x86/mm/tlb: Make lazy TLB mode lazier
[linux-2.6-microblaze.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 #include <linux/gfp.h>
11
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18
19 /*
20  *      TLB flushing, formerly SMP-only
21  *              c/o Linus Torvalds.
22  *
23  *      These mean you can really definitely utterly forget about
24  *      writing to user space from interrupts. (Its not allowed anyway).
25  *
26  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
27  *
28  *      More scalable flush, from Andi Kleen
29  *
30  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31  */
32
33 /*
34  * We get here when we do something requiring a TLB invalidation
35  * but could not go invalidate all of the contexts.  We do the
36  * necessary invalidation by clearing out the 'ctx_id' which
37  * forces a TLB flush when the context is loaded.
38  */
39 void clear_asid_other(void)
40 {
41         u16 asid;
42
43         /*
44          * This is only expected to be set if we have disabled
45          * kernel _PAGE_GLOBAL pages.
46          */
47         if (!static_cpu_has(X86_FEATURE_PTI)) {
48                 WARN_ON_ONCE(1);
49                 return;
50         }
51
52         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
53                 /* Do not need to flush the current asid */
54                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
55                         continue;
56                 /*
57                  * Make sure the next time we go to switch to
58                  * this asid, we do a flush:
59                  */
60                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
61         }
62         this_cpu_write(cpu_tlbstate.invalidate_other, false);
63 }
64
65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
66
67
68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
69                             u16 *new_asid, bool *need_flush)
70 {
71         u16 asid;
72
73         if (!static_cpu_has(X86_FEATURE_PCID)) {
74                 *new_asid = 0;
75                 *need_flush = true;
76                 return;
77         }
78
79         if (this_cpu_read(cpu_tlbstate.invalidate_other))
80                 clear_asid_other();
81
82         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
83                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
84                     next->context.ctx_id)
85                         continue;
86
87                 *new_asid = asid;
88                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
89                                next_tlb_gen);
90                 return;
91         }
92
93         /*
94          * We don't currently own an ASID slot on this CPU.
95          * Allocate a slot.
96          */
97         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
98         if (*new_asid >= TLB_NR_DYN_ASIDS) {
99                 *new_asid = 0;
100                 this_cpu_write(cpu_tlbstate.next_asid, 1);
101         }
102         *need_flush = true;
103 }
104
105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
106 {
107         unsigned long new_mm_cr3;
108
109         if (need_flush) {
110                 invalidate_user_asid(new_asid);
111                 new_mm_cr3 = build_cr3(pgdir, new_asid);
112         } else {
113                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
114         }
115
116         /*
117          * Caution: many callers of this function expect
118          * that load_cr3() is serializing and orders TLB
119          * fills with respect to the mm_cpumask writes.
120          */
121         write_cr3(new_mm_cr3);
122 }
123
124 void leave_mm(int cpu)
125 {
126         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
127
128         /*
129          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
130          * If so, our callers still expect us to flush the TLB, but there
131          * aren't any user TLB entries in init_mm to worry about.
132          *
133          * This needs to happen before any other sanity checks due to
134          * intel_idle's shenanigans.
135          */
136         if (loaded_mm == &init_mm)
137                 return;
138
139         /* Warn if we're not lazy. */
140         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
141
142         switch_mm(NULL, &init_mm, NULL);
143 }
144 EXPORT_SYMBOL_GPL(leave_mm);
145
146 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
147                struct task_struct *tsk)
148 {
149         unsigned long flags;
150
151         local_irq_save(flags);
152         switch_mm_irqs_off(prev, next, tsk);
153         local_irq_restore(flags);
154 }
155
156 static void sync_current_stack_to_mm(struct mm_struct *mm)
157 {
158         unsigned long sp = current_stack_pointer;
159         pgd_t *pgd = pgd_offset(mm, sp);
160
161         if (pgtable_l5_enabled()) {
162                 if (unlikely(pgd_none(*pgd))) {
163                         pgd_t *pgd_ref = pgd_offset_k(sp);
164
165                         set_pgd(pgd, *pgd_ref);
166                 }
167         } else {
168                 /*
169                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
170                  * the p4d.  This compiles to approximately the same code as
171                  * the 5-level case.
172                  */
173                 p4d_t *p4d = p4d_offset(pgd, sp);
174
175                 if (unlikely(p4d_none(*p4d))) {
176                         pgd_t *pgd_ref = pgd_offset_k(sp);
177                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
178
179                         set_p4d(p4d, *p4d_ref);
180                 }
181         }
182 }
183
184 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
185                         struct task_struct *tsk)
186 {
187         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
188         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
189         bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
190         unsigned cpu = smp_processor_id();
191         u64 next_tlb_gen;
192         bool need_flush;
193         u16 new_asid;
194
195         /*
196          * NB: The scheduler will call us with prev == next when switching
197          * from lazy TLB mode to normal mode if active_mm isn't changing.
198          * When this happens, we don't assume that CR3 (and hence
199          * cpu_tlbstate.loaded_mm) matches next.
200          *
201          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
202          */
203
204         /* We don't want flush_tlb_func_* to run concurrently with us. */
205         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
206                 WARN_ON_ONCE(!irqs_disabled());
207
208         /*
209          * Verify that CR3 is what we think it is.  This will catch
210          * hypothetical buggy code that directly switches to swapper_pg_dir
211          * without going through leave_mm() / switch_mm_irqs_off() or that
212          * does something like write_cr3(read_cr3_pa()).
213          *
214          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
215          * isn't free.
216          */
217 #ifdef CONFIG_DEBUG_VM
218         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
219                 /*
220                  * If we were to BUG here, we'd be very likely to kill
221                  * the system so hard that we don't see the call trace.
222                  * Try to recover instead by ignoring the error and doing
223                  * a global flush to minimize the chance of corruption.
224                  *
225                  * (This is far from being a fully correct recovery.
226                  *  Architecturally, the CPU could prefetch something
227                  *  back into an incorrect ASID slot and leave it there
228                  *  to cause trouble down the road.  It's better than
229                  *  nothing, though.)
230                  */
231                 __flush_tlb_all();
232         }
233 #endif
234         this_cpu_write(cpu_tlbstate.is_lazy, false);
235
236         /*
237          * The membarrier system call requires a full memory barrier and
238          * core serialization before returning to user-space, after
239          * storing to rq->curr. Writing to CR3 provides that full
240          * memory barrier and core serializing instruction.
241          */
242         if (real_prev == next) {
243                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
244                            next->context.ctx_id);
245
246                 /*
247                  * Even in lazy TLB mode, the CPU should stay set in the
248                  * mm_cpumask. The TLB shootdown code can figure out from
249                  * from cpu_tlbstate.is_lazy whether or not to send an IPI.
250                  */
251                 if (WARN_ON_ONCE(real_prev != &init_mm &&
252                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
253                         cpumask_set_cpu(cpu, mm_cpumask(next));
254
255                 /*
256                  * If the CPU is not in lazy TLB mode, we are just switching
257                  * from one thread in a process to another thread in the same
258                  * process. No TLB flush required.
259                  */
260                 if (!was_lazy)
261                         return;
262
263                 /*
264                  * Read the tlb_gen to check whether a flush is needed.
265                  * If the TLB is up to date, just use it.
266                  * The barrier synchronizes with the tlb_gen increment in
267                  * the TLB shootdown code.
268                  */
269                 smp_mb();
270                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
271                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
272                                 next_tlb_gen)
273                         return;
274
275                 /*
276                  * TLB contents went out of date while we were in lazy
277                  * mode. Fall through to the TLB switching code below.
278                  */
279                 new_asid = prev_asid;
280                 need_flush = true;
281         } else {
282                 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
283
284                 /*
285                  * Avoid user/user BTB poisoning by flushing the branch
286                  * predictor when switching between processes. This stops
287                  * one process from doing Spectre-v2 attacks on another.
288                  *
289                  * As an optimization, flush indirect branches only when
290                  * switching into processes that disable dumping. This
291                  * protects high value processes like gpg, without having
292                  * too high performance overhead. IBPB is *expensive*!
293                  *
294                  * This will not flush branches when switching into kernel
295                  * threads. It will also not flush if we switch to idle
296                  * thread and back to the same process. It will flush if we
297                  * switch to a different non-dumpable process.
298                  */
299                 if (tsk && tsk->mm &&
300                     tsk->mm->context.ctx_id != last_ctx_id &&
301                     get_dumpable(tsk->mm) != SUID_DUMP_USER)
302                         indirect_branch_prediction_barrier();
303
304                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
305                         /*
306                          * If our current stack is in vmalloc space and isn't
307                          * mapped in the new pgd, we'll double-fault.  Forcibly
308                          * map it.
309                          */
310                         sync_current_stack_to_mm(next);
311                 }
312
313                 /* Stop remote flushes for the previous mm */
314                 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
315                                 real_prev != &init_mm);
316                 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
317
318                 /*
319                  * Start remote flushes and then read tlb_gen.
320                  */
321                 cpumask_set_cpu(cpu, mm_cpumask(next));
322                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
323
324                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
325         }
326
327         if (need_flush) {
328                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
329                 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
330                 load_new_mm_cr3(next->pgd, new_asid, true);
331
332                 /*
333                  * NB: This gets called via leave_mm() in the idle path
334                  * where RCU functions differently.  Tracing normally
335                  * uses RCU, so we need to use the _rcuidle variant.
336                  *
337                  * (There is no good reason for this.  The idle code should
338                  *  be rearranged to call this before rcu_idle_enter().)
339                  */
340                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
341         } else {
342                 /* The new ASID is already up to date. */
343                 load_new_mm_cr3(next->pgd, new_asid, false);
344
345                 /* See above wrt _rcuidle. */
346                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
347         }
348
349         /*
350          * Record last user mm's context id, so we can avoid
351          * flushing branch buffer with IBPB if we switch back
352          * to the same user.
353          */
354         if (next != &init_mm)
355                 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
356
357         this_cpu_write(cpu_tlbstate.loaded_mm, next);
358         this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
359
360         load_mm_cr4(next);
361         switch_ldt(real_prev, next);
362 }
363
364 /*
365  * Please ignore the name of this function.  It should be called
366  * switch_to_kernel_thread().
367  *
368  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
369  * kernel thread or other context without an mm.  Acceptable implementations
370  * include doing nothing whatsoever, switching to init_mm, or various clever
371  * lazy tricks to try to minimize TLB flushes.
372  *
373  * The scheduler reserves the right to call enter_lazy_tlb() several times
374  * in a row.  It will notify us that we're going back to a real mm by
375  * calling switch_mm_irqs_off().
376  */
377 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
378 {
379         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
380                 return;
381
382         if (tlb_defer_switch_to_init_mm()) {
383                 /*
384                  * There's a significant optimization that may be possible
385                  * here.  We have accurate enough TLB flush tracking that we
386                  * don't need to maintain coherence of TLB per se when we're
387                  * lazy.  We do, however, need to maintain coherence of
388                  * paging-structure caches.  We could, in principle, leave our
389                  * old mm loaded and only switch to init_mm when
390                  * tlb_remove_page() happens.
391                  */
392                 this_cpu_write(cpu_tlbstate.is_lazy, true);
393         } else {
394                 switch_mm(NULL, &init_mm, NULL);
395         }
396 }
397
398 /*
399  * Call this when reinitializing a CPU.  It fixes the following potential
400  * problems:
401  *
402  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
403  *   because the CPU was taken down and came back up with CR3's PCID
404  *   bits clear.  CPU hotplug can do this.
405  *
406  * - The TLB contains junk in slots corresponding to inactive ASIDs.
407  *
408  * - The CPU went so far out to lunch that it may have missed a TLB
409  *   flush.
410  */
411 void initialize_tlbstate_and_flush(void)
412 {
413         int i;
414         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
415         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
416         unsigned long cr3 = __read_cr3();
417
418         /* Assert that CR3 already references the right mm. */
419         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
420
421         /*
422          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
423          * doesn't work like other CR4 bits because it can only be set from
424          * long mode.)
425          */
426         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
427                 !(cr4_read_shadow() & X86_CR4_PCIDE));
428
429         /* Force ASID 0 and force a TLB flush. */
430         write_cr3(build_cr3(mm->pgd, 0));
431
432         /* Reinitialize tlbstate. */
433         this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
434         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
435         this_cpu_write(cpu_tlbstate.next_asid, 1);
436         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
437         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
438
439         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
440                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
441 }
442
443 /*
444  * flush_tlb_func_common()'s memory ordering requirement is that any
445  * TLB fills that happen after we flush the TLB are ordered after we
446  * read active_mm's tlb_gen.  We don't need any explicit barriers
447  * because all x86 flush operations are serializing and the
448  * atomic64_read operation won't be reordered by the compiler.
449  */
450 static void flush_tlb_func_common(const struct flush_tlb_info *f,
451                                   bool local, enum tlb_flush_reason reason)
452 {
453         /*
454          * We have three different tlb_gen values in here.  They are:
455          *
456          * - mm_tlb_gen:     the latest generation.
457          * - local_tlb_gen:  the generation that this CPU has already caught
458          *                   up to.
459          * - f->new_tlb_gen: the generation that the requester of the flush
460          *                   wants us to catch up to.
461          */
462         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
463         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
464         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
465         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
466
467         /* This code cannot presently handle being reentered. */
468         VM_WARN_ON(!irqs_disabled());
469
470         if (unlikely(loaded_mm == &init_mm))
471                 return;
472
473         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
474                    loaded_mm->context.ctx_id);
475
476         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
477                 /*
478                  * We're in lazy mode.  We need to at least flush our
479                  * paging-structure cache to avoid speculatively reading
480                  * garbage into our TLB.  Since switching to init_mm is barely
481                  * slower than a minimal flush, just switch to init_mm.
482                  *
483                  * This should be rare, with native_flush_tlb_others skipping
484                  * IPIs to lazy TLB mode CPUs.
485                  */
486                 switch_mm_irqs_off(NULL, &init_mm, NULL);
487                 return;
488         }
489
490         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
491                 /*
492                  * There's nothing to do: we're already up to date.  This can
493                  * happen if two concurrent flushes happen -- the first flush to
494                  * be handled can catch us all the way up, leaving no work for
495                  * the second flush.
496                  */
497                 trace_tlb_flush(reason, 0);
498                 return;
499         }
500
501         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
502         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
503
504         /*
505          * If we get to this point, we know that our TLB is out of date.
506          * This does not strictly imply that we need to flush (it's
507          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
508          * going to need to flush in the very near future, so we might
509          * as well get it over with.
510          *
511          * The only question is whether to do a full or partial flush.
512          *
513          * We do a partial flush if requested and two extra conditions
514          * are met:
515          *
516          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
517          *    we've always done all needed flushes to catch up to
518          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
519          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
520          *    us up to date for tlb_gen 3 is the partial flush we're
521          *    processing.
522          *
523          *    As an example of why this check is needed, suppose that there
524          *    are two concurrent flushes.  The first is a full flush that
525          *    changes context.tlb_gen from 1 to 2.  The second is a partial
526          *    flush that changes context.tlb_gen from 2 to 3.  If they get
527          *    processed on this CPU in reverse order, we'll see
528          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
529          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
530          *    3, we'd be break the invariant: we'd update local_tlb_gen above
531          *    1 without the full flush that's needed for tlb_gen 2.
532          *
533          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
534          *    Partial TLB flushes are not all that much cheaper than full TLB
535          *    flushes, so it seems unlikely that it would be a performance win
536          *    to do a partial flush if that won't bring our TLB fully up to
537          *    date.  By doing a full flush instead, we can increase
538          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
539          *    avoid another flush in the very near future.
540          */
541         if (f->end != TLB_FLUSH_ALL &&
542             f->new_tlb_gen == local_tlb_gen + 1 &&
543             f->new_tlb_gen == mm_tlb_gen) {
544                 /* Partial flush */
545                 unsigned long addr;
546                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
547
548                 addr = f->start;
549                 while (addr < f->end) {
550                         __flush_tlb_one_user(addr);
551                         addr += PAGE_SIZE;
552                 }
553                 if (local)
554                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
555                 trace_tlb_flush(reason, nr_pages);
556         } else {
557                 /* Full flush. */
558                 local_flush_tlb();
559                 if (local)
560                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
561                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
562         }
563
564         /* Both paths above update our state to mm_tlb_gen. */
565         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
566 }
567
568 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
569 {
570         const struct flush_tlb_info *f = info;
571
572         flush_tlb_func_common(f, true, reason);
573 }
574
575 static void flush_tlb_func_remote(void *info)
576 {
577         const struct flush_tlb_info *f = info;
578
579         inc_irq_stat(irq_tlb_count);
580
581         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
582                 return;
583
584         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
585         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
586 }
587
588 void native_flush_tlb_others(const struct cpumask *cpumask,
589                              const struct flush_tlb_info *info)
590 {
591         cpumask_var_t lazymask;
592         unsigned int cpu;
593
594         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
595         if (info->end == TLB_FLUSH_ALL)
596                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
597         else
598                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
599                                 (info->end - info->start) >> PAGE_SHIFT);
600
601         if (is_uv_system()) {
602                 /*
603                  * This whole special case is confused.  UV has a "Broadcast
604                  * Assist Unit", which seems to be a fancy way to send IPIs.
605                  * Back when x86 used an explicit TLB flush IPI, UV was
606                  * optimized to use its own mechanism.  These days, x86 uses
607                  * smp_call_function_many(), but UV still uses a manual IPI,
608                  * and that IPI's action is out of date -- it does a manual
609                  * flush instead of calling flush_tlb_func_remote().  This
610                  * means that the percpu tlb_gen variables won't be updated
611                  * and we'll do pointless flushes on future context switches.
612                  *
613                  * Rather than hooking native_flush_tlb_others() here, I think
614                  * that UV should be updated so that smp_call_function_many(),
615                  * etc, are optimal on UV.
616                  */
617                 cpu = smp_processor_id();
618                 cpumask = uv_flush_tlb_others(cpumask, info);
619                 if (cpumask)
620                         smp_call_function_many(cpumask, flush_tlb_func_remote,
621                                                (void *)info, 1);
622                 return;
623         }
624
625         /*
626          * A temporary cpumask is used in order to skip sending IPIs
627          * to CPUs in lazy TLB state, while keeping them in mm_cpumask(mm).
628          * If the allocation fails, simply IPI every CPU in mm_cpumask.
629          */
630         if (!alloc_cpumask_var(&lazymask, GFP_ATOMIC)) {
631                 smp_call_function_many(cpumask, flush_tlb_func_remote,
632                                (void *)info, 1);
633                 return;
634         }
635
636         cpumask_copy(lazymask, cpumask);
637
638         for_each_cpu(cpu, lazymask) {
639                 if (per_cpu(cpu_tlbstate.is_lazy, cpu))
640                         cpumask_clear_cpu(cpu, lazymask);
641         }
642
643         smp_call_function_many(lazymask, flush_tlb_func_remote,
644                                (void *)info, 1);
645
646         free_cpumask_var(lazymask);
647 }
648
649 /*
650  * See Documentation/x86/tlb.txt for details.  We choose 33
651  * because it is large enough to cover the vast majority (at
652  * least 95%) of allocations, and is small enough that we are
653  * confident it will not cause too much overhead.  Each single
654  * flush is about 100 ns, so this caps the maximum overhead at
655  * _about_ 3,000 ns.
656  *
657  * This is in units of pages.
658  */
659 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
660
661 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
662                                 unsigned long end, unsigned long vmflag)
663 {
664         int cpu;
665
666         struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
667                 .mm = mm,
668         };
669
670         cpu = get_cpu();
671
672         /* This is also a barrier that synchronizes with switch_mm(). */
673         info.new_tlb_gen = inc_mm_tlb_gen(mm);
674
675         /* Should we flush just the requested range? */
676         if ((end != TLB_FLUSH_ALL) &&
677             !(vmflag & VM_HUGETLB) &&
678             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
679                 info.start = start;
680                 info.end = end;
681         } else {
682                 info.start = 0UL;
683                 info.end = TLB_FLUSH_ALL;
684         }
685
686         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
687                 VM_WARN_ON(irqs_disabled());
688                 local_irq_disable();
689                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
690                 local_irq_enable();
691         }
692
693         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
694                 flush_tlb_others(mm_cpumask(mm), &info);
695
696         put_cpu();
697 }
698
699 void tlb_flush_remove_tables_local(void *arg)
700 {
701         struct mm_struct *mm = arg;
702
703         if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm &&
704                         this_cpu_read(cpu_tlbstate.is_lazy)) {
705                 /*
706                  * We're in lazy mode.  We need to at least flush our
707                  * paging-structure cache to avoid speculatively reading
708                  * garbage into our TLB.  Since switching to init_mm is barely
709                  * slower than a minimal flush, just switch to init_mm.
710                  */
711                 switch_mm_irqs_off(NULL, &init_mm, NULL);
712         }
713 }
714
715 void tlb_flush_remove_tables(struct mm_struct *mm)
716 {
717         int cpu = get_cpu();
718         /*
719          * XXX: this really only needs to be called for CPUs in lazy TLB mode.
720          */
721         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
722                 smp_call_function_many(mm_cpumask(mm), tlb_flush_remove_tables_local, (void *)mm, 1);
723
724         put_cpu();
725 }
726
727 static void do_flush_tlb_all(void *info)
728 {
729         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
730         __flush_tlb_all();
731 }
732
733 void flush_tlb_all(void)
734 {
735         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
736         on_each_cpu(do_flush_tlb_all, NULL, 1);
737 }
738
739 static void do_kernel_range_flush(void *info)
740 {
741         struct flush_tlb_info *f = info;
742         unsigned long addr;
743
744         /* flush range by one by one 'invlpg' */
745         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
746                 __flush_tlb_one_kernel(addr);
747 }
748
749 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
750 {
751
752         /* Balance as user space task's flush, a bit conservative */
753         if (end == TLB_FLUSH_ALL ||
754             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
755                 on_each_cpu(do_flush_tlb_all, NULL, 1);
756         } else {
757                 struct flush_tlb_info info;
758                 info.start = start;
759                 info.end = end;
760                 on_each_cpu(do_kernel_range_flush, &info, 1);
761         }
762 }
763
764 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
765 {
766         struct flush_tlb_info info = {
767                 .mm = NULL,
768                 .start = 0UL,
769                 .end = TLB_FLUSH_ALL,
770         };
771
772         int cpu = get_cpu();
773
774         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
775                 VM_WARN_ON(irqs_disabled());
776                 local_irq_disable();
777                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
778                 local_irq_enable();
779         }
780
781         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
782                 flush_tlb_others(&batch->cpumask, &info);
783
784         cpumask_clear(&batch->cpumask);
785
786         put_cpu();
787 }
788
789 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
790                              size_t count, loff_t *ppos)
791 {
792         char buf[32];
793         unsigned int len;
794
795         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
796         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
797 }
798
799 static ssize_t tlbflush_write_file(struct file *file,
800                  const char __user *user_buf, size_t count, loff_t *ppos)
801 {
802         char buf[32];
803         ssize_t len;
804         int ceiling;
805
806         len = min(count, sizeof(buf) - 1);
807         if (copy_from_user(buf, user_buf, len))
808                 return -EFAULT;
809
810         buf[len] = '\0';
811         if (kstrtoint(buf, 0, &ceiling))
812                 return -EINVAL;
813
814         if (ceiling < 0)
815                 return -EINVAL;
816
817         tlb_single_page_flush_ceiling = ceiling;
818         return count;
819 }
820
821 static const struct file_operations fops_tlbflush = {
822         .read = tlbflush_read_file,
823         .write = tlbflush_write_file,
824         .llseek = default_llseek,
825 };
826
827 static int __init create_tlb_single_page_flush_ceiling(void)
828 {
829         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
830                             arch_debugfs_dir, NULL, &fops_tlbflush);
831         return 0;
832 }
833 late_initcall(create_tlb_single_page_flush_ceiling);