Merge tag 'enforcement-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33
34 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
35                             u16 *new_asid, bool *need_flush)
36 {
37         u16 asid;
38
39         if (!static_cpu_has(X86_FEATURE_PCID)) {
40                 *new_asid = 0;
41                 *need_flush = true;
42                 return;
43         }
44
45         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
46                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
47                     next->context.ctx_id)
48                         continue;
49
50                 *new_asid = asid;
51                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
52                                next_tlb_gen);
53                 return;
54         }
55
56         /*
57          * We don't currently own an ASID slot on this CPU.
58          * Allocate a slot.
59          */
60         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
61         if (*new_asid >= TLB_NR_DYN_ASIDS) {
62                 *new_asid = 0;
63                 this_cpu_write(cpu_tlbstate.next_asid, 1);
64         }
65         *need_flush = true;
66 }
67
68 void leave_mm(int cpu)
69 {
70         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
71
72         /*
73          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
74          * If so, our callers still expect us to flush the TLB, but there
75          * aren't any user TLB entries in init_mm to worry about.
76          *
77          * This needs to happen before any other sanity checks due to
78          * intel_idle's shenanigans.
79          */
80         if (loaded_mm == &init_mm)
81                 return;
82
83         /* Warn if we're not lazy. */
84         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
85
86         switch_mm(NULL, &init_mm, NULL);
87 }
88
89 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
90                struct task_struct *tsk)
91 {
92         unsigned long flags;
93
94         local_irq_save(flags);
95         switch_mm_irqs_off(prev, next, tsk);
96         local_irq_restore(flags);
97 }
98
99 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
100                         struct task_struct *tsk)
101 {
102         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
103         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
104         unsigned cpu = smp_processor_id();
105         u64 next_tlb_gen;
106
107         /*
108          * NB: The scheduler will call us with prev == next when switching
109          * from lazy TLB mode to normal mode if active_mm isn't changing.
110          * When this happens, we don't assume that CR3 (and hence
111          * cpu_tlbstate.loaded_mm) matches next.
112          *
113          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
114          */
115
116         /* We don't want flush_tlb_func_* to run concurrently with us. */
117         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
118                 WARN_ON_ONCE(!irqs_disabled());
119
120         /*
121          * Verify that CR3 is what we think it is.  This will catch
122          * hypothetical buggy code that directly switches to swapper_pg_dir
123          * without going through leave_mm() / switch_mm_irqs_off() or that
124          * does something like write_cr3(read_cr3_pa()).
125          *
126          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
127          * isn't free.
128          */
129 #ifdef CONFIG_DEBUG_VM
130         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev, prev_asid))) {
131                 /*
132                  * If we were to BUG here, we'd be very likely to kill
133                  * the system so hard that we don't see the call trace.
134                  * Try to recover instead by ignoring the error and doing
135                  * a global flush to minimize the chance of corruption.
136                  *
137                  * (This is far from being a fully correct recovery.
138                  *  Architecturally, the CPU could prefetch something
139                  *  back into an incorrect ASID slot and leave it there
140                  *  to cause trouble down the road.  It's better than
141                  *  nothing, though.)
142                  */
143                 __flush_tlb_all();
144         }
145 #endif
146         this_cpu_write(cpu_tlbstate.is_lazy, false);
147
148         if (real_prev == next) {
149                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
150                            next->context.ctx_id);
151
152                 /*
153                  * We don't currently support having a real mm loaded without
154                  * our cpu set in mm_cpumask().  We have all the bookkeeping
155                  * in place to figure out whether we would need to flush
156                  * if our cpu were cleared in mm_cpumask(), but we don't
157                  * currently use it.
158                  */
159                 if (WARN_ON_ONCE(real_prev != &init_mm &&
160                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
161                         cpumask_set_cpu(cpu, mm_cpumask(next));
162
163                 return;
164         } else {
165                 u16 new_asid;
166                 bool need_flush;
167
168                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
169                         /*
170                          * If our current stack is in vmalloc space and isn't
171                          * mapped in the new pgd, we'll double-fault.  Forcibly
172                          * map it.
173                          */
174                         unsigned int index = pgd_index(current_stack_pointer);
175                         pgd_t *pgd = next->pgd + index;
176
177                         if (unlikely(pgd_none(*pgd)))
178                                 set_pgd(pgd, init_mm.pgd[index]);
179                 }
180
181                 /* Stop remote flushes for the previous mm */
182                 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
183                                 real_prev != &init_mm);
184                 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
185
186                 /*
187                  * Start remote flushes and then read tlb_gen.
188                  */
189                 cpumask_set_cpu(cpu, mm_cpumask(next));
190                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
191
192                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
193
194                 if (need_flush) {
195                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
196                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
197                         write_cr3(build_cr3(next, new_asid));
198                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
199                                         TLB_FLUSH_ALL);
200                 } else {
201                         /* The new ASID is already up to date. */
202                         write_cr3(build_cr3_noflush(next, new_asid));
203                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
204                 }
205
206                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
207                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
208         }
209
210         load_mm_cr4(next);
211         switch_ldt(real_prev, next);
212 }
213
214 /*
215  * Please ignore the name of this function.  It should be called
216  * switch_to_kernel_thread().
217  *
218  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
219  * kernel thread or other context without an mm.  Acceptable implementations
220  * include doing nothing whatsoever, switching to init_mm, or various clever
221  * lazy tricks to try to minimize TLB flushes.
222  *
223  * The scheduler reserves the right to call enter_lazy_tlb() several times
224  * in a row.  It will notify us that we're going back to a real mm by
225  * calling switch_mm_irqs_off().
226  */
227 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
228 {
229         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
230                 return;
231
232         if (tlb_defer_switch_to_init_mm()) {
233                 /*
234                  * There's a significant optimization that may be possible
235                  * here.  We have accurate enough TLB flush tracking that we
236                  * don't need to maintain coherence of TLB per se when we're
237                  * lazy.  We do, however, need to maintain coherence of
238                  * paging-structure caches.  We could, in principle, leave our
239                  * old mm loaded and only switch to init_mm when
240                  * tlb_remove_page() happens.
241                  */
242                 this_cpu_write(cpu_tlbstate.is_lazy, true);
243         } else {
244                 switch_mm(NULL, &init_mm, NULL);
245         }
246 }
247
248 /*
249  * Call this when reinitializing a CPU.  It fixes the following potential
250  * problems:
251  *
252  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
253  *   because the CPU was taken down and came back up with CR3's PCID
254  *   bits clear.  CPU hotplug can do this.
255  *
256  * - The TLB contains junk in slots corresponding to inactive ASIDs.
257  *
258  * - The CPU went so far out to lunch that it may have missed a TLB
259  *   flush.
260  */
261 void initialize_tlbstate_and_flush(void)
262 {
263         int i;
264         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
265         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
266         unsigned long cr3 = __read_cr3();
267
268         /* Assert that CR3 already references the right mm. */
269         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
270
271         /*
272          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
273          * doesn't work like other CR4 bits because it can only be set from
274          * long mode.)
275          */
276         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
277                 !(cr4_read_shadow() & X86_CR4_PCIDE));
278
279         /* Force ASID 0 and force a TLB flush. */
280         write_cr3(build_cr3(mm, 0));
281
282         /* Reinitialize tlbstate. */
283         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
284         this_cpu_write(cpu_tlbstate.next_asid, 1);
285         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
286         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
287
288         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
289                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
290 }
291
292 /*
293  * flush_tlb_func_common()'s memory ordering requirement is that any
294  * TLB fills that happen after we flush the TLB are ordered after we
295  * read active_mm's tlb_gen.  We don't need any explicit barriers
296  * because all x86 flush operations are serializing and the
297  * atomic64_read operation won't be reordered by the compiler.
298  */
299 static void flush_tlb_func_common(const struct flush_tlb_info *f,
300                                   bool local, enum tlb_flush_reason reason)
301 {
302         /*
303          * We have three different tlb_gen values in here.  They are:
304          *
305          * - mm_tlb_gen:     the latest generation.
306          * - local_tlb_gen:  the generation that this CPU has already caught
307          *                   up to.
308          * - f->new_tlb_gen: the generation that the requester of the flush
309          *                   wants us to catch up to.
310          */
311         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
312         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
313         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
314         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
315
316         /* This code cannot presently handle being reentered. */
317         VM_WARN_ON(!irqs_disabled());
318
319         if (unlikely(loaded_mm == &init_mm))
320                 return;
321
322         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
323                    loaded_mm->context.ctx_id);
324
325         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
326                 /*
327                  * We're in lazy mode.  We need to at least flush our
328                  * paging-structure cache to avoid speculatively reading
329                  * garbage into our TLB.  Since switching to init_mm is barely
330                  * slower than a minimal flush, just switch to init_mm.
331                  */
332                 switch_mm_irqs_off(NULL, &init_mm, NULL);
333                 return;
334         }
335
336         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
337                 /*
338                  * There's nothing to do: we're already up to date.  This can
339                  * happen if two concurrent flushes happen -- the first flush to
340                  * be handled can catch us all the way up, leaving no work for
341                  * the second flush.
342                  */
343                 trace_tlb_flush(reason, 0);
344                 return;
345         }
346
347         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
348         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
349
350         /*
351          * If we get to this point, we know that our TLB is out of date.
352          * This does not strictly imply that we need to flush (it's
353          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
354          * going to need to flush in the very near future, so we might
355          * as well get it over with.
356          *
357          * The only question is whether to do a full or partial flush.
358          *
359          * We do a partial flush if requested and two extra conditions
360          * are met:
361          *
362          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
363          *    we've always done all needed flushes to catch up to
364          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
365          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
366          *    us up to date for tlb_gen 3 is the partial flush we're
367          *    processing.
368          *
369          *    As an example of why this check is needed, suppose that there
370          *    are two concurrent flushes.  The first is a full flush that
371          *    changes context.tlb_gen from 1 to 2.  The second is a partial
372          *    flush that changes context.tlb_gen from 2 to 3.  If they get
373          *    processed on this CPU in reverse order, we'll see
374          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
375          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
376          *    3, we'd be break the invariant: we'd update local_tlb_gen above
377          *    1 without the full flush that's needed for tlb_gen 2.
378          *
379          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
380          *    Partial TLB flushes are not all that much cheaper than full TLB
381          *    flushes, so it seems unlikely that it would be a performance win
382          *    to do a partial flush if that won't bring our TLB fully up to
383          *    date.  By doing a full flush instead, we can increase
384          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
385          *    avoid another flush in the very near future.
386          */
387         if (f->end != TLB_FLUSH_ALL &&
388             f->new_tlb_gen == local_tlb_gen + 1 &&
389             f->new_tlb_gen == mm_tlb_gen) {
390                 /* Partial flush */
391                 unsigned long addr;
392                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
393
394                 addr = f->start;
395                 while (addr < f->end) {
396                         __flush_tlb_single(addr);
397                         addr += PAGE_SIZE;
398                 }
399                 if (local)
400                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
401                 trace_tlb_flush(reason, nr_pages);
402         } else {
403                 /* Full flush. */
404                 local_flush_tlb();
405                 if (local)
406                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
407                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
408         }
409
410         /* Both paths above update our state to mm_tlb_gen. */
411         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
412 }
413
414 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
415 {
416         const struct flush_tlb_info *f = info;
417
418         flush_tlb_func_common(f, true, reason);
419 }
420
421 static void flush_tlb_func_remote(void *info)
422 {
423         const struct flush_tlb_info *f = info;
424
425         inc_irq_stat(irq_tlb_count);
426
427         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
428                 return;
429
430         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
431         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
432 }
433
434 void native_flush_tlb_others(const struct cpumask *cpumask,
435                              const struct flush_tlb_info *info)
436 {
437         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
438         if (info->end == TLB_FLUSH_ALL)
439                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
440         else
441                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
442                                 (info->end - info->start) >> PAGE_SHIFT);
443
444         if (is_uv_system()) {
445                 /*
446                  * This whole special case is confused.  UV has a "Broadcast
447                  * Assist Unit", which seems to be a fancy way to send IPIs.
448                  * Back when x86 used an explicit TLB flush IPI, UV was
449                  * optimized to use its own mechanism.  These days, x86 uses
450                  * smp_call_function_many(), but UV still uses a manual IPI,
451                  * and that IPI's action is out of date -- it does a manual
452                  * flush instead of calling flush_tlb_func_remote().  This
453                  * means that the percpu tlb_gen variables won't be updated
454                  * and we'll do pointless flushes on future context switches.
455                  *
456                  * Rather than hooking native_flush_tlb_others() here, I think
457                  * that UV should be updated so that smp_call_function_many(),
458                  * etc, are optimal on UV.
459                  */
460                 unsigned int cpu;
461
462                 cpu = smp_processor_id();
463                 cpumask = uv_flush_tlb_others(cpumask, info);
464                 if (cpumask)
465                         smp_call_function_many(cpumask, flush_tlb_func_remote,
466                                                (void *)info, 1);
467                 return;
468         }
469         smp_call_function_many(cpumask, flush_tlb_func_remote,
470                                (void *)info, 1);
471 }
472
473 /*
474  * See Documentation/x86/tlb.txt for details.  We choose 33
475  * because it is large enough to cover the vast majority (at
476  * least 95%) of allocations, and is small enough that we are
477  * confident it will not cause too much overhead.  Each single
478  * flush is about 100 ns, so this caps the maximum overhead at
479  * _about_ 3,000 ns.
480  *
481  * This is in units of pages.
482  */
483 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
484
485 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
486                                 unsigned long end, unsigned long vmflag)
487 {
488         int cpu;
489
490         struct flush_tlb_info info = {
491                 .mm = mm,
492         };
493
494         cpu = get_cpu();
495
496         /* This is also a barrier that synchronizes with switch_mm(). */
497         info.new_tlb_gen = inc_mm_tlb_gen(mm);
498
499         /* Should we flush just the requested range? */
500         if ((end != TLB_FLUSH_ALL) &&
501             !(vmflag & VM_HUGETLB) &&
502             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
503                 info.start = start;
504                 info.end = end;
505         } else {
506                 info.start = 0UL;
507                 info.end = TLB_FLUSH_ALL;
508         }
509
510         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
511                 VM_WARN_ON(irqs_disabled());
512                 local_irq_disable();
513                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
514                 local_irq_enable();
515         }
516
517         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
518                 flush_tlb_others(mm_cpumask(mm), &info);
519
520         put_cpu();
521 }
522
523
524 static void do_flush_tlb_all(void *info)
525 {
526         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
527         __flush_tlb_all();
528 }
529
530 void flush_tlb_all(void)
531 {
532         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
533         on_each_cpu(do_flush_tlb_all, NULL, 1);
534 }
535
536 static void do_kernel_range_flush(void *info)
537 {
538         struct flush_tlb_info *f = info;
539         unsigned long addr;
540
541         /* flush range by one by one 'invlpg' */
542         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
543                 __flush_tlb_single(addr);
544 }
545
546 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
547 {
548
549         /* Balance as user space task's flush, a bit conservative */
550         if (end == TLB_FLUSH_ALL ||
551             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
552                 on_each_cpu(do_flush_tlb_all, NULL, 1);
553         } else {
554                 struct flush_tlb_info info;
555                 info.start = start;
556                 info.end = end;
557                 on_each_cpu(do_kernel_range_flush, &info, 1);
558         }
559 }
560
561 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
562 {
563         struct flush_tlb_info info = {
564                 .mm = NULL,
565                 .start = 0UL,
566                 .end = TLB_FLUSH_ALL,
567         };
568
569         int cpu = get_cpu();
570
571         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
572                 VM_WARN_ON(irqs_disabled());
573                 local_irq_disable();
574                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
575                 local_irq_enable();
576         }
577
578         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
579                 flush_tlb_others(&batch->cpumask, &info);
580
581         cpumask_clear(&batch->cpumask);
582
583         put_cpu();
584 }
585
586 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
587                              size_t count, loff_t *ppos)
588 {
589         char buf[32];
590         unsigned int len;
591
592         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
593         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
594 }
595
596 static ssize_t tlbflush_write_file(struct file *file,
597                  const char __user *user_buf, size_t count, loff_t *ppos)
598 {
599         char buf[32];
600         ssize_t len;
601         int ceiling;
602
603         len = min(count, sizeof(buf) - 1);
604         if (copy_from_user(buf, user_buf, len))
605                 return -EFAULT;
606
607         buf[len] = '\0';
608         if (kstrtoint(buf, 0, &ceiling))
609                 return -EINVAL;
610
611         if (ceiling < 0)
612                 return -EINVAL;
613
614         tlb_single_page_flush_ceiling = ceiling;
615         return count;
616 }
617
618 static const struct file_operations fops_tlbflush = {
619         .read = tlbflush_read_file,
620         .write = tlbflush_write_file,
621         .llseek = default_llseek,
622 };
623
624 static int __init create_tlb_single_page_flush_ceiling(void)
625 {
626         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
627                             arch_debugfs_dir, NULL, &fops_tlbflush);
628         return 0;
629 }
630 late_initcall(create_tlb_single_page_flush_ceiling);