Merge tag 'kvm-arm-fixes-for-v4.14' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33 DEFINE_STATIC_KEY_TRUE(tlb_use_lazy_mode);
34
35 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
36                             u16 *new_asid, bool *need_flush)
37 {
38         u16 asid;
39
40         if (!static_cpu_has(X86_FEATURE_PCID)) {
41                 *new_asid = 0;
42                 *need_flush = true;
43                 return;
44         }
45
46         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
47                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
48                     next->context.ctx_id)
49                         continue;
50
51                 *new_asid = asid;
52                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
53                                next_tlb_gen);
54                 return;
55         }
56
57         /*
58          * We don't currently own an ASID slot on this CPU.
59          * Allocate a slot.
60          */
61         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
62         if (*new_asid >= TLB_NR_DYN_ASIDS) {
63                 *new_asid = 0;
64                 this_cpu_write(cpu_tlbstate.next_asid, 1);
65         }
66         *need_flush = true;
67 }
68
69 void leave_mm(int cpu)
70 {
71         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
72
73         /*
74          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
75          * If so, our callers still expect us to flush the TLB, but there
76          * aren't any user TLB entries in init_mm to worry about.
77          *
78          * This needs to happen before any other sanity checks due to
79          * intel_idle's shenanigans.
80          */
81         if (loaded_mm == &init_mm)
82                 return;
83
84         /* Warn if we're not lazy. */
85         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
86
87         switch_mm(NULL, &init_mm, NULL);
88 }
89
90 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
91                struct task_struct *tsk)
92 {
93         unsigned long flags;
94
95         local_irq_save(flags);
96         switch_mm_irqs_off(prev, next, tsk);
97         local_irq_restore(flags);
98 }
99
100 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
101                         struct task_struct *tsk)
102 {
103         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
104         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
105         unsigned cpu = smp_processor_id();
106         u64 next_tlb_gen;
107
108         /*
109          * NB: The scheduler will call us with prev == next when switching
110          * from lazy TLB mode to normal mode if active_mm isn't changing.
111          * When this happens, we don't assume that CR3 (and hence
112          * cpu_tlbstate.loaded_mm) matches next.
113          *
114          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
115          */
116
117         /* We don't want flush_tlb_func_* to run concurrently with us. */
118         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
119                 WARN_ON_ONCE(!irqs_disabled());
120
121         /*
122          * Verify that CR3 is what we think it is.  This will catch
123          * hypothetical buggy code that directly switches to swapper_pg_dir
124          * without going through leave_mm() / switch_mm_irqs_off() or that
125          * does something like write_cr3(read_cr3_pa()).
126          *
127          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
128          * isn't free.
129          */
130 #ifdef CONFIG_DEBUG_VM
131         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
132                 /*
133                  * If we were to BUG here, we'd be very likely to kill
134                  * the system so hard that we don't see the call trace.
135                  * Try to recover instead by ignoring the error and doing
136                  * a global flush to minimize the chance of corruption.
137                  *
138                  * (This is far from being a fully correct recovery.
139                  *  Architecturally, the CPU could prefetch something
140                  *  back into an incorrect ASID slot and leave it there
141                  *  to cause trouble down the road.  It's better than
142                  *  nothing, though.)
143                  */
144                 __flush_tlb_all();
145         }
146 #endif
147         this_cpu_write(cpu_tlbstate.is_lazy, false);
148
149         if (real_prev == next) {
150                 VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
151                           next->context.ctx_id);
152
153                 /*
154                  * We don't currently support having a real mm loaded without
155                  * our cpu set in mm_cpumask().  We have all the bookkeeping
156                  * in place to figure out whether we would need to flush
157                  * if our cpu were cleared in mm_cpumask(), but we don't
158                  * currently use it.
159                  */
160                 if (WARN_ON_ONCE(real_prev != &init_mm &&
161                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
162                         cpumask_set_cpu(cpu, mm_cpumask(next));
163
164                 return;
165         } else {
166                 u16 new_asid;
167                 bool need_flush;
168
169                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
170                         /*
171                          * If our current stack is in vmalloc space and isn't
172                          * mapped in the new pgd, we'll double-fault.  Forcibly
173                          * map it.
174                          */
175                         unsigned int index = pgd_index(current_stack_pointer);
176                         pgd_t *pgd = next->pgd + index;
177
178                         if (unlikely(pgd_none(*pgd)))
179                                 set_pgd(pgd, init_mm.pgd[index]);
180                 }
181
182                 /* Stop remote flushes for the previous mm */
183                 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
184                                 real_prev != &init_mm);
185                 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
186
187                 /*
188                  * Start remote flushes and then read tlb_gen.
189                  */
190                 cpumask_set_cpu(cpu, mm_cpumask(next));
191                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
192
193                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
194
195                 if (need_flush) {
196                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
197                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
198                         write_cr3(build_cr3(next, new_asid));
199                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
200                                         TLB_FLUSH_ALL);
201                 } else {
202                         /* The new ASID is already up to date. */
203                         write_cr3(build_cr3_noflush(next, new_asid));
204                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
205                 }
206
207                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
208                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
209         }
210
211         load_mm_cr4(next);
212         switch_ldt(real_prev, next);
213 }
214
215 /*
216  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
217  * kernel thread or other context without an mm.  Acceptable implementations
218  * include doing nothing whatsoever, switching to init_mm, or various clever
219  * lazy tricks to try to minimize TLB flushes.
220  *
221  * The scheduler reserves the right to call enter_lazy_tlb() several times
222  * in a row.  It will notify us that we're going back to a real mm by
223  * calling switch_mm_irqs_off().
224  */
225 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
226 {
227         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
228                 return;
229
230         if (static_branch_unlikely(&tlb_use_lazy_mode)) {
231                 /*
232                  * There's a significant optimization that may be possible
233                  * here.  We have accurate enough TLB flush tracking that we
234                  * don't need to maintain coherence of TLB per se when we're
235                  * lazy.  We do, however, need to maintain coherence of
236                  * paging-structure caches.  We could, in principle, leave our
237                  * old mm loaded and only switch to init_mm when
238                  * tlb_remove_page() happens.
239                  */
240                 this_cpu_write(cpu_tlbstate.is_lazy, true);
241         } else {
242                 switch_mm(NULL, &init_mm, NULL);
243         }
244 }
245
246 /*
247  * Call this when reinitializing a CPU.  It fixes the following potential
248  * problems:
249  *
250  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
251  *   because the CPU was taken down and came back up with CR3's PCID
252  *   bits clear.  CPU hotplug can do this.
253  *
254  * - The TLB contains junk in slots corresponding to inactive ASIDs.
255  *
256  * - The CPU went so far out to lunch that it may have missed a TLB
257  *   flush.
258  */
259 void initialize_tlbstate_and_flush(void)
260 {
261         int i;
262         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
263         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
264         unsigned long cr3 = __read_cr3();
265
266         /* Assert that CR3 already references the right mm. */
267         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
268
269         /*
270          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
271          * doesn't work like other CR4 bits because it can only be set from
272          * long mode.)
273          */
274         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
275                 !(cr4_read_shadow() & X86_CR4_PCIDE));
276
277         /* Force ASID 0 and force a TLB flush. */
278         write_cr3(build_cr3(mm, 0));
279
280         /* Reinitialize tlbstate. */
281         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
282         this_cpu_write(cpu_tlbstate.next_asid, 1);
283         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
284         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
285
286         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
287                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
288 }
289
290 /*
291  * flush_tlb_func_common()'s memory ordering requirement is that any
292  * TLB fills that happen after we flush the TLB are ordered after we
293  * read active_mm's tlb_gen.  We don't need any explicit barriers
294  * because all x86 flush operations are serializing and the
295  * atomic64_read operation won't be reordered by the compiler.
296  */
297 static void flush_tlb_func_common(const struct flush_tlb_info *f,
298                                   bool local, enum tlb_flush_reason reason)
299 {
300         /*
301          * We have three different tlb_gen values in here.  They are:
302          *
303          * - mm_tlb_gen:     the latest generation.
304          * - local_tlb_gen:  the generation that this CPU has already caught
305          *                   up to.
306          * - f->new_tlb_gen: the generation that the requester of the flush
307          *                   wants us to catch up to.
308          */
309         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
310         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
311         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
312         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
313
314         /* This code cannot presently handle being reentered. */
315         VM_WARN_ON(!irqs_disabled());
316
317         if (unlikely(loaded_mm == &init_mm))
318                 return;
319
320         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
321                    loaded_mm->context.ctx_id);
322
323         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
324                 /*
325                  * We're in lazy mode.  We need to at least flush our
326                  * paging-structure cache to avoid speculatively reading
327                  * garbage into our TLB.  Since switching to init_mm is barely
328                  * slower than a minimal flush, just switch to init_mm.
329                  */
330                 switch_mm_irqs_off(NULL, &init_mm, NULL);
331                 return;
332         }
333
334         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
335                 /*
336                  * There's nothing to do: we're already up to date.  This can
337                  * happen if two concurrent flushes happen -- the first flush to
338                  * be handled can catch us all the way up, leaving no work for
339                  * the second flush.
340                  */
341                 trace_tlb_flush(reason, 0);
342                 return;
343         }
344
345         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
346         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
347
348         /*
349          * If we get to this point, we know that our TLB is out of date.
350          * This does not strictly imply that we need to flush (it's
351          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
352          * going to need to flush in the very near future, so we might
353          * as well get it over with.
354          *
355          * The only question is whether to do a full or partial flush.
356          *
357          * We do a partial flush if requested and two extra conditions
358          * are met:
359          *
360          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
361          *    we've always done all needed flushes to catch up to
362          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
363          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
364          *    us up to date for tlb_gen 3 is the partial flush we're
365          *    processing.
366          *
367          *    As an example of why this check is needed, suppose that there
368          *    are two concurrent flushes.  The first is a full flush that
369          *    changes context.tlb_gen from 1 to 2.  The second is a partial
370          *    flush that changes context.tlb_gen from 2 to 3.  If they get
371          *    processed on this CPU in reverse order, we'll see
372          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
373          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
374          *    3, we'd be break the invariant: we'd update local_tlb_gen above
375          *    1 without the full flush that's needed for tlb_gen 2.
376          *
377          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
378          *    Partial TLB flushes are not all that much cheaper than full TLB
379          *    flushes, so it seems unlikely that it would be a performance win
380          *    to do a partial flush if that won't bring our TLB fully up to
381          *    date.  By doing a full flush instead, we can increase
382          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
383          *    avoid another flush in the very near future.
384          */
385         if (f->end != TLB_FLUSH_ALL &&
386             f->new_tlb_gen == local_tlb_gen + 1 &&
387             f->new_tlb_gen == mm_tlb_gen) {
388                 /* Partial flush */
389                 unsigned long addr;
390                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
391
392                 addr = f->start;
393                 while (addr < f->end) {
394                         __flush_tlb_single(addr);
395                         addr += PAGE_SIZE;
396                 }
397                 if (local)
398                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
399                 trace_tlb_flush(reason, nr_pages);
400         } else {
401                 /* Full flush. */
402                 local_flush_tlb();
403                 if (local)
404                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
405                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
406         }
407
408         /* Both paths above update our state to mm_tlb_gen. */
409         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
410 }
411
412 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
413 {
414         const struct flush_tlb_info *f = info;
415
416         flush_tlb_func_common(f, true, reason);
417 }
418
419 static void flush_tlb_func_remote(void *info)
420 {
421         const struct flush_tlb_info *f = info;
422
423         inc_irq_stat(irq_tlb_count);
424
425         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
426                 return;
427
428         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
429         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
430 }
431
432 void native_flush_tlb_others(const struct cpumask *cpumask,
433                              const struct flush_tlb_info *info)
434 {
435         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
436         if (info->end == TLB_FLUSH_ALL)
437                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
438         else
439                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
440                                 (info->end - info->start) >> PAGE_SHIFT);
441
442         if (is_uv_system()) {
443                 /*
444                  * This whole special case is confused.  UV has a "Broadcast
445                  * Assist Unit", which seems to be a fancy way to send IPIs.
446                  * Back when x86 used an explicit TLB flush IPI, UV was
447                  * optimized to use its own mechanism.  These days, x86 uses
448                  * smp_call_function_many(), but UV still uses a manual IPI,
449                  * and that IPI's action is out of date -- it does a manual
450                  * flush instead of calling flush_tlb_func_remote().  This
451                  * means that the percpu tlb_gen variables won't be updated
452                  * and we'll do pointless flushes on future context switches.
453                  *
454                  * Rather than hooking native_flush_tlb_others() here, I think
455                  * that UV should be updated so that smp_call_function_many(),
456                  * etc, are optimal on UV.
457                  */
458                 unsigned int cpu;
459
460                 cpu = smp_processor_id();
461                 cpumask = uv_flush_tlb_others(cpumask, info);
462                 if (cpumask)
463                         smp_call_function_many(cpumask, flush_tlb_func_remote,
464                                                (void *)info, 1);
465                 return;
466         }
467         smp_call_function_many(cpumask, flush_tlb_func_remote,
468                                (void *)info, 1);
469 }
470
471 /*
472  * See Documentation/x86/tlb.txt for details.  We choose 33
473  * because it is large enough to cover the vast majority (at
474  * least 95%) of allocations, and is small enough that we are
475  * confident it will not cause too much overhead.  Each single
476  * flush is about 100 ns, so this caps the maximum overhead at
477  * _about_ 3,000 ns.
478  *
479  * This is in units of pages.
480  */
481 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
482
483 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
484                                 unsigned long end, unsigned long vmflag)
485 {
486         int cpu;
487
488         struct flush_tlb_info info = {
489                 .mm = mm,
490         };
491
492         cpu = get_cpu();
493
494         /* This is also a barrier that synchronizes with switch_mm(). */
495         info.new_tlb_gen = inc_mm_tlb_gen(mm);
496
497         /* Should we flush just the requested range? */
498         if ((end != TLB_FLUSH_ALL) &&
499             !(vmflag & VM_HUGETLB) &&
500             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
501                 info.start = start;
502                 info.end = end;
503         } else {
504                 info.start = 0UL;
505                 info.end = TLB_FLUSH_ALL;
506         }
507
508         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
509                 VM_WARN_ON(irqs_disabled());
510                 local_irq_disable();
511                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
512                 local_irq_enable();
513         }
514
515         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
516                 flush_tlb_others(mm_cpumask(mm), &info);
517
518         put_cpu();
519 }
520
521
522 static void do_flush_tlb_all(void *info)
523 {
524         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
525         __flush_tlb_all();
526 }
527
528 void flush_tlb_all(void)
529 {
530         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
531         on_each_cpu(do_flush_tlb_all, NULL, 1);
532 }
533
534 static void do_kernel_range_flush(void *info)
535 {
536         struct flush_tlb_info *f = info;
537         unsigned long addr;
538
539         /* flush range by one by one 'invlpg' */
540         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
541                 __flush_tlb_single(addr);
542 }
543
544 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
545 {
546
547         /* Balance as user space task's flush, a bit conservative */
548         if (end == TLB_FLUSH_ALL ||
549             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
550                 on_each_cpu(do_flush_tlb_all, NULL, 1);
551         } else {
552                 struct flush_tlb_info info;
553                 info.start = start;
554                 info.end = end;
555                 on_each_cpu(do_kernel_range_flush, &info, 1);
556         }
557 }
558
559 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
560 {
561         struct flush_tlb_info info = {
562                 .mm = NULL,
563                 .start = 0UL,
564                 .end = TLB_FLUSH_ALL,
565         };
566
567         int cpu = get_cpu();
568
569         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
570                 VM_WARN_ON(irqs_disabled());
571                 local_irq_disable();
572                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
573                 local_irq_enable();
574         }
575
576         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
577                 flush_tlb_others(&batch->cpumask, &info);
578
579         cpumask_clear(&batch->cpumask);
580
581         put_cpu();
582 }
583
584 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
585                              size_t count, loff_t *ppos)
586 {
587         char buf[32];
588         unsigned int len;
589
590         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
591         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
592 }
593
594 static ssize_t tlbflush_write_file(struct file *file,
595                  const char __user *user_buf, size_t count, loff_t *ppos)
596 {
597         char buf[32];
598         ssize_t len;
599         int ceiling;
600
601         len = min(count, sizeof(buf) - 1);
602         if (copy_from_user(buf, user_buf, len))
603                 return -EFAULT;
604
605         buf[len] = '\0';
606         if (kstrtoint(buf, 0, &ceiling))
607                 return -EINVAL;
608
609         if (ceiling < 0)
610                 return -EINVAL;
611
612         tlb_single_page_flush_ceiling = ceiling;
613         return count;
614 }
615
616 static const struct file_operations fops_tlbflush = {
617         .read = tlbflush_read_file,
618         .write = tlbflush_write_file,
619         .llseek = default_llseek,
620 };
621
622 static int __init create_tlb_single_page_flush_ceiling(void)
623 {
624         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
625                             arch_debugfs_dir, NULL, &fops_tlbflush);
626         return 0;
627 }
628 late_initcall(create_tlb_single_page_flush_ceiling);
629
630 static ssize_t tlblazy_read_file(struct file *file, char __user *user_buf,
631                                  size_t count, loff_t *ppos)
632 {
633         char buf[2];
634
635         buf[0] = static_branch_likely(&tlb_use_lazy_mode) ? '1' : '0';
636         buf[1] = '\n';
637
638         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
639 }
640
641 static ssize_t tlblazy_write_file(struct file *file,
642                  const char __user *user_buf, size_t count, loff_t *ppos)
643 {
644         bool val;
645
646         if (kstrtobool_from_user(user_buf, count, &val))
647                 return -EINVAL;
648
649         if (val)
650                 static_branch_enable(&tlb_use_lazy_mode);
651         else
652                 static_branch_disable(&tlb_use_lazy_mode);
653
654         return count;
655 }
656
657 static const struct file_operations fops_tlblazy = {
658         .read = tlblazy_read_file,
659         .write = tlblazy_write_file,
660         .llseek = default_llseek,
661 };
662
663 static int __init init_tlb_use_lazy_mode(void)
664 {
665         if (boot_cpu_has(X86_FEATURE_PCID)) {
666                 /*
667                  * Heuristic: with PCID on, switching to and from
668                  * init_mm is reasonably fast, but remote flush IPIs
669                  * as expensive as ever, so turn off lazy TLB mode.
670                  *
671                  * We can't do this in setup_pcid() because static keys
672                  * haven't been initialized yet, and it would blow up
673                  * badly.
674                  */
675                 static_branch_disable(&tlb_use_lazy_mode);
676         }
677
678         debugfs_create_file("tlb_use_lazy_mode", S_IRUSR | S_IWUSR,
679                             arch_debugfs_dir, NULL, &fops_tlblazy);
680         return 0;
681 }
682 late_initcall(init_tlb_use_lazy_mode);