPF_JMP | BPF_JNE | BPF_X:
1279                 case BPF_JMP | BPF_JGT | BPF_X:
1280                 case BPF_JMP | BPF_JLT | BPF_X:
1281                 case BPF_JMP | BPF_JGE | BPF_X:
1282                 case BPF_JMP | BPF_JLE | BPF_X:
1283                 case BPF_JMP | BPF_JSGT | BPF_X:
1284                 case BPF_JMP | BPF_JSLT | BPF_X:
1285                 case BPF_JMP | BPF_JSGE | BPF_X:
1286                 case BPF_JMP | BPF_JSLE | BPF_X:
1287                 case BPF_JMP32 | BPF_JEQ | BPF_X:
1288                 case BPF_JMP32 | BPF_JNE | BPF_X:
1289                 case BPF_JMP32 | BPF_JGT | BPF_X:
1290                 case BPF_JMP32 | BPF_JLT | BPF_X:
1291                 case BPF_JMP32 | BPF_JGE | BPF_X:
1292                 case BPF_JMP32 | BPF_JLE | BPF_X:
1293                 case BPF_JMP32 | BPF_JSGT | BPF_X:
1294                 case BPF_JMP32 | BPF_JSLT | BPF_X:
1295                 case BPF_JMP32 | BPF_JSGE | BPF_X:
1296                 case BPF_JMP32 | BPF_JSLE | BPF_X:
1297                         /* cmp dst_reg, src_reg */
1298                         if (BPF_CLASS(insn->code) == BPF_JMP)
1299                                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1300                         else if (is_ereg(dst_reg) || is_ereg(src_reg))
1301                                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1302                         EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1303                         goto emit_cond_jmp;
1304
1305                 case BPF_JMP | BPF_JSET | BPF_X:
1306                 case BPF_JMP32 | BPF_JSET | BPF_X:
1307                         /* test dst_reg, src_reg */
1308                         if (BPF_CLASS(insn->code) == BPF_JMP)
1309                                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1310                         else if (is_ereg(dst_reg) || is_ereg(src_reg))
1311                                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1312                         EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1313                         goto emit_cond_jmp;
1314
1315                 case BPF_JMP | BPF_JSET | BPF_K:
1316                 case BPF_JMP32 | BPF_JSET | BPF_K:
1317                         /* test dst_reg, imm32 */
1318                         if (BPF_CLASS(insn->code) == BPF_JMP)
1319                                 EMIT1(add_1mod(0x48, dst_reg));
1320                         else if (is_ereg(dst_reg))
1321                                 EMIT1(add_1mod(0x40, dst_reg));
1322                         EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1323                         goto emit_cond_jmp;
1324
1325                 case BPF_JMP | BPF_JEQ | BPF_K:
1326                 case BPF_JMP | BPF_JNE | BPF_K:
1327                 case BPF_JMP | BPF_JGT | BPF_K:
1328                 case BPF_JMP | BPF_JLT | BPF_K:
1329                 case BPF_JMP | BPF_JGE | BPF_K:
1330                 case BPF_JMP | BPF_JLE | BPF_K:
1331                 case BPF_JMP | BPF_JSGT | BPF_K:
1332                 case BPF_JMP | BPF_JSLT | BPF_K:
1333                 case BPF_JMP | BPF_JSGE | BPF_K:
1334                 case BPF_JMP | BPF_JSLE | BPF_K:
1335                 case BPF_JMP32 | BPF_JEQ | BPF_K:
1336                 case BPF_JMP32 | BPF_JNE | BPF_K:
1337                 case BPF_JMP32 | BPF_JGT | BPF_K:
1338                 case BPF_JMP32 | BPF_JLT | BPF_K:
1339                 case BPF_JMP32 | BPF_JGE | BPF_K:
1340                 case BPF_JMP32 | BPF_JLE | BPF_K:
1341                 case BPF_JMP32 | BPF_JSGT | BPF_K:
1342                 case BPF_JMP32 | BPF_JSLT | BPF_K:
1343                 case BPF_JMP32 | BPF_JSGE | BPF_K:
1344                 case BPF_JMP32 | BPF_JSLE | BPF_K:
1345                         /* test dst_reg, dst_reg to save one extra byte */
1346                         if (imm32 == 0) {
1347                                 if (BPF_CLASS(insn->code) == BPF_JMP)
1348                                         EMIT1(add_2mod(0x48, dst_reg, dst_reg));
1349                                 else if (is_ereg(dst_reg))
1350                                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
1351                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1352                                 goto emit_cond_jmp;
1353                         }
1354
1355                         /* cmp dst_reg, imm8/32 */
1356                         if (BPF_CLASS(insn->code) == BPF_JMP)
1357                                 EMIT1(add_1mod(0x48, dst_reg));
1358                         else if (is_ereg(dst_reg))
1359                                 EMIT1(add_1mod(0x40, dst_reg));
1360
1361                         if (is_imm8(imm32))
1362                                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1363                         else
1364                                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1365
1366 emit_cond_jmp:          /* Convert BPF opcode to x86 */
1367                         switch (BPF_OP(insn->code)) {
1368                         case BPF_JEQ:
1369                                 jmp_cond = X86_JE;
1370                                 break;
1371                         case BPF_JSET:
1372                         case BPF_JNE:
1373                                 jmp_cond = X86_JNE;
1374                                 break;
1375                         case BPF_JGT:
1376                                 /* GT is unsigned '>', JA in x86 */
1377                                 jmp_cond = X86_JA;
1378                                 break;
1379                         case BPF_JLT:
1380                                 /* LT is unsigned '<', JB in x86 */
1381                                 jmp_cond = X86_JB;
1382                                 break;
1383                         case BPF_JGE:
1384                                 /* GE is unsigned '>=', JAE in x86 */
1385                                 jmp_cond = X86_JAE;
1386                                 break;
1387                         case BPF_JLE:
1388                                 /* LE is unsigned '<=', JBE in x86 */
1389                                 jmp_cond = X86_JBE;
1390                                 break;
1391                         case BPF_JSGT:
1392                                 /* Signed '>', GT in x86 */
1393                                 jmp_cond = X86_JG;
1394                                 break;
1395                         case BPF_JSLT:
1396                                 /* Signed '<', LT in x86 */
1397                                 jmp_cond = X86_JL;
1398                                 break;
1399                         case BPF_JSGE:
1400                                 /* Signed '>=', GE in x86 */
1401                                 jmp_cond = X86_JGE;
1402                                 break;
1403                         case BPF_JSLE:
1404                                 /* Signed '<=', LE in x86 */
1405                                 jmp_cond = X86_JLE;
1406                                 break;
1407                         default: /* to silence GCC warning */
1408                                 return -EFAULT;
1409                         }
1410                         jmp_offset = addrs[i + insn->off] - addrs[i];
1411                         if (is_imm8(jmp_offset)) {
1412                                 EMIT2(jmp_cond, jmp_offset);
1413                         } else if (is_simm32(jmp_offset)) {
1414                                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1415                         } else {
1416                                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1417                                 return -EFAULT;
1418                         }
1419
1420                         break;
1421
1422                 case BPF_JMP | BPF_JA:
1423                         if (insn->off == -1)
1424                                 /* -1 jmp instructions will always jump
1425                                  * backwards two bytes. Explicitly handling
1426                                  * this case avoids wasting too many passes
1427                                  * when there are long sequences of replaced
1428                                  * dead code.
1429                                  */
1430                                 jmp_offset = -2;
1431                         else
1432                                 jmp_offset = addrs[i + insn->off] - addrs[i];
1433
1434                         if (!jmp_offset)
1435                                 /* Optimize out nop jumps */
1436                                 break;
1437 emit_jmp:
1438                         if (is_imm8(jmp_offset)) {
1439                                 EMIT2(0xEB, jmp_offset);
1440                         } else if (is_simm32(jmp_offset)) {
1441                                 EMIT1_off32(0xE9, jmp_offset);
1442                         } else {
1443                                 pr_err("jmp gen bug %llx\n", jmp_offset);
1444                                 return -EFAULT;
1445                         }
1446                         break;
1447
1448                 case BPF_JMP | BPF_EXIT:
1449                         if (seen_exit) {
1450                                 jmp_offset = ctx->cleanup_addr - addrs[i];
1451                                 goto emit_jmp;
1452                         }
1453                         seen_exit = true;
1454                         /* Update cleanup_addr */
1455                         ctx->cleanup_addr = proglen;
1456                         pop_callee_regs(&prog, callee_regs_used);
1457                         EMIT1(0xC9);         /* leave */
1458                         EMIT1(0xC3);         /* ret */
1459                         break;
1460
1461                 default:
1462                         /*
1463                          * By design x86-64 JIT should support all BPF instructions.
1464                          * This error will be seen if new instruction was added
1465                          * to the interpreter, but not to the JIT, or if there is
1466                          * junk in bpf_prog.
1467                          */
1468                         pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1469                         return -EINVAL;
1470                 }
1471
1472                 ilen = prog - temp;
1473                 if (ilen > BPF_MAX_INSN_SIZE) {
1474                         pr_err("bpf_jit: fatal insn size error\n");
1475                         return -EFAULT;
1476                 }
1477
1478                 if (image) {
1479                         if (unlikely(proglen + ilen > oldproglen)) {
1480                                 pr_err("bpf_jit: fatal error\n");
1481                                 return -EFAULT;
1482                         }
1483                         memcpy(image + proglen, temp, ilen);
1484                 }
1485                 proglen += ilen;
1486                 addrs[i] = proglen;
1487                 prog = temp;
1488         }
1489
1490         if (image && excnt != bpf_prog->aux->num_exentries) {
1491                 pr_err("extable is not populated\n");
1492                 return -EFAULT;
1493         }
1494         return proglen;
1495 }
1496
1497 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1498                       int stack_size)
1499 {
1500         int i;
1501         /* Store function arguments to stack.
1502          * For a function that accepts two pointers the sequence will be:
1503          * mov QWORD PTR [rbp-0x10],rdi
1504          * mov QWORD PTR [rbp-0x8],rsi
1505          */
1506         for (i = 0; i < min(nr_args, 6); i++)
1507                 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1508                          BPF_REG_FP,
1509                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1510                          -(stack_size - i * 8));
1511 }
1512
1513 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1514                          int stack_size)
1515 {
1516         int i;
1517
1518         /* Restore function arguments from stack.
1519          * For a function that accepts two pointers the sequence will be:
1520          * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1521          * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1522          */
1523         for (i = 0; i < min(nr_args, 6); i++)
1524                 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1525                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1526                          BPF_REG_FP,
1527                          -(stack_size - i * 8));
1528 }
1529
1530 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1531                            struct bpf_prog *p, int stack_size, bool mod_ret)
1532 {
1533         u8 *prog = *pprog;
1534         int cnt = 0;
1535
1536         if (p->aux->sleepable) {
1537                 if (emit_call(&prog, __bpf_prog_enter_sleepable, prog))
1538                         return -EINVAL;
1539         } else {
1540                 if (emit_call(&prog, __bpf_prog_enter, prog))
1541                         return -EINVAL;
1542                 /* remember prog start time returned by __bpf_prog_enter */
1543                 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1544         }
1545
1546         /* arg1: lea rdi, [rbp - stack_size] */
1547         EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1548         /* arg2: progs[i]->insnsi for interpreter */
1549         if (!p->jited)
1550                 emit_mov_imm64(&prog, BPF_REG_2,
1551                                (long) p->insnsi >> 32,
1552                                (u32) (long) p->insnsi);
1553         /* call JITed bpf program or interpreter */
1554         if (emit_call(&prog, p->bpf_func, prog))
1555                 return -EINVAL;
1556
1557         /* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1558          * of the previous call which is then passed on the stack to
1559          * the next BPF program.
1560          */
1561         if (mod_ret)
1562                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1563
1564         if (p->aux->sleepable) {
1565                 if (emit_call(&prog, __bpf_prog_exit_sleepable, prog))
1566                         return -EINVAL;
1567         } else {
1568                 /* arg1: mov rdi, progs[i] */
1569                 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32,
1570                                (u32) (long) p);
1571                 /* arg2: mov rsi, rbx <- start time in nsec */
1572                 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1573                 if (emit_call(&prog, __bpf_prog_exit, prog))
1574                         return -EINVAL;
1575         }
1576
1577         *pprog = prog;
1578         return 0;
1579 }
1580
1581 static void emit_nops(u8 **pprog, unsigned int len)
1582 {
1583         unsigned int i, noplen;
1584         u8 *prog = *pprog;
1585         int cnt = 0;
1586
1587         while (len > 0) {
1588                 noplen = len;
1589
1590                 if (noplen > ASM_NOP_MAX)
1591                         noplen = ASM_NOP_MAX;
1592
1593                 for (i = 0; i < noplen; i++)
1594                         EMIT1(ideal_nops[noplen][i]);
1595                 len -= noplen;
1596         }
1597
1598         *pprog = prog;
1599 }
1600
1601 static void emit_align(u8 **pprog, u32 align)
1602 {
1603         u8 *target, *prog = *pprog;
1604
1605         target = PTR_ALIGN(prog, align);
1606         if (target != prog)
1607                 emit_nops(&prog, target - prog);
1608
1609         *pprog = prog;
1610 }
1611
1612 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1613 {
1614         u8 *prog = *pprog;
1615         int cnt = 0;
1616         s64 offset;
1617
1618         offset = func - (ip + 2 + 4);
1619         if (!is_simm32(offset)) {
1620                 pr_err("Target %p is out of range\n", func);
1621                 return -EINVAL;
1622         }
1623         EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1624         *pprog = prog;
1625         return 0;
1626 }
1627
1628 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1629                       struct bpf_tramp_progs *tp, int stack_size)
1630 {
1631         int i;
1632         u8 *prog = *pprog;
1633
1634         for (i = 0; i < tp->nr_progs; i++) {
1635                 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1636                         return -EINVAL;
1637         }
1638         *pprog = prog;
1639         return 0;
1640 }
1641
1642 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1643                               struct bpf_tramp_progs *tp, int stack_size,
1644                               u8 **branches)
1645 {
1646         u8 *prog = *pprog;
1647         int i, cnt = 0;
1648
1649         /* The first fmod_ret program will receive a garbage return value.
1650          * Set this to 0 to avoid confusing the program.
1651          */
1652         emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1653         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1654         for (i = 0; i < tp->nr_progs; i++) {
1655                 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1656                         return -EINVAL;
1657
1658                 /* mod_ret prog stored return value into [rbp - 8]. Emit:
1659                  * if (*(u64 *)(rbp - 8) !=  0)
1660                  *      goto do_fexit;
1661                  */
1662                 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
1663                 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1664
1665                 /* Save the location of the branch and Generate 6 nops
1666                  * (4 bytes for an offset and 2 bytes for the jump) These nops
1667                  * are replaced with a conditional jump once do_fexit (i.e. the
1668                  * start of the fexit invocation) is finalized.
1669                  */
1670                 branches[i] = prog;
1671                 emit_nops(&prog, 4 + 2);
1672         }
1673
1674         *pprog = prog;
1675         return 0;
1676 }
1677
1678 /* Example:
1679  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1680  * its 'struct btf_func_model' will be nr_args=2
1681  * The assembly code when eth_type_trans is executing after trampoline:
1682  *
1683  * push rbp
1684  * mov rbp, rsp
1685  * sub rsp, 16                     // space for skb and dev
1686  * push rbx                        // temp regs to pass start time
1687  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1688  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1689  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1690  * mov rbx, rax                    // remember start time in bpf stats are enabled
1691  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1692  * call addr_of_jited_FENTRY_prog
1693  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1694  * mov rsi, rbx                    // prog start time
1695  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1696  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1697  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1698  * pop rbx
1699  * leave
1700  * ret
1701  *
1702  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1703  * replaced with 'call generated_bpf_trampoline'. When it returns
1704  * eth_type_trans will continue executing with original skb and dev pointers.
1705  *
1706  * The assembly code when eth_type_trans is called from trampoline:
1707  *
1708  * push rbp
1709  * mov rbp, rsp
1710  * sub rsp, 24                     // space for skb, dev, return value
1711  * push rbx                        // temp regs to pass start time
1712  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1713  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1714  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1715  * mov rbx, rax                    // remember start time if bpf stats are enabled
1716  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1717  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1718  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1719  * mov rsi, rbx                    // prog start time
1720  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1721  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1722  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1723  * call eth_type_trans+5           // execute body of eth_type_trans
1724  * mov qword ptr [rbp - 8], rax    // save return value
1725  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1726  * mov rbx, rax                    // remember start time in bpf stats are enabled
1727  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1728  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1729  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1730  * mov rsi, rbx                    // prog start time
1731  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1732  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1733  * pop rbx
1734  * leave
1735  * add rsp, 8                      // skip eth_type_trans's frame
1736  * ret                             // return to its caller
1737  */
1738 int arch_prepare_bpf_trampoline(void *image, void *image_end,
1739                                 const struct btf_func_model *m, u32 flags,
1740                                 struct bpf_tramp_progs *tprogs,
1741                                 void *orig_call)
1742 {
1743         int ret, i, cnt = 0, nr_args = m->nr_args;
1744         int stack_size = nr_args * 8;
1745         struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1746         struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1747         struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1748         u8 **branches = NULL;
1749         u8 *prog;
1750
1751         /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1752         if (nr_args > 6)
1753                 return -ENOTSUPP;
1754
1755         if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1756             (flags & BPF_TRAMP_F_SKIP_FRAME))
1757                 return -EINVAL;
1758
1759         if (flags & BPF_TRAMP_F_CALL_ORIG)
1760                 stack_size += 8; /* room for return value of orig_call */
1761
1762         if (flags & BPF_TRAMP_F_SKIP_FRAME)
1763                 /* skip patched call instruction and point orig_call to actual
1764                  * body of the kernel function.
1765                  */
1766                 orig_call += X86_PATCH_SIZE;
1767
1768         prog = image;
1769
1770         EMIT1(0x55);             /* push rbp */
1771         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1772         EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1773         EMIT1(0x53);             /* push rbx */
1774
1775         save_regs(m, &prog, nr_args, stack_size);
1776
1777         if (fentry->nr_progs)
1778                 if (invoke_bpf(m, &prog, fentry, stack_size))
1779                         return -EINVAL;
1780
1781         if (fmod_ret->nr_progs) {
1782                 branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1783                                    GFP_KERNEL);
1784                 if (!branches)
1785                         return -ENOMEM;
1786
1787                 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1788                                        branches)) {
1789                         ret = -EINVAL;
1790                         goto cleanup;
1791                 }
1792         }
1793
1794         if (flags & BPF_TRAMP_F_CALL_ORIG) {
1795                 if (fentry->nr_progs || fmod_ret->nr_progs)
1796                         restore_regs(m, &prog, nr_args, stack_size);
1797
1798                 /* call original function */
1799                 if (emit_call(&prog, orig_call, prog)) {
1800                         ret = -EINVAL;
1801                         goto cleanup;
1802                 }
1803                 /* remember return value in a stack for bpf prog to access */
1804                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1805         }
1806
1807         if (fmod_ret->nr_progs) {
1808                 /* From Intel 64 and IA-32 Architectures Optimization
1809                  * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1810                  * Coding Rule 11: All branch targets should be 16-byte
1811                  * aligned.
1812                  */
1813                 emit_align(&prog, 16);
1814                 /* Update the branches saved in invoke_bpf_mod_ret with the
1815                  * aligned address of do_fexit.
1816                  */
1817                 for (i = 0; i < fmod_ret->nr_progs; i++)
1818                         emit_cond_near_jump(&branches[i], prog, branches[i],
1819                                             X86_JNE);
1820         }
1821
1822         if (fexit->nr_progs)
1823                 if (invoke_bpf(m, &prog, fexit, stack_size)) {
1824                         ret = -EINVAL;
1825                         goto cleanup;
1826                 }
1827
1828         if (flags & BPF_TRAMP_F_RESTORE_REGS)
1829                 restore_regs(m, &prog, nr_args, stack_size);
1830
1831         /* This needs to be done regardless. If there were fmod_ret programs,
1832          * the return value is only updated on the stack and still needs to be
1833          * restored to R0.
1834          */
1835         if (flags & BPF_TRAMP_F_CALL_ORIG)
1836                 /* restore original return value back into RAX */
1837                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
1838
1839         EMIT1(0x5B); /* pop rbx */
1840         EMIT1(0xC9); /* leave */
1841         if (flags & BPF_TRAMP_F_SKIP_FRAME)
1842                 /* skip our return address and return to parent */
1843                 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
1844         EMIT1(0xC3); /* ret */
1845         /* Make sure the trampoline generation logic doesn't overflow */
1846         if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
1847                 ret = -EFAULT;
1848                 goto cleanup;
1849         }
1850         ret = prog - (u8 *)image;
1851
1852 cleanup:
1853         kfree(branches);
1854         return ret;
1855 }
1856
1857 static int emit_fallback_jump(u8 **pprog)
1858 {
1859         u8 *prog = *pprog;
1860         int err = 0;
1861
1862 #ifdef CONFIG_RETPOLINE
1863         /* Note that this assumes the the compiler uses external
1864          * thunks for indirect calls. Both clang and GCC use the same
1865          * naming convention for external thunks.
1866          */
1867         err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
1868 #else
1869         int cnt = 0;
1870
1871         EMIT2(0xFF, 0xE2);      /* jmp rdx */
1872 #endif
1873         *pprog = prog;
1874         return err;
1875 }
1876
1877 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
1878 {
1879         u8 *jg_reloc, *prog = *pprog;
1880         int pivot, err, jg_bytes = 1, cnt = 0;
1881         s64 jg_offset;
1882
1883         if (a == b) {
1884                 /* Leaf node of recursion, i.e. not a range of indices
1885                  * anymore.
1886                  */
1887                 EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
1888                 if (!is_simm32(progs[a]))
1889                         return -1;
1890                 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
1891                             progs[a]);
1892                 err = emit_cond_near_jump(&prog,        /* je func */
1893                                           (void *)progs[a], prog,
1894                                           X86_JE);
1895                 if (err)
1896                         return err;
1897
1898                 err = emit_fallback_jump(&prog);        /* jmp thunk/indirect */
1899                 if (err)
1900                         return err;
1901
1902                 *pprog = prog;
1903                 return 0;
1904         }
1905
1906         /* Not a leaf node, so we pivot, and recursively descend into
1907          * the lower and upper ranges.
1908          */
1909         pivot = (b - a) / 2;
1910         EMIT1(add_1mod(0x48, BPF_REG_3));               /* cmp rdx,func */
1911         if (!is_simm32(progs[a + pivot]))
1912                 return -1;
1913         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
1914
1915         if (pivot > 2) {                                /* jg upper_part */
1916                 /* Require near jump. */
1917                 jg_bytes = 4;
1918                 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
1919         } else {
1920                 EMIT2(X86_JG, 0);
1921         }
1922         jg_reloc = prog;
1923
1924         err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
1925                                   progs);
1926         if (err)
1927                 return err;
1928
1929         /* From Intel 64 and IA-32 Architectures Optimization
1930          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
1931          * Coding Rule 11: All branch targets should be 16-byte
1932          * aligned.
1933          */
1934         emit_align(&prog, 16);
1935         jg_offset = prog - jg_reloc;
1936         emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
1937
1938         err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
1939                                   b, progs);
1940         if (err)
1941                 return err;
1942
1943         *pprog = prog;
1944         return 0;
1945 }
1946
1947 static int cmp_ips(const void *a, const void *b)
1948 {
1949         const s64 *ipa = a;
1950         const s64 *ipb = b;
1951
1952         if (*ipa > *ipb)
1953                 return 1;
1954         if (*ipa < *ipb)
1955                 return -1;
1956         return 0;
1957 }
1958
1959 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
1960 {
1961         u8 *prog = image;
1962
1963         sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
1964         return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
1965 }
1966
1967 struct x64_jit_data {
1968         struct bpf_binary_header *header;
1969         int *addrs;
1970         u8 *image;
1971         int proglen;
1972         struct jit_context ctx;
1973 };
1974
1975 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1976 {
1977         struct bpf_binary_header *header = NULL;
1978         struct bpf_prog *tmp, *orig_prog = prog;
1979         struct x64_jit_data *jit_data;
1980         int proglen, oldproglen = 0;
1981         struct jit_context ctx = {};
1982         bool tmp_blinded = false;
1983         bool extra_pass = false;
1984         u8 *image = NULL;
1985         int *addrs;
1986         int pass;
1987         int i;
1988
1989         if (!prog->jit_requested)
1990                 return orig_prog;
1991
1992         tmp = bpf_jit_blind_constants(prog);
1993         /*
1994          * If blinding was requested and we failed during blinding,
1995          * we must fall back to the interpreter.
1996          */
1997         if (IS_ERR(tmp))
1998                 return orig_prog;
1999         if (tmp != prog) {
2000                 tmp_blinded = true;
2001                 prog = tmp;
2002         }
2003
2004         jit_data = prog->aux->jit_data;
2005         if (!jit_data) {
2006                 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2007                 if (!jit_data) {
2008                         prog = orig_prog;
2009                         goto out;
2010                 }
2011                 prog->aux->jit_data = jit_data;
2012         }
2013         addrs = jit_data->addrs;
2014         if (addrs) {
2015                 ctx = jit_data->ctx;
2016                 oldproglen = jit_data->proglen;
2017                 image = jit_data->image;
2018                 header = jit_data->header;
2019                 extra_pass = true;
2020                 goto skip_init_addrs;
2021         }
2022         addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2023         if (!addrs) {
2024                 prog = orig_prog;
2025                 goto out_addrs;
2026         }
2027
2028         /*
2029          * Before first pass, make a rough estimation of addrs[]
2030          * each BPF instruction is translated to less than 64 bytes
2031          */
2032         for (proglen = 0, i = 0; i <= prog->len; i++) {
2033                 proglen += 64;
2034                 addrs[i] = proglen;
2035         }
2036         ctx.cleanup_addr = proglen;
2037 skip_init_addrs:
2038
2039         /*
2040          * JITed image shrinks with every pass and the loop iterates
2041          * until the image stops shrinking. Very large BPF programs
2042          * may converge on the last pass. In such case do one more
2043          * pass to emit the final image.
2044          */
2045         for (pass = 0; pass < 20 || image; pass++) {
2046                 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2047                 if (proglen <= 0) {
2048 out_image:
2049                         image = NULL;
2050                         if (header)
2051                                 bpf_jit_binary_free(header);
2052                         prog = orig_prog;
2053                         goto out_addrs;
2054                 }
2055                 if (image) {
2056                         if (proglen != oldproglen) {
2057                                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2058                                        proglen, oldproglen);
2059                                 goto out_image;
2060                         }
2061                         break;
2062                 }
2063                 if (proglen == oldproglen) {
2064                         /*
2065                          * The number of entries in extable is the number of BPF_LDX
2066                          * insns that access kernel memory via "pointer to BTF type".
2067                          * The verifier changed their opcode from LDX|MEM|size
2068                          * to LDX|PROBE_MEM|size to make JITing easier.
2069                          */
2070                         u32 align = __alignof__(struct exception_table_entry);
2071                         u32 extable_size = prog->aux->num_exentries *
2072                                 sizeof(struct exception_table_entry);
2073
2074                         /* allocate module memory for x86 insns and extable */
2075                         header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2076                                                       &image, align, jit_fill_hole);
2077                         if (!header) {
2078                                 prog = orig_prog;
2079                                 goto out_addrs;
2080                         }
2081                         prog->aux->extable = (void *) image + roundup(proglen, align);
2082                 }
2083                 oldproglen = proglen;
2084                 cond_resched();
2085         }
2086
2087         if (bpf_jit_enable > 1)
2088                 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2089
2090         if (image) {
2091                 if (!prog->is_func || extra_pass) {
2092                         bpf_tail_call_direct_fixup(prog);
2093                         bpf_jit_binary_lock_ro(header);
2094                 } else {
2095                         jit_data->addrs = addrs;
2096                         jit_data->ctx = ctx;
2097                         jit_data->proglen = proglen;
2098                         jit_data->image = image;
2099                         jit_data->header = header;
2100                 }
2101                 prog->bpf_func = (void *)image;
2102                 prog->jited = 1;
2103                 prog->jited_len = proglen;
2104         } else {
2105                 prog = orig_prog;
2106         }
2107
2108         if (!image || !prog->is_func || extra_pass) {
2109                 if (image)
2110                         bpf_prog_fill_jited_linfo(prog, addrs + 1);
2111 out_addrs:
2112                 kfree(addrs);
2113                 kfree(jit_data);
2114                 prog->aux->jit_data = NULL;
2115         }
2116 out:
2117         if (tmp_blinded)
2118                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2119                                            tmp : orig_prog);
2120         return prog;
2121 }