Merge tag 'gvt-fixes-2018-09-10' of https://github.com/intel/gvt-linux into drm-intel...
[linux-2.6-microblaze.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19  *      TLB flushing, formerly SMP-only
20  *              c/o Linus Torvalds.
21  *
22  *      These mean you can really definitely utterly forget about
23  *      writing to user space from interrupts. (Its not allowed anyway).
24  *
25  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
26  *
27  *      More scalable flush, from Andi Kleen
28  *
29  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30  */
31
32 /*
33  * We get here when we do something requiring a TLB invalidation
34  * but could not go invalidate all of the contexts.  We do the
35  * necessary invalidation by clearing out the 'ctx_id' which
36  * forces a TLB flush when the context is loaded.
37  */
38 static void clear_asid_other(void)
39 {
40         u16 asid;
41
42         /*
43          * This is only expected to be set if we have disabled
44          * kernel _PAGE_GLOBAL pages.
45          */
46         if (!static_cpu_has(X86_FEATURE_PTI)) {
47                 WARN_ON_ONCE(1);
48                 return;
49         }
50
51         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
52                 /* Do not need to flush the current asid */
53                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
54                         continue;
55                 /*
56                  * Make sure the next time we go to switch to
57                  * this asid, we do a flush:
58                  */
59                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
60         }
61         this_cpu_write(cpu_tlbstate.invalidate_other, false);
62 }
63
64 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
65
66
67 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
68                             u16 *new_asid, bool *need_flush)
69 {
70         u16 asid;
71
72         if (!static_cpu_has(X86_FEATURE_PCID)) {
73                 *new_asid = 0;
74                 *need_flush = true;
75                 return;
76         }
77
78         if (this_cpu_read(cpu_tlbstate.invalidate_other))
79                 clear_asid_other();
80
81         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
82                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
83                     next->context.ctx_id)
84                         continue;
85
86                 *new_asid = asid;
87                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
88                                next_tlb_gen);
89                 return;
90         }
91
92         /*
93          * We don't currently own an ASID slot on this CPU.
94          * Allocate a slot.
95          */
96         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
97         if (*new_asid >= TLB_NR_DYN_ASIDS) {
98                 *new_asid = 0;
99                 this_cpu_write(cpu_tlbstate.next_asid, 1);
100         }
101         *need_flush = true;
102 }
103
104 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105 {
106         unsigned long new_mm_cr3;
107
108         if (need_flush) {
109                 invalidate_user_asid(new_asid);
110                 new_mm_cr3 = build_cr3(pgdir, new_asid);
111         } else {
112                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113         }
114
115         /*
116          * Caution: many callers of this function expect
117          * that load_cr3() is serializing and orders TLB
118          * fills with respect to the mm_cpumask writes.
119          */
120         write_cr3(new_mm_cr3);
121 }
122
123 void leave_mm(int cpu)
124 {
125         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127         /*
128          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129          * If so, our callers still expect us to flush the TLB, but there
130          * aren't any user TLB entries in init_mm to worry about.
131          *
132          * This needs to happen before any other sanity checks due to
133          * intel_idle's shenanigans.
134          */
135         if (loaded_mm == &init_mm)
136                 return;
137
138         /* Warn if we're not lazy. */
139         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141         switch_mm(NULL, &init_mm, NULL);
142 }
143 EXPORT_SYMBOL_GPL(leave_mm);
144
145 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146                struct task_struct *tsk)
147 {
148         unsigned long flags;
149
150         local_irq_save(flags);
151         switch_mm_irqs_off(prev, next, tsk);
152         local_irq_restore(flags);
153 }
154
155 static void sync_current_stack_to_mm(struct mm_struct *mm)
156 {
157         unsigned long sp = current_stack_pointer;
158         pgd_t *pgd = pgd_offset(mm, sp);
159
160         if (pgtable_l5_enabled()) {
161                 if (unlikely(pgd_none(*pgd))) {
162                         pgd_t *pgd_ref = pgd_offset_k(sp);
163
164                         set_pgd(pgd, *pgd_ref);
165                 }
166         } else {
167                 /*
168                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
169                  * the p4d.  This compiles to approximately the same code as
170                  * the 5-level case.
171                  */
172                 p4d_t *p4d = p4d_offset(pgd, sp);
173
174                 if (unlikely(p4d_none(*p4d))) {
175                         pgd_t *pgd_ref = pgd_offset_k(sp);
176                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178                         set_p4d(p4d, *p4d_ref);
179                 }
180         }
181 }
182
183 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184                         struct task_struct *tsk)
185 {
186         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188         unsigned cpu = smp_processor_id();
189         u64 next_tlb_gen;
190
191         /*
192          * NB: The scheduler will call us with prev == next when switching
193          * from lazy TLB mode to normal mode if active_mm isn't changing.
194          * When this happens, we don't assume that CR3 (and hence
195          * cpu_tlbstate.loaded_mm) matches next.
196          *
197          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198          */
199
200         /* We don't want flush_tlb_func_* to run concurrently with us. */
201         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202                 WARN_ON_ONCE(!irqs_disabled());
203
204         /*
205          * Verify that CR3 is what we think it is.  This will catch
206          * hypothetical buggy code that directly switches to swapper_pg_dir
207          * without going through leave_mm() / switch_mm_irqs_off() or that
208          * does something like write_cr3(read_cr3_pa()).
209          *
210          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211          * isn't free.
212          */
213 #ifdef CONFIG_DEBUG_VM
214         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215                 /*
216                  * If we were to BUG here, we'd be very likely to kill
217                  * the system so hard that we don't see the call trace.
218                  * Try to recover instead by ignoring the error and doing
219                  * a global flush to minimize the chance of corruption.
220                  *
221                  * (This is far from being a fully correct recovery.
222                  *  Architecturally, the CPU could prefetch something
223                  *  back into an incorrect ASID slot and leave it there
224                  *  to cause trouble down the road.  It's better than
225                  *  nothing, though.)
226                  */
227                 __flush_tlb_all();
228         }
229 #endif
230         this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232         /*
233          * The membarrier system call requires a full memory barrier and
234          * core serialization before returning to user-space, after
235          * storing to rq->curr. Writing to CR3 provides that full
236          * memory barrier and core serializing instruction.
237          */
238         if (real_prev == next) {
239                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240                            next->context.ctx_id);
241
242                 /*
243                  * We don't currently support having a real mm loaded without
244                  * our cpu set in mm_cpumask().  We have all the bookkeeping
245                  * in place to figure out whether we would need to flush
246                  * if our cpu were cleared in mm_cpumask(), but we don't
247                  * currently use it.
248                  */
249                 if (WARN_ON_ONCE(real_prev != &init_mm &&
250                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
251                         cpumask_set_cpu(cpu, mm_cpumask(next));
252
253                 return;
254         } else {
255                 u16 new_asid;
256                 bool need_flush;
257                 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259                 /*
260                  * Avoid user/user BTB poisoning by flushing the branch
261                  * predictor when switching between processes. This stops
262                  * one process from doing Spectre-v2 attacks on another.
263                  *
264                  * As an optimization, flush indirect branches only when
265                  * switching into processes that disable dumping. This
266                  * protects high value processes like gpg, without having
267                  * too high performance overhead. IBPB is *expensive*!
268                  *
269                  * This will not flush branches when switching into kernel
270                  * threads. It will also not flush if we switch to idle
271                  * thread and back to the same process. It will flush if we
272                  * switch to a different non-dumpable process.
273                  */
274                 if (tsk && tsk->mm &&
275                     tsk->mm->context.ctx_id != last_ctx_id &&
276                     get_dumpable(tsk->mm) != SUID_DUMP_USER)
277                         indirect_branch_prediction_barrier();
278
279                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280                         /*
281                          * If our current stack is in vmalloc space and isn't
282                          * mapped in the new pgd, we'll double-fault.  Forcibly
283                          * map it.
284                          */
285                         sync_current_stack_to_mm(next);
286                 }
287
288                 /*
289                  * Stop remote flushes for the previous mm.
290                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
291                  * but the bitmap manipulation can cause cache line contention.
292                  */
293                 if (real_prev != &init_mm) {
294                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
295                                                 mm_cpumask(real_prev)));
296                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
297                 }
298
299                 /*
300                  * Start remote flushes and then read tlb_gen.
301                  */
302                 if (next != &init_mm)
303                         cpumask_set_cpu(cpu, mm_cpumask(next));
304                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
305
306                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
307
308                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
309                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
310                 barrier();
311
312                 if (need_flush) {
313                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
314                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
315                         load_new_mm_cr3(next->pgd, new_asid, true);
316
317                         /*
318                          * NB: This gets called via leave_mm() in the idle path
319                          * where RCU functions differently.  Tracing normally
320                          * uses RCU, so we need to use the _rcuidle variant.
321                          *
322                          * (There is no good reason for this.  The idle code should
323                          *  be rearranged to call this before rcu_idle_enter().)
324                          */
325                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
326                 } else {
327                         /* The new ASID is already up to date. */
328                         load_new_mm_cr3(next->pgd, new_asid, false);
329
330                         /* See above wrt _rcuidle. */
331                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
332                 }
333
334                 /*
335                  * Record last user mm's context id, so we can avoid
336                  * flushing branch buffer with IBPB if we switch back
337                  * to the same user.
338                  */
339                 if (next != &init_mm)
340                         this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
341
342                 /* Make sure we write CR3 before loaded_mm. */
343                 barrier();
344
345                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
346                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
347         }
348
349         load_mm_cr4(next);
350         switch_ldt(real_prev, next);
351 }
352
353 /*
354  * Please ignore the name of this function.  It should be called
355  * switch_to_kernel_thread().
356  *
357  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
358  * kernel thread or other context without an mm.  Acceptable implementations
359  * include doing nothing whatsoever, switching to init_mm, or various clever
360  * lazy tricks to try to minimize TLB flushes.
361  *
362  * The scheduler reserves the right to call enter_lazy_tlb() several times
363  * in a row.  It will notify us that we're going back to a real mm by
364  * calling switch_mm_irqs_off().
365  */
366 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
367 {
368         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
369                 return;
370
371         if (tlb_defer_switch_to_init_mm()) {
372                 /*
373                  * There's a significant optimization that may be possible
374                  * here.  We have accurate enough TLB flush tracking that we
375                  * don't need to maintain coherence of TLB per se when we're
376                  * lazy.  We do, however, need to maintain coherence of
377                  * paging-structure caches.  We could, in principle, leave our
378                  * old mm loaded and only switch to init_mm when
379                  * tlb_remove_page() happens.
380                  */
381                 this_cpu_write(cpu_tlbstate.is_lazy, true);
382         } else {
383                 switch_mm(NULL, &init_mm, NULL);
384         }
385 }
386
387 /*
388  * Call this when reinitializing a CPU.  It fixes the following potential
389  * problems:
390  *
391  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
392  *   because the CPU was taken down and came back up with CR3's PCID
393  *   bits clear.  CPU hotplug can do this.
394  *
395  * - The TLB contains junk in slots corresponding to inactive ASIDs.
396  *
397  * - The CPU went so far out to lunch that it may have missed a TLB
398  *   flush.
399  */
400 void initialize_tlbstate_and_flush(void)
401 {
402         int i;
403         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
404         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
405         unsigned long cr3 = __read_cr3();
406
407         /* Assert that CR3 already references the right mm. */
408         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
409
410         /*
411          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
412          * doesn't work like other CR4 bits because it can only be set from
413          * long mode.)
414          */
415         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
416                 !(cr4_read_shadow() & X86_CR4_PCIDE));
417
418         /* Force ASID 0 and force a TLB flush. */
419         write_cr3(build_cr3(mm->pgd, 0));
420
421         /* Reinitialize tlbstate. */
422         this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
423         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
424         this_cpu_write(cpu_tlbstate.next_asid, 1);
425         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
426         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
427
428         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
429                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
430 }
431
432 /*
433  * flush_tlb_func_common()'s memory ordering requirement is that any
434  * TLB fills that happen after we flush the TLB are ordered after we
435  * read active_mm's tlb_gen.  We don't need any explicit barriers
436  * because all x86 flush operations are serializing and the
437  * atomic64_read operation won't be reordered by the compiler.
438  */
439 static void flush_tlb_func_common(const struct flush_tlb_info *f,
440                                   bool local, enum tlb_flush_reason reason)
441 {
442         /*
443          * We have three different tlb_gen values in here.  They are:
444          *
445          * - mm_tlb_gen:     the latest generation.
446          * - local_tlb_gen:  the generation that this CPU has already caught
447          *                   up to.
448          * - f->new_tlb_gen: the generation that the requester of the flush
449          *                   wants us to catch up to.
450          */
451         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
452         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
453         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
454         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
455
456         /* This code cannot presently handle being reentered. */
457         VM_WARN_ON(!irqs_disabled());
458
459         if (unlikely(loaded_mm == &init_mm))
460                 return;
461
462         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
463                    loaded_mm->context.ctx_id);
464
465         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
466                 /*
467                  * We're in lazy mode.  We need to at least flush our
468                  * paging-structure cache to avoid speculatively reading
469                  * garbage into our TLB.  Since switching to init_mm is barely
470                  * slower than a minimal flush, just switch to init_mm.
471                  */
472                 switch_mm_irqs_off(NULL, &init_mm, NULL);
473                 return;
474         }
475
476         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
477                 /*
478                  * There's nothing to do: we're already up to date.  This can
479                  * happen if two concurrent flushes happen -- the first flush to
480                  * be handled can catch us all the way up, leaving no work for
481                  * the second flush.
482                  */
483                 trace_tlb_flush(reason, 0);
484                 return;
485         }
486
487         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
488         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
489
490         /*
491          * If we get to this point, we know that our TLB is out of date.
492          * This does not strictly imply that we need to flush (it's
493          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
494          * going to need to flush in the very near future, so we might
495          * as well get it over with.
496          *
497          * The only question is whether to do a full or partial flush.
498          *
499          * We do a partial flush if requested and two extra conditions
500          * are met:
501          *
502          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
503          *    we've always done all needed flushes to catch up to
504          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
505          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
506          *    us up to date for tlb_gen 3 is the partial flush we're
507          *    processing.
508          *
509          *    As an example of why this check is needed, suppose that there
510          *    are two concurrent flushes.  The first is a full flush that
511          *    changes context.tlb_gen from 1 to 2.  The second is a partial
512          *    flush that changes context.tlb_gen from 2 to 3.  If they get
513          *    processed on this CPU in reverse order, we'll see
514          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
515          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
516          *    3, we'd be break the invariant: we'd update local_tlb_gen above
517          *    1 without the full flush that's needed for tlb_gen 2.
518          *
519          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
520          *    Partial TLB flushes are not all that much cheaper than full TLB
521          *    flushes, so it seems unlikely that it would be a performance win
522          *    to do a partial flush if that won't bring our TLB fully up to
523          *    date.  By doing a full flush instead, we can increase
524          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
525          *    avoid another flush in the very near future.
526          */
527         if (f->end != TLB_FLUSH_ALL &&
528             f->new_tlb_gen == local_tlb_gen + 1 &&
529             f->new_tlb_gen == mm_tlb_gen) {
530                 /* Partial flush */
531                 unsigned long addr;
532                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
533
534                 addr = f->start;
535                 while (addr < f->end) {
536                         __flush_tlb_one_user(addr);
537                         addr += PAGE_SIZE;
538                 }
539                 if (local)
540                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
541                 trace_tlb_flush(reason, nr_pages);
542         } else {
543                 /* Full flush. */
544                 local_flush_tlb();
545                 if (local)
546                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
547                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
548         }
549
550         /* Both paths above update our state to mm_tlb_gen. */
551         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
552 }
553
554 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
555 {
556         const struct flush_tlb_info *f = info;
557
558         flush_tlb_func_common(f, true, reason);
559 }
560
561 static void flush_tlb_func_remote(void *info)
562 {
563         const struct flush_tlb_info *f = info;
564
565         inc_irq_stat(irq_tlb_count);
566
567         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
568                 return;
569
570         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
571         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
572 }
573
574 void native_flush_tlb_others(const struct cpumask *cpumask,
575                              const struct flush_tlb_info *info)
576 {
577         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
578         if (info->end == TLB_FLUSH_ALL)
579                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
580         else
581                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
582                                 (info->end - info->start) >> PAGE_SHIFT);
583
584         if (is_uv_system()) {
585                 /*
586                  * This whole special case is confused.  UV has a "Broadcast
587                  * Assist Unit", which seems to be a fancy way to send IPIs.
588                  * Back when x86 used an explicit TLB flush IPI, UV was
589                  * optimized to use its own mechanism.  These days, x86 uses
590                  * smp_call_function_many(), but UV still uses a manual IPI,
591                  * and that IPI's action is out of date -- it does a manual
592                  * flush instead of calling flush_tlb_func_remote().  This
593                  * means that the percpu tlb_gen variables won't be updated
594                  * and we'll do pointless flushes on future context switches.
595                  *
596                  * Rather than hooking native_flush_tlb_others() here, I think
597                  * that UV should be updated so that smp_call_function_many(),
598                  * etc, are optimal on UV.
599                  */
600                 unsigned int cpu;
601
602                 cpu = smp_processor_id();
603                 cpumask = uv_flush_tlb_others(cpumask, info);
604                 if (cpumask)
605                         smp_call_function_many(cpumask, flush_tlb_func_remote,
606                                                (void *)info, 1);
607                 return;
608         }
609         smp_call_function_many(cpumask, flush_tlb_func_remote,
610                                (void *)info, 1);
611 }
612
613 /*
614  * See Documentation/x86/tlb.txt for details.  We choose 33
615  * because it is large enough to cover the vast majority (at
616  * least 95%) of allocations, and is small enough that we are
617  * confident it will not cause too much overhead.  Each single
618  * flush is about 100 ns, so this caps the maximum overhead at
619  * _about_ 3,000 ns.
620  *
621  * This is in units of pages.
622  */
623 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
624
625 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
626                                 unsigned long end, unsigned long vmflag)
627 {
628         int cpu;
629
630         struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
631                 .mm = mm,
632         };
633
634         cpu = get_cpu();
635
636         /* This is also a barrier that synchronizes with switch_mm(). */
637         info.new_tlb_gen = inc_mm_tlb_gen(mm);
638
639         /* Should we flush just the requested range? */
640         if ((end != TLB_FLUSH_ALL) &&
641             !(vmflag & VM_HUGETLB) &&
642             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
643                 info.start = start;
644                 info.end = end;
645         } else {
646                 info.start = 0UL;
647                 info.end = TLB_FLUSH_ALL;
648         }
649
650         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
651                 VM_WARN_ON(irqs_disabled());
652                 local_irq_disable();
653                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
654                 local_irq_enable();
655         }
656
657         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
658                 flush_tlb_others(mm_cpumask(mm), &info);
659
660         put_cpu();
661 }
662
663
664 static void do_flush_tlb_all(void *info)
665 {
666         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
667         __flush_tlb_all();
668 }
669
670 void flush_tlb_all(void)
671 {
672         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
673         on_each_cpu(do_flush_tlb_all, NULL, 1);
674 }
675
676 static void do_kernel_range_flush(void *info)
677 {
678         struct flush_tlb_info *f = info;
679         unsigned long addr;
680
681         /* flush range by one by one 'invlpg' */
682         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
683                 __flush_tlb_one_kernel(addr);
684 }
685
686 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
687 {
688
689         /* Balance as user space task's flush, a bit conservative */
690         if (end == TLB_FLUSH_ALL ||
691             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
692                 on_each_cpu(do_flush_tlb_all, NULL, 1);
693         } else {
694                 struct flush_tlb_info info;
695                 info.start = start;
696                 info.end = end;
697                 on_each_cpu(do_kernel_range_flush, &info, 1);
698         }
699 }
700
701 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
702 {
703         struct flush_tlb_info info = {
704                 .mm = NULL,
705                 .start = 0UL,
706                 .end = TLB_FLUSH_ALL,
707         };
708
709         int cpu = get_cpu();
710
711         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
712                 VM_WARN_ON(irqs_disabled());
713                 local_irq_disable();
714                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
715                 local_irq_enable();
716         }
717
718         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
719                 flush_tlb_others(&batch->cpumask, &info);
720
721         cpumask_clear(&batch->cpumask);
722
723         put_cpu();
724 }
725
726 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
727                              size_t count, loff_t *ppos)
728 {
729         char buf[32];
730         unsigned int len;
731
732         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
733         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
734 }
735
736 static ssize_t tlbflush_write_file(struct file *file,
737                  const char __user *user_buf, size_t count, loff_t *ppos)
738 {
739         char buf[32];
740         ssize_t len;
741         int ceiling;
742
743         len = min(count, sizeof(buf) - 1);
744         if (copy_from_user(buf, user_buf, len))
745                 return -EFAULT;
746
747         buf[len] = '\0';
748         if (kstrtoint(buf, 0, &ceiling))
749                 return -EINVAL;
750
751         if (ceiling < 0)
752                 return -EINVAL;
753
754         tlb_single_page_flush_ceiling = ceiling;
755         return count;
756 }
757
758 static const struct file_operations fops_tlbflush = {
759         .read = tlbflush_read_file,
760         .write = tlbflush_write_file,
761         .llseek = default_llseek,
762 };
763
764 static int __init create_tlb_single_page_flush_ceiling(void)
765 {
766         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
767                             arch_debugfs_dir, NULL, &fops_tlbflush);
768         return 0;
769 }
770 late_initcall(create_tlb_single_page_flush_ceiling);